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ABSTRACT

Minimum Weight Cycle (MWC) is the problem of finding a simple
cycle of minimum weight in a graph G = (V, E). This is a fundamen-
tal graph problem with classical sequential algorithms that run in
O(n®) and O(mn) timet where n = |V| and m = |E|. In recent years
this problem has received significant attention in the context of
fine-grained sequential complexity [3, 50] as well as in the design of
faster sequential approximation algorithms [13, 26, 32, 33], though
not much is known in the distributed CONGEST model.

We present near-optimal Q(n) CONGEST lower bounds on the
round complexity of computing exact and (2 — €)-approximate
MWC in undirected weighted graphs and in directed graphs even
if unweighted. We complement these lower bounds with sublinear-
round algorithms for computing 2-approximation of MWC. Our
algorithms use a variety of techniques in non-trivial ways, such
as in our approximate directed unweighted MWC algorithm that
efficiently computes BES from all vertices restricted to certain im-
plicitly computed neighborhoods in sublinear rounds, and in our
weighted approximation algorithms that use unweighted MWC
algorithms on scaled graphs combined with a fast and streamlined
method for computing multiple source approximate SSSP.
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1 INTRODUCTION

We present algorithms and lower bounds to compute a minimum
weight cycle in the distributed CONGEST model. Given a graph
G = (V,E) with a non-negative weight w(e) on each edge e € E,
the minimum weight cycle problem (MWC) asks for a cycle of
minimum weight in G. An a-approximation algorithm (a > 1) for

fWe use O, Q and © to absorb polylog(n) factors.
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MWC must find a cycle whose weight is within an « multiplicative
factor of the true MWC. In the distributed setting, cycles are an
important feature in network analysis with connections to deadlock
detection and computing a cycle basis [22, 42, 44], and a shortest
cycle can model the likelihood of deadlocks in routing or in database
applications [38].

In the sequential context, MWC is a fundamental and well-
studied problem on both directed and undirected graphs, both
weighted and unweighted. MWC has classical sequential algorithms
running in O(n3) time and O(mn) time T, where |V| = nand |E| = m.
There are also sequential fine-grained hardness results: MWC is in
the n> class [50] and in the mn class [3] for hardness in graph path
problems. In the distributed setting there are near-optimal results
in the CONGEST model for most of the graph path problems in
the sequential n® and mn classes including APSP [8, 41], radius and
eccentricities [1, 2], betweenness centrality [27], replacement paths
and second simple shortest path [39], but very little was known for
MWTC prior to our work.

In directed graphs, exact MWC in the CONGEST model can be
computed in O(n) rounds by computing APSP [8, 37] and com-
puting the minimum among cycles formed by concatenating a v-u
shortest path and a single edge (u, v). In this paper, we show a nearly
optimal Q(n) lower bound for weighted and unweighted directed
graphs, to compute even a (2 — €)-approximation of MWC (for any
constant € > 0). For an arbitrarily large a-approximation (constant
a > 2), we show an Q(\/ﬁ) lower bound. We complement the lower
bounds with sublinear approximation algorithms, with a non-trivial
O(n*/® + D)-round algorithm for computing a 2-approximation of
directed unweighted MWC, and a (2 + €)-approximation of directed
weighted MWC.

In undirected unweighted graphs, where MWC is also known
as girth, the current best upper and lower bounds for exact com-
putation in the CONGEST model are O(n) [28] and Q(+v/n) [23]
respectively. For 2-approximation the previous best upper bound
was O(\/@ + D) [44] (g is the weight of MWC), which we improve
in this paper to O(+/n + D), which is nearly optimal. We show a
lower bound of Q(nl/S) for (2.5 — €)-approximation and Q(n1/4)
for arbitrarily large constant a-approximation.

For undirected weighted graphs, exact MWC can be computed in
the CONGEST model using a reduction to APSP in O(n) rounds [3,
50]. Our lower bounds results are similar to the directed case: we
show near linear lower bound for (2 —¢€)-approximation and Q(+n)
lower bound for a-approximation (for any constant o > 2). We
complement these bounds with an O(n*3 + D)-round algorithm
for (2 + €)-approximation of MWC.

Our approximation algorithms use a procedure to compute di-
rected BFS or approximate SSSP from multiple sources, for which
we provide a streamlined algorithm that is significantly more effi-
cient than repeating the current best approximate SSSP algorithm.
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Table 1: MWC results for CONGEST. Approximation results hold for approximation ratio @ or (1+¢€), where a > 1 is an arbitrarily

large constant, and € > 0 is an arbitrarily small constant.

l Problem H Lower Bound [ Ref. H Upper Bound [ Ref. [
Directed MWC (2-€),0 (log n) Thm 1.2.A i 1,0(n) (8]
weighted/unweighted 2, O(n4/5 + D) (unweighted) Thm 1.2.C

a, Q (%) Thm 1.2B || (2+¢€),0(n*® + D) (weighted) | Thm 1.2.D

Undirected weighted (2-¢€),Q ( Togn ) Thm 1.4.A 1,0(n) (8]
e (10 ) Thm 1.4B (2+¢€),0(n** + D) Thm 1.4.C

gn
Undirected unweighted (2-¢).0 ( log ) [23] 1,0(n) (28]
MWC (Girth) (2-0(1/g)), Q ( nlg) ) [23] (2~ 1),0(yag+ D) [44]
/4 ~

@ Q (logn) Thm 1.3.A (2~ 3).0(¥n+D) Thm 1.3.B

1.1 Preliminaries

The CONGEST Model. In the CONGEST model [43], a communi-
cation network is represented by a graph G = (V, E) where nodes
model processors and edges model bounded-bandwidth communi-
cation links between processors. Each node has a unique identifier
in {0,1,...n — 1} where n = |V|, and each node only knows the
identifiers of itself and its neighbors in the network. Each node has
infinite computational power. The nodes perform computation in
synchronous rounds, where each node can send a message of up to
©(log n) bits to each neighbor and can receive the messages sent
to it by its neighbors. The complexity of an algorithm is measured
by the number of rounds until the algorithm terminates.

The graph G can be directed or undirected but the communica-
tion links are always bi-directional (undirected) and unweighted,;
this follows the convention for CONGEST algorithms [4, 6, 14, 20].
We consider algorithms on both weighted and unweighted graphs
G in this paper, where in weighted graphs each edge has a weight
assignment w : E(G) — {0,1,...W} where W = poly(n), and
the weight of an edge is known to the vertices incident to it. Our
algorithms readily generalize to larger edge weights in networks
with bandwidth ©(log n + log W), with our round complexities for
weighted graphs having an additional factor of log(nW) for arbi-
trary integer W. The undirected diameter of the network, which we
denote by D, is an important parameter in the CONGEST model.

In our algorithms, we frequently use the well-known broadcast
and convergecast CONGEST operations [43]: Broadcasting M mes-
sages in total to all nodes, where each message could originate
from any node, can be performed in O(M + D) rounds. In the con-
vergecast operation, each node holds an O(log n)-bit value and we
want to compute an associative operation (such as minimum or
maximum) over all values. This can be performed in O(D) rounds,
after which all nodes know the result of the operation. We now
define the minimum weight cycle problem considered in this paper.

Definition 1.1. Minimum Weight Cycle problem (MWC):
Given an n-node graph G = (V,E) (G may be directed or undi-
rected, weighted or unweighted), compute the weight of a shortest
simple cycle in G. In the case of a-approximation algorithms, we
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need to compute the weight of a cycle that is within a factor a of
the minimum (for a > 1).

In our distributed CONGEST algorithms for MWC, at the end of
execution, every node in the network knows the computed weight
of MWC (or approximate weight in case of approximation algo-
rithm). Our CONGEST lower bounds for MWC apply even when
only one node is required to know the weight of MWC. Our al-
gorithms also allow us to construct the cycle by storing the next
vertex on the cycle at each vertex that is part of the MWC.

1.2 Our Results

Table 1 summarizes our upper and lower bound results. All of our
lower bounds hold for randomized algorithms, and the algorithms
we present are also randomized — which are correct with high
probability in n.

1.2.1  Directed Graphs. We show a strong Q( log -

for the exact computation of directed MWC in both weighted and
unweighted graphs, which is nearly optimal since we have a match-
ing upper bound. We show that this lower bound also holds for any
algorithm computing a (2 — €)-approximation of directed MWC,
where € > 0 is an arbitrarily small constant. Implicit in our MWC
lower bound is an Q(n) lower bound for detecting if a given graph
has a directed cycle of length g, for any g > 4. We also address the
problem of larger approximations, with an Q(+/n) lower bound for
a-approximation of directed MWC, for arbitrarily large constant
az2.

Our major algorithmic result is a sublinear round algorithm
for computing 2-approximation of MWC in directed unweighted
graphs that runs in O(n*’ + D) rounds, which we extend to a
(2 + €)-approximation algorithm in directed weighted graphs with
the same round complexity. These results show that a linear lower
bound is not possible for & > 2 approximations.

) lower bound

THEOREM 1.2. LetG = (V, E) be a directed graph. In the CONGEST
model, for any constants € > 0, > 2:
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A. Computing a (2—e€)-approximation of directed MWC (weighted
or unweighted) requires Q(@) rounds, even on graphs with
constant diameter D.

. Computing an a-approximation of directed MWC (weighted

n
logn

or unweighted) requires Q(
diameter D = ©(logn).
. We can compute 2-approximation of unweighted MWC in
O(n*/5 + D) rounds.
We can compute (2 + €)-approximation of weighted MWC in
(~)(n4/5 + D) rounds.

) rounds, even on graphs with

D.

1.2.2  Undirected Unweighted Graphs. Girth (undirected unweighted
MWTC) can be computed in O(n) roupds [28] and an algorithm
for (2 - é)-approximation that takes O(~/ng + D) rounds is given

in [44] (where g is the girth). A lower bound of Q( lfn) for (2—¢)-

approximation of girth is given in [23], and this proof also implies

an Q( V(n/g)

logn
We improve on the result in [44] by presenting a faster O(y/n+D)-
round algorithm to compute (2 — é)-approximation of girth. For

) lower bound for (2—0(1/g))-approximation of girth.

larger approximation ratios, we show a lower bound of Q(n'/*) for
arbitrarily large constant approximation.

THEOREM 1.3. Consider an undirected unweighted graph G =
(V,E). In the CONGEST model:
A. For any constant & > 2, computing an a-approximation of
girth requires Q(%) rounds, even on graphs with diameter
D = 0O(logn).
B. We can compute a (2— é)—approximation of girth in O(y/n+D)
rounds, where g is the girth.

1.2.3  Undirected Weighted Graphs. For computing MWC in undi-
rected weighted graphs, we present a near-linear lower bound simi-
lar to the directed case, and the lower bound also applies to (2 — €)-
approximation. This bound is optimal up to a polylog factor. Build-
ing on our method for the unweighted case, we present an algorithm
for (2 + €)-approximation of MWC that runs in O(n?/3 + D) rounds.

THEOREM 1.4. let G = (V,E) be an undirected weighted graph

G = (V,E). In the CONGEST model, for any constants € > 0, > 2:
A. Computing a (2—e€)-approximation of MWC requires Q( ﬁ)

rounds, even on graphs with constant diameter.

. Computing an a-approximation of MWC requires Q( lc:/gﬁn)
rounds, even on graphs with diameter D = ©(logn).
. We can compute a (2 + €)-approximation of MWC in O(n?/® +

D) rounds.

1.2.4  Approximate k-source SSSP. A key subroutine in our approx-
imation algorithms for MWC computes shortest paths efficiently
from k sources.

Definition 1.5. k-source BFS, SSSP problem: Given an n-node
graph G = (V, E) and a set of k vertices U C V, compute at eachv €
V the shortest path distance d(u, v) for eachu € U. The problem is k-
source BFS in unweighted graphs and k-source SSSP in weighted
graphs.
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Optimal algorithms to compute k-source BFS taking O(k + D)
rounds are known for undirected unweighted graphs [27, 37]. For
undirected weighted graphs, an algorithm in [18] computes (1 +
€)-approximate SSSP in O(Vnk + D) rounds. When the number
of sources is large, k > n1/3, we present a fast and streamlined
algorithm for directed exact BFS that runs in 6(M+D) rounds. We
extend the algorithm to weighted graphs, computing approximate
SSSP in both directed and undirected weighted graphs in O(Vnk +
D) rounds. Our algorithm is more efficient than adapting the result
in [18] to directed weighted graphs for k > n1/3, and matches their
complexity for undirected graphs. In our applications to MWC
algorithms, we only use the streamlined algorithm for k > nl/3,
We present our results for the complete range of 1 < k < nin
the full version [40]. In the following theorem, SSSP = O(y/n +
n2/5+0(1) p2/5 4 D) refers to round complexity of computing SSSP
(from a single source) [9].

THEOREM 1.6. A. We can compute exact directed BFS from k
sources in directed unweighted graphs with round complexity:

O(Vnk + D) k>0l (1)
min(é(% +D),k‘SSSP) k< nl/3

B. We can compute (1 + €)-approximate weighted SSSP from k
sources in directed weighted graphs for any constant € > 0
with round complexity:

O(Vnk + D) sk2n'/? (2)
é(m_'_ k2/5,2/5+0(1) p2/5 +D) k< nl/3

1.3

In the distributed setting, cycles are an important network feature,
with applications to deadlock detection and cycle basis computa-
tion [22, 42, 44]. In the sequential context, MWC is a fundamental
graph problem that is well-studied. The O(n®) and O(mn) time
sequential algorithms for MWC have stood the test of time. MWC
is in the sequential n3 time fine-grained complexity class [50] and
plays a central role as the starting point of hardness for the mn
time fine-grained complexity class [3].

The n® and mn time fine-grained complexity classes contain im-
portant graph problems, which have been studied in the CONGEST
model and for which nearly optimal upper and lower bounds have
been obtained: All Pairs Shortest Paths (APSP) [8], Radius and Ec-
centricities [1, 6], Betweenness Centrality [27], Replacement Paths
(RP) and Second Simple Shortest Path (2-SiSP) [39]. However, there
is a conspicuous lack of results for MWC (except for girth [23, 28, 44]
and reductions to APSP for exact MWC algorithms).

In this paper, we make significant progress on this problem with
a variety of results, including nearly optimal linear lower bounds
for exact MWC and algorithms and lower bounds for approximate
MWC. While we show that linear lower bounds hold for (2 — €)-
approximation, we present sublinear algorithms for computing 2
or (2 + ¢)-approximation of MWC. Our algorithms use a variety of
techniques in non-trivial ways, such as our directed unweighted
MWTC algorithm that computes BFS from all vertices restricted to
certain implicitly computed neighborhoods in sublinear rounds,
and our weighted algorithms that use unweighted MWC algorithms

Significance of our Results
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on scaled graphs combined with multiple source approximate SSSP.
We also present lower bounds for larger approximation factors,
with Q(+/n) bounds for arbitrarily large constant factor (> 2).

Our Q(n) lower bound for directed MWC also gives a linear
lower bound for directed 4-cycle detection (in fact for any > 4
length cycle), which is surprising given that triangle detection
can be performed optimally in O(n'/?) rounds in directed and
undirected graphs [12, 45].

1.4 Techniques

Lower Bounds. Our lower bounds use reductions from set dis-
jointness, which has an unconditional communication lower bound.
Set Disjointness is a two-party communication problem, where
two players Alice and Bob are given k-bit strings S, and S, re-
spectively. Alice and Bob need to communicate and decide if the
sets represented by S, and Sy, are disjoint, i.e., whether there is no
bit position i, 1 < i < k, with S;[i] = 1 and Sp[i] = 1. A classi-
cal result in communication complexity states that Alice and Bob
must exchange Q(k) bits even if they are allowed shared random-
ness [7, 35, 46]. Lower bounds using such a reduction also hold
against randomized algorithms. To show inapproximability for ar-
bitrarily large constant factors, we make use of reductions from
problems with known CONGEST lower bounds: s-t connectivity
and s-t undirected shortest path [49].

We use a reduction from set disjointness to establish a Q(n) lower
bound in directed weighted and unweighted graphs, for exact MWC
and for (2 —¢)-approximation (Theorem 1.2.A). We establish Q(~+/n)
lower bounds for any constant factor approximation algorithms
for MWC in directed graphs by adapting a general lower bound
graph used for MST, SSSP and other graph problems [17, 49] (The-
orem 1.2.B). We also adapt these constructions to obtain a similar
lower bound for undirected weighted graphs (Theorem 1.4.A,B). For
undirected unweighted graphs, a lower bound of Q(+/n) is known
for (2 — €)-approximation [23], and we obtain an Q(nl/ 4) lower
bound for any constant factor approximation (Theorem 1.3.A).

Due to space constraints, we defer our lower bound constructions
and proofs to the full version [40].

Approximate MWC Upper Bounds. Our upper bounds use a frame-
work of computing long cycles of high hop length and short cy-
cles separately. Computing long cycles typically involves random
sampling followed by computing shortest paths through sampled
vertices. The sampling probability is chosen such that there is a
sampled vertex on any long cycle with high probability, and we
compute minimum weight cycles passing through sampled vertices.

Computing short cycles requires a variety of techniques for each
of our algorithms, with our method for directed unweighted MWC
being the most involved. In a directed unweighted graph, we define
a specific neighborhood for each vertex v which contains a mini-
mum weight cycle through v if the MWC does not pass through
any sampled vertex, a method inspired by the sequential algorithm
of [13]. In order to explore these neighborhoods efficiently, we
perform a BFS computation with random scheduling from each
vertex that is hop-restricted and restricted to the neighborhood. Ad-
ditionally, to address congestion, we separately handle bottleneck
vertices that send or receive a large number of messages.
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The idea of bottleneck vertices has been used in [5, 29] to con-
trol congestion while communicating information. This technique
is used in the context of computing exact weighted APSP, in a
subroutine to send distance information from all vertices to a set
of sinks (common to all vertices) through shortest path trees that
have been implicitly computed. They identify bottleneck vertices
through which too many messages are to be sent, and compute dis-
tances through the bottleneck vertex separately. These algorithms
can afford to use a super-linear number of rounds as they involve
expensive Bellman-Ford operations, and they identify bottleneck
vertices one at a time. On the other hand in our algorithm, each
vertex needs to send messages to a different set of vertices, i.e., the
neighborhood containing short cycles. Another key difference is
that our restricted BFS is performed on the fly simultaneously with
identifying bottleneck vertices in a distributed manner, as we do not
know the shortest path trees beforehand. Finally, distances through
all bottleneck vertices are computed with a pipelined hop-restricted
BFS to maintain our sublinear round bound.

For undirected unweighted graphs, we compute the y/n closest
neighbors efficiently using pipelining and compute cycles contained
within them. We prove that for any cycle that extends outside a
y/n-neighborhood, a 2-approximation of this cycle is computed with
a BFS from sampled vertices.

For weighted graphs, both directed and undirected, we use hop-
bounded versions of the unweighted algorithms to compute ap-
proximations of short cycles. We use a scaling technique from [41],
where we construct a series of graphs with scaled weights such
that distance-bounded shortest paths in the original graphs are ap-
proximated by some hop-bounded shortest path in a scaled graph.

1.5 Prior Work

Sequential Minimum Weight Cycle. The problem of computing
MWTC has been extensively studied in the sequential setting, for
directed and undirected graphs, both weighted and unweighted.
It can be solved by computing All Pairs Shortest Paths (APSP) in
the given graph in O(n?) time and in O(mn) time. The hardness
of computing MWC in the fine-grained setting was shown by [50]
for the n? class and MWC mn-hardness is the hypothesis used for
establishing hardness for the mn class [3]. Fast approximation algo-
rithms for computing MWC have been studied: 2-approximation
of directed MWC can be computed in O(min(n?, m+/n)) time [13]
and 4-approximation can be computed in O(mn!/3) time [26]. For
undirected unweighted graphs, an a-approximation can be com-
puted in O(n!*1/®) time [32]. For undirected weighted graphs, %-
approximation can be computed in O(n?) time [47] and a general
%a-approximation can be computed in é(n”l/“) time [33].

Distributed Minimum Weight Cycle. An O(n) algorithm for com-
puting girth was given in [28], and a Q(+/n) lower bound for
computing girth was given in [23] which applies to any (2 — €)-
approximation algorithm. An O(Vn_g + D)-round algorithm was
given in [44] to compute (2 — é)-approximation of girth(where g
is the girth). Computing girth in low-treewidth graphs has been
studied in [31]. For exact computation of girth, the gap between
lower and upper bounds has been a longstanding open problem.
The related problem of cycle detection has been studied with both



Computing Minimum Weight Cycle in the CONGEST Model

upper and lower bounds for undirected graphs [11, 15, 16, 21]. Tight
bounds of é(nl/ 3) are known for triangle detection in undirected
and directed graphs [12, 30, 45].

Other than reductions of exact MWC to APSP for directed and
undirected graphs [3, 50], there are no prior results for computing
MWC in directed graphs or weighted graphs, despite its significance
in the sequential setting. Approximation algorithms and lower
bounds for MWC also have not been studied except for girth.

CONGEST results for APSP and related problems. The CONGEST
round complexity of APSP [41] has been studied extensively, with
near-optimal upper and lower bounds of O(n) [8] and Q(@) [41]
respectively. Upper and lower bounds for some related problems
that have sequential O(n?) and O(mn) algorithms have been stud-
ied in the CONGEST model, such as for diameter [1, 6], replacement
paths and second simple shortest paths [39], radius and eccentrici-
ties [1, 6], and betweenness centrality [27].

The round complexity of both exact and approximate SSSP has
been extensively researched [9, 10, 14, 17, 20, 41]. For exact or (1+€)-
approximate SSSP, the current best upper and lower bounds are
O(n2/5+o() p2/5 4 Vn+D) [9] and Q(v/n+ D) [17, 49] respectively.
Multiple source SSSP has been studied in [18, 19], with an algorithm
taking O(Vnk + D) for approximate k-source SSSP in undirected
graphs in [18].

1.6 Roadmap

We start by presenting algorithms for computing k-source directed
BFS and approximate SSSP in Section 2, which are used as subrou-
tines in our MWC algorithms. Our main algorithmic result for 2-
approximation of directed unweighted MWC in O(n%/% + D) rounds
is in Section 3. For undirected unweighted graphs, we present a
near-optimal algorithm for (2 — é)—approximation of undirected

unweighted MWC in O(+y/n + D) rounds in Section 4 (here g is the
length of MWC). We compute (2 + €)-approximation of weighted
MWC in Section 5, taking O(n?/? + D) rounds for undirected and
O(n*/5 + D) for directed graphs. We conclude with some avenues
for further research in Section 6.

2  k-SSSP FROM k > n'/* SOURCES

We present algorithms to compute directed k-source BFS in un-
weighted graphs and k-source SSSP in weighted graphs. For k-
source directed unweighted BFS our algorithm uses techniques of
sampling and constructing a skeleton graph on sampled vertices,
which are methods used in CONGEST single source reachability
and SSSP algorithms [25, 41]. For k-source approximate directed
SSSP, we utilize a recent directed hopset construction from [10]
in conjunction with some techniques used in [18] for computing
approximate k-source SSSP in undirected graphs.

We start by presenting Algorithm 1 that computes an n
exact directed BFS in é(nz/ 3 + D) rounds, and later generalize
our result to k > n'/3 sources. We then extend our algorithm to
weighted graphs to compute k-source (1 + €)-approximate SSSP.

Let U C V be the set of sources. Algorithm 1 first randomly
samples a vertex set S C V of size @(n1/3) in line 1. We define
a (virtual) skeleton graph on this vertex set S, where for vertices
u,v € S, an edge (u,v) is added iff there is a directed path from u to

1/3-SOUI‘C€
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Algorithm 1 Exact n'/3-source Directed BFS algorithm

Input: Directed unweighted graph G = (V, E), set of sources U C
V with |U| = k = n/3.
Output: Every vertex v computes d(u,v) for each source u € U.
1: Let h = n?/3. Construct set S C V by sampling each vertex

v € V with probability ©(*2%). Wh.p. in n, |S] = ©(n/3).
2: Compute h-hop directed BFS from each vertex in S. Repeat this
computation in the reversed graph. This takes O(|S| + h) =
O(n*?) rounds. » Computes shortest path distances of < h hops.

3. > The following lines compute (> h)-hop shortest path distances. <

4: Construct a skeleton graph on vertex set S: For each directed h-
hop shortest path in the underlying graph G between sampled
vertices found in line 2, add a directed edge with weight equal
to shortest path distance. > Internal computation

5: Share all edges of the skeleton graph by broadcast, node v
broadcasts all its outgoing edges. We broadcast up to |S|? values
in total, which takes O(|S|2 + D) = O(n?/? + D) rounds.

6: Each sampled vertex internally computes all pairs shortest
paths in the skeleton graph using the broadcast values.

7: Perform h-hop directed BFS from each source u € U, in O(h +
k) = O(n?/?) rounds. If any sampled vertex s € S is visited
during this BFS, s broadcasts distance d(u, s). We broadcast up
to k - |S| = ©(n?/3) values, taking O(n?/3 + D) rounds.

8: Using the broadcast information, sampled vertices determine
their shortest path distance to sources in U: if distance d(u, t)
was broadcast for some u € U, t € S, each sampled vertex s € S
locally sets d(u, s) «— min(d(u,s),d(u,t) +d(t,s)).

9: Each sampled vertex s € S propagates distance d(u, s) for each

u € U through h-hop BFS trees computed in line 2. Using ran-

dom scheduling [24], this takes O(h+k|S|) = O(n?/?) rounds.

Each vertex v receives distance d(u,s) for source u from a

sampled vertex s that contains v in its h-hop BFS tree, and v

computes d(u,v) « minges(d(u,s) +d(s,v)).

10:

v of at most h = n?/3 hops in G. The skeleton graph is directed and
weighted, with the weight of each skeleton graph edge being the h-
hop bounded shortest path distance in G. The skeleton graph edges
are determined using an h-hop directed BFS from each sampled
vertex in line 2, and each sampled vertex uses this information to
internally determine its outgoing edges in line 4. These skeleton
graph edges are then broadcast to all vertices in line 5. All pairs
shortest path distances in the skeleton graph can be computed
locally at each vertex in line 6 using these broadcast distances, due
to the chosen sampling probability.

In line 7, an h-hop BFS is performed from each source, and each
vertex that is at most h hops from a source can compute its distance
from that source. We now compute distances from each source to
sampled vertices (regardless of hop-length) in line 8 using the h-hop
bounded distances from line 7 along with skeleton graph distances
from line 2. Finally distances from each source to all vertices are
computed in line 9, by propagating the distances computed in line 8
through the h-hop BFS trees rooted at each sampled vertex. This
allows all vertices to locally compute their distance from all sources.

Computing h-hop BFS from k sources takes O(h+k) rounds [37],
and broadcasting |S|*> = O(n2/3) values in line 5 takes O(n?/3 + D)
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rounds. Line 9 involves k|S| = (j(nz/ 3) values propagated through
(h= n?/ 3)-hop BFS trees, which takes O(n?/ 3) rounds using random
scheduling [24, 36]. So, the total round complexity of Algorithm 1
is O(n?/® + D) rounds. Detailed proofs are in the full version [40].

Algorithm 1 for k = n!/3 sources can be readily generalized to
k > n!/3 sources to obtain an algorithm that takes é(m + D)
rounds by using parameter h = Vnk, proving result (1) in Theo-
rem 1.6.A.

Weighted Graphs. We extend our results to weighted graphs to
compute k-source (1 + €)-approximate SSSP. We replace the h-hop
directed BFS computations in Algorithm 1 with h-hop approximate
SSSP algorithm from [41] that takes O(h + k) rounds for k sources
(which only increases rounds by a polylog factor). Thus, we obtain
an algorithm to compute (1 + €)-approximate SSSP from k > nl/3
sources in O(Vnk + D) rounds in directed and undirected weighted
graphs, proving result (2) in Theorem 1.6.B.

Multiple Source SSSP from k < nl/3 sources. In directed un-
weighted graphs for k < nl/3, Algorithm 1 computes exact k-source
BFS in O(% + D) rounds by choosing parameter h = Vnk. For small
k, the simple algorithm of repeating SSSP computation in sequence
from each source taking k - SSSP rounds could be more efficient
(threshold for k depends on value of D), and this gives the result in
Theorem 1.6.A. See the full version [40] for more details.

In the full version [40], we present an algorithm for approxi-
mate SSSP and BFS from k < n!/3 sources with round complexity
O(Vnk + k?/5p2/5+0() p2/5 4 D), proving Theorem 1.6.B. Our algo-
rithm improves on the simple method of repeating the current best
(approximate) SSSP algorithm [10] k times for the entire range of
1<k<n

3 APPROXIMATE DIRECTED MWC

We present a CONGEST algorithm for 2-approximation of directed
unweighted MWC in Algorithm 2. Our algorithm uses sampling
combined with multiple source exact directed BFS (result (1) of
Theorem 1.6.A) to exactly compute the weight of MWC among
long cycles of hop length > h = n3/5. We handle the case when
MWC is short with hop length < h in Section 3.1.

In line 2 of Algorithm 2, we sample ©(n?/®) vertices uniformly at
random and in line 3, we perform a directed BFS computation from
each of them in O~(n7/10 + D) rounds (Theorem 1.6.A). Using these
computed distances, each sampled vertex locally computes a mini-
mum weight cycle through itself in line 4, thus computing MWC
weight among long cycles. We use Algorithm 3 (see Section 3.1)
in line 6 to handle short cycles. Computing short MWC requires
the distances between all pairs of sampled vertices as input: so in
line 5 of Algorithm 2 we broadcast the h-hop shortest path distances
between sampled vertices found during the BFS of line 3 and use
these distances to locally compute shortest paths between all pairs
of sampled vertices at each vertex. Thus, we exactly compute MWC
weight if a minimum weight cycle passes through a sampled vertex
in line 4, and a 2-approximation of MWC weight in line 6 otherwise.
We now address the short cycle subroutine used in line 6.
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Algorithm 2 2-Approximation Algorithm for Directed Unweighted
MWC

Input: Directed unweighted graph G = (V, E)

Output: y, 2-approximation of weight of a MWC in G

1: Let h = n3/5. Set Hy — oo for all v € V. >y, will track the min-
imum weight cycle through v found so far.

2: Construct set S by sampling each vertex v € G with probability
O(4 -log®n). Whep. in n, |S| = ©(n?/° - log? n).

3. Compute d(s,v) for s € S,v € V using multiple source exact
directed BFS (Theorem 1.6.A, Algorithm 1) from S. This takes
é(m+D) rounds as |S| > nl/3,

4 Compute cycles through s € S: For each edge (v,s), gy «—
min(py, w(v,s) +d(s,v)). > Locally compute lengths of long cy-
cles and all cycles passing through some sampled vertex.

5: Broadcast all pairs distances between sampled vertices: Each
t € S broadcasts d(s, t) for all s € S. There are at most |S|? such
distances, which takes O(|S|? + D) rounds.

6: Run Algorithm 3 to compute approximate short MWC if it does
not contain a sampled vertex, updating y, for each v € V. » See
Section 3.1.

7: Return y «<— min,ey py, computed by a convergecast opera-
tion [43] in O(D) rounds.

3.1 Computing Approximate Short MWC

We present a method to compute 2-approximation of weight of
minimum weight cycle among cycles of at most h = n3/5 hops that
do not pass through any sampled vertex in S. Our method is detailed
in Algorithm 3 and runs in O(n*/5) rounds. As mentioned in the
previous section, each vertex v knows the distances d(v, s), d(s,v)
for each vertex s € S, and distances d(s, t) for all pairs s, t € S.

Description of P(v) and R(v). For each vertex v € V, we define
a neighborhood P(v) C V such that P(v) contains (w.h.p. in n) a cy-
cle whose length is at most a 2-approximation of a minimum weight
cycle C through v if C does not pass through any sampled vertex.
The construction of P(v) is inspired by a sequential algorithm for
directed MWC in [13], which uses the following lemma.

Fact 1 (Lemma 5.1 of [13]). Let C be a minimum weight cycle that
goes through vertices v, y in a directed weighted graph G. For any
vertex t, if d(y, t) + 2d(v,y) > d(t,y) + 2d(v, t), then a minimum
weight cycle containing t and v has weight at most 2w(C).

Suppose we determine that d(y, t) + 2d(v,y) > d(t,y) + 2d(v, t)
for a vertex y € V and some sampled vertex ¢ € S. Then by Fact 1
the minimum weight cycle through v and ¢ is at most twice the
minimum weight cycle through v and y. Since we compute MWC
through all sampled vertices, we can exclude y from P(v). We choose
a subset R(v) C S and use only t € R(v) to eliminate vertices from
P(v) using Fact 1. In particular, we will construct a set R(v) € S
of size log n such that the size of P(v) is reduced to at most ﬁ =

O(n*/5) (as we show later).
Definition 3.1. Given a subset R(v) C S, define

P(v) ={y € V|Vt € R(v),d(y,t) + 2d(v,y) < d(t,y)+2d(v, 1)}
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Our algorithm computes a directed BFS from each vertex v re-
stricted to P(v). For the BFS to reach all of P(v), the graph induced
by P(v) must be connected, which we prove below in Lemma 3.2.

LEmMMA 3.2. P(v) induces a connected subgraph in the shortest
path out-tree rooted at v.

PrOOF. Let vertex y € P(v). Then, we will prove that for any
vertex z on a shortest path from v to y, z € P(v) thus proving our
claim.

We will use the fact that d(v,y) = d(v,z) + d(z,y) by our as-
sumption. Assume y € P(v), that is Vt € R(v),d(y,t) + 2d(0v,y) <
d(t,y) + 2d(v, t). Fix any t € R(v), we need to prove that d(z,t) +
2d(v,z) < d(t,z) + 2d(v,t). We will use the triangle inequali-
ties d(z,t) < d(z,y) +d(y,t) and d(t,y) < d(t,z) +d(z,y) =
d(t,y) —d(z,y) <d(t,z).

d(z,t) +2d(v,z) < d(z,y)+d(y,t) +2d(v, 2)

=d(y,1) + (2d(v,2) + 2d(z,y)) - d(z,y)
=d(y,t) +2d(v,y) - d(z,y)
<d(t,y) +2d(v,t) —d(z,y) (sincey € P(v))
= (d(t,y) - d(z,y)) +2d(0,1)
<d(t,z) + 2d(v, t)

O

To construct the set R(v) at vertex v, Algorithm 3 partitions the
sampled vertices into § = logn sets Sy, ... Sg in line 2. In lines 3-8
of Algorithm 3, we construct R(v) iteratively by adding at most
one vertex from each S;, so that R(v) has size < logn. In the i’th
iteration, we identify the vertices in S; that have not been eliminated
from P(v) by any of the (i — 1) previously chosen vertices in R(v)
and choose one of these vertices at random to add to R(v). This
entire computation is done locally at v using distances between all
pairs of sampled vertices sent to v in line 5 of Algorithm 2.

Restricted BFS. In lines 13-22 of Algorithm 3, we compute h-
hop BFS from all vertices v restricted to neighborhood P(v): the
BFS proceeds for h steps, and at each step the BFS message is
forwarded only to neighbors in P(v). To test membership in P(v)
using Definition 3.1 at an intermediate vertex before propagating,
we use distances between sampled vertices that are part of the
input along with information about R(v) that is included in the BFS
message. Note that the BFS message has size O(logn) since R(v)
has size log n (see line 16).

The restricted BFS from every vertex needs to be carefully sched-
uled to obtain our sublinear round bound. We first implement ran-
dom delays using ideas in [24, 36], where the start of BFS for a
source v is delayed by an offset §, chosen uniformly from range
[Lp= n%/%] at random by v. Here, the parameter p = n%/3 is chosen
based on the maximum number of messages allowed throughout
the BES for a single vertex, as we shall see later. With this sched-
uling, all BFS messages for a particular source v are synchronous
even though messages from different sources may not be. We or-
ganize the BFS into phases, each phase involving at most ©(log n)
messages. However, the graph may contain bottleneck vertices u
that are in the neighborhood P(v) for many v: such a vertex u has to
process up to n messages, requiring Q(n) phases even with random
scheduling.
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We define u to be a phase-overflow vertex if it has to send or
receive more than ©(logn) messages in a single phase of the re-
stricted BFS. During the BFS, we identify any such phase-overflow
vertex and terminate BFS computation through it. The BFS runs for
o(n*/%) phases and each BFS message contains O(log n) words, and
hence the BFS takes a total of O(n%/° ) rounds. After this restricted
BFS is completed, each vertex u knows its shortest path distance
from all vertices v such that u € P(v) and there is a v-u shortest
path that has at most & hops and contains no phase-overflow vertex.

Now;, it remains to compute h-hop shortest path distances for
paths that contain phase-overflow vertices. We prove a bound of
6(n4/ >) on the number of phase-overflow vertices as follows. We
define u to be a bottleneck vertex if u € P(v) for more than p = n*/5
vertices v € V, i.e., u may have to handle messages for more than
n*/5 sources across all phases of the BFS. We prove the following
claims in Lemma 3.3: (i) Vertex u can be a phase-overflow vertex
only if u is a bottleneck vertex, and (ii) the number of bottleneck
vertices is at most (j(n4/ >). The bound on the number of bottleneck
vertices is obtained using the bound of é(n3/ %) on the size of each
P(v). We compute h-hop directed BFS from the O(n*/%) phase-
overflow vertices in O(h + n*/) rounds.

After computing all distances from each v € V to vertices y in
P(v), we locally compute the minimum among discovered cycles
through v: at vertex v, a discovered cycle is formed by concatenating
a v-y shortest path and an incoming edge (v, y).

We now prove some results in order to argue correctness. We
first argue that P(v) has size at most ﬁ = O(n3/%) whpinn
(adapting Lemma 6.2 of [13]). When we add a vertex ¢ to R(v) in
line 8, we expect t to cover cycles through half the remaining un-
covered vertices, since the condition we check (as in Definition 3.1)
is symmetric. At any iteration i of lines 7-8, if the number of un-
covered vertices is larger than C:)(n3/5), then w.h.p. in n there is
some vertex in S; (which has size ©(n?/5 log n)) that is not covered.
This vertex is then added to R(v), reducing the remaining number
of uncovered vertices by half. So, the probability that the number
of uncovered vertices P(v) remains larger than é)(n3/ %) after logn
such iterations is polynomially small.

LEmMMA 3.3. (i) Vertexu € V is a phase-overflow vertex only if
u is a bottleneck vertex.

(ii) There are at most O(n%/°) bottleneck vertices w.h.p. in n.

(iii) There are at most (j(n4/5) phase-overflow vertices w.h.p. in n.

Proor. We define P~1(u) = {v € V | u € P(v)} to be the set of

vertices for which u is a part of their neighborhood. By definition,
u is a bottleneck vertex if [P~ (u)| = p = ni/s.
Proof of (i): A message is sent to u from source v by some neighbor
x only if u € P(v), so P~1(u) is the set of sources for which  has to
send and receive BFS messages. Assume that u is not a bottleneck
vertex, |P~1(u)| < p, we will prove that u is not a phase-overflow
vertex w.h.p. in n, i.e., u sends or receives at most ©(log n) messages
in a single phase of BFS.

By assumption, u receives messages from at most [P~ (u)| < p
sources throughout all phases of the restricted BFS. Additionally,
each incoming edge to u receives at most p messages throughout
the BFS since a single BFS sends at most one message through a
single edge. Fix one such edge, that receives messages from sources
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Algorithm 3 Approximate Short Cycle Subroutine

Input: Directed unweighted graph G = (V,E), set of sampled

vertices S C V.Each vertex v knows distances d(v, s), d(s, v)
for s € S and distances d(s, t) for s, t € S.

Output: For each v, return yu, which is a 2-approximation of mini-

L A

10:

11:

—_

13

14:
15:

16:

17:

18:

19:

20:

21:
22:

2:

mum weight of cycles through v among cycles that are
short(< n®/5 hops) and do not pass through any vertex
inS.

h= n3/5,p = n*/5,

: Partition S into § =logn sets Sy, ... Sg of size o(n?/> . logn).
: for each vertex v € G do

> Initial Setup: Compute set R(v) C S, which is used
to restrict BFS to neighborhood P(v) C V (defined in

Section 3.1). <
R(v) — ¢
fori=1...fdo > Local computation at v.

Let T(v) ={s € S; | Vt € R(v),d(s,t) +2d(v,s) <
d(t,s) +2d(v, t)}.

If T(v) is not empty, select a random vertex s* € T(v)
and add it to R(v).
Jy is chosen uniformly at random from {1,..., p}. > Choose
BFS delay.

Z(v) « 0> Z(v) is a flag that determines whether v is a
phase-overflow vertex.
Send {(d(v,s),d(s,0)) | s € S} to each neighbor u in O(|S|)
_ rounds.
> Restricted BFS from all vertices: Computation is organized
into phases where each vertex receives and sends at most logn
BFS messages along its edges. Each BFS message contains
O(log n) words and hence each phase takes O(log? n) CON-
GEST rounds. <
: for phaser =1...(h+p) do
for each vertex v € G do
if r = 6, then > This is the first phase for the BFS rooted
atv.
Construct message Q(v) = (R(v),{d(v,t) | Vt €
R(v)}) to be sent along the BFS rooted at v. Q(v)
contains O(logn) words (|R(v)| < f = logn) and
can be sent in O(log n) rounds.
Send BFS message (Q(v), d(v,v) = 0) to each out-
_ neighbor of v.
> Process and propagate messages from other sources
y. We restrict the number of messages sent/received
by a vertex by ©(log n) and identify phase-overflow
vertices(Z (v) « 1) exceeding this congestion. Phase-
overflow vertices are processed separately in line 24. «
Receive at most log n messages (Q(y),d* (y,v)) from
each in-neighbor. If more than ©(log n) messages are
received from an edge, set Z(v) « 1 and terminate.
If message (Q(y),d" (y,v)) is not the first message re-
ceived for source y, discard it. Let Y"(v) denote the
remaining set of sources y with first time messages, and
set d(y,v) « d*(y,v) fory € Y"(v) .
If |Y" (v)| > ©(logn), set Z(v) < 1 and terminate.
For each y € Y"(v), and for each outgoing neigh-
bor u, set estimate d*(y,u) < d(y,0) + 1. If Vt €
R(y),d(u,t) + 2d* (y,u) < d(t,u) +2d(y,t), send mes-
sage (Q(y),d" (y,u)) to u.> Note that R(y),d(y, t) are
known tov from Q(y) and d(u, t),d(t,u) from line 11.
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23: > Process phase-overflow vertices. <

24: Let Z = {v € V | Z(v) = 1}. Perform directed h-hop BFS with
sources Z in O(|Z| + h) rounds. For each v € Z and edge (x,v),
set pix «— min(pyx, d(v, x) + w(x, v)).

25: for vertex v € V do

26: Uy < min(yy, d(v,y) + 1), for each y € V such that edge
L (y,v) exists and d(v, y) was computed during this algorithm.

01,02, ...0y for y < p, and let the distance from v; to u be h;. The
BFS messages from source v are offset by a random delay §, €
{1,2,... p} and thus the BFS message from v; is received at u at
phase h; + &,. For a fixed phase r, the message from v; is sent to u
at phase r iff r = h; + §,; which happens with probability }l) since
8y, is chosen uniformly at random. Using a Chernoff bound, we can
show that w.h.p. in n, there are at most ©(log n) of the y messages
that are sent at phase r through the chosen edge.

Vertex u sends an outgoing message for the BFS rooted at v only

if u € P(v) and it received a message from source v. So, u sends at
most [P~1(u)| < p outgoing messages through a single outgoing
edge, and we can repeat the same argument above to argue that at
most O(log n) messages are sent out at a single phase. So, u is not
a phase-overflow vertex.
Proof of (ii): We use the fact that w.h.p. in n, for each v € V,
|P(0)| < n3/°. By definition of P~!(u), we have Y ,cy [P~ (u)| =
Yvev |P(v)] (counting pairs of vertices v,u € P(v)). Using the
bound |P(v)| < O(n3/%), we get Yyev IP 1w <n- O(n3/%).

Let B denote the set of bottleneck vertices. Then, 3,,c [P~ (u)] >
Suep [P~ ()| = |B|-p and hence |B| < (n/p)-O(n/%) = O(n*/?).
Proof of (iii): By (i), the number of phase-overflow vertices is < |B|
and |B| < O(n*/%) by (ii). O

We now present details of the proof of correctness and round
complexity of Algorithm 2.

LEMMA 3.4. Algorithm 2 correctly computes a 2-approximation
of MWC weight in a given directed unweighted graph G = (V,E) in
O(n4/5 + D) rounds.

Proor. Correctness: Whenever we update i, for any v € V,
we use a shortest path from x to v along with an edge (v, x), which
means we only record weights of valid directed cycles. Let C be a
MWC of G with weight w(C) and let v refer to an arbitrary vertex
on C. In the following cases for C, Cases 1 and 2 are handled in
Algorithm 2, and Cases 3, 4 are handled by the subroutine in line 6
using Algorithm 3.

Case 1: w(C) > h: C contains at least h vertices, and hence w.h.p.
in n, C contains a sampled vertex in S by our choice of sampling
probability. If s € S is on C, then the computation in line 4 exactly
computes w(C).

Case 2:w(C) < h and C extends outside P(v): Let u be a vertex
on C such that u ¢ P(v), then we have d(u, t) + 2d(v,u) > d(t,u) +
2d(v, t) for some t € R(v). By Fact 1, this means that a minimum
weight cycle containing ¢t and v has weight at most 2w(C) since C
is a minimum weight cycle containing v and u. Since R(v) C S, t
is a sampled vertex and hence y; < 2w(C) by the computation in
line 4. Thus, we compute a 2-approximation of the weight of C.
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Case 3: w(C) < h, C is contained in P(v), Ju € C,Z(u) = 1:In
this case, u is in the set of phase-overflow vertices Z constructed in
line 24 of Algorithm 3. After the BFS computation through vertices
in Z, a minimum weight cycle through u is computed in line 24.
Thus, w(C) is computed exactly.

Case 4: w(C) < h, C is contained in P(v), Vu € C,Z(u) = 0:
In Algorithm 3, u is not a phase-overflow vertex as Z(u) = 0 and
u never terminates its execution in line 19. In fact, none of the
vertices on C terminate their execution and forward messages from
all sources, including v. Thus, the vertex z furthest from v receives
message d(v, z) and records a cycle of weight w(C) in line 26.
Round complexity: We first address the running time of Algo-
rithm 2 apart from line 6 which invokes the subroutine Algorithm 3.

We choose our sampling probability such that |S| = O(n/h) =
O(n?/%), so the multiple source SSSP in line 3 of Algorithm 2 takes
time é(m +D) =O(n"/10 4+ D) using Theorem 1.6.A since we
have ©(n?/5) > n!/3 sources. In line 5, we broadcast |S|? values tak-
ing O(|S|?+D) = O(n4/5+D) rounds. Line 7 involves a convergecast
operation among all vertices, which takes O(D) rounds [43].
Round complexity of Algorithm 3: We now show that Algo-
rithm 3 takes O(n*/®) rounds.

The computation in lines 1-10 is done locally at each vertex v.
The local computation of R(v) (lines 3-8) only uses distances d(v, t)
and distances d(s, t) for s, t € S that are part of the input. In line 11,
vertex v sends O(|S|) words of information to each neighbor, which
takes O(|S|) = O(nz/S) rounds.

We now address the round complexity of the restricted BFS
of Lines 13-22. The restricted BFS computation is organized into
(h + p) phases (recall h = n3/%,p = n*/5). Each phase runs for
O(log? n) rounds in which each vertex receives and sends up to
©(log n) BFS messages. Each message of the BFS is of the form
(Q(v),d(v,w)) as in line 16. Since Q(v) has at most f = logn
words, the BFS message can be sent across an edge in O(logn)
rounds. The round bound for each phase is enforced in lines 19,21
where propagation through a vertex is terminated if it has to send
or receive more than ©(log n) messages in a single round, i.e., it is
a phase-overflow vertex. The membership test in line 22 is done
using distances known to v along with information from the BFS
message, without additional communication. Thus, lines 13-22 take
a total of O ((h +p)- log2 n) = é(n4/5) rounds.

We bound the round complexity of line 24 using Lemma 3.3
to bound the number of phase-overflow vertices by O(n*%), ie.,
1Z] < O(n*/%). Now, the h-hop directed BFS in line 24 from |Z|
sources takes O(|Z| + h) = é(n4/5) rounds [37]. Finally in line 26,
after all BFS computations are completed, we locally compute the
minimum discovered cycle through each vertex v formed by a w-v
shortest path along with edge (v, w). O

4 UNDIRECTED UNWEIGHTED MWC

In this section, we present an algorithm for computing (2 — !l])—

approximation of girth (undirected unweighted MWC) in O(y/n+D)
rounds, where g is the girth. We outline our method here, and
present pseudocode in the full version [40].

We first sample a set of O(+/n) vertices and perform a BFS with
each sampled vertex as source. For each non-tree edge (x,y) in T,
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the BFS tree from sampled vertex w, we record a candidate cycle
of weight d(w, x) + d(w, y) + 1. Note that this may overestimate
the size of the simple cycle C created by edge (x,y) and paths in T
from x and y by at most 2d(w, v) where v is the closest vertex to
w on C (ie., v is lca(x, y) in T). For cycles where d(w, ) is small
relative to the size of C, we get a good approximation of the weight
of the cycle. We prove that w.h.p. in n, the only cycles for which
this method fails to give a good approximation for any source w
are cycles entirely contained within the v/n neighborhood of each
vertex in the cycle. We efficiently compute shortest path distances
within each neighborhood using a source detection algorithm [37],
and then compute MWC within the neighborhood.

If a minimum weight cycle extends outside the y/n neighborhood
of even one of the vertices in the cycle, we show that a sampled
vertex w exists in this neighborhood. Thus, when we compute
distances from each sampled vertex, we compute a 2-approximation
of the weight of such a cycle. We use a more precise approach
to obtain our (2 — é)—approximation, by computing lengths of
cycles such that exactly one vertex is outside the neighborhood. The
source detection procedure for y/n-neighborhood takes O(+/n + D)
rounds [37] and BFS from O(+/n) sampled vertices takes O(~y/n+ D)
rounds [37] giving us our total round complexity of O(v/n + D).

Computing h-hop limited MWC. (used in Section 5.1). If we
are only required to compute approximate h-hop limited MWC, i.e.
compute 2-approximation of minimum weight among cycles of < h
hops, we can restrict our BFS computations to 4 hops to obtain an
O(\/n+h+ D) round algorithm. This does not improve the running
time for unweighted graphs as h < D, but in Section 5.1 we will
apply this procedure to weighted graphs using the following notion
of stretched graph: given a network G = (V, E) with weights on
edges, a stretched unweighted graph G° is obtained by mapping
each edge of G with weight w to a unweighted path of w edges. If
G is directed, the path is directed as well.

Given edge-weighted network G = (V,E), we can efficiently
simulate the corresponding stretched graph G® on the network
by simulating all but the last edge of the path corresponding to a
weighted edge at one of the endpoints. The diameter of the stretched
graph may be much larger than that of G but convergecast oper-
ations cost only Rcgs; = O(D) rounds where D is the undirected
diameter of G. Thus, we can compute h-hop limited unweighted
MWC in G® in O~(\/ﬁ + h + Reqst) rounds. Note that a cycle of hop
length h in G* corresponds to a cycle of weight h in G. We use this
idea in the next section with scaled-down weights so that even a
cycle of large weight in G can be approximated by a cycle of low
hops in an appropriate stretched graph. See the full version [40]
for details.

COROLLARY 4.1. Given a network G = (V, E) with edge weights,
we can compute a (2 — 1/g)-approximation of h-hop limited MWC of
G* (stretched unweighted graph of G) in O(\n + h + Reast) rounds,
where g is the h-hop limited MWC value in G5 and Reg4sy is the round
complexity of convergecast.

5 WEIGHTED MWC

In this section, we present algorithms to compute (2+¢)-approximate
weighted MWC in O(n*3 + D) rounds for undirected graphs and
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O(n*/5 + D) rounds for directed graphs. Our algorithms use the
k-source approximate SSSP algorithm from Section 2 along with
unweighted MWC approximation algorithms of Sections 3 and 4
on scaled graphs to approximate weighted MWC.

5.1 Approximate Undirected Weighted MWC

We sketch our method to compute (2+¢)-approximation in O(n?/3+
D) rounds, proving Theorem 1.4.C. Details are in the full ver-
sion [40].

Let h = n®/3. For long cycles with > h hops, we sample k =
©(n'/3) vertices so that w.h.p. in n there is at least one sampled
vertex on the cycle. We compute (1 + €)-approximate k-SSSP from
sampled vertices (result (2) of Theorem 1.6.B) and use this to obtain
(1 + €)-approximate MWC among long cycles.

For small cycles (hop length < h), we use scaling along with
a hop-limited version of 2-approximate undirected unweighted
MWC algorithm from Corollary 4.1 of Section 4. We use the scaling
technique in [41], where it was used in the context of computing
approximate shortest paths. We construct O(log n) scaled versions
of the graph G, denoted G for 1 < i < log(hW) with edge-weight w
scaled to have weight [zehTY] Each h-hop limited shortest path P in
G is approximated by a path of weight at most h* = ((1+ (2/¢€))-h)
in some GI" — this i* is in fact [log w(P)] where w(P) is the weight
of P in G, as proven in [41].

We run an h*-hop limited version of the unweighted approximate
MWC algorithm on the stretched scaled graph (see Section 4). The
stretched graph may have large edge weights and such edges may
not always be traversed in h* rounds, but a (1 + €)-approximation
of any h-hop shortest path is traversed within A* rounds in at least
one of the G'. We apply Corollary 4.1 to compute 2-approximation
of h*-hop limited MWC in each stretched G, and take the minimum
to compute (2 + €)-approximate h-hop limited MWC in G.

The round complexity of our algorithm is O(n?/* + D) rounds.
Computing long cycles takes O(n?/3+D) rounds using sampling and
n!/3-source approximate SSSP algorithm (Theorem 1.6.B). Using the
method in Corollary 4.1, computing short cycles takes O((v/n+h* +
Reast) - log(nW)) rounds, where Reqs; = O(D) and h* = é(n2/3),
For detailed proofs, see the full version [40].

5.2 Approximate Directed Weighted MWC

We use the above framework for undirected graphs to compute
(2 + €)-approximation of directed weighted MWC, by replacing
the hop-limited undirected unweighted MWC computation with a
directed version. We can compute h-hop limited 2-approximation
of MWC in stretched directed unweighted graphs in O(n*5 +h+
Rcast) rounds by applying the modifications in Corollary 4.1 to our
directed unweighted MWC algorithm (Algorithm 2 from Section 3).
The overall algorithm runs in é(n4/ > + D) rounds, dominated by
the cost of the directed unweighted MWC subroutine.

6 CONCLUSION AND OPEN PROBLEMS

We have presented several CONGEST upper and lower bounds for
computing MWC in directed and undirected graphs, both weighted
and unweighted. While many of our results are close to optimal,
here are some topics for further research.
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For (2 — €)-approximation of MWC, we have shown nearly opti-
mal near-linear lower bounds in all cases except girth, with near-
linear round algorithms for exact computation.

For girth we present a near-optimal O(+/n + D)-round algo-
rithm for (2 — (1/g))-approximation. For larger approximations,
we showed a lower bound of Q(n!/*) for arbitrarily large con-
stant a-approximation, and a Q(n!/?) lower bound for (2.5 — €)-
approximation in the full version [40]. The current best upper bound
for girth is still O(n) [11, 28], and the CONGEST complexity of exact
girth remains an open problem.

We have studied larger constant (a > 2) approximation of MWC
in directed graphs and weighted graphs, and presented sublinear
algorithms for 2-approximation ((2 + €) for weighted graphs) beat-
ing the linear lower bounds for (2 — €)-approximation. Our re-
sults include: for directed unweighted MWC, O(n** + D)-round
2-approximation algorithm; for directed weighted MWC, (2 + €)-
approximation algorithm with the same O(n*5 + D) complexity;
for undirected weighted MWC, O(n*3 + D)-round algorithm for
(2+€)-approximation. For these three graph types, we showed lower
bounds of Q(+/n) for any a-approximation of MWC, for arbitrarily
large constant . Whether we can bridge these gaps between upper
and lower bounds, or provide tradeoffs between round complexity
and approximation quality is a topic for further research.

Our approximation algorithms for weighted MWC (directed and
undirected) are based on scaling techniques, which introduce an
additional multiplicative error causing our algorithms to give (2+€)-
approximation instead of the 2-approximation obtained in the un-
weighted case. The main roadblock in obtaining a 2-approximation
is an efficient method to compute exact SSSP from multiple sources,
on which we elaborate below.

When k > n'/3, we have presented a fast and streamlined
O(Vnk+D)-round algorithm for k-source exact directed BFS, where
the key to our speedup is sharing shortest path computations from
different sources using skeleton graph constructions. Using scaling
techniques, we extended this to an algorithm for k-source directed
SSSP in weighted graphs, but only for (1+ €)-approximation. While
there have been recent techniques for a single source to compute ex-
act SSSP from approximate SSSP algorithms [9, 48] building on [34],
it is not clear how to extend them to multiple sources seems difficult.
These techniques involve distance computations on graphs whose
edge-weights depend on the source. As a result, we can no longer
construct a single weighted graph where we can share shortest com-
putations for k sources. Providing an exact k-source SSSP algorithm
that matches the round complexity of our k-source approximate
weighted SSSP algorithm is a topic for further research.
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