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We strengthen the classical approximation theorems ofWeierstrass, Runge, andMergelyan by showing
the polynomial and rational approximants can be taken to have a simple geometric structure. In
particular,when approximating a function f on a compact set K, the critical points of our approximants
may be taken to lie in any given domain containing K, and all the critical values in any given
neighborhood of the polynomially convex hull of f (K).

1 Introduction

The study of approximating one class of more general functions by functions coming from a second
more restricted class is termed Approximation Theory. Within complex analysis, the class of general
functions is usually the class of functions analytic or continuous on a given set, whereas the restricted
class of functions is the class of functions analytic on an extension of the given set. Approximation
Theory has found a renewed interest within the field of complex dynamics, where approximation
results have been used to prove the existence of various dynamical behaviors for functions in a number
of recent works (see, e.g., [2, 8, 11, 12, 19, 20]). This approach, however, has the deficiency that the
approximation theorems used do not provide a sufficient description of the approximant needed to
describe the global dynamics of the approximant. The purpose of this paper is to give an improved,
global description of the approximants in some of the fundamental results in approximation in one
complex variable.

One such fundamental result is Runge’s classical theorem on polynomial approximation.

Theorem 1.1. [21] Let f be a function analytic on a neighborhood of a compact set K ⊂ C, and
suppose C \ K is connected. For all ε > 0, there exists a polynomial p so that

||f − p||K := sup
z∈K

|f (z) − p(z)| < ε.

This famous result does not say much about what the polynomial approximant p looks like off the
compact set. For various applications (such as the dynamical applicationsmentioned above), it would be
useful to understand the global behavior of p and, in particular, the location of the critical points and val-
ues of p. To this end,we state our first result (TheoremA below) after introducing the following notation.
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A Geometric Approach to Polynomial and Rational Approximation | 9937

Notation 1.2. For any compact set K ⊂ C we denote the ε-neighborhood of K by NεK := {z :
infw∈K |z−w| < ε}, and we denote by K̂ the union of Kwith all bounded components of C\K (this
is usually called the polynomially convex hull of K; see [1]). We say K is full if C \ K is connected.
We let CP(f ) denote the set of critical points of an analytic function f , and let CV(f ) := f (CP(f ))

denote its critical values. A domain in C is an open, connected subset of C.

Theorem A. (Polynomial Runge+) Let K ⊂ C be compact and full,D a domain containing K, and suppose

f is a function analytic in a neighborhood of K. Then for all ε > 0, there exists a polynomial p so that

||f − p||K < ε and:

1) CP(p) ⊂ D,
2) CV(p) ⊂ Nε f̂ (K).

We remark that no relation is assumed between the domain D ⊃ K and the neighborhood of K in
which f is analytic. Analogous improvements of the polynomial approximation theorems of Mergelyan
and Weierstrass will be stated and proved in Section 10 (see Theorem 10.7 and Corollary 10.8). When
K is not full, uniform approximation by polynomials is not always possible, and so we turn to rational
approximation. We denote the Hausdorff distance between two sets X, Y, by dH(X,Y).

Theorem B. (Rational Runge+) Let K ⊂ C be compact, D a domain containing K, f a function analytic

in a neighborhood of K, and suppose P ⊂ Ĉ \ K contains exactly one point from each component of Ĉ \ K.
Then there exists P′ ⊂ P so that for all ε > 0, there is a rational function r so that ||f − r||K < ε and:

1) dH(r−1(∞), P′) < ε and |r−1(∞)| = |P′|,
2) CP(r) ⊂ D,
3) CV(r) ⊂ Nε f̂ (K).

We now briefly describe our approach. Let � ⊂ C be a finitely connected domain with analytic
boundary, and F : � → D analytic. By a theorem of Grunsky, F can be approximated on any compact
subset of � by a proper holomorphic map B : � → D (recall proper means that the continuous extension
of B to ∂� satisfies B(∂�) = T := {z : |z| = 1}). Grunsky’s proof (see Lemma 4.5.4 of [16]) uses a
Riemann sum to approximate an integral representation of F involving the Green’s function on �.
Another approach can be found in [17]. When � is simply connected, B is a Blaschke product (up to
a change of coordinates), and in this case the result is due to Carathéodory [9], with a much simpler
proof based on power series.

Thus, the function f in Theorem A or B can be approximated on K by a holomorphic map B defined
in a union D := ∪iDi ⊃ K of pairwise disjoint domains (Di)

k
i=1, so that B is proper in each Di. Our

approach in this manuscript is to extend B from D to a quasiregular mapping g : Ĉ → Ĉ with specified
poles. The Measurable Riemann Mapping Theorem (MRMT for brevity) will then imply that there is a
quasiconformal mapping φ so that g ◦ φ−1 is rational. The bulk of the work in this paper will be to show
that there exists a quasiregular extension g of B so that {z : gz(z) 
= 0} is sufficiently small (in a suitable
sense) so as to imply φ(z) ≈ z and hence g ◦ φ−1 = B ◦ φ−1 ≈ B ≈ f on K. We remark that our techniques
build on the quasiconformal folding methods of the first author [4].

This approach yields not only information on the critical points and values of the approximants as
in Theorems A and B, but also a detailed description of the geometric structure of these approximants.
We end the introduction by describing this geometric structure in a few cases. First we introduce some
more notation.

Notation 1.3. Let V ⊂ Ĉ be a simply connected domain so that ∞ 
∈ ∂V. We let ψV : E → V denote
a Riemann mapping, where E = D if V is bounded and E = D∞ := Ĉ \ D if V is unbounded, in
which case we specify ψV(∞) = ∞.

First consider the case when K is full and connected, and f is holomorphic in a neighborhood of K.
Let �, �′ be analytic Jordan domains containing K, f (K), respectively, so that f is holomorphic in �. Then
the mapping

F := ψ−1
�′ ◦ f ◦ ψ� : D → D

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
4
/1

2
/9

9
3
6
/7

6
5
8
8
3
0
 b

y
 g

u
e
s
t o

n
 0

3
 J

u
ly

 2
0
2
4



9938 | C. J. Bishop and K. Lazebnik

Fig. 1. This figure illustrates the geometry of the approximant p in Theorem A when K is connected. The notation
is explained in the text. Both domain and co-domain are colored so that regions with the same color correspond
to one another under p.

is holomorphic, and by the aforementioned theorem of Carathéodory, there is a finite Blaschke product
b : D → D that approximates F on the compact set ψ−1

� (K). Therefore,

B := ψ�′ ◦ b ◦ ψ−1
� : � → �′

is a holomorphic function that approximates f on K, and moreover B restricts to an analytic, finite-to-1
map of � := ∂� onto �′ := ∂�′.

In this paper, we will show that B can be approximated on � by a polynomial p so that p−1(�′) is an
approximation of �. More precisely, p−1(�′) is connected, and consists of a finite union of Jordan curves
{γj}n0 bounding pairwise disjoint Jordan domains {�j}n0 (see Figure 1): the {�j}n0 are precisely the connected
components of p−1(�′). There is one “large” component �0 that approximates � in the Hausdorff metric.
The other components {�j}n1 can be made as small as we wish and to lie in any given neighborhood of
∂�. Moreover, the collection {�j}n0 forms a tree structure with any two boundaries ∂�j, ∂�k either disjoint
or intersecting at a single point, and with �0 as the “root” of the tree as in Figure 1. Let �∞ denote the
unbounded component of C \ p−1(�′), so that

C \ p−1(�′) = �0 �
(
�n
j=1�j

)
� �∞. (1.1)

Recalling Notation 1.3, the polynomial p has the following simple structure with respect to the domains
in (1.1).

1) p(�0) = �′ and ψ−1
�′ ◦ p ◦ ψ�0 is a finite Blaschke product.

2) p(�j) = �′ and p is conformal on �j for 1 ≤ j ≤ n.
3) p(�∞) = C \ �′ and p = ψ

C\�′ ◦ (z �→ zm) ◦ ψ−1
�∞

on �∞ for m = deg(p|�0 ) + n.

In otherwords,up to conformal changes of coordinates,p is simply a Blaschke product in�0, a conformal
map in each �j, 1 ≤ j ≤ n, and a power map z �→ zm in �∞. The only finite critical points of p are either in
�0, or at a point where two of the curves (γj)

n
j=1 intersect, in which case the corresponding critical value

lies on ∂�′.
Next suppose K is connected, but C \ K has more than one component. In this case, in order to

prove Theorem B, we will need to let � be a multiply connected analytic domain containing K, and
�′ an analytic Jordan domain containing f (K). By Grunsky’s Theorem, there exists a proper map b

approximating ψ−1
�′ ◦ f on K, so that B := ψ�′ ◦ b is a holomorphic map approximating f on K, and B

restricts to an analytic, finite-to-1 mapping of each component of � := ∂� onto �′. We will show B can
be approximated on � by a rational map r so that each component of ∂� can be approximated by a
component of r−1(�′). These components of r−1(�′) bound Jordan domains that form a decomposition
of the plane as in the previously described polynomial setting, and in the interior of each such domain
again r behaves either as a propermapping, a conformal mapping, or a powermapping (up to conformal
changes of coordinates).

Lastly, the case when K has more than one connected component is more intricate, and we will leave
the precise description to later in the paper. (Briefly, quasiconformal folding is applied not just along
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A Geometric Approach to Polynomial and Rational Approximation | 9939

the boundary of a neighborhood of K, but also along specially chosen curves that connect different
connected components of this neighborhood.)

We conclude the introduction by mentioning several related works. The location of CP(p) in relation
to the zeros of a polynomial p is studied in the recent works [22, 23], and in [13] the problem of
approximation in Cn with prescribed critical points was studied.

2 Approximation by Proper Mappings

Definition 2.1. We call a domain D ⊂ C an analytic domain if D is finitely connected, and each
component of ∂D is an analytic Jordan curve.

We remark that a boundary component of an analytic domain D cannot be a single point.

Definition 2.2. Let D be an analytic domain. We will call a continuous mapping f : D → C proper

if f (D) ⊂ D and if for every compact K ⊂ D, f−1(K) is a compact subset of D.

We remark that the definition of proper does not usually include the assumption of the function
being D-valued; however, this will be a useful convention to follow in this paper.

Remark 2.3. Since D in Definition 2.2 is assumed to be an analytic domain, the map f : D → D

extends continuously to a map f : D → D, and it is straightforward to check that the map
f : D → D is proper if and only if f (∂D) ⊂ T.

The following is Lemma 4.5.4 of [16]:

Theorem 2.4. Let ε > 0, D an analytic domain, K ⊂ D compact, and f : D → D holomorphic. Then
there exists a proper map B : D → D so that ||f − B||K < ε.

Remark 2.5. When D = D, the function B in the conclusion of Theorem 2.4 is a Blaschke product
(hence the notation B), and in this case Theorem 2.4 is due to Carathéodory (see, e.g., in
Theorem I.2.1 of [14] or Theorem 5.1 of the survey [15]).

Notation 2.6. We denote H := {z ∈ C : Im(z) > 0}. For a proper map B on an analytic domain D,
we let IB denote the connected components of ∂D \ {z : B(z) ∈ R}. In other words, IB are the
preimages (under B) of the open upper and lower half-circles T∩H,T∩ (−H).We will frequently
be dealing with sequences of proper maps (Bn)∞n=1 on D, in which case we abbreviate IBn by In.

In order to prove Theorems A and B, we will need to approximate a given function by a sequence
of proper approximants (Bn)∞n=1 of increasing degree, so that |B′

n| is uniformly comparable to n on
the boundary (see (2.5) below). This will be done by post-composing the approximant coming from
Theorem 2.4 with the following Blaschke products:

Definition 2.7. For n ∈ N, 0 < δ < 1, and 0 < c < 1, we define the Blaschke product:

Bn,δ,c(z) := z ·
n−1∏

j=0

e2π ij/nz + r

1 + re2π ij/nz
, where r := 1 − δ(1 − c)

n
. (2.1)

Proposition 2.8. There exists a δ0 > 0 so that if δ < δ0 and 0 < c < 1, then:

sup
n∈N

sup
|z|<c

∣∣Bn,δ,c(z) − z
∣∣ < 4δ. (2.2)

Proposition 2.9. There exists a constant C depending on δ and c, but not on n, so that

n/C < |B′
n,δ,c(z)| < nC for all z ∈ T and n ∈ N. (2.3)
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9940 | C. J. Bishop and K. Lazebnik

The proofs of Propositions 2.8 and 2.9 are straightforward but tedious calculations, and so we delay
them until the end of the section. For now, we show how Theorem 2.4 together with Propositions 2.8
and 2.9 can be used to deduce the following result, Theorem 2.10. We remark that Theorem 2.10 is the
only result from Section 2, which will be needed in the remainder of the paper.

Theorem 2.10. Let ε > 0,D an analytic domain, K ⊂ D compact, and f : D → D holomorphic. Then
there exists M < ∞ and a sequence of proper maps (Bn)∞n=1 on D satisfying:

sup
n∈N

||f − Bn||K < ε, and (2.4)

n/M ≤ |B′
n(z)| ≤ nM for all z ∈ ∂D and n ∈ N. (2.5)

Proof. Fix ε, D, K, f as in the statement of the theorem. By Theorem 2.4, there exists a proper map
B : D → D satisfying ||f − B||K < ε/2. Fix c so that supz∈K |B(z)| < c < 1, and fix δ < ε/8 sufficiently small
so that (2.2) holds. This defines the sequence (Bn,δ,c)

∞
n=1. We set

Bn := Bn,δ,c ◦ B.

The relation (2.4) follows from (2.2) and the triangle inequality, and the relation (2.5) follows from (2.3)
and the chain rule. �

We conclude this section with the proofs of Propositions 2.8 and 2.9.

Proof of Proposition 2.8. Let

B(z) :=
n−1∏

j=0

−aj
|aj|

z − aj
1 − ajz

, where aj := −r exp(−2π ij/n), (2.6)

so that Bn,δ,c(z) = z · B(z). Recalling the definition of r from (2.1), we note that

sup
|z|≤c

∣∣∣∣
z + r

1 + rz
− 1

∣∣∣∣ =
∣∣∣∣
−c + r

1 − cr
− 1

∣∣∣∣ = δ(1 − c)(1 + c)/n

1 − c (1 − δ(1 − c)/n)
≤ δ(1 + c)

n
≤ 2δ

n
.

Symmetry then gives us that

sup
|z|≤c

∣∣∣∣
−aj
|aj|

z − aj
1 − ajz

− 1
∣∣∣∣ ≤ 2δ

n
for all 0 ≤ j ≤ n.

Hence,

∣∣∣∣∣∣

n−1∑

j=0

log

(−aj
|aj|

z − aj
1 − ajz

)∣∣∣∣∣∣
≤

n−1∑

j=0

∣∣∣∣log
(−aj

|aj|
z − aj
1 − ajz

)∣∣∣∣ ≤ 3δ

for sufficiently small δ and all 0 < c < 1. Thus, we conclude that

|B(z) − 1| =

∣∣∣∣∣∣
exp

⎛
⎝

n−1∑

j=0

log

(−aj
|aj|

z − aj
1 − ajz

)⎞
⎠ − 1

∣∣∣∣∣∣
≤ 4δ

for sufficiently small δ and all 0 < c < 1, and this proves (2.2) since Bn,δ,c(z) = z · B(z). �
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A Geometric Approach to Polynomial and Rational Approximation | 9941

Fig. 2. This figure illustrates Notation 2.6, Definition 3.1, and Theorem 2.10. The vertices pictured on ∂D are
B−1(±1), and the components IB of Notation 2.6 are the edges along ∂D connecting these vertices.

Proof of Proposition 2.9. Wewill use the notation�,�,� tomean≤,=,≥ (respectively) up to a constant
depending on δ and c, but not n. Let B(z) be as in (2.6). A calculation gives

B′(z)

B(z)
=

n−1∑

j=0

1 − |aj|2

(1 − ajz)2
·
(

z − aj
1 − ajz

)−1

�

Thus, we have

|B′(z)| ≤
n−1∑

j=0

P(z, aj), where P(z, ζ ) := 1 − |ζ |2
|z − ζ |2 for z ∈ T,ζ ∈ D (2.7)

is the Poisson kernel for the unit disc. The sum
∑n−1

j=0 P(z, aj) takes its maximum at z = −1 (as well as at

any of the other n points (exp(π i + 2π ij/n))n−1
j=0 ), where we have

P(−1, r) � n and P(−1, aj) � n/j2 for j = 1, ..., �(n − 1)/2�. (2.8)

Combining (2.7) and (2.8) together with the fact that
∑∞

j=1 1/j2 < ∞, we have |B′(z)| � n. Let us now
prove |B′(z)| � n. The function |B′(z)| takes its minimum at zn := exp(π i(1 + 1/n)), where the triangle
inequality yields

|B′(zn)| ≥

∣∣∣∣∣∣
∑

j=0,1

1 − |aj|2

(1 − ajzn)2
·
(

zn − aj
1 − ajzn

)−1
∣∣∣∣∣∣
−

n−1∑

j=2

P(zn, aj) � n. (2.9)

Since Bn,δ,c(z) = z · B(z) and we have shown |B′(z)| � n for all z ∈ T. The relation (2.3) follows.

3 Applying Theorem 2.10

In this brief section, we apply Theorem 2.10 to the setting needed for the proofs of Theorem A and B.
Given a Jordan curve γ ⊂ C, we denote the bounded component of Ĉ \ γ by int(γ ).

Notation 3.1. We refer to Figure 2 for a summary of the following. For the remainder of this
section, we will fix a compact set K, an analytic domain D containing K, and a function f

holomorphic in a neighborhood of D satisfying ||f ||D < 1. Fix ε > 0. We assume that

d(z,K) < ε/2 and d(f (z), f (K)) < ε/2 for every z ∈ ∂D. (3.1)
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9942 | C. J. Bishop and K. Lazebnik

We remark that if f is a holomorphic function in a neighborhood of a compact set K, there does not
necessarily exist an analytic domain D satisfying the assumptions of Notation 3.1 (in particular when K

is disconnected); however it will be useful in the framework of our proof to work under the assumptions
of Notation 3.1 for now.

Definition 3.2. We let γ be an analytic Jordan curve surrounding f (D) such that

dist(w, f (K)) < ε for every w ∈ γ , (3.2)

and let � : D → int(γ ) denote a Riemann mapping.

Recall Definition 2.2 of a proper mapping on a domain D.

Proposition 3.3. There exists M < ∞ and a sequence of proper mappings (Bn)∞n=1 on D satisfying
(2.5) so that

||f − � ◦ Bn||K < ε for all n ∈ N. (3.3)

Proof. Let K′ ⊂ D be compact so that K ⊂ Int(K′) (the interior of K′). Fix r < 1 and δ > 0 so that

�−1 ◦ f (K′) ⊂ {z : |z| < r} and δ < dist
(
ψ−1 ◦ f (K), ∂(ψ−1 ◦ f (K′))

)

Apply Theorem 2.10 to:

min

(
ε

sup|ζ |≤r |� ′(ζ )| , ε, δ
)
,D,K′,�−1 ◦ f . (3.4)

This produces a sequence of proper mappings (Bn)∞n=1 on D satisfying (2.5) for some M < ∞. We claim
(Bn)∞n=1 also satisfies (3.3). Indeed, for any z ∈ Kwe have by our choice of δ that |Bn(z)| ≤ r and |�−1◦f (z)| ≤
r. Thus, we deduce

|� ◦ Bn(z) − f (z)| = |� ◦ Bn(z) − � ◦ �−1 ◦ f (z)| ≤ sup
|ζ |≤r

|� ′(ζ )| · |Bn(z) − �−1 ◦ f (z)|,

and so (3.3) follows from (3.4). �

Recall from the introduction that we plan to extend the definition of the approximant � ◦Bn ≈ f from
D to all of C. To this end, it will be useful to define the following graph structure on ∂D.

Definition 3.4. For any n ∈ N, we define a set of vertices on ∂D by Vn := (Bn|∂D)−1(R), where each
vertex v is labeled black or white according to whether Bn(v) > 0 or Bn(v) < 0, respectively. The
curves ∂Dwill be considered as a graph with edges defined by In (recall from Notation 2.6 that
In is precisely the collection of components of ∂D \Vn). We will sometimes write Dn in place of
D when we wish to emphasize the dependence of the graph ∂D on n.

Definition 3.5. We define a holomorphic mapping gn in D by the formula

gn(z) := � ◦ Bn(z). (3.5)

In Sections 4–9 we will quasiregularly extend the definition of gn to C, and then in Section 10 we
apply the MRMT to produce the rational approximant of Theorem B as described in the introduction.

Remark 3.6. Recall that in Notation 3.1, we fixed ε > 0, a compact set K contained in an analytic
domain D, and a function f holomorphic in D (we note ε, K, D, f also satisfied extra conditions
specified in Notation 3.1). The objects γ , �, Bn, Vn, gn we then defined in this section were
determined by our initial choice of ε, K,D, f . In future sections, it will be useful to think of γ , �,
Bn,Vn, gn as defining functions that take as input some quadruple (ε,K,D, f ) (for any ε, K,D, f as
in Notation 3.1), and output whatever object we defined in this section. For instance,Vn defines
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a function that takes as input any (ε,K,D, f ) as in Notation 3.1 and outputs (via Definition 3.4)
a set of vertices Vn(ε,K,D, f ) on ∂D. Similarly, Bn takes as input any (ε,K,D, f ) as in Notation 3.1
and outputs (via Proposition 3.3) a proper mapping Bn(ε,K,D, f ) on D. Likewise for γ , �, gn.

4 Quasiconformal Folding

Given a compact set K ⊂ C and a function f holomorphic in a domain D containing K, we showed in
Section 3 how to approximate f by a holomorphic function gn defined in D (see Definition 3.5). If f is
a function holomorphic in an arbitrary analytic neighborhood U (where U need not be connected) of a
compact set K, then one can apply the results of Section 3 to each component of U, which intersects K
(this is done precisely in Definition 5.1): this yields a holomorphic approximant of f defined in a finite
union of domains. In Sections 4–8, we will build the apparatus necessary to extend this holomorphic
approximant to a quasiregular function of C, which is holomorphic outside a small set.

It was convenient to assume in Notation 3.1 that the compact set K was covered by a single domain
D; however, we now begin to work more generally:

Remark 4.1. We refer to Figure 5 for a summary of the following. Throughout Sections 4–8, we
will fix ε > 0, a compact set K ⊂ C, a domain D containing K, a disjoint collection of analytic
domains (Di)

k
i=1 such that K ⊂ U := ∪iDi ⊂ D, and a function f holomorphic in a neighborhood

of U satisfying ||f ||U < 1. We assume that the following analog of Equation (3.1) holds:

d(z,K ∩ Di) < ε/2 and d(f (z), f (K ∩ Di)) < ε/2 for all z ∈ ∂Di and 1 ≤ i ≤ k.

Applying the methods of the previous section to each component Di of U, we can define a sequence
of propermappings (Bn)∞n=1 on eachDi (see Remark 3.6).Wewill let Bn denote the corresponding function
defined on U. In particular, (Bn)∞n=1 gives the following definition of vertices on the boundary of U = ∪iDi

(see Definition 3.4 and Remark 3.6).

Definition 4.2. For every n ∈ N, we define a set of vertices Vn on ∂U by

Vn :=
k⋃

i=1

Vn(ε,K ∩ Di,Di, f |Di
) =

k⋃

i=1

(Bn|∂Di
)−1(R).

We now extend the graph structure on ∂U by connecting the different components of U by curves
{�i}k−1

i=1 in Proposition 4.3 below, and defining vertices along these curves in Definition 4.4.Wewill need to
prove a certain level of regularity for these curves and vertices in order to ensure that the dilatations of
quasiconformal adjustments we will make later do not degenerate as n → ∞.We will denote the curves
by {�i}k−1

i=1 , and we remark that the curves depend on n, although we suppress this from the notation.

Proposition 4.3. For each n ∈ N, there exists a collection of disjoint, closed, analytic Jordan arcs
{�i}k−1

i=1 in (Ĉ \ U) ∩ D satisfying the following properties:

1) Each endpoint of �i is a vertex in Vn;
2) Each �i meets ∂U at right angles;
3) U ∪ (∪i�i) is connected; and
4) For each 1 ≤ i ≤ k − 1, the sequence (in n) of curves �i has an analytic limit.

Proof. The set (Ĉ \ U) ∩ D must contain at least one simply connected region V with the property that
there are distinct i, j with both ∂V ∩ ∂Di and ∂V ∩ ∂Dj containing non-trivial arcs (see Figure 3). By (2.5),
for all sufficiently large n both ∂V ∩ ∂Di, ∂V ∩ ∂Dj contain vertices of Vn, which we denote by vi ∈ ∂Di,
vj ∈ ∂Dj, respectively. Consider a conformal map φ : D → V, and define �1 to be the image under φ of the
hyperbolic geodesic connecting φ−1(vi), φ

−1
i (vj) in D.

We now proceed recursively, making sure at step l we pick a V, which connects two components of
U not already connected by a �1,..., �l−1, and so that V is disjoint from �1,..., �l−1. The curves �i satisfy
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Fig. 3. Illustrated is the Definition of the domain V in the proof of Proposition 4.3

Fig. 4. Illustrated is Definition 4.4.

conclusions (1)-(3) of the proposition. We may ensure that for each 1 ≤ i ≤ k − 1, the sequence (in n) of
curves �i has an analytic limit by choosing vi, vj above to converge as n → ∞. �

Definition 4.4. Consider the vertices Vn ⊂ ∂U of Definition 4.2. We will augment Vn to include
vertices on the curves (�i)

k−1
i=1 as follows (see Figure 4). Let � ∈ (�i)

k−1
i=1 denote both the curve as a

subset of C and the arclength parameterization of the curve, and suppose � connects vertices

�(0) = vi ∈ ∂Di, �(length(�)) = vj ∈ ∂Dj.

For k = i, j, let εk denote theminimum length of the two edges with endpoint vk in ∂Dk, and suppose
without loss of generality εj < εi. Let l ≥ 0 be so that

εj/2 ≤ εi/2
l ≤ 2εj.

We place vertices at �(εi/2), ...,�(εi/2l), and along �([εi/2l, length(�)]) at equidistributed points.
We can label the vertices black/white along � so that vertices connect only to vertices of
the opposite color by adding one extra vertex at the midpoint of the segment having vj as
an endpoint, if need be.

We introduce the following notation.

Notation 4.5. Throughout Sections 4–8, we will let � denote a fixed (arbitrary) component of

Ĉ \
(
U ∪

k−1⋃

i=1

�i

)
, (4.1)

and p ∈ �. Note that � is simply connected by Proposition 4.3(3). Denote D∞ := Ĉ \ D, and let σ

denote any conformal mapping

σ : D∞ → � (4.2)

satisfying σ(∞) = p. For z ∈ �, we define τ(z) := σ−1(z). The map τ induces a partition of T, which
we denote by Vn := τ(Vn).
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Fig. 5. This figure illustrates Remark 4.1 and Notation 4.5. As pictured, U has four components (Di)
4
i=1 which are

connected by curves (�i)
3
i=1. Recall K ⊂ U (the compact set K is not shown in the figure). The unbounded

component � of (4.1) is pictured in dark grey. The map τ : � → D∞ is a conformal mapping, and sends the vertices
on ∂� to (possibly unevenly spaced) vertices on the unit circle.

Fig. 6. Shown as a black curve is part of a graph G, and in light gray the neighborhood
∪e∈G{z : dist(z, e) < C · diam(e)} of G.

Remark 4.6. We will sometimes write �n, D∗
∞,n in place of �, D∞, respectively, when we wish to

emphasize the dependence of the vertices Vn ⊂ ∂�, Vn ⊂ ∂D∞ on the parameter n.

Proposition 4.7. For the graph ∂�n, we have max{diam(e) : eis an edge of∂�n}
n→∞−−−→ 0.

Proof. This follows from (2.5) and Definition 4.4. �

As explained in the introduction, in order to prove uniform approximation in Theorem B, we will
need to prove that our quasiregular extension is holomorphic outside a region of small area. To this end
it will be useful to introduce the following definition.

Definition 4.8. Suppose V ⊂ C is an analytic domain, and ∂V is a graph. Let C > 0. We say a
quasiregular mapping φ : V → φ(V) is C-vertex-supported if

supp(φz) ⊂
⋃

e∈∂V

{z : dist(z, e) < C · diam(e)} (4.3)

(see Figure 6), where the union in (4.3) is taken over all edges e on ∂V.

It will also be useful to have the following definition.

Definition 4.9. Suppose e, f are rectifiable Jordan arcs, and h : e → f is a homeomorphism. We
say that h is length-multiplying on e if the push-forward (under h) of arc-length measure on e

coincides with the arc-length measure on f multiplied by length(f )/length(e).

First we will adjust the conformal map τ so as to be length-multiplying along edges of ∂�. Recall the
vertices Vn ⊂ T defined in Notation 4.5.
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Fig. 7. This figure illustrates the Folding Theorem 4.13 and Notation 4.14. The simply connected domain �′
n is

obtained by removing from � certain trees based at the vertices along ∂�.

Fig. 8. For any x ∈ ∂Wn ∩ D∞, there are two limits limWn�z→x ψ(z) ∈ T as illustrated in this figure. Theorem 4.13(3)
says that these two limits are equidistant from the nearest black vertex, and are equidistant from the nearest
white vertex.

Proposition 4.10. For every n, there is a K-quasiconformal mapping λ : D∗
∞,n → D∗

n so that

1) λ is C-vertex-supported for some C > 0;
2) λ(z) = z on Vn and off of supp(λz);
3) λ ◦ τ is length-multiplying on every component of ∂� \ Vn; and
4) C, K do not depend on n.

Proof. This is a consequence of Theorem 4.3 of [4]. Indeed, letHr := {z ∈ C : Re(z) > 0} and recall τ := σ−1

and consider the 2π i-periodic covering map

φ := σ ◦ exp : Hr �→ �. (4.4)

The map φ induces a periodic partition φ−1(Vn) of ∂Hr which has bounded geometry (see the introduction
of [4], or Section 2 of [5]) with constants independent of n by Proposition 4.3(2) and Definition 4.4. Thus,
Theorem 4.3 of [4] applies to produce a 2π i-periodic, C vertex-supported, and K-quasiconformal map
β : Hr → Hr so that φ ◦ β is length-multiplying on edges of Hr, and C, K are independent of n. Thus, the
inverse

β−1 ◦ log ◦τ

is length-multiplying, and since exp is length-multiplying on vertical edges, the well-defined map

λ := exp ◦β−1 ◦ log : D∞ → D∞

satisfies the conclusions of the Proposition. �

The main idea in defining the quasiregular extension in � is to send each edge of ∂Di to the upper or
lower half of the unit circle by following λ ◦ τ with a power map z �→ zn of appropriate degree. The main
difficulty in this approach, however, is that the images of different edges of ∂Di under λ ◦ τ may differ
significantly in size, so that there is no single nwith z �→ zn achieving the desired behavior. The solution
is to modify the domain � by removing certain “decorations” from the domain �, so that each edge of
∂Di is sent to an arc of roughly the same size under λ ◦ τ . This is formalized below in Theorem 4.13
(see also Figures 7 and 8), and is an application of the main technical result of [4] (see Lemma 5.1). The
“decorations” are the trees in the following definition.
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Definition 4.11. Let V ⊂ T be a discrete set. We call a domain W ⊂ D∞ a tree domain rooted at V if
W consists of the complement in D∞ of a collection of disjoint trees, one rooted at each vertex
of V (see the center of Figure 7).

Notation 4.12. For m ∈ N, we let

Z±
m := {z ∈ T : zm = ±1},

Zm := Z+
m ∪ Z−

m .

In other words, Z+
m denotes the mth roots of unity, and Z−

m the mth roots of −1.

Theorem 4.13. For every n, there exists a tree domain Wn rooted at Vn, an integer m = m(n), and
a K-quasiconformal mapping ψ : Wn → D∞ so that

1) ψ is C-vertex-supported for some C > 0, and ψ(z) = z off of supp(ψz);
2) on any edge e of ∂Wn ∩ T, ψ is length-multiplying and ψ(e) is an edge in T \ Zm;
3) for any edge e of ∂Wn ∩ D∞, ψ(e) consists of two edges in T \ Zm. Moreover, if x ∈ e, the two limits

limWn�z→x ψ(z) ∈ T are equidistant from Z+
m , and from Z−

m ; and
4) C, K do not depend on n.

Proof. We consider the 2π-periodic covering map

φ := σ ◦ λ ◦ exp ◦(z �→ −iz) : H �→ �. (4.5)

inducing a periodic partition φ−1(Vn) of ∂H. By (2.5), Definition 4.4, and Proposition 4.10(2), any two edges
of H have comparable lengths with constant independent of n. Therefore, Lemma 5.1 of [4] applies to
yield a 2π-periodic K-quasiconformal map �n of H onto a subdomain �n(H) � H, with K independent of
n. We let

Wn := exp(−i�n(H))

and

ψ := exp ◦ − i�−1
n ◦ i log : Wn → D∞. (4.6)

The map (4.6) is well defined, and the conclusions of the theorem follow from Lemma 5.1 of [4]. �

Notation 4.14. We will use the notation �′
n := (λ ◦ τ)−1(Wn) (see Figure 7).

5 Annular Interpolation Between the Identity and a Conformal
Mapping
Recall from Notation 4.1 that we have fixed ε > 0, a compact set K, disjoint analytic domains (Di)

k
i=1 so

that U := ∪iDi contains K, and f holomorphic in a neighborhood of U with ||f ||U < 1. In this section, we
briefly define two useful interpolations in Lemmas 5.3 and 5.5, which we will need.

Since the domain Di contains the compact set K∩Di, the definitions and results of Section 3 apply to
(ε,K ∩Di,Di, f |Di

) for each 1 ≤ i ≤ k (see Notation 3.1). Thus, Remark 3.6 applies to define (5.1), (5.2), and
(5.3) in the following.

Definition 5.1. Let 1 ≤ i ≤ k. Recalling Definition 3.2, we define the Jordan curve

γi := γ (ε,K ∩ Di,Di, f |Di
). (5.1)

Recalling that int(γi) denotes the bounded component of Ĉ \ γi, we define

�i := �(ε,K ∩ Di,Di, f |Di
) (5.2)
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Fig. 9. Illustrated is the map η�
i

: D∞ → Ĉ \ �i(D) of Lemma 5.3. The dotted circle on the right depicts the unit
circle.

to be a Riemann mapping �i : D → int(γi). Lastly, we define the proper mappings

Bn := Bn(ε,K ∩ Di,Di, f |Di
) on Di, (5.3)

where we suppress the dependence of (Bn)∞n=1 on i from the notation.

Recall that in Section 4, we defined curves {�i}k−1
i=1 connecting the domains Di, and in Notation 4.5 we

fixed a component � of the complement of U ∪ ∪k−1
i=1 �i.

Notation 5.2. After relabeling the (Di)
k
i=1 if necessary, there exists 1 ≤ � ≤ k so that ∂Di ∩ ∂� 
= ∅

if and only if i ≤ � (see, e.g., Figure 5). For each 1 ≤ i ≤ �, note that the intersection ∂Di ∩ ∂�

consists of a single Jordan curve, which is mapped onto T by Bn.

The two interpolations we will need are given in Lemmas 5.3 and 5.5 below. In Lemma 5.3, we define
an interpolation η�

i between z �→ z on |z| = 2 with z �→ �i(z) on |z| = 1 (see Figure 9), and in Lemma 5.5
we modify η�

i to define a map ηi so that ηi(z) = ηi(z) for |z| = 1.

Lemma 5.3. For each 1 ≤ i ≤ �, there is a quasiconformal mapping η�
i : D∞ → Ĉ \ �i(D) satisfying

the relations

η�
i (z) = z for |z| ≥ 2 and (5.4)

η�
i (z) = �i(z) for all |z| = 1. (5.5)

Moreover, if Di, Dj for 1 ≤ i, j ≤ � are connected by one of the curves (�i)
k−1
i=1 , then

η�
i ([−2,−1]) ∩ η�

j ([1, 2]) = η�
i ([1, 2]) ∩ η�

j ([−2,−1]) = ∅. (5.6)

Remark 5.4. The existence of a collection of quasiconformal mappings (η�
i )li=1 satisfying (5.4)

and (5.5) follows from a standard lemma on the extension of quasisymmetric maps between
boundaries of quasiannuli (see, for instance, Proposition 2.30(b) of [3]). However, in order to
ensure that condition (5.6) is also met for the collection (η�

i )li=1, we will need the following
different argument to define the maps (η�

i )li=1.

Proof. First, observe that after renormalizing each conformal map �i (more specifically by pre-
composing �i with an appropriate automorphism of D), we may assume that:

Re(�i(−1)) = inf{Re(�i(ζ )) : ζ ∈ T}, (5.7)

Re(�i(+1)) = sup{Re(�i(ζ )) : ζ ∈ T}, (5.8)

for each i. We would like to find, for each i, a pair of smooth Jordan arcs c±i satisfying

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
4
/1

2
/9

9
3
6
/7

6
5
8
8
3
0
 b

y
 g

u
e
s
t o

n
 0

3
 J

u
ly

 2
0
2
4



A Geometric Approach to Polynomial and Rational Approximation | 9949

1) c+i connects+2 to�i(+1) (in otherwords c+i has endpoints+2,�i(+1)), and c−i connects−2 to�i(−1),
2) c+i , c

−
i ⊂ (2D \ �i(D)),

3) c+i ∩ c−i = ∅,
and so that the collection (c±i )li=1 satisfies the following property analagous to (5.6):

(�) if Di, Dj for 1 ≤ i, j ≤ � are connected by one of the curves (�i)
k−1
i=1 , then c−i ∩ c+j = c+i ∩ c−j = ∅.

We claim that in order to prove the Lemma, it suffices to show the existence of a collection (c±i )li=1

satisfying the above properties; indeed one defines η�
i on the quadrilateral with four edges; T ∩ H,

[−2,−1], 2T ∩ H, [1, 2] by setting η�
i (z) := z on 2T ∩ H, η�

i (z) := �i(z) on T ∩ H, and as a smooth
homeomorphism from [−2,−1] (resp. [1, 2]) onto the smooth Jordan curve c−i (resp. c+i ). By a standard
result on extension of quasisymmetric homeomorphisms of boundaries of quadrilaterals into their
interiors (see, for instance, Lemma 2.24 of [3]), this definition of η�

i extends quasiconformally to the
interior of this quadrilateral. An analagous definition of η�

i in the reflection of this quadrilateral in the
real axis defines a quasiconformal map η�

i in {z : 1 ≤ |z| ≤ 2}, and the collection (η�
i )li=1 satisfies (5.4)

and (5.5) by definition of η�
i , and satisfies (5.6) since the collection (c±i )li=1 satisfies (�).

Thus it remains to argue the existence of Jordan curves (c±i )li=1 satisfying 1.-3. and (�). We proceed
recursively, beginning by defining c+1 (resp. c−1 ) to be the straight line segment connecting ψ1(+1) (resp.
ψ1(−1)) to +2 (resp. −2); the normalizations (5.7) and (5.8) ensure c±1 satisfies 1.-3.. It will be important
to note that the following property holds:

(��) c±1 intersects any vertical line {z : Re(z) = x} in at most one point.

Consider j so that D1, Dj are connected by one of the curves (�i)
k−1
i=1 . In defining c+j , there are two cases

to consider:

1) ψj(+1) > ψ1(−1), or
2) ψj(+1) ≤ ψ1(−1)

In the first case, we define c+j to be the straight line segment connecting +2 to ψj(+1); then we have
c−1 ∩ c+j = ∅ by (5.7) and (5.8). In the second case we have that ψj(D) ∩ ψ1(D) = ∅, and so by (��) there
exists a Jordan curve c+j ⊂ D \ (ψj(D) ∪ c−1 ) intersecting any vertical line {z : Re(z) = x} at most once, and
connecting the point ψj(+1) to +2. In particular, in either case, we have that c−1 ∩ c+j = ∅, and c+j satisfies
(��). An analagous procedure defines c−j . This defines the curves c±j over all j so that the c±j satisfy (��),
and (�) holds for i = 1. Continuing in this way, one similarly defines c±k for each Dk connected to one
of the Dj considered in the previous step; the proof that c±k satisfies the desired properties is the same
as above (the only property of c±1 we used in defining c±j was that c±1 satisfies (��), which we have also
ensured c±j satisfies). �

Lemma 5.5. For each 1 ≤ i ≤ �, there is a quasiconformal mapping

ηi : D∞ → C \ �i([−1, 1])

satisfying the relations

ηi(z) = z for |z| ≥ 2, (5.9)

ηi(z) = ηi(z) for |z| = 1, and (5.10)

ηi(z) = η�
i (z) for z ∈ R ∩ D∞. (5.11)

Proof. Define

γ +
i := η�

i (∂(A(1, 2) ∩ H)).

Let η be a quasisymmetric mapping of T ∩ H onto [−1, 1] fixing ±1 (one can take η := M|T∩H where M is
a Mobius transformation mapping −1, 1, i to −1, 1, 0, respectively). Define a mapping g on γ +

i by:

g(z) :=

⎧
⎨
⎩

�i ◦ η ◦ �−1
i (z) z ∈ �i(T ∩ H)

z otherwise
(5.12)
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Since g is a quasisymmetricmapping, a standard lemma on extension of quasisymmetricmaps between
boundaries of quasidisks (see, for instance, Proposition 2.30(a) of [3]) implies that g may be extended to
a quasiconformal mapping of η�

i (A(1, 2) ∩H). Define g similarly in η�
i (A(1, 2) ∩ (−H)). We let ηi := g ◦ η�

i .
It is then straightforward to check that ηi satisfies (5.9)–(5.11). �

Remark 5.6. Lemmas 5.3 and 5.5 define 2� many quasiconformal mappings: {η�
i }�i=1 and {ηi}�i=1.

The definition of the mappings η�
i , ηi depend on the objects ε, K, (Di)

k
i=1, f as fixed in Notation

4.1, but not on the parameter n in (5.3). Thus, we record the trivial but important observation
that the mappings {η�

i }�i=1 and {ηi}�i=1 are quasiconformal with a constant independent of n.

6 Annular Interpolation Between a Proper Mapping and a Power
Map

Recall that we have fixed ε > 0, a compact set K, disjoint analytic domains (Di)
k
i=1 so that U := ∪iDi

contains K, and f holomorphic in a neighborhood of U with ||f ||U < 1. The curves {�i}k−1
i=1 connect the

domains (Di)
k
i=1, and� is a component of the complement ofU∪∪k−1

i=1 �i with τ : � → D∞ conformal.Recall
that the domain �′

n was defined in Theorem 4.13 and Notation 4.14 by removing from � a collection of
trees rooted at the vertices along ∂�, and the map ψ ◦ λ ◦ τ maps �′

n onto D∞ (see Proposition 4.10 and
Theorem 4.13).

Notation 6.1. Recall from Notation 5.2 that ∂Di ∩ ∂� 
= ∅ if and only if 1 ≤ i ≤ �. Hence exactly
� − 1 of the curves (�i)

k−1
i=1 intersect ∂�. By relabelling the (�i)

k−1
i=1 if necessary, we may assume

�j intersects ∂� if and only if 1 ≤ j ≤ � − 1.

Let m = m(n) be as in Theorem 4.13. To prove our main results, we will need to modify z �→ zm in D∞
so that, roughly speaking, (z �→ zm) ◦ ψ ◦ λ ◦ τ(z) agrees with the proper mappings Bn (see Definition 5.1)
along ∂Di. This is done in Theorem 6.3 below (see [6] for a related result). Its proof uses the following.

Proposition 6.2. Suppose φ1, φ2 are C1 homeomorphisms of a C1 Jordan arc e such that

1) φ1(e) = φ2(e);
2) φ1, φ2 agree on the two endpoints of e; and
3) |φ′

1(z)| = |φ′
2(z)| for all z ∈ e.

Then φ1 = φ2 on e.

The proof of Proposition 6.2 is a consequence of the Fundamental Theorem of Calculus and is left to
the reader.

Theorem 6.3. For every n, there exists a locally univalent K-quasiregular mapping hn : D∞ → D∞
so that

1) hn(z) = zm for |z| ≥ m√
2 where m := m(n) is as in Theorem 4.13;

2) hn ◦ ψ ◦ λ ◦ τ(z) = Bn(z) for every z ∈ ∂Di and 1 ≤ i ≤ l; and
3) K is independent of n.

Proof. Fix the standard branch of log. Given an edge e ∈ ∂Di, we have by Theorem 4.13 that

log ◦ψ ◦ λ ◦ τ(e) = {0} ×
[
jπ

m
,
(j + 1)π

m

]
for some 0 ≤ j ≤ 2m − 1. (6.1)

Denote the vertical line segment in (6.1) by ve. Let f : ve �→ e be a length-multiplying,C1 homeomorphism
so that f−1 agrees with log ◦ψ ◦ λ ◦ τ on the two endpoints of e. Consider the maps:

z �→ mz for z ∈
{
log 2
m

}
×

[
jπ

m
,
(j + 1)π

m

]
, (6.2)

z �→ log ◦Bn ◦ f for z ∈ {0} ×
[
jπ

m
,
(j + 1)π

m

]
. (6.3)
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Fig. 10. Illustrated is the proof of Theorem 6.3. In logarithmic coordinates the desired interpolation is denoted φ,
and hn is then defined by (6.5) and (6.6).

For each 1 ≤ i ≤ l, the proper mappings Bn are orientation-preserving on the unique outer boundary
component of Di, and orientation-reserving on all other boundary components of Di. This implies that
we may choose the branch of log in (6.3) so that the images of (6.2) and (6.3) are horizontal translates of
one another (recall Bn(e) is a circular arc of angle π ), and the derivative of (6.3) is strictly positive for all
z ∈ ve. Since the derivative of (6.2) is also strictly positive, this means the linear interpolation between
(6.2) and (6.3) is a homeomorphism.

By (2.5), we have that |B′
n| is comparable at all points of e with constant independent of e and n.

Thus, since f is length-multiplying and log is length-multiplying on Euclidean circles centered at 0, we
conclude that the derivative of (6.3) is comparable to m at all points of ve with constant independent of
e and n. Thus, we conclude that the linear interpolation between (6.2) and (6.3) in the rectangle

[
0,

log 2
m

]
×

[
jπ

m
,
(j + 1)π

m

]
(6.4)

is K-quasiconformal with K independent of e and n (see, for instance, Theorem A.1 of [18]). Denote the
linear interpolation by φ (see Figure 10).

We define

hn := exp ◦φ ◦ log in{z ∈ D∞ : z/|z| ∈ ψ ◦ λ ◦ τ(e)} ∩ {|z| ≤ m√
2}. (6.5)

The equation (6.5) defines hn(z) for z in {z : 1 ≤ |z| ≤ m√
2} and sharing a common angle with the image

under ψ ◦ λ ◦ τ of an edge on some ∂Di. We finish the definition of hn by simply setting:

hn(z) := zmin{z ∈ D∞ : z/|z| ∈ ψ ◦ λ ◦ τ(∂�′
n \ (∪i∂Di))}. (6.6)

The conclusion (1) now follows by definition of hn, and (3) follows since hn is a composition of
holomorphic mappings and a K-quasiconformal interpolation where we have already noted that K is
independent of n.

We now show that conclusion (2) follows from Proposition 6.2. Fix an edge e on ∂Di. Recall ve :=
log ◦ψ ◦ λ ◦ τ(e). Thus, by (6.3) and (6.5) we have that:

hn ◦ ψ ◦ λ ◦ τ = Bn ◦ f ◦ log ◦ψ ◦ λ ◦ τone. (6.7)

First note that (6.7) agrees set-wise with Bn on e and at the endpoints of e. The map ψ ◦ λ ◦ τ is
length-multiplying (by Proposition 4.10(3) and Theorem 4.13(2)), log is length-multiplying on the circular
segment ψ ◦ λ ◦ τ(e), and f is length-multiplying by definition. Thus, the modulus of the derivative of
f ◦ log ◦ψ ◦ λ ◦ τ is constant on e, and so the derivatives of (6.7) and Bn have the same modulus at each
point of e. Conclusion (2) now follows from Proposition 6.2. �

7 Joining Different Types of Boundary Arcs: The Map En
Recall that in Section 5 we defined the maps η�

i , ηi where 1 ≤ i ≤ �, and in Section 6 we defined the map
hn for all n ∈ N. In this section we define a map En in D∞, which is roughly given by either z �→ η�

i ◦ hn(z)
or z �→ ηi(z) ◦ hn(z), where i is allowed to depend on arg(z) and which of η�

i , ηi we post-compose hn with
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Fig. 11. Illustrated is Definition 7.1. The curves �1, �2 are depicted as black dotted lines, except for the edges
e1 ⊂ �1, e2 ⊂ �2, which are in thick black.

is also allowed to depend on arg(z). Thus, we will need a way to interpolate between the definitions of
η�
i , ηi, for different i. The interpolation regions are defined in Definition 7.1 below, and the map En in

Proposition 7.2. It will be useful to keep Figure 11 in mind for the remainder of this section.

Definition 7.1. Mark one edge ei on �i for each 1 ≤ i ≤ � − 1. Label the � components of ∂�′
n \ ∪iei

as (Gi)
�
i=1, where ∂Di ⊂ Gi. Let

1) J D
i denote those edges in ∂Di;

2) J G
i denote those edges in Gi \ J D

i ; and
3) J e denote the edges (ei)

�−1
i=1 .

In other words,J D
i are the edges shared by ∂�′

n and ∂Di,J e consists of � − 1 edges: one on each of
the curves (�i)

�
i=1, and J G

i are the remaining edges on Gi. Thus, we have:

∂�′
n = J e ∪

⋃

i

(
J D
i ∪ J G

i

)
.

For z ∈ D∞, we define:

En(z) :=

⎧
⎨
⎩

η
ψ

i ◦ hn(z) if z/|z| ∈ ψ ◦ λ ◦ τ(J D
i )

ηi ◦ hn(z) if z/|z| ∈ ψ ◦ λ ◦ τ(J G
i )

(7.1)

It remains to define En(z) for z ∈ D∞ satisfying z/|z| ∈ ψ ◦λ◦ τ(J e). We do so in the following Proposition.

Proposition 7.2. The map En extends to a locally univalent K-quasiregular mapping En : D∞ → C

satisfying En(z) = zm for |z| ≥ m√
2, where m = m(n) is as in Theorem 4.13. Moreover, K does not

depend on n.

Proof. Consider (7.1). Note that if En is defined at z and |z| ≥ m√
2, then En(z) = zm by Theorem 6.3(1) and

(5.4), (5.9). Thus, setting En(z) := zm for |z| ≥ m√
2 extends the definition of En.

It remains to extend the definition of En to:

{z : 1 ≤ |z| ≤ m√
2 and z/|z| ∈ ψ ◦ λ ◦ τ(ei)}, for 1 ≤ i ≤ � − 1. (7.2)

Each of the � − 1 sets in (7.2) consists of 2 quadrilaterals which we denote by Q
±
i . The curve �i connects

two distinct elements of (Di)
�−1
i=1 . In order to avoid complicating notation significantly, we will assume

without loss of generality that �i connects Di to Di+1. Let γi ⊂ 2D be a smooth Jordan arc connecting
η�
i (1) to η�

i+1(−1) (see Figure 12). Moreover, by (5.6), we can choose γi so that the union of the arcs

η�
i ([1, 2]),2T ∩ H,η�

i+1([−2,−1]),γi (7.3)
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Fig. 12. Illustrated is the quadrilateral Q+
i
and the map g+

i
in the proof of Proposition 7.2.

forms a topological quadrilateral we denote byQ+
i (in particular none of the arcs in (7.3) intersect except

at common endpoints).
Define a quasisymmetric homeomorphism g+

i : ∂Q+
i → ∂(A(1, 2) ∩ H) (see Figure 12) by

g+
i (z) = z for z ∈ 2T

g+
i (z) = (η�

i )−1(z) for z ∈ η�
i ([1, 2])

g+
i (z) = (η�

i+1)
−1(z) for z ∈ η�

i+1([−2,−1]),

and extending g+
i to a quasisymmetric homeomorphism of γi to T ∩ H. The mapping g+

i extends to a
quasiconformal homeomorphism g+

i : Q+
i → A(1, 2) ∩ H (see Lemma 2.24 of [3]). We define En(z) :=

(g+
i )−1(zm) for z ∈ Q

+
i . A similar definition of g−

i : Q−
i → A(1, 2) ∩ −H is given (using the same curve γi) so

that

g+
i (z) = g−

i (z) for z ∈ T ∩ H.

We let En(z) := (g−
i )−1(zm) for z ∈ Q

−
i .

To summarize, we have defined En in each of the three regions

{z ∈ D∞ : z/|z| ∈ ψ ◦ λ ◦ τ(J D
i )}, (7.4)

{z ∈ D∞ : z/|z| ∈ ψ ◦ λ ◦ τ(J G
i )}, (7.5)

{z ∈ D∞ : z/|z| ∈ ψ ◦ λ ◦ τ(J e
i )}. (7.6)

Indeed, the definition of En in (7.4) and (7.5) was given already in (7.1), and in this proof we have defined
En in (7.6). The definitions of En in each of (7.4), (7.5), (7.6) agree along any common boundary, and thus
by removability of analytic arcs for quasiregular mappings, it follows that En is quasiregular on D∞.
Moreover, En has no branched points in D∞, and hence En is locally quasiconformal. The dilatation of
the map En depends only on the dilatation of hn (which is independent of n by Theorem 6.3(3)) and the
dilatations of the the finite collection of quasiconformal maps used in its definition: η�

i , ηi, g
+
i , g

−
i , and

hence we may take K independent of n. �

8 Defining gn in �′
n

First we recall our setup. We have fixed ε > 0, a compact set K, disjoint, analytic domains (Di)
k
i=1 so

that K ⊂ U := ∪iDi, and f holomorphic in a neighborhood of U with ||f ||U < 1. We defined curves {�i}k−1
i=1

connecting the domains (Di)
k
i=1, and we denoted by � a component of the complement of U∪∪k−1

i=1 �i with
τ : � → D∞ conformal. The domain �′

n is contained in �, and ψ ◦ λ ◦ τ maps �′
n onto D∞. In Section 7 we

defined the map En.

Definition 8.1. We define the mapping gn : �′
n → Ĉ by

gn := En ◦ ψ ◦ λ ◦ τ . (8.1)
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We will now record at which points the function gn|�′
n
is locally n : 1 for n > 1.

Definition 8.2. Let g be a quasiregular function, defined in a neighborhood of a point z ∈ C. We
say that z is a branched point of g if for any sufficiently small neighborhood U of z, the map g|U
is n : 1 onto its image for n > 1. We say w ∈ C is a branched value of g if w = g(z) for a branched
point z of g. We denote the branched points of a quasiregular mapping g by BP(g), and the
branched values by BV(g).

Remark 8.3. Recall that in Notation 4.5 we fixed a point p ∈ � satisfying τ(p) = ∞.

Proposition 8.4. The mapping gn : �′
n → C of Definition 8.1 is K-quasiregular and C-vertex

supported for K, C independent of n. Moreover, g−1
n (∞) = {p},

BP(gn) ⊂
⋃

e∈∂�n

{z : dist(z, e) < C · diam(e)}, and (8.2)

BV(gn) ⊂
k⋃

i=1

�i(T). (8.3)

Proof. Since each of the mappings in the composition (8.1) are K-quasiregular and C-vertex supported
for K, C independent of n, the same is true of gn. The only points where the mapping gn is locally l : 1 for
l > 1 are a subset of the vertices of the graph ∂�′

n. By Theorem 4.13, the vertices of ∂�′
n all lie in

⋃

e∈∂�n

{z : dist(z, e) < C · diam(e)}.

Thus, (8.2) is proven. Moreover, any vertex of ∂�′
n is mapped to a point on one of the curves �i(T) by gn.

Hence, (8.3) follows since BV(gn) = gn(BP(gn)). It remains to show:

g−1
n (∞) = {p}. (8.4)

Indeed, note that En ◦ψ ◦λ fixes ∞ and has no finite poles. The map τ : � → D∞ is conformal and hence
only one point p is mapped to ∞. The relation (8.4) now follows. �

It will be useful to record the following result.

Proposition 8.5. Let r > 1. Then for all sufficiently large n, we have:

gn(z) = τ(z)m for any z ∈ τ−1({z : |z| > r}). (8.5)

Proof. Consider the functional equation (8.1) defining gn. The maps λ, ψ are vertex-supported, and
moreover λ (respectively, ψ) is the identity outside of the support of λz, (respectively, ψz). By Proposition
4.7, we therefore have that ψ ◦ λ(z) = z if z ∈ τ−1({z : |z| > r}) and n is sufficiently large. The relation (8.5)
now follows from (8.1) and Theorem 6.3(1) since m → ∞ as n → ∞. �

Remark 8.6. As in Remark 3.6, we note that our Definition 8.1 of gn is determined by a choice of
the objects K, U, D, f , ε, �, p we fixed in Notations 4.1 and 4.5. When we wish to emphasize
this dependence, we will write gn(K,U,D, f , ε,�, p). In particular, it will be useful in the next
section to think of gn as a function taking as input any choice of K, U, D, f , ε, �, p satisfying
the conditions in Notations 4.1, 4.5, and outputting (via Definition 8.1) a quasiregular function
gn(K,U,D, f , ε,�, p) defined on �′

n.

9 Verifying gn is Quasiregular on Ĉ

In this section we combine our efforts in Sections 3-8 to define an approximant gn : Ĉ → Ĉ of a given
f . The approximant gn will not be holomorphic as required in Theorems A and B, but we will solve this
problem in the next section by applying the MRMT. We fix the following for Sections 9-10.
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Notation 9.1. Fix K, f ,D, ε, P as in the statement of Theorem b. Denote by U the neighborhood of
K in which f is holomorphic. Define

P′ := {p ∈ P : p is contained in a component V of Ĉ \ K such that V 
⊆ U}. (9.1)

Compactness of K implies that U contains all but finitely many components of Ĉ \ K, and so the
set P′ is finite. Moreover, P′ does not depend on ε. By shrinking U if necessary, we may assume
that:

1) U ∩ P′ = ∅;
2) P′ contains exactly one point in each component of Ĉ \ U;
3) f is holomorphic in a neighborhood of U ⊂ D; and
4) the components of U are a finite collection of analytic Jordan domains (Di)

k
i=1 so that (3.1) holds

for each Di.

Let K′ be a compact set such that K ⊂ Int(K′) ⊂ K′ ⊂ U. We will assume for now that ||f ||U < 1.

We now define a quasiregular approximation gn of f by applying the construction of Section 3 in
each Di, and by applying the folding construction of Sections 4-8 in each complementary component of
∪i(Di ∪ �i):

Definition 9.2. For every n, we define a quasiregular mapping gn as follows. Recalling Remark 3.6,
we first set

gn := gn(ε,K′ ∩ Di,Di, f |Di
) in Di for 1 ≤ i ≤ k (9.2)

The equation (9.2) defines the curves (�i)
k
i=1 by way of Proposition 4.3, and we enumerate the

components of

Ĉ \
(
U ∪

k−1⋃

i=1

�i

)

by (�(i))�i=1. Recalling Remark 8.6 and Notation 4.14, we extend the definition of gn to the open
set

� := Ĉ \
(

�⋃

i=1

∂�′
n(i)

)
(9.3)

by the formula

gn := gn(K
′,U,D, f , ε,�(i), P′ ∩ �(i)) in �′

n(i) for 1 ≤ i ≤ �. (9.4)

Proposition 9.3. The quasiregular function gn is C-vertex supported and K-quasiregular for C, K
independent of n.

Proof. For gn|�′
n(i) this is exactly Proposition 8.4, and so the conclusion follows since gn is holomorphic

in U. �

The function gn is now defined on all of Ĉ except for the edges of each ∂�′
n(i). We show in

Propositions 9.4 and 9.5 below that gn in fact extends continuously across each edge of ∂�′
n(i), and

deduce in Corollary 9.6 that gn extends quasiregularly across ∂�.

Proposition 9.4. The K-quasiregular function gn : � → Ĉ extends to a continuous function gn :
� ∪ e → Ĉ for any edge e ⊂ ∂� ∩ ∂U.

Proof. Let i be so that e ⊂ ∂Di and denote the unique element of (�(i))�i=1 that contains e on its boundary
by �(j). Recall by Definitions 3.5 and 8.1 that

gn|Di
= �i ◦ Bn, (9.5)

gn|�′
n(j) = En ◦ ψ ◦ λ ◦ τ . (9.6)
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By Theorem 6.3(2) we have

hn ◦ ψ ◦ λ ◦ τ = Bnone.

By (5.5) and the definition (7.1) of En, it follows from (9.6) that

gn|�′
n(j)(z) = �i ◦ Bn(z) for z ∈ e,

in other words gn|�′
n(j) and gn|Di

agree pointwise on e. �

Proposition 9.5. The K-quasiregular function gn : � → Ĉ extends to a continuous function gn :
� ∪ e → Ĉ for any edge e ⊂ ∂� ∩ (∪�

i=1�(i)).

Proof. Let j be so that e ⊂ ∂�′
n(j), and as in the proof of Proposition 9.4, recall that

gn|�′
n(j) = En ◦ ψ ◦ λ ◦ τ . (9.7)

Let x ∈ e. There are two limits

lim
�′
n(j)�z→x

ψ ◦ λ ◦ τ(z),

each lying on the unit circle. Denote them by ζ±. By Theorem 4.13(3), we have that ζm
+ = ζm

− . Thus, by
(5.10) and (7.1), we conclude that there is a unique limit

lim
�′
n(j)�z→x

En ◦ ψ ◦ λ ◦ τ(z).

Hence, setting

gn(x) := lim
�′
n(j)�z→x

En ◦ ψ ◦ λ ◦ τ(z)

defines a continuous extension of gn across the edge e. �

Corollary 9.6. The K-quasiregular function gn : � → Ĉ extends to a K-quasiregular function gn :
Ĉ → Ĉ.

Proof. The set Ĉ \ � = ∂� consists of a finite collection of analytic arcs: the edges of the graphs ∂�′
n(i)

over 1 ≤ i ≤ �. Thus, by removability of analytic arcs for quasiregular mappings, it suffices to show
that gn : � → Ĉ extends continuously across each such edge. There are two types of edges to check:
those that lie on the boundary of a domain Di, and those that lie in the interior of a domain �(i). We
have already checked continuity across both types of edges in Propositions 9.4, 9.5, and so the proof is
complete. �

10 Proof of the Main Theorems

In Section 10 we prove Theorems A and B. Recall that in Section 9 we fixed the objects K, f ,D, ε, P as in
Theorem B (see Notation 9.1), and we defined a quasiregular approximation gn to f in Definition 9.2.We
also showed in Section 9 that gn in fact extends to a quasiregular function gn : Ĉ → Ĉ. Now we apply
the MRMT below in Definition 10.1 to obtain the rational maps rn : Ĉ → Ĉ, which we will prove satisfy
the conclusions of Theorems A and B for large n.

Definition 10.1. The mapping gn induces a Beltrami coefficient μn := (gn)z/(gn)z, which, by way of
theMRMT,defines a quasiconformalmapping φn : Ĉ → Ĉ such that rn := gn◦φ−1

n is holomorphic.
We normalize φn so that φn(∞) = ∞ and φn(z) = z + O(1/|z|) as z → ∞.
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We now begin deducing that for large n, the maps rn satisfy the various conclusions in Theorems A
and B.

Proposition 10.2. The function rn of Definition 10.1 is rational, and r−1
n (∞) = φn(P′). In particular,

if K is full and P = {∞}, then rn is a polynomial.

Proof. The function rn is holomorphic on Ĉ and takes values in Ĉ: the only such functions are rational.
Note that g−1

n (∞) ∩ U = ∅ since gn is bounded on U. Thus, by Proposition 8.4 and (9.4), we have that
g−1
n (∞) = P′. Since rn := gn ◦ φ−1

n , we conclude that r−1
n (∞) = φn(P′). The last statement of the proposition

follows since we normalized φn(∞) = ∞, and the only rational functions with a unique pole at ∞ are
polynomials. �

Proposition 10.3. For all R < ∞, the mapping φn satisfies:

||φn(z) − z||R·D
n→∞−−−→ 0. (10.1)

Proof. Since gn is C-vertex supported by Proposition 9.3, we conclude from Proposition 4.7 that

Area(supp(μn))
n→∞−−−→ 0. (10.2)

The relation (10.1) now follows from (10.2) since ||μn||L∞ ≤ K for all n by Proposition 9.3. �

Theorem 10.4. For all sufficiently large n, the mapping rn satisfies CP(rn) ⊂ D.

Proof. By Proposition 4.7, we have

max

{
diam(e) : e is an edge of

�⋃

i=1

∂�(i)

}
n→∞−−−→ 0.

Thus, since D is a domain containing ∪�
i=1∂�(i), we have by (8.2) that BP(gn) \ U ⊂ D for large n. Since

U ⊂ D we conclude that BP(gn) ⊂ D for large n. The result now follows from Proposition 10.3 since
φ(BP(gn)) = CP(rn). �

Theorem 10.5. For all sufficiently large n, we have

||f − rn||K < 2ε.

Proof. First we note that since f is uniformly continuous on K′, there exists δ > 0 so that if z,w ∈ K′ and
|z − w| < δ, then |f (z) − f (w)| < ε. By Proposition 10.3, we can conclude that

||φn(z) − z||K < min(δ,dist(K, ∂K′)) (10.3)

for all sufficiently large n.
Let z ∈ K and wn := φ−1

n (z). Then

|rn(z) − f (z)| = |gn(wn) − f (z)| ≤ |gn(wn) − f (wn)| + |f (wn) − f (z)|. (10.4)

It follows from (10.3) that |f (wn)− f (z)| < ε for sufficiently large n. Since wn ∈ K′ for large n, we also have
by (3.5) that gn(wn) := �j ◦ Bn(wn), whence it follows from Proposition 3.3 that |gn(wn) − f (wn)| < ε. �

Theorem 10.6. For all sufficiently large n, we have

CV(rn) ⊂ Nε f̂ (K)
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Proof. Since

CV(rn) = BV(gn),

it suffices to show that for every z ∈ BP(gn) and sufficiently large n, we have

gn(z) ∈ Nε f̂ (K). (10.5)

For z ∈ BP(gn) \U, it follows from (8.3) that gn(z) ∈ Nεf (K) ⊂ Nε f̂ (K). For z ∈ BP(gn) ∩Di, (10.5) follows from
Definition 3.5 of gn|Di

. �

Proof of Theorem B: In the special case that ||f ||K < 1, we have already proven that the mappings rn
satisfy the conclusions of Theorem 1 for all sufficiently large n. Indeed, Theorem 10.5 says that ||f −
rn||K < 2ε, conclusion (2) in Theorem 1 is Theorem 10.4, and conclusion (3) is Theorem 10.6. Conclusion
(1) follows from Propositions 10.2, 10.3. The general case follows by applying the above special case to
an appropriately rescaled f . �

Proof of Theorem A: When K is full, we may take P = {∞} and apply Theorem B, in which case
Proposition 10.2 guarantees that the maps rn are polynomials. �

Theorem 10.7. (Mergelyan+) Let K ⊂ C be full, suppose f ∈ C(K) is holomorphic in Int(K), and let
D be a domain containing K. For every ε > 0, there exists a polynomial p so that ||f − p||K < ε

and:

1) CP(p) ⊂ D,
2) CV(p) ⊂ Nε f̂ (K).

Proof: By the usual version of Mergelyan’s Theorem, there exists a polynomial q so that ||f − q||K < ε/2.
Apply Theorem A to K, D, q, ε/2 to obtain an approximant of q, which we denote by p. The polynomial
p satisfies the conclusions of Theorem 10.7. �

Corollary 10.8. (Weierstrass+) Suppose that I ⊂ R is a closed interval, f : I → R is continuous,
and U, V ⊂ C are planar domains containing I, f (I), respectively. Then, for every ε > 0, there
exists a polynomial p with real coefficients so that ‖f − p‖I ≤ ε, and

1) CP(p) ⊂ U,
2) CV(p) ⊂ V.

Proof. Let I = [a, b], and f , U, V as in the statement of the corollary. By Theorem 10.7, there exists a
complex polynomial q so that ||f − q||[a,b] < ε/2. The real polynomial

Q(z) := q(z) + q(z)

2

satisfies Q(x) = Re(q(x)) for x ∈ R and hence ||f − Q||[a,b] < ε/2. We will use the symbol � to mean
compactly contained. Let V1 � V be a sufficiently small, R-symmetric domain containing f (I) so that
there is a component of Q−1(V1) (which we denote by U1) satisfying U1 � U. Let U2 be a R-symmetric,
analytic domain satisfying I � U1 � U2 � U. Recall Notation 9.1 and consider:

1) the compact set U1,
2) the analytic function Q,
3) the analytic domain U2 containing U1,
4) min{ε/2,dist(∂V1, ∂V)},
5) P = {∞}.
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ApplyingDefinition 9.2 to (1)-(5) yields quasiregularmappings gn withR-symmetric Beltrami coefficient,
so that

pn := gn ◦ φ−1
n (10.6)

is a real polynomial approximant of Q satisfying

1) ||f − pn||[a,b] < ε,
2) CP(pn) ⊂ U2, and
3) CV(pn) ⊂ V,

for large n. Thus, pn satisfies the conclusion of Corollary 10.8 for large n. �

Recall the notation �(i) from Definition 9.2, and let τi : �(i) → D∞ be the conformal mapping
satisfying τ−1

i (∞) = P′ ∩�(i) as in Notation 4.5. The following fact justifies part of our description in the
introduction of the behavior of the rational approximants off K.

Proposition 10.9. Let 1 < r < R < ∞. Then, for all sufficiently large n, we have

rn ◦ φn(z) = τi(z)
m and (10.7)

|rn(z)| > R (10.8)

for all z ∈ τ−1
i ({z : |z| > r}).

Proof. Fix r and R as in the statement. From (8.5) and the functional equation (9.4) defining gn in �(i),
it follows that

gn(z) = τi(z)
m for all z ∈ τ−1

i ({z : |z| > (r + 1)/2}) (10.9)

for all large n. Since

rn ◦ φn = gn, (10.10)

The relation (10.7) follows. Moreover, we have by Proposition 10.3 that

φn ◦ τ−1
i ({z : |z| > r}) ⊂ τ−1

i ({z : |z| > (r + 1)/2}) (10.11)

for all sufficiently large n. Since ((r + 1)/2)m > R for large n, the relation (10.8) also follows. �

Remark 10.10. If we make further assumptions on f and K, the conclusion

CV(r) ⊂ Nε f̂ (K)

of Theorems A and B can be improved to

CV(r) ⊂ f̂ (K), (10.12)

which is equivalent to CV(r) ⊂ f (K) if f (K) is full. Indeed, if for instance the interiors of K, f (K) are
analytic domains and f : Int(K) → Int(f (K)) is proper, then a similar strategy as in the proofs
of Theorems A and B but replacing � in (3.5) with a conformal map D �→ Int(K) can be used to
prove (10.12).

Remark 10.11. We remark that while Theorem A strictly improves on Runge’s Theorem on
polynomial approximation, the relationship between Theorem B and Runge’s Theorem on
rational approximation is more subtle. Both show existence of rational approximants, and
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only Theorem B describes the critical point structure of the approximant, however the poles
of the approximant in Theorem B are specified only up to a small perturbation, whereas in
Runge’s Theorem they are specified exactly.We do not knowwhether it is necessary to consider
perturbations of P′ in Theorem B, or if the improvement r−1(∞) = P′ is possible (a related
problem appears in [5], [10], and [7]).
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