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We strengthen the classical approximation theorems of Weierstrass, Runge, and Mergelyan by showing
the polynomial and rational approximants can be taken to have a simple geometric structure. In
particular, when approximating a function f on a compact set K, the critical points of our approximants
may be taken to lie in any given domain containing K, and all the critical values in any given
neighborhood of the polynomially convex hull of f(K).

1 Introduction

The study of approximating one class of more general functions by functions coming from a second
more restricted class is termed Approximation Theory. Within complex analysis, the class of general
functions is usually the class of functions analytic or continuous on a given set, whereas the restricted
class of functions is the class of functions analytic on an extension of the given set. Approximation
Theory has found a renewed interest within the field of complex dynamics, where approximation
results have been used to prove the existence of various dynamical behaviors for functions in a number
of recent works (see, e.g., [2, 8, 11, 12, 19, 20]). This approach, however, has the deficiency that the
approximation theorems used do not provide a sufficient description of the approximant needed to
describe the global dynamics of the approximant. The purpose of this paper is to give an improved,
global description of the approximants in some of the fundamental results in approximation in one
complex variable.
One such fundamental result is Runge’s classical theorem on polynomial approximation.

Theorem 1.1. [21] Let f be a function analytic on a neighborhood of a compact set K c C, and
suppose C \ K is connected. For all ¢ > 0, there exists a polynomial p so that

IIf —pllk == sup If@ —-p@)| <e.

This famous result does not say much about what the polynomial approximant p looks like off the
compact set. For various applications (such as the dynamical applications mentioned above), it would be
useful to understand the global behavior of p and, in particular, the location of the critical points and val-
ues of p. To this end, we state our first result (Theorem A below) after introducing the following notation.
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Notation 1.2. For any compact set K ¢ C we denote the e-neighborhood of K by N.K = {z :
infyex Iz—w| < ¢}, and we denote by K the union of K with all bounded components of C\K (this
is usually called the polynomially convex hull of K; see [1]). We say K is full if C \ K is connected.
We let CP(f) denote the set of critical points of an analytic function f, and let CV(f) := f(CP(f))
denote its critical values. A domain in C is an open, connected subset of C.

Theorem A. (Polynomial Runge+) Let K C C be compact and full, D a domain containing X, and suppose
f is a function analytic in a neighborhood of K. Then for all ¢ > 0, there exists a polynomial p so that
IIf —pllk < & and:

1) CPp) CD,
2) CV(p) C Nf(K).

We remark that no relation is assumed between the domain D > K and the neighborhood of K in
which f is analytic. Analogous improvements of the polynomial approximation theorems of Mergelyan
and Weierstrass will be stated and proved in Section 10 (see Theorem 10.7 and Corollary 10.8). When
K is not full, uniform approximation by polynomials is not always possible, and so we turn to rational
approximation. We denote the Hausdorff distance between two sets X, Y, by du(X, Y).

Theorem B. (Rational Runge+) Let K C C be compact, D a domain containing K, f a function analytic
in a neighborhood of K, and suppose P c C \ K contains exactly one point from each component of C \ K.
Then there exists P’ C P so that for all ¢ > 0, there is a rational function r so that ||f — |lx < & and:

1) dg(r~X(00), P") < & and |r~(0c0)| = |P'],
2) CP(n Cc D, A
3) CV(r) C N.f(K).

We now briefly describe our approach. Let @ C C be a finitely connected domain with analytic
boundary, and F : @ — D analytic. By a theorem of Grunsky, F can be approximated on any compact
subset of Q by a proper holomorphic map B : @ — D (recall proper means that the continuous extension
of B to 9% satisfies B(dR) = T := {z : |z| = 1}). Grunsky's proof (see Lemma 4.5.4 of [16]) uses a
Riemann sum to approximate an integral representation of F involving the Green’s function on €.
Another approach can be found in [17]. When @ is simply connected, B is a Blaschke product (up to
a change of coordinates), and in this case the result is due to Carathéodory [9], with a much simpler
proof based on power series.

Thus, the function f in Theorem A or B can be approximated on K by a holomorphic map B defined
in a union D := yUD; D K of pairwise disjoint domains (Di)le, so that B is proper in each D;. Our
approach in this manuscript is to extend B from D to a quasiregular mapping g : C — C with specified
poles. The Measurable Riemann Mapping Theorem (MRMT for brevity) will then imply that there is a
quasiconformal mapping ¢ so that go ¢~ is rational. The bulk of the work in this paper will be to show
that there exists a quasiregular extension g of B so that {z : gz(z) # 0} is sufficiently small (in a suitable
sense) so as to imply ¢(z) ~ z and hence go ¢! =Bo ¢! ~ B ~ f on K. We remark that our techniques
build on the quasiconformal folding methods of the first author [4].

This approach yields not only information on the critical points and values of the approximants as
in Theorems A and B, but also a detailed description of the geometric structure of these approximants.
We end the introduction by describing this geometric structure in a few cases. First we introduce some
more notation.

Notation 1.3. Let V c C be a simply connected domain so that oo ¢ 8V. We let 4y : E — V denote
a Riemann mapping, where E = D if V is bounded and E = Dy, := C \ D if V is unbounded, in
which case we specify ¥y (o) = oco.

First consider the case when K is full and connected, and f is holomorphic in a neighborhood of K.
Let @, @' be analytic Jordan domains containing K, f (K), respectively, so that f is holomorphic in Q. Then
the mapping

F=vy5lofoyq:D—D
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Fig. 1. This figure illustrates the geometry of the approximant p in Theorem A when K is connected. The notation
is explained in the text. Both domain and co-domain are colored so that regions with the same color correspond
to one another under p.

is holomorphic, and by the aforementioned theorem of Carathéodory, there is a finite Blaschke product
b : D — D that approximates F on the compact set 5 (K). Therefore,

B:i=vyqoboyg i1 Q—

is a holomorphic function that approximates f on K, and moreover B restricts to an analytic, finite-to-1
map of ' ;= 9Q onto I'" := Q.

In this paper, we will show that B can be approximated on by a polynomial p so that p~*(I") is an
approximation of I'. More precisely, p~1(I") is connected, and consists of a finite union of Jordan curves
{»}5 bounding pairwise disjoint Jordan domains {£;}j (see Figure 1): the {©;}f are precisely the connected
components of p~1(Q'). There is one “large” component o that approximates § in the Hausdorff metric.
The other components {©;}] can be made as small as we wish and to lie in any given neighborhood of
8. Moreover, the collection {€;}§ forms a tree structure with any two boundaries 9<;, 3 either disjoint
or intersecting at a single point, and with © as the “root” of the tree as in Figure 1. Let Q. denote the
unbounded component of C \ p~}(I'), so that

C\p '@ =Qu (u}‘zlﬂj) U Q. (1.1)

Recalling Notation 1.3, the polynomial p has the following simple structure with respect to the domains
in (1.1).

1) p(Q) = @ and Y5 op o Y, is a finite Blaschke product.
2) p(2)) = 2 and p is conformal on @; for 1 < j <n.
3) P(Q2e0) = C\ @ and p = Y 0 (Z > 2™ 0 Y on Qo for m = deg(pla,) + n.

In other words, up to conformal changes of coordinates, p is simply a Blaschke productin Qo, a conformal
map ineach Q;, 1 <j <n,and a power map z — z" in Q. The only finite critical points of p are either in
Qo, or at a point where two of the curves Wi intersect, in which case the corresponding critical value
lies on Q.

Next suppose K is connected, but C \ K has more than one component. In this case, in order to
prove Theorem B, we will need to let 2 be a multiply connected analytic domain containing K, and
Q' an analytic Jordan domain containing f(K). By Grunsky’s Theorem, there exists a proper map b
approximating ' o f on K, so that B := g o b is a holomorphic map approximating f on K, and B
restricts to an analytic, finite-to-1 mapping of each component of I' := 9 onto I'". We will show B can
be approximated on Q by a rational map r so that each component of 3Q can be approximated by a
component of r~}(I"). These components of r~1(I'") bound Jordan domains that form a decomposition
of the plane as in the previously described polynomial setting, and in the interior of each such domain
again r behaves either as a proper mapping, a conformal mapping, or a power mapping (up to conformal
changes of coordinates).

Lastly, the case when K has more than one connected component is more intricate, and we will leave
the precise description to later in the paper. (Briefly, quasiconformal folding is applied not just along
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the boundary of a neighborhood of K, but also along specially chosen curves that connect different
connected components of this neighborhood.)

We conclude the introduction by mentioning several related works. The location of CP(p) in relation
to the zeros of a polynomial p is studied in the recent works [22, 23], and in [13] the problem of
approximation in C" with prescribed critical points was studied.

2 Approximation by Proper Mappings

Definition 2.1. We call a domain D c C an analytic domain if D is finitely connected, and each
component of 9D is an analytic Jordan curve.

We remark that a boundary component of an analytic domain D cannot be a single point.

Definition 2.2. Let D be an analytic domain. We will call a continuous mapping f : D — C proper
if f(D) ¢ D and if for every compact K ¢ D, f~(K) is a compact subset of D.

We remark that the definition of proper does not usually include the assumption of the function
being D-valued; however, this will be a useful convention to follow in this paper.

Remark 2.3. Since D in Definition 2.2 is assumed to be an analytic domain, the mapf : D — D
extends continuously to a map f : D — D, and it is straightforward to check that the map
f:D — Dis proper if and only if f(8D) C T.

The following is Lemma 4.5.4 of [16]:

Theorem 2.4. Let ¢ > 0, D an analytic domain, K ¢ D compact, and f : D — D holomorphic. Then
there exists a proper map B: D — D so that ||f — Bl|x < e.

Remark 2.5. When D = D, the function B in the conclusion of Theorem 2.4 is a Blaschke product
(hence the notation B), and in this case Theorem 2.4 is due to Carathéodory (see, e.g., in
Theorem 1.2.1 of [14] or Theorem 5.1 of the survey [15]).

Notation 2.6. We denote H := {z € C : Im(z) > 0}. For a proper map B on an analytic domain D,
we let Zp denote the connected components of dD \ {z : B(z) € R}. In other words, Zg are the
preimages (under B) of the open upper and lower half-circles TNH, TN (—H). We will frequently
be dealing with sequences of proper maps (B,);>, on D, in which case we abbreviate Zz, by Z,.

In order to prove Theorems A and B, we will need to approximate a given function by a sequence
of proper approximants (B,)%, of increasing degree, so that |B}| is uniformly comparable to n on
the boundary (see (2.5) below). This will be done by post-composing the approximant coming from
Theorem 2.4 with the following Blaschke products:

Definition 2.7. Forn e N,0 < 4§ < 1,and 0 < ¢ < 1, we define the Blaschke product:
n-1

e2rii/mg 4 v 5(1—=0)
Bnsc(z) =2 H 13 reriing’ wherer:=1— — (2.1)

Proposition 2.8. There exists a §o > 0 so thatif § <8, and 0 <c < 1, then:

sup sup |Bysc(2) — z| < 43. (2.2)

neN |z|<c

Proposition 2.9. There exists a constant C depending on § and ¢, but not on n, so that

n/C < |By;.(@| <nCforallze TandneN. (2.3)
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The proofs of Propositions 2.8 and 2.9 are straightforward but tedious calculations, and so we delay
them until the end of the section. For now, we show how Theorem 2.4 together with Propositions 2.8
and 2.9 can be used to deduce the following result, Theorem 2.10. We remark that Theorem 2.10 is the
only result from Section 2, which will be needed in the remainder of the paper.

Theorem 2.10. Let ¢ > 0, D an analytic domain, K ¢ D compact, and f : D — D holomorphic. Then
there exists M < oo and a sequence of proper maps (B,)32, on D satisfying:

sup||f — Bullx < ¢, and (2.4)
neN
n/M < |Bj(z)] <nMforallze dD andneN. (2.5)

Proof. Fix ¢, D, K, f as in the statement of the theorem. By Theorem 2.4, there exists a proper map
B: D — D satisfying ||f — B||x < &/2. Fix ¢ so that sup, [B(z)| < ¢ < 1, and fix § < ¢/8 sufficiently small
so that (2.2) holds. This defines the sequence (Bp;)52,. We set

Byl = Bn,s,c oB.

The relation (2.4) follows from (2.2) and the triangle inequality, and the relation (2.5) follows from (2.3)
and the chain rule. u

We conclude this section with the proofs of Propositions 2.8 and 2.9.

Proof of Proposition 2.8. Let

n-1

T8 29 o rexD(_2xi
B(z) := g a1 1 _ajz,where aj := —1exp(=2n1/n), (2.6)

so that By sc(z) = z - B(z). Recalling the definition of r from (2.1), we note that

-

26
o

z+r | |meHr ] (=0 +c0o/n <6(1+c)
< | 1+71Z T l1-cr 1l-c(1-8(1—0c/n) ~ n

Symmetry then gives us that

—(lj zZ— a}’
laj] 1-ajz

sup —1‘5%fora]105j§n,

|z|=c
Hence,
n-1

5z
Zl"g(mﬂ 1—@)

j=0

n-1

—0; Z— aj
< log( — L) <3s
=2 °g(\aj\ 1—@2)‘*
j=0

for sufficiently small § and all 0 < ¢ < 1. Thus, we conclude that
n-1 -
T z-g)\ _
o (Son( 122 )

for sufficiently small § and all 0 < ¢ < 1, and this proves (2.2) since By .(z) = z - B(2). [ |

Bz) — 1| = <45
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\o,..__o""

Fig. 2. This figure illustrates Notation 2.6, Definition 3.1, and Theorem 2.10. The vertices pictured on 9D are
B~1(£1), and the components Zp of Notation 2.6 are the edges along dD connecting these vertices.

Proof of Proposition 2.9. We will use the notation <,~, > tomean <, =, > (respectively) up to a constant

~) T A

depending on § and ¢, but not n. Let B(z) be as in (2.6). A calculation gives

B’(z)_g 1-jgl* (z-g\"
Bz)  “~(1-az2)? \1-az

j=0

Thus, we have

n-1
1B'(z)| < ZP(Z, a;), where P(z, ¢) =

j=0

1-¢?
lz—¢P2

forzeTyt eD (2.7)

is the Poisson kernel for the unit disc. The sum Z}':"ol P(z, aj) takes its maximum at z = —1 (as well as at
any of the other n points (exp(xi+ Qnij/n))}‘:’(}), where we have

P(-1,n ~nand P(-1,a) ~n/? forj=1,.., [(n— 1)/2]. (2.8)

Combining (2.7) and (2.8) together with the fact that 377, 1/j*> < oo, we have |B'(z)| < n. Let us now
prove |B'(z)| 2 n. The function |B/(z)| takes its minimum at z, := exp(ri(1 + 1/n)), where the triangle
inequality yields

Bl = | Sl (e )T —nz_lp(z a)2n 2.9)
n)l = j701(1_aszn)2 1_07271 s LR FA VR B

Since Bns(z) = z - B(z) and we have shown |B/(z)| ~n for all z € T. The relation (2.3) follows.

3 Applying Theorem 2.10
In this brief section, we apply Theorem 2.10 to the setting needed for the proofs of Theorem A and B.

Given a Jordan curve y c C, we denote the bounded component of C \ y by int(y).

Notation 3.1. We refer to Figure 2 for a summary of the following. For the remainder of this
section, we will fix a compact set K, an analytic domain D containing K, and a function f
holomorphic in a neighborhood of D satisfying ||f||p < 1. Fix & > 0. We assume that

d(z,K) < /2 and d(f(2), f(K)) < ¢/2 for every z € aD. (3.1)
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We remark that if f is a holomorphic function in a neighborhood of a compact set K, there does not
necessarily exist an analytic domain D satisfying the assumptions of Notation 3.1 (in particular when K
is disconnected); however it will be useful in the framework of our proof to work under the assumptions
of Notation 3.1 for now.

Definition 3.2. We let y be an analytic Jordan curve surrounding f(D) such that
dist(w, f(K)) < ¢ for every w € y, (3.2)

and let ¥ : D — int(y) denote a Riemann mapping.
Recall Definition 2.2 of a proper mapping on a domain D.

Proposition 3.3. There exists M < oo and a sequence of proper mappings (B,)$; on D satisfying
(2.5) so that

[If —¥oByllk <eforallneN. (3.3)

Proof. Let K’ C D be compact so that K c Int(K’) (the interior of K'). Fix r < 1 and § > 0 so that
U lof(K)cfz: |zl <rhand § < dist (v of(K),d(¥ o f(K))

Apply Theorem 2.10 to:

1n(8,s,8),D, K, v lof. (3.4)

Supk\gr |"1’/(C)|

This produces a sequence of proper mappings (B,)32, on D satisfying (2.5) for some M < oo. We claim
(Bn)%, also satisfies (3.3). Indeed, for any z € K we have by our choice of § that [Ba(2)| < rand [¥~tof (2)| <
r. Thus, we deduce

[¥ 0Bn(2) — f(2)] = |¥ 0 By(z) — W o W' o f(2)| < sup W' ()| - [Bp(2) — ¥~ 0 f(2)],

[¢l=r

and so (3.3) follows from (3.4). |

Recall from the introduction that we plan to extend the definition of the approximant ¥oB, ~ f from
D to all of C. To this end, it will be useful to define the following graph structure on aD.

Definition 3.4. For any n € N, we define a set of vertices on 9D by V, := (Bnlsp) " (R), where each
vertex v is labeled black or white according to whether B, (v) > 0 or B,(v) < O, respectively. The
curves 9D will be considered as a graph with edges defined by Z, (recall from Notation 2.6 that
T, is precisely the collection of components of 8D \ V,)). We will sometimes write D, in place of
D when we wish to emphasize the dependence of the graph 4D on n.

Definition 3.5. We define a holomorphic mapping g, in D by the formula

gn(2) := W o By(2). (3.5)

In Sections 4-9 we will quasiregularly extend the definition of g, to C, and then in Section 10 we
apply the MRMT to produce the rational approximant of Theorem B as described in the introduction.

Remark 3.6. Recall that in Notation 3.1, we fixed ¢ > 0, a compact set K contained in an analytic
domain D, and a function f holomorphic in D (we note ¢, K, D, f also satisfied extra conditions
specified in Notation 3.1). The objects y, ¥, B,, Vy, gn We then defined in this section were
determined by our initial choice of ¢, K, D, f. In future sections, it will be useful to think of y, ¥,
By, Vn, gn as defining functions that take as input some quadruple (¢, K, D, f) (for any ¢,K, D, f as
in Notation 3.1), and output whatever object we defined in this section. For instance, V, defines
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a function that takes as input any (¢, K, D, f) as in Notation 3.1 and outputs (via Definition 3.4)
a set of vertices V,(¢,K, D, f) on aD. Similarly, B, takes as input any (¢,K, D, f) as in Notation 3.1
and outputs (via Proposition 3.3) a proper mapping B (¢, K, D, f) on D. Likewise for y, ¥, gy.

4 Quasiconformal Folding

Given a compact set K ¢ C and a function f holomorphic in a domain D containing K, we showed in
Section 3 how to approximate f by a holomorphic function g, defined in D (see Definition 3.5). If f is
a function holomorphic in an arbitrary analytic neighborhood U (where U need not be connected) of a
compact set K, then one can apply the results of Section 3 to each component of U, which intersects K
(this is done precisely in Definition 5.1): this yields a holomorphic approximant of f defined in a finite
union of domains. In Sections 4-8, we will build the apparatus necessary to extend this holomorphic
approximant to a quasiregular function of C, which is holomorphic outside a small set.

It was convenient to assume in Notation 3.1 that the compact set K was covered by a single domain
D; however, we now begin to work more generally:

Remark 4.1. We refer to Figure 5 for a summary of the following. Throughout Sections 4-8, we
will fix ¢ > 0, a compact set K C C, a domain D containing K, a disjoint collection of analytic
domains (Di)lfz1 such that K c U := U;D; € D, and a function f holomorphic in a neighborhood
of U satisfying ||f|lg < 1. We assume that the following analog of Equation (3.1) holds:

d(z,KND;) <e/2and d(f(z),f(KNDy) <e/2forallze dD;and 1 <i<k.

Applying the methods of the previous section to each component D; of U, we can define a sequence
of proper mappings (B,)$ ; on each D; (see Remark 3.6). We will let B, denote the corresponding function
defined on U. In particular, (B,)$2, gives the following definition of vertices on the boundary of U = U;D;
(see Definition 3.4 and Remark 3.6).

Definition 4.2. For every n € N, we define a set of vertices V, on aU by

k k
Vi = Vale, KND;, D;, fIp) = | JBulap) ™ (R).

i=1 i=1

We now extend the graph structure on 9U by connecting the different components of U by curves
{Fi}f:’f in Proposition 4.3 below, and defining vertices along these curves in Definition 4.4. We will need to
prove a certain level of regularity for these curves and vertices in order to ensure that the dilatations of
quasiconformal adjustments we will make later do not degenerate as n — co. We will denote the curves
by {Fi}!:ll, and we remark that the curves depend on n, although we suppress this from the notation.

Proposition 4.3. For each n € N, there exists a collection of disjoint, closed, analytic Jordan arcs
{Fi}f;f in (€ \ U) N D satisfying the following properties:

1) Each endpoint of T is a vertex in Vy;

2) Each Ty meets 9U at right angles;

3) UU (U;Ty) is connected; and

4) For each 1 <1 <k — 1, the sequence (in n) of curves I'; has an analytic limit.

Proof. The set (C \ U) N'D must contain at least one simply connected region V with the property that
there are distinct i, j with both 9V N 8D; and 8V N 8D; containing non-trivial arcs (see Figure 3). By (2.5),
for all sufficiently large n both 3V N 8D;, 3V N 8D; contain vertices of V,, which we denote by v; € 8D,
v; € 8D;, respectively. Consider a conformal map ¢ : D — V, and define I'; to be the image under ¢ of the
hyperbolic geodesic connecting ¢~ (vy), ¢i’1(uj) inD.

We now proceed recursively, making sure at step | we pick a V, which connects two components of
U not already connected by a I'y,..., I'_1, and so that V is disjoint from I'y,..., ['_;. The curves I satisfy
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Fig. 4. [llustrated is Definition 4.4.

conclusions (1)-(3) of the proposition. We may ensure that for each 1 <i <k — 1, the sequence (in n) of
curves I'; has an analytic limit by choosing vj, v; above to converge as n — oo. |

Definition 4.4. Consider the vertices V, C 9U of Definition 4.2. We will augment V), to include
vertices on the curves (1"1-)1?;11 as follows (see Figure 4). Let I € (Fl-)h1 denote both the curve as a

subset of C and the arclength parameterization of the curve, and suppose I' connects vertices
') =v; € aD;, F(length(r)) =V € BDJ'.

Fork =1,j,let &; denote the minimum length of the two edges with endpoint vy in 9Dy, and suppose
without loss of generality & < &;. Let | > 0 be so that

8)'/2 =< 51'/2I =< 28)'4
We place vertices at I'(¢;/2), ..., ['(¢;/2'), and along I'([¢;/2!, length(I")]) at equidistributed points.
We can label the vertices black/white along I' so that vertices connect only to vertices of
the opposite color by adding one extra vertex at the midpoint of the segment having v; as
an endpoint, if need be.
We introduce the following notation.
Notation 4.5. Throughout Sections 4-8, we will let @ denote a fixed (arbitrary) component of
R k-1
C\(UUUFi), 4.1)

i=1

and p € Q. Note that Q is simply connected by Proposition 4.3(3). Denote Dy, := C \ D, and let ¢
denote any conformal mapping

0:Dy—> Q (4.2)

satisfying o (co0) = p. For z € Q, we define t(z) := 07*(z). The map t induces a partition of T, which
we denote by Vy, :=t(Vy).
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Fig. 5. This figure illustrates Remark 4.1 and Notation 4.5. As pictured, U has four components (Di);il which are
connected by curves (Fi)ig=1' Recall K c U (the compact set K is not shown in the figure). The unbounded
component Q of (4.1) is pictured in dark grey. The map t : @ — Dy is a conformal mapping, and sends the vertices
on 9Q to (possibly unevenly spaced) vertices on the unit circle.

Fig. 6. Shown as a black curve is part of a graph G, and in light gray the neighborhood
Ueec{z : dist(z,e) < C - diam(e)} of G.

Remark 4.6. We will sometimes write Q,, D}, , in place of Q, Dy, respectively, when we wish to
emphasize the dependence of the vertices V, C 9Q, V, C 9Dy on the parameter n.

n—00

Proposition 4.7. For the graph 9Q,, we have max{diam(e) : eis an edge ofdQ2,} — 0.

Proof. This follows from (2.5) and Definition 4.4. |
As explained in the introduction, in order to prove uniform approximation in Theorem B, we will
need to prove that our quasiregular extension is holomorphic outside a region of small area. To this end

it will be useful to introduce the following definition.

Definition 4.8. Suppose V C C is an analytic domain, and aV is a graph. Let C > 0. We say a
quasiregular mapping ¢ : V. — ¢ (V) is C-vertex-supported if

supp(¢z) C U {z : dist(z,e) < C-diam(e)} (4.3)

ecdV

(see Figure 6), where the union in (4.3) is taken over all edges e on 9V.
It will also be useful to have the following definition.
Definition 4.9. Suppose e, f are rectifiable Jordan arcs, and h : e — f is a homeomorphism. We
say that h is length-multiplying on e if the push-forward (under h) of arc-length measure on e

coincides with the arc-length measure on f multiplied by length(f)/length(e).

First we will adjust the conformal map t so as to be length-multiplying along edges of Q. Recall the
vertices V,, ¢ T defined in Notation 4.5.
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|z[>1

Fig. 7. This figure illustrates the Folding Theorem 4.13 and Notation 4.14. The simply connected domain €, is
obtained by removing from Q certain trees based at the vertices along a<2.

Fig. 8. For any x € dW,, N D, there are two limits limw, 5,—x ¥ (z) € T as illustrated in this figure. Theorem 4.13(3)
says that these two limits are equidistant from the nearest black vertex, and are equidistant from the nearest
white vertex.

Proposition 4.10. For every n, there is a K-quasiconformal mapping 4 : D% , — Dj, so that

1) » is C-vertex-supported for some C > 0;

2) M(z) = z on V, and off of supp(rz);

3) x o 7 is length-multiplying on every component of 92\ V,; and
4) C, K do not depend on n.

Proof. Thisis a consequence of Theorem 4.3 of [4]. Indeed, let H, := {z € C : Re(z) > O} and recallt :==o*

and consider the 2ri-periodic covering map
¢ :=coexp:H — Q. (4.4)

The map ¢ induces a periodic partition ¢~ (V) of 9H, which has bounded geometry (see the introduction
of [4], or Section 2 of [5]) with constants independent of n by Proposition 4.3(2) and Definition 4.4. Thus,
Theorem 4.3 of [4] applies to produce a 2xi-periodic, C vertex-supported, and K-quasiconformal map
B : H, — H, so that ¢ o 8 is length-multiplying on edges of H,, and C, K are independent of n. Thus, the
inverse

Bt ologor
is length-multiplying, and since exp is length-multiplying on vertical edges, the well-defined map
L i=expoBflolog: Dy — Dy
satisfies the conclusions of the Proposition. |

The main idea in defining the quasiregular extension in € is to send each edge of 9D; to the upper or
lower half of the unit circle by following A o T with a power map z > z" of appropriate degree. The main
difficulty in this approach, however, is that the images of different edges of 9D; under A o r may differ
significantly in size, so that there is no single n with z > z" achieving the desired behavior. The solution
is to modify the domain Q by removing certain “decorations” from the domain €, so that each edge of
aD; is sent to an arc of roughly the same size under i o r. This is formalized below in Theorem 4.13
(see also Figures 7 and 8), and is an application of the main technical result of [4] (see Lemma 5.1). The
“decorations” are the trees in the following definition.
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Definition 4.11. Let V C T be a discrete set. We call a domain W C D a tree domain rooted at V if
W consists of the complement in Dy, of a collection of disjoint trees, one rooted at each vertex
of V (see the center of Figure 7).

Notation 4.12. For m € N, we let
ZEi={zeT:7" =41},
Zp = ZHUZ,.

In other words, Z;; denotes the m™ roots of unity, and Z;; the m™ roots of —1.

Theorem 4.13. For every n, there exists a tree domain W, rooted at V,,, an integer m = m(n), and
a K-quasiconformal mapping v : W, — D so that

1) ¢ is C-vertex-supported for some C > 0, and ¥ (z) = z off of supp(yz);

2) on any edge e of 9W, N T, ¥ is length-multiplying and v (e) is an edge in T \ Z;

3) for any edge e of 9W, N Dy, ¥ (e) consists of two edges in T \ Z,,. Moreover, if x € e, the two limits
limw,,x ¥ (2) € T are equidistant from 2, and from Z;; and

4) C, K do not depend on n.

Proof. We consider the 2x-periodic covering map
¢ =cokroexpo(zr> —iz) . Hr Q. (4.5)

inducing a periodic partition ¢=1(V,) of 9H. By (2.5), Definition 4.4, and Proposition 4.10(2), any two edges
of H have comparable lengths with constant independent of n. Therefore, Lemma 5.1 of [4] applies to
yield a 27 -periodic K-quasiconformal map ¥, of H onto a subdomain ¥, (H) C H, with K independent of
n. We let

W, := exp(—1V, (H))
and

¥ =expo—i¥;oilog: W, — Dy. (4.6)

The map (4.6) is well defined, and the conclusions of the theorem follow from Lemma 5.1 of [4]. |
Notation 4.14. We will use the notation €, := (A o 7)~*(W),) (see Figure 7).

5 Annular Interpolation Between the Identity and a Conformal
Mapping
Recall from Notation 4.1 that we have fixed ¢ > 0, a compact set K, disjoint analytic domains (Dl-)ik:1 SO
that U := U;D; contains K, and f holomorphic in a neighborhood of U with ||f|lz < 1. In this section, we
briefly define two useful interpolations in Lemmas 5.3 and 5.5, which we will need.

Since the domain D; contains the compact set KN D;, the definitions and results of Section 3 apply to
(e,KN Dy, Dy, flp,) for each 1 < i < k (see Notation 3.1). Thus, Remark 3.6 applies to define (5.1), (5.2), and
(5.3) in the following.

Definition 5.1. Let 1 <1 < k. Recalling Definition 3.2, we define the Jordan curve
Vi = V(S,KﬂDi,Di,lel). (51)
Recalling that int(y;) denotes the bounded component of C \ y;, we define

v = \P(E,KﬂDi,Di,ﬂD\) (5.2)
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Fig. 9. lllustrated is the map n : Do, — C\ ¥;(D) of Lemma 5.3. The dotted circle on the right depicts the unit
circle.

to be a Riemann mapping ¥; : D — int(y). Lastly, we define the proper mappings
B, = BH(E‘,KQDI,Di,fh)‘) on Dj, (53)
where we suppress the dependence of (B,)22; on i from the notation.

Recall that in Section 4, we defined curves {Fi}ﬁf connecting the domains Dj, and in Notation 4.5 we
fixed a component  of the complement of U U Uf:‘fl“i.

Notation 5.2. After relabeling the (Di)fz1 if necessary, there exists 1 < ¢ < kso that aD; NI # @
if and only if i < ¢ (see, e.g., Figure 5). For each 1 < i < ¢, note that the intersection aD; N 9©2
consists of a single Jordan curve, which is mapped onto T by Bj,.

The two interpolations we will need are given in Lemmas 5.3 and 5.5 below. In Lemma 5.3, we define
an interpolation nl.‘“ between z — z on |z| = 2 with z — W¥j(2) on |z| = 1 (see Figure 9), and in Lemma 5.5
we modify " to define a map »; so that n;(z) = ;@) for |z] = 1.

Lemma 5.3. For each 1 <1 < ¢, there is a quasiconformal mapping ”fy ‘Do — C \ ¥;(D) satisfying
the relations
n¥(z) = z for |z| > 2 and (5.4)

n¥(z) = Wi(2) forall |z| = 1. (5.5)

Moreover, if D, Dj for 1 <i,j < ¢ are connected by one of the curves (Fi);:ll, then

! (=2, =1 N’ (1,2) = n¥ (L1, 2D N’ (-2, -1) = 0. (5.6)
Remark 5.4. The existence of a collection of quasiconformal mappings (n;")L1 satisfying (5.4)
and (5.5) follows from a standard lemma on the extension of quasisymmetric maps between
boundaries of quasiannuli (see, for instance, Proposition 2.30(b) of [3]). However, in order to

ensure that condition (5.6) is also met for the collection (”?))Lr we will need the following
different argument to define the maps (ni“‘)Lr

Proof. First, observe that after renormalizing each conformal map W¥; (more specifically by pre-
composing ¥; with an appropriate automorphism of D), we may assume that:

Re(¥;(—1)) = inf{Re(¥;(2)) : ¢ € T}, (5.7)
Re(¥i(+1)) = sup{Re(¥;({)) : ¢ € T}, (5.8)

for each i. We would like to find, for each i, a pair of smooth Jordan arcs ¢ satisfying
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1) ci+ connects +2 to Wj(+1) (in other words ci+ has endpoints +2, ¥;(+1)), and ¢, connects —2 to ¥;(—1),
2) ¢f, ¢ C 2D\ WD),
3)cing =0,

and so that the collection (cf)}_, satisfies the following property analagous to (5.6):

k-1

(») if Dj, D for 1 < i,j < ¢ are connected by one of the curves (I'})', then ¢; N cj+ =c N =0

i
We claim that in order to prove the Lemma, it suffices to show the existence of a collection (cl.i)}:1
satisfying the above properties; indeed one defines 7 on the quadrilateral with four edges; T N H,
[-2,-1], 2T N H, [1,2] by setting n(z) := z on 2T N H, n(z) := ¥ij(z) on T N H, and as a smooth
homeomorphism from [-2, —1] (resp. [1, 2]) onto the smooth Jordan curve ¢, (resp. ¢f). By a standard
result on extension of quasisymmetric homeomorphisms of boundaries of quadrilaterals into their
interiors (see, for instance, Lemma 2.24 of [3]), this definition of 5 extends quasiconformally to the
interior of this quadrilateral. An analagous definition of » in the reflection of this quadrilateral in the
real axis defines a quasiconformal map 5 in {z : 1 < |z| < 2}, and the collection (ni‘")L1 satisfies (5.4)
and (5.5) by definition of n¥, and satisfies (5.6) since the collection (¢;*)!_, satisfies ().

Thus it remains to argue the existence of Jordan curves (cii)L1 satisfying 1.-3. and (). We proceed
recursively, beginning by defining ¢l (resp. ¢7) to be the straight line segment connecting v (+1) (resp.
¥1(=1)) to +2 (resp. —2); the normalizations (5.7) and (5.8) ensure cf satisfies 1.-3.. It will be important
to note that the following property holds:

(%%) cli intersects any vertical line {z : Re(z) = x} in at most one point.

Consider j so that D1, D; are connected by one of the curves (Fi)f:‘f. In defining c}*, there are two cases
to consider:

1) ¥;(+1) > y1(=1), or
2) i (+D) < Y (=1)

In the first case, we define ¢ to be the straight line segment connecting +2 to ¥;j(+1); then we have
N c}* = ¥ by (5.7) and (5.8). In the second case we have that ¥;(ID) N 1 (D) = ¥, and so by (x+) there
exists a Jordan curve cj+ C D\ (y;(D) U cy) intersecting any vertical line {z : Re(z) = x} at most once, and
connecting the point y;(4-1) to 42. In particular, in either case, we have that c; N ¢t =9, and ¢ satisfies
(). An analagous procedure defines o This defines the curves cji over all j so that the cji satisfy (xx),
and (x) holds for i = 1. Continuing in this way, one similarly defines ¢f for each D connected to one
of the D; considered in the previous step; the proof that ¢f satisfies the desired properties is the same
as above (the only property of ¢ we used in defining cji was that ¢f satisfies (#+), which we have also
ensured ¢ satisfies). [ ]

Lemma 5.5. For each 1 <i < ¢, there is a quasiconformal mapping
ni: Dw — C \ \I’i([—l, 1])

satisfying the relations

ni(z) =z for |z| > 2, (5.9)
1i(z) = 11(2) for |z| = 1, and (5.10)
ni(2) = n{ @) for z € RN D (5.11)

Proof. Define
v = n" (A1, 2) NHD).

Let n be a quasisymmetric mapping of T N H onto [—1, 1] fixing +1 (one can take » := M|p~g where M is
a Mobius transformation mapping —1, 1,1 to —1, 1, 0, respectively). Define a mapping g on y,* by:

v wol Wi(TNH
g = | Hiene i@ zeU@NH (5.12)
Z otherwise
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Since g is a quasisymmetric mapping, a standard lemma on extension of quasisymmetric maps between
boundaries of quasidisks (see, for instance, Proposition 2.30(a) of [3]) implies that g may be extended to
a quasiconformal mapping of 7 (A(1, 2) N H). Define g similarly in 5 (A(1,2) N (—H)). We let n; := gon.
It is then straightforward to check that »; satisfies (5.9)-(5.11). |

Remark 5.6. Lemmas 5.3 and 5.5 define 2¢ many quasiconformal mappings: {ni‘"}f:1 and {ni}le.
The definition of the mappings »¥, n; depend on the objects ¢, K, (D)X, f as fixed in Notation
4.1, but not on the parameter n in (5.3). Thus, we record the trivial but important observation

that the mappings {ni“’}f:1 and {m}f:1 are quasiconformal with a constant independent of n.

6 Annular Interpolation Between a Proper Mapping and a Power
Map

Recall that we have fixed ¢ > 0, a compact set K, disjoint analytic domains (Di)le so that U := U;D;
contains K, and f holomorphic in a neighborhood of U with |[f|lz < 1. The curves {Fi}f:’f connect the
domains (Di){?:l, and Qis a component of the complement ofUUUf:‘fFi with t : @ — D, conformal. Recall
that the domain Q) was defined in Theorem 4.13 and Notation 4.14 by removing from € a collection of
trees rooted at the vertices along 92, and the map ¥ o A o T maps €2, onto Dy, (see Proposition 4.10 and

Theorem 4.13).

Notation 6.1. Recall from Notation 5.2 that aD; N 92 # @ if and only if 1 < 1 < ¢. Hence exactly
¢ — 1 of the curves (1‘1-)1?:‘11 intersect 9K2. By relabelling the (I‘i)f:‘f if necessary, we may assume
I intersects 9Q if and only if 1 <j < ¢ —1.

Let m = m(n) be as in Theorem 4.13. To prove our main results, we will need to modify z + z™ in Dy,
so that, roughly speaking, (z — z™) o ¢ o A 0 7(z) agrees with the proper mappings B, (see Definition 5.1)
along aD;. This is done in Theorem 6.3 below (see [6] for a related result). Its proof uses the following.

Proposition 6.2. Suppose ¢1, ¢, are C* homeomorphisms of a C! Jordan arc e such that

1) p1(e) = ¢pa(e);
2) ¢1, ¢» agree on the two endpoints of e; and
3) 19,(2)| = I¢g5(z)| forall z e e.

Then ¢ = ¢, on e.

The proof of Proposition 6.2 is a consequence of the Fundamental Theorem of Calculus and is left to
the reader.

Theorem 6.3. For every n, there exists a locally univalent K-quasiregular mapping h, : Dy — Do
so that

1) hy(z) = z" for |z| > /2 where m := m(n) is as in Theorem 4.13;
2) hpoy orot(z) =Bn(z) foreveryze dDjand 1 <i <, and
3) Kis independent of n.

Proof. Fix the standard branch of log. Given an edge e € dD;, we have by Theorem 4.13 that

jl (+ D
" m

IOgOWOAOT(e):{O}X [m

]for some 0 <j<2m-1. (6.1)

Denote the vertical line segmentin (6.1) by v,. Let f : v, - e be a length-multiplying, C* homeomorphism
so that f~1 agrees with logoy o A o T on the two endpoints of e. Consider the maps:

zwmzforzelbg]x[)l,w], (6.2)
m m m

2+ logoBy o f for z € {0} [% 0 *ml)”]. (6.3)
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Fig. 10. [llustrated is the proof of Theorem 6.3. In logarithmic coordinates the desired interpolation is denoted ¢,
and hy is then defined by (6.5) and (6.6).

For each 1 < i < |, the proper mappings B, are orientation-preserving on the unique outer boundary
component of Dj, and orientation-reserving on all other boundary components of D;. This implies that
we may choose the branch of log in (6.3) so that the images of (6.2) and (6.3) are horizontal translates of
one another (recall By (e) is a circular arc of angle x), and the derivative of (6.3) is strictly positive for all
Z € Ve. Since the derivative of (6.2) is also strictly positive, this means the linear interpolation between
(6.2) and (6.3) is a homeomorphism.

By (2.5), we have that |B}| is comparable at all points of e with constant independent of e and n.
Thus, since f is length-multiplying and log is length-multiplying on Euclidean circles centered at 0, we
conclude that the derivative of (6.3) is comparable to m at all points of v, with constant independent of
e and n. Thus, we conclude that the linear interpolation between (6.2) and (6.3) in the rectangle

o2 [ 052

m m

is K-quasiconformal with K independent of e and n (see, for instance, Theorem A.1 of [18]). Denote the
linear interpolation by ¢ (see Figure 10).
We define

Ny := expog ologin{z € Dy, : z/|z| € Y o Lo (@)} N {|2] < V2}. (6.5)

The equation (6.5) defines hy(z) for zin {z : 1 < |z| < +/2} and sharing a common angle with the image
under ¢ o A o T of an edge on some 9D;. We finish the definition of h, by simply setting:

N (2) := Z™Mn{z € Do : 2/1Z] € ¥ 0 X 0 T(A, \ (UsdD)}. (6.6)

The conclusion (1) now follows by definition of h,, and (3) follows since h, is a composition of
holomorphic mappings and a K-quasiconformal interpolation where we have already noted that K is
independent of n.

We now show that conclusion (2) follows from Proposition 6.2. Fix an edge e on dD;. Recall v, =
logoy o 2 o t(e). Thus, by (6.3) and (6.5) we have that:

hpoyorotr =Byofologoy oiorone. 6.7)

First note that (6.7) agrees set-wise with B, on e and at the endpoints of e. The map ¥ o Ao 7 is
length-multiplying (by Proposition 4.10(3) and Theorem 4.13(2)), log is length-multiplying on the circular
segment v o A o 7(e), and f is length-multiplying by definition. Thus, the modulus of the derivative of
fologoy oot is constant on e, and so the derivatives of (6.7) and B, have the same modulus at each
point of e. Conclusion (2) now follows from Proposition 6.2. |

7 Joining Different Types of Boundary Arcs: The Map E,

Recall thatin Section 5 we defined the maps n¥, n; where 1 < i < ¢, and in Section 6 we defined the map
hy, for all n € N. In this section we define a map E, in D, which is roughly given by either z ni‘" ohn(2)
or Z > 1;(2) o hn(z), where i is allowed to depend on arg(z) and which of ni"’, n;i we post-compose h, with
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Fig. 11. [llustrated is Definition 7.1. The curves I'1, I'; are depicted as black dotted lines, except for the edges
e1 C T'1, ey C I'p, which are in thick black.

is also allowed to depend on arg(z). Thus, we will need a way to interpolate between the definitions of
n, n;, for different i. The interpolation regions are defined in Definition 7.1 below, and the map E, in
Proposition 7.2. It will be useful to keep Figure 11 in mind for the remainder of this section.

Definition 7.1. Mark one edge e; on I'; for each 1 < i < ¢ — 1. Label the ¢ components of 3] \ Use;
as (Gy)f_,, where 9D; C G;. Let

1) JP denote those edges in aD;;

2) J¢ denote those edges in G; \ JP; and

3) J¢ denote the edges (e)!~; .

In other words, J” are the edges shared by 8%, and aD;, J° consists of £ — 1 edges: one on each of

the curves (l‘i)f;l, and Jf are the remaining edges on G;. Thus, we have:

a0, =7 ulJ(FPuIe).
i

For z € Dy, we define:

n! ohn(z) if z/lzl € Y ohot(TP)

EH(Z) =
niohn( if z/lzl € Y ok ot(TC)

)

It remains to define E, (z) for z € Dy, satisfying z/|z| € ¥ oA ot (J*¢). We do so in the following Proposition.

Proposition 7.2. The map E, extends to a locally univalent K-quasiregular mapping E,, : Dy, — C
satisfying E,(z) = z" for |z| = v/2, where m = m(n) is as in Theorem 4.13. Moreover, K does not
depend on n.

Proof. Consider (7.1). Note that if E, is defined at z and |z| > V2, then En(z) = z™ by Theorem 6.3(1) and
(5.4), (5.9). Thus, setting E,(z) := z™ for |z| > /2 extends the definition of E,.
It remains to extend the definition of E, to:

(z:1<lzl<~v2andz/|zl ey orot(e)}, forl<i<e—1. (7.2)
Each of the ¢ — 1 sets in (7.2) consists of 2 quadrilaterals which we denote by Q*. The curve I'; connects
two distinct elements of (Dy)!Z}. In order to avoid complicating notation significantly, we will assume

without loss of generality that I'; connects D; to Di;4. Let 1 € 2D be a smooth Jordan arc connecting
7' (1) to ni‘il(—l) (see Figure 12). Moreover, by (5.6), we can choose y; so that the union of the arcs

n ([1,2D.2T NHy (-2, -1 (7.3)
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Fig. 12. Illustrated is the quadrilateral Qi+ and the map g;r in the proof of Proposition 7.2.

forms a topological quadrilateral we denote by Q;" (in particular none of the arcsin (7.3) intersect except
at common endpoints).
Define a quasisymmetric homeomorphism g : 9Q;" - 9(A(1,2) N H) (see Figure 12) by

g/ (z) =zforze2T
9F (@ = ") (@) for z e ¥ ([1,2])
9t (@) = (i) (@) for z e (-2, —1]),
and extending g; to a quasisymmetric homeomorphism of y; to T N H. The mapping g} extends to a
quasiconformal homeomorphism g : Qf — A(1,2) N H (see Lemma 2.24 of [3]). We define E,(z) =

(gi*)*l(zm) forz e Ql.*. A similar definition of g7 : Qi — A(1,2) N —H is given (using the same curve y;) so
that

97 (@ =9, @ forze TNH.

We let E(z) := (g7)"*(z™) forz € QF.
To summarize, we have defined E, in each of the three regions

{zeDy :2/1zl € Y o ko t(TP)), (7.4)
{zeDy :2z/|Z| € l/fvor(JiG)}, (7.5)
{z € Du :2/12] € Y 0 Ao T(TP)). (7.6)

Indeed, the definition of E, in (7.4) and (7.5) was given already in (7.1), and in this proof we have defined
E, in (7.6). The definitions of E, in each of (7.4), (7.5), (7.6) agree along any common boundary, and thus
by removability of analytic arcs for quasiregular mappings, it follows that E, is quasiregular on Dy.
Moreover, E, has no branched points in Do, and hence E, is locally quasiconformal. The dilatation of
the map E, depends only on the dilatation of h, (which is independent of n by Theorem 6.3(3)) and the
dilatations of the the finite collection of quasiconformal maps used in its definition: »*, n;, g, g7, and
hence we may take K independent of n.

8 Defining g, in Q)

First we recall our setup. We have fixed ¢ > 0, a compact set X, disjoint, analytic domains (Dp¥_; so
that K ¢ U := U;D;, and f holomorphic in a neighborhood of U with [|f|l7 < 1. We defined curves {Fl-}!:f
connecting the domains (D)f_,, and we denoted by © a component of the complement of TU Uf_‘f I; with
7 : Q — Dy conformal. The domain €, is contained in €, and ¥ oA o T maps €2, onto D. In Section 7 we
defined the map E,.

Definition 8.1. We define the mapping g, : @, — C by

gn:=Eqpo¥odor. (8.1)
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We will now record at which points the function gy|g;, is locallyn: 1 forn > 1.

Definition 8.2. Let g be a quasiregular function, defined in a neighborhood of a point z € C. We
say that z is a branched point of g if for any sufficiently small neighborhood U of z, the map gly
isn: 1 ontoits image for n > 1. We say w € C is a branched value of g if w = g(z) for a branched
point z of g. We denote the branched points of a quasiregular mapping g by BP(g), and the
branched values by BV(g).

Remark 8.3. Recall that in Notation 4.5 we fixed a point p € @ satisfying t(p) = oco.

Proposition 8.4. The mapping g, : @, — C of Definition 8.1 is K-quasiregular and C-vertex
supported for K, C independent of n. Moreover, g;*(c0) = {p},

BP(gn) C U {z : dist(z,e) < C - diam(e)}, and (8.2)
eco2y
k
BV(gn) C |J wi(D). (83)

i=1

Proof. Since each of the mappings in the composition (8.1) are K-quasiregular and C-vertex supported
for K, C independent of n, the same is true of g,. The only points where the mapping g, is locally | : 1 for
| > 1 are a subset of the vertices of the graph 9. By Theorem 4.13, the vertices of 92, all lie in

U {z : dist(z,e) < C-diam(e)}.

ecd2,

Thus, (8.2) is proven. Moreover, any vertex of 9€2 is mapped to a point on one of the curves ¥;(T) by g.
Hence, (8.3) follows since BV(gy) = gn(BP(gn)). It remains to show:

gn ' (00) = {p}. (8.4)

Indeed, note that E, o ¥ o A fixes co and has no finite poles. The map t : @ — Dy is conformal and hence
only one point p is mapped to co. The relation (8.4) now follows. |

It will be useful to record the following result.

Proposition 8.5. Let r > 1. Then for all sufficiently large n, we have:

gn(@) =t(@)" foranyz e t1({z : |z| > 1}). (8.5)

Proof. Consider the functional equation (8.1) defining g,. The maps A, ¥ are vertex-supported, and
moreover A (respectively, v) is the identity outside of the support of Az, (respectively, yz). By Proposition
4.7, we therefore have that ¥ oA(z) = zif z € t™1({z : |z| > r}) and n is sufficiently large. The relation (8.5)
now follows from (8.1) and Theorem 6.3(1) since m — oo as n — oo. |

Remark 8.6. As in Remark 3.6, we note that our Definition 8.1 of g, is determined by a choice of
the objects K, U, D, f, ¢, @, p we fixed in Notations 4.1 and 4.5. When we wish to emphasize
this dependence, we will write gn(K, U, D, f, &, 2,p). In particular, it will be useful in the next
section to think of g, as a function taking as input any choice of K, U, D, f, ¢, Q, p satisfying
the conditions in Notations 4.1, 4.5, and outputting (via Definition 8.1) a quasiregular function
gn(K,U, D, f, &,Q,p) defined on €.

9 Verifying g, is Quasiregular on C

In this section we combine our efforts in Sections 3-8 to define an approximant g, : C — C of a given
f. The approximant g, will not be holomorphic as required in Theorems A and B, but we will solve this
problem in the next section by applying the MRMT. We fix the following for Sections 9-10.
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Notation 9.1. Fix K, f, D, ¢, P as in the statement of Theorem b. Denote by U the neighborhood of
K in which f is holomorphic. Define

P :={p € P: pis contained in a component V of C \ K such that V ¢ U}. (9.1)

Compactness of K implies that U contains all but finitely many components of C \ K, and so the
set P’ is finite. Moreover, P’ does not depend on ¢. By shrinking U if necessary, we may assume
that:

HUNP =0

2) P’ contains exactly one point in each component of €\ U;

3) f is holomorphic in a neighborhood of U ¢ D; and

4) the components of U are a finite collection of analytic Jordan domains (Dy)f; so that (3.1) holds
for each D;.

Let K’ be a compact set such that K ¢ Int(K’) ¢ K’ ¢ U. We will assume for now that ||f|lg < 1.
We now define a quasiregular approximation g, of f by applying the construction of Section 3 in

each D;, and by applying the folding construction of Sections 4-8 in each complementary component of
Ui(D; U Ty):

Definition 9.2. For every n, we define a quasiregular mapping g, as follows. Recalling Remark 3.6,
we first set
Gn = gn(s,K' N D;,D;, flp) in Dy for 1 <i <k 9.2)

The equation (9.2) defines the curves ('), by way of Proposition 4.3, and we enumerate the

components of
R k-1
C\ (U ulJ rl-)

i=1

by (@ (i))le. Recalling Remark 8.6 and Notation 4.14, we extend the definition of g, to the open
set

14
Q:=C\ (U asz’n(i)) (9.3)
i=1

by the formula

gn = gn(K,U,D,f,e,Q201),PNQ1H)InQ @) forl <i<e. (9.4)

Proposition 9.3. The quasiregular function g, is C-vertex supported and K-quasiregular for C, K
independent of n.

Proof. For gylg ) this is exactly Proposition 8.4, and so the conclusion follows since g, is holomorphic
inU. ]

The function g, is now defined on all of C except for the edges of each 3%,(i). We show in
Propositions 9.4 and 9.5 below that g, in fact extends continuously across each edge of 9/ (1), and
deduce in Corollary 9.6 that g, extends quasiregularly across 9.

Proposition 9.4. The K-quasiregular function g, : @ — C extends to a continuous function g, :
QUe — C for any edge e c 32 N aU.

Proof. Letibe sothate C 9D; and denote the unique element of (Q(i))f:1 that contains e on its boundary
by Q()). Recall by Definitions 3.5 and 8.1 that

gn|Dl = ‘I’i ° Bny (9.5)

Onlayy =Enoyoror. (9.6)
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By Theorem 6.3(2) we have
hy o ¥ o L o1 = Byone.
By (5.5) and the definition (7.1) of E,, it follows from (9.6) that
Inley) (@) = Vo By(z) forz e e,

in other words gu g, and gn|p, agree pointwise on e. ]

Proposition 9.5. The K-quasiregular function g, : @ — C extends to a continuous function g, :
QUe — C for any edge e C 92N (U, 2(0)).

Proof. Letj be so that e c 8,(j), and as in the proof of Proposition 9.4, recall that

Onlay =Enoyoror. 9.7)

Let x € e. There are two limits

lim Y oAot(2),
Q()3z—>x
each lying on the unit circle. Denote them by ¢.. By Theorem 4.13(3), we have that ¢ = ¢™. Thus, by
(5.10) and (7.1), we conclude that there is a unique limit
lim E oy oiot(2).

Q) ()3z—>x
Hence, setting

gn(x):= lim E,oyoiror(2)

Q) ()3z—>x

defines a continuous extension of g, across the edge e. |

Corollary 9.6. The K-quasiregular function g, : 2 — C extends to a K-quasiregular function g, :
C-C

Proof. The set €\ Q = 9 consists of a finite collection of analytic arcs: the edges of the graphs 92, (i)
over 1 < i < ¢. Thus, by removability of analytic arcs for quasiregular mappings, it suffices to show
that g, : @ — C extends continuously across each such edge. There are two types of edges to check:
those that lie on the boundary of a domain D;, and those that lie in the interior of a domain Q(i). We
have already checked continuity across both types of edges in Propositions 9.4, 9.5, and so the proof is
complete. |

10 Proof of the Main Theorems

In Section 10 we prove Theorems A and B. Recall that in Section 9 we fixed the objects K, f, D, ¢, P as in
Theorem B (see Notation 9.1), and we defined a quasiregular approximation g, to f in Definition 9.2. We
also showed in Section 9 that g, in fact extends to a quasiregular function g, : C — C. Now we apply
the MRMT below in Definition 10.1 to obtain the rational maps r, : € — C, which we will prove satisfy
the conclusions of Theorems A and B for large n.

Definition 10.1. The mapping g, induces a Beltrami coefficient u, := (gn)z/(gn)-, Which, by way of
the MRMT, defines a quasiconformal mapping ¢, : C — C such thatr, := gno¢;* is holomorphic.
We normalize ¢, so that ¢,(co0) = co and ¢, (z) = z+ O(1/|z|) as z — oo.
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We now begin deducing that for large n, the maps r, satisfy the various conclusions in Theorems A
and B.

Proposition 10.2. The function r, of Definition 10.1 is rational, and ;' (c0) = ¢, (P'). In particular,
if Kis full and P = {00}, then 1, is a polynomial.

Proof. The function r, is holomorphic on € and takes values in C: the only such functions are rational.
Note that g;*(c0) N U = @ since g, is bounded on U. Thus, by Proposition 8.4 and (9.4), we have that
gyt (00) = P'. Since 1y := gn o ¢ L, we conclude that r;1(c0) = ¢ (P'). The last statement of the proposition
follows since we normalized ¢,(c0) = oo, and the only rational functions with a unique pole at co are
polynomials. |

Proposition 10.3. For all R < oo, the mapping ¢, satisfies:

llpn(2) — zllrp > 0. (10.1)

Proof. Since g, is C-vertex supported by Proposition 9.3, we conclude from Proposition 4.7 that

Area(supp(un)) —> 0. (10.2)
The relation (10.1) now follows from (10.2) since ||un|li~ < K for all n by Proposition 9.3. [ |

Theorem 10.4. For all sufficiently large n, the mapping r, satisfies CP(r,) C D.
Proof. By Proposition 4.7, we have

4
max [diam(e) s eis an edge of U it =3 o.
i=1

Thus, since D is a domain containing u{zlasz(i), we have by (8.2) that BP(gn) \ U C D for large n. Since
U c D we conclude that BP(g,) C D for large n. The result now follows from Proposition 10.3 since
¢ (BP(gn)) = CP(ry). |

Theorem 10.5. For all sufficiently large n, we have
IIf = 1allk < 2e.

Proof. First we note that since f is uniformly continuous on K/, there exists § > 0 so thatif z, w € K’ and
|z—w| < §, then |f(z) — f(w)| < &. By Proposition 10.3, we can conclude that

llpn(z) — z||x < min(s, dist(K, 9K')) (10.3)
for all sufficiently large n.
Let z € K and wy := ¢;(z). Then
I1(2) = (@) = [gn(Wn) = f(@)| < [gn(Wn) = f(Wn)| + [f (Wn) = f@)]. (10.4)

It follows from (10.3) that |f (w,) — f(z)| < ¢ for sufficiently large n. Since wy, € K’ for large n, we also have
by (3.5) that g, (wy) := ¥j o By(wy), whence it follows from Proposition 3.3 that |g,(wy) — f(wy)| <e. W

Theorem 10.6. For all sufficiently large n, we have

CV(ry) € NF(EK)
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Proof. Since
CV(TY{) = BV(Qn),
it suffices to show that for every z € BP(gn) and sufficiently large n, we have

(@) € Nf(K). (10.5)

For z € BP(gn) \ U, it follows from (8.3) that gn(z) € N.f(K) C Ngf/(.IZ) For z € BP(gn) N D, (10.5) follows from
Definition 3.5 of gnlp,. [ |

Proof of Theorem B: In the special case that ||f|[x < 1, we have already proven that the mappings r,
satisfy the conclusions of Theorem 1 for all sufficiently large n. Indeed, Theorem 10.5 says that ||f —
Tnllk < 2¢, conclusion (2) in Theorem 1 is Theorem 10.4, and conclusion (3) is Theorem 10.6. Conclusion
(1) follows from Propositions 10.2, 10.3. The general case follows by applying the above special case to
an appropriately rescaled f. ]

Proof of Theorem A: When K is full, we may take P = {oo} and apply Theorem B, in which case
Proposition 10.2 guarantees that the maps r, are polynomials. |

Theorem 10.7. (Mergelyan+) Let K c C be full, suppose f € C(K) is holomorphic in Int(K), and let
D be a domain containing K. For every ¢ > 0, there exists a polynomial p so that ||f —pllx < &
and:

1) CP(p) C D, -
2) CV(p) C N.f(K).

Proof: By the usual version of Mergelyan's Theorem, there exists a polynomial q so that ||f —qllx < &/2.
Apply Theorem A to K, D, q, ¢/2 to obtain an approximant of q, which we denote by p. The polynomial
p satisfies the conclusions of Theorem 10.7. |

Corollary 10.8. (Weierstrass+) Suppose that I c Ris a closed interval, f : I — R is continuous,
and U, V C C are planar domains containing I, f(I), respectively. Then, for every ¢ > 0, there
exists a polynomial p with real coefficients so that |f — p|; < e, and

1) CP(p) C U,
2) CV(p) C V.

Proof. Let I = [a,b], and f, U, V as in the statement of the corollary. By Theorem 10.7, there exists a
complex polynomial g so that ||f — qllj4,y < /2. The real polynomial

Q@) = & 9 ;@

satisfies Q(x) = Re(q(x)) for x € R and hence ||f — Q|| < &/2. We will use the symbol € to mean
compactly contained. Let V; € V be a sufficiently small, R-symmetric domain containing f(I) so that
there is a component of Q~1(V;) (which we denote by U;) satisfying U; € U. Let U, be a R-symmetric,
analytic domain satisfying I € U; € U, € U. Recall Notation 9.1 and consider:

1) the compact set Uy,

2) the analytic function Q,

3) the analytic domain U, containing Uy,
4) min{e/2, dist(dVy, aV)},

5) P = {o0}.
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Applying Definition 9.2 to (1)-(5) yields quasiregular mappings g, with R-symmetric Beltrami coefficient,
so that

Pni=gnod;’ (10.6)

is a real polynomial approximant of Q satisfying
D f —Pally) <€
2) CP(pn) € Uy, and
3) CV(pn) C V,

for large n. Thus, p, satisfies the conclusion of Corollary 10.8 for large n. |

Recall the notation Q(i) from Definition 9.2, and let 5 : Q(1)) — Do be the conformal mapping
satisfying ti’l(oo) = P'NQ(i) as in Notation 4.5. The following fact justifies part of our description in the
introduction of the behavior of the rational approximants off K.

Proposition 10.9. Let 1 <1 < R < co. Then, for all sufficiently large n, we have
Tn o ¢n(2) = 7i(2)™ and (10.7)
Im@)| >R (10.8)

forallze 7 '({z: |zl > ).

Proof. Fix r and R as in the statement. From (8.5) and the functional equation (9.4) defining g, in Q(),
it follows that

gn(2) = 1i(z)" forallz € rl.’l({z Hz) > (r+1)/2h) (10.9)
for all large n. Since
Tn o ¢n = Gn, (10.10)
The relation (10.7) follows. Moreover, we have by Proposition 10.3 that

dnot Mz lzl>1h M ({z Izl > T+ 1)/2)) (10.11)

for all sufficiently large n. Since ((r + 1)/2)™ > R for large n, the relation (10.8) also follows. |

Remark 10.10. If we make further assumptions on f and K, the conclusion
V() € Nf(K)
of Theorems A and B can be improved to
cvV() ¢ f(K), (10.12)
which is equivalent to CV(r) C f(K) if f(K) is full. Indeed, if for instance the interiors of K, f(K) are
analytic domains and f : Int(K) — Int(f(K)) is proper, then a similar strategy as in the proofs

of Theorems A and B but replacing ¥ in (3.5) with a conformal map D — Int(K) can be used to
prove (10.12).

Remark 10.11. We remark that while Theorem A strictly improves on Runge’s Theorem on
polynomial approximation, the relationship between Theorem B and Runge’s Theorem on
rational approximation is more subtle. Both show existence of rational approximants, and

20z AInf €0 uo 3senb Aq 0£8859//9£66/Z 1/720Z/dI01He/ulwi/wod dnoolwspese//:sdiy woly papeojumoq



9960 | C.J.Bishop and K. Lazebnik

only Theorem B describes the critical point structure of the approximant, however the poles
of the approximant in Theorem B are specified only up to a small perturbation, whereas in
Runge’s Theorem they are specified exactly. We do not know whether it is necessary to consider
perturbations of P’ in Theorem B, or if the improvement r~'(co) = P’ is possible (a related
problem appears in [5], [10], and [7]).
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