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Abstract—Memory protection units (MPUs) are hardware-
assisted security features that are commonly used in embedded
processors such as the ARM 940T, Infineon TC1775, and Xilinx
Zynq. MPUs partition the memory statically, and set individual
protection attributes for each partition. MPUs typically define
two protection domains: user mode and supervisor mode. Nor-
mally, this is sufficient for protecting the kernel and applications.
However, we have discovered a way to access a process memory
due to a vulnerability in Xilinx MPU (XMPU) implementation
that we call Resurrection Attack. We find that XMPU security
policy protects user memory from unauthorized access when the
user is active. However, when a user’s session is terminated, the
contents of the memory region of the terminated process are
not cleared. An attacker can exploit this vulnerability by gaining
access to the memory region after it has been reassigned. The
attacker can read the data from the previous user’s memory
region, thereby compromising the confidentiality. To prevent
the Resurrection Attack, the memory region of a terminated
process must be cleared. However, this is not the case in the
XMPU implementation, which allows our attack to succeed. The
Resurrection Attack is a serious security flaw that could be
exploited to steal sensitive data or gain unauthorized access to a
system. It is important for users of Xilinx FPGAs to be aware
of this vulnerability until this flaw is addressed.

Index Terms—FPGA, Process Memory, Xilinx Memory Protec-
tion Unit (XMPU), Unauthorized Access, Memory Initialization

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are versatile
integrated circuits that can be programmed and reconfigured
to perform any logic function, from simple logic operations to
complex computations. FPGAs can be used to implement al-
gorithms directly in hardware, which can often lead to greater
performance and power efficiency. Consequently, FPGAs are
increasingly being used in various applications, including
networking, critical infrastructure, aerospace, defense, and
finance. FPGAs are also being used in high-performance cloud
computing systems such as Amazon EC2 F1 instances [1] due
to their efficiency and programmability even during runtime.
From a security perspective, the ability to dynamically recon-
figure FPGAs, also known as runtime update support, can be
a major security vulnerability.

There have been several studies on security of FPGAs [2],
[3]. They primarily focus static attack vectors such as supply
chain vulnerabilities [4], malicious logic insertion [5], Trojans
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[6], backdoor attacks on FPGAs including timing violation
induced faults, replay attacks [7], [8], and bit-stream tampering
[9].

There has also been studies on physical attacks on FPGAs.
One type of physical attack on FPGAs is a remote power side-
channel attack where an attacker can rent an FPGA instance,
build power monitors, and use a power analysis attack to steal
secret information [10]. Attackers can reverse engineer FPGA
logic by analyzing the bitstream, a binary file containing the
configuration data [11]-[14]. Fault-injection attacks aim to
exploit vulnerabilities in the FPGA design by injecting faults
into the system [15]-[17].

Other attacks target FPGA interface components. For exam-
ple, Weissman et al., performed a row-hammer attack on CPU
main memory from the FPGA [18] and Ye ef al., exploited the
new attack surface between CPU-FPGA system [19]. Tin et al.,
demonstrated how PCle contention can be used to attack the
security of FPGAs in cloud data centers. They showed that by
identifying instances of PCle contention among FPGA slots,
they could accurately correlate co-located FPGAs and their
corresponding instance allocations. This information could
then be used to launch other attacks [20]. Giechaskiel et
al., showed how PCle contention could be used to establish
covert and side channels for covert transmission of information
between virtual machines (VMs) [21].

There has also been studies on software based attacks. For
example, malwares running on CPU can access the Block
RAM (BRAM) through Direct Memory Access (DMA), and
a hardware Trojan in FPGA can leak or modify video output
frames of the CPU memory [19].

A. Multi-tenant FPGA vulnerabilities

In Multi-tenant FPGAs, a single FPGA fabric is shared
between multiple users by partial reconfiguration, thereby
increasing the utilization of FPGA logic. However, the adop-
tion of multi-tenancy introduces novel security susceptibilities.
Despite isolation mechanisms to keep user logic instances
separate, attackers can exploit shared electrical components
and attack co-located applications. Giechaskiel et al., used the
FPGA interconnect to leak information using the observation
of long wires that carry logical 1 reduce propagation delay
of unconnected wire [22]. Similarly, Gnand et al. utilized
shared power distribution networks among tenants to construct
a covert communication channel bridging logically isolated
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users [23]. These studies underscore how spatially shared
FPGA fabrics can be rendered vulnerable to the creation of
side or covert channels through the exploitation of shared
resources. In temporal sharing, FPGA fabric is shared by users
in different time slots.

B. Memory protection in Xilinx MPSoC

In this section, we describe Xilinx Zynq UltraScale+ MP-
SoC hardware components that are used to isolate subsystems
and protect them from each other. There are primarily two sub-
systems: the Processing System (PS) and the Programmable
Logic (PL). And four memory regions double-data rate (DDR)
memory, on-chip memory (OCM), tightly-coupled memory
(TCM), and advanced eXtensible interface (AXI) block RAM
in the PL system. It has eight XMPUs (Xilinx Memory Protec-
tion Units) to protect these memory regions from unauthorized
access.

In this work, we focus on the Processing Subsystem. As
shown in Figure 1, the PS has two main subsystems: the Appli-
cation Processing Unit (APU), which is designed for general-
purpose computing tasks, and the Real-time Processing Unit
(RPU), which is designed for real-time applications. Xilinx
protection unit is used to create memory isolation between
processes. A subsytem can configured to run in protected
or unprotected modes. XMPU authorizes whether a specific
process is allowed to access a specific address. Out of the eight
XMPUs, six of them are used to protect the DDR memory,
generating an interrupt to notify any unauthorized access.

In addition to XMPUs, the Xilinx Zynq has a System
Memory Management Unit (SMMU). SMMU extends the
MMU capabilities of the processor core to the rest of the
MPSoC architecture. SMMU translates virtual addresses to
physical address space and can be used to restrict the reachable
address space by creating multiple virtual address spaces, each
with its security policy.
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PetaLinux is an open-source software framework that can
be used to develop and deploy embedded Linux systems on
Xilinx FPGAs and SoCs.

With security blocks available Xilinx memory protection
offers isolation by dividing the system memory into multiple
regions, each with its own access permissions. This prevents
unauthorized access to sensitive data and applications. Isola-
tion can help to protect against unauthorized access, but it
is not sufficient to secure a system. This is because memory
residue from a terminated process can still be used to access
sensitive data, even after the process has been isolated. Such
memory may contain code, application data including sensitive
information such as passwords and encryption keys. We call
this attack a Resurrection Attack.

Related Attacks: Though, not the same, a closely related
attack in the programming domain is known as Use-after-
Free or UAF attack [24]. In UAF, a process, say a program
written in C, allocates memory, frees it and reallocates it
using a sequence of malloc(), free() and malloc(). The
second malloc() inherits content from the first use without
any sanitization. Similar attacks were mounted on GPUs by
Lee et al., [25]. They presented methods for scraping GPU
memory to reconstruct information about previously running
programs, revealing private information.

Contributions: In this work, we show that (i) Xilinx
FPGAs do not perform automatic memory sanitization leaving
memory residue, (if) XMPU protection mechanisms to isolate
FPGA tasks or users can be altered in multiple ways to gain
access to memory residue, and (iii) present a memory scraping
technique to show how sensitive information about previous
programs can be reconstructed.

II. ADVERSARY MODEL

This section provides an overview of the adversary model,
encompassing both the intent and capabilities of the adversary.

Background: The Xilinx MPU is a hardware-based memory
protection unit that may be used to protect memory from unau-
thorized access. XMPU works by assigning each process a
unique memory map, which specifies which memory addresses
the process can access.

Attack question: When an active process is terminated,
does Xilinx MPU clear the memory addresses that were
allocated to it? Otherwise, if this memory is allocated to a
new process without clearing it first, the new process will
be able to gain unauthorized access to the data that was
stored in these memory addresses previously, breaking a basic
goal of memory protection between processes. This question
is relevant because, Xilinx allows dynamic reconfiguration
and clearing the memory would add to the reconfiguration
time. So how does Xilinx make tradeoff between security and
performance?

Assumptions about adversary’s privileges and capabil-
ities: Our target platform is the Xilinx Zynq ZCU102 board,
featuring XMPU. TThe XMPU can be configured and con-
trolled by secure masters, such as the Platform Management
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Unit (PMU), Real-Time Processing Unit (RPU), or Applica-
tion Processing Unit (APU) embedded in the FPGA.

The embedded operating system, PetaLinux, runs in a priv-
ileged mode that allows it to effectively program the XMPU
registers through these masters. This programming capability
enables Petalinux to enforce memory isolation for specific
memory addresses allocated to individual users.

In a multi-tenant scenario where multiple users share the
FPGA concurrently, the need for memory protection is particu-
larly important. Users in this environment can request memory
protection from the XMPU to ensure the confidentiality and
integrity of their allocated memory addresses.

However, once a user’s session terminates, the memory
addresses they were using may be available for reassignment
to another user due to resource constraints. In such cases, the
process of requesting memory protection and reprogramming
the XMPU to provide protection for the new user’s memory
addresses is orchestrated through interactions with the secure
masters, facilitated by PetaLinux.

The adversary in our study has the same privileges as any
other user of the FPGA board. This means that they have
the ability to request memory protection from the XMPU,
use allocated memory addresses. However, the adversary’s
intent is different from that of regular users. The adversary is
trying to exploit security vulnerabilities in the XMPU to gain
unauthorized access to sensitive data of terminated process.

III. PROPOSED ATTACK METHODOLOGY

In this section we outline the steps need to be followed to
show that memory is not initialized by a XMPU when a victim
process is terminated.

Step 1. Polling process ID: In general, any application
managed by an operating system (OS) is considered a process
and is allocated a unique process ID (PID). The embedded OS
on the FPGA also follows this approach when dealing with
applications that are offloaded onto the FPGA. The embedded
OS assigns a unique ID to the application, manages resource
allocation, and oversees the entire lifecycle of the process.

The adversary monitors the victim’s process ID (PID) by
repeatedly polling it. This monitoring continues until the
victim process, which was protected by the Xilinx Memory
Protection Unit (XMPU), terminates. The adversary can poll
the PID using the "ps -ef” command.

Step 2. XMPU protection request to alter XMPU
settings: After the victim process terminates, the adversary
requests memory allocation with protection from the em-
bedded OS (PetaLinux). This changes the XMPU settings.
However, the XMPU registers that specify the memory ad-
dresses remains unchanged. The adversary exploits this by
simply requesting the activation of isolation, which gives the
adversary access to the specified memory addresses.

Step 3. Scraping virtual addresses: At this point, the
adversary does not know which physical address addresses are
allocated to it by the PetaLinux system on the FPGA’s onboard
memory. To find out, the adversary uses the ps -ef command
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to retrieve its unique process ID. With this process ID, the
adversary can then access the virtual address locations where
its execution is taking place. This information can be obtained
by inspecting the mapping of virtual addresses allocated to the
process’s heap. The details of this mapping are stored in the
maps file associated with the process ID.

Step 4. Mapping virtual addresses to physical addresses:
In this step, the adversary uses the page map file associated
with the process ID to map the previously acquired virtual
addresses to their corresponding physical addresses within the
FPGA’s onboard DRAM. It is important to note that this file
is not accessible to users in traditional operating systems.
However, the Xilinx debugger allows users to access map files.
We exploit this loophole in the Xilinx debugger to obtain this
information.

Step 5. Scraping memory residue: After obtaining the
physical address, the adversary can read the content of the
onboard DRAM of the FPGA. This step allows the adversary
to scrape the memory residue from the terminated process. The
memory residue can then be analyzed to determine what the
previous process was doing and what data it was processing.

Step 6. Analysis of data scraped from victim: We
illustrate how to analyze the data scraped from victim and
gain access to information about the victim process using the
following steps:

1) Profiling: The adversary first profiles the target victim
processes to understand their memory layout. This in-
volves identifying the relative memory addresses where
critical data, such as signatures, vectors, or scores,
is located. The adversary can use existing models or
libraries in the relevant domain to perform this profiling,
and the results can be saved for reference during live
attacks.

2) Reconstruction: The adversary identifies the victim pro-
cess by matching it to the reference file created during
profiling. Once the match is confirmed, the adversary
can access contents of specific memory locations where
critical data is expected to reconstruct information about
the previous process. The reconstruction step can be
automated using software tools, which would make it
even easier for the adversary to carry out the attack.
However, automated reconstruction is beyond the scope
of this paper.

These steps can be used to breach the confidentiality of data
that has been left unsanitized in the memory.

IV. EXPERIMENTAL SETUP

In this section, the configuration process for the target
board is outlined which is specifically tailored to facilitate
the execution of the chosen attack scenario. We delve into
the details of configuring the XMPU to enable and disable
isolation for memory addresses relevant to the attack. This
involves replicating and adapting the steps provided in the
reference document offered by Xilinx [26]. Furthermore, we
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Fig. 2. Target Board (Xilinx’s Zynq ZCU102)

present the specific registers that need to be programmed
for the attack, ensuring comprehensive coverage of the setup
process.

Setting up target board: We conducted our experiments
on the Xilinx Zynq UltraScale+ MPSOC ZCU102 Z1 Revl1.1
FPGA board as shown in Figure 2 . This board is based on the
Zynq UltraScale+ MPSoC, which is a multiprocessing system-
on-chip that includes a dual-core ARM Cortex-A72 processor,
a quad-core ARM Cortex-R5F processor, and a Mali-400 MP2
graphics processing unit. It also has 1GB of DDR4 SDRAM,
128MB of QSPI flash memory, and a variety of I/O ports.
We followed the step-by-step instructions from Xilinx [26] to
launch Peta-Linux. PetaLinux is responsible for tasks such as
assigning process PIDs, allocating resources, scheduling, and
terminating processes.

1) The process begins by flashing the OS image provided
by Xilinx for the ZCU102 to an SD card. This image
contains the operating system (PetaLinux) and software
components necessary for the FPGA board. Once the
OS image was successfully flashed to the SD card, we
booted the board by inserting the SD card and turning
it on.

2) Once the board is booted, we establish a remote connec-
tion to it using the Ethernet interface. This allows us to
communicate and interact with the board from a remote
location.

3) Finally, we install the Vitis Al runtime on the target
board. This runtime environment includes a collection of
example machine learning models from various vendors,
providing a comprehensive set of pre-built models for
testing and experimentation.

The above steps create a secure environment that allows us
to configure XMPU security and explore its security vulnera-
bilities.

A. Attack sequence involving alteration of XMPU settings

The attack sequence for demonstrating lack of XMPU pro-
tection for a terminated process are derived from modifications
to the steps outlined in the "APU Fault Injection Software
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Application Project” [27]. The original intent of this project
is to showcase XMPU’s protection capabilities for an active
process. We will now provide an overview of attack sequence
with the modified procedure below.

o Victim Process: The RPU runs an application on behalf
of a process (victim), using specific memory addresses in
the DRAM that are protected by the XMPU to prevent
unauthorized access. The threat of unauthorized access
comes from an adversary running on the APU. To demon-
strate that the XMPU does not properly clear memory ad-
dresses designated for protection after a process finishes,
we do the following:

1) We create a APU application (proxy for victim) to
write keywords into memory addresses designated
for use by the RPU. These addresses were intended
to be secure when the RPU accessed them.

2) To run the application on RPU, we then asked
PetaLinux to activate the XMPU’s isolation mech-
anism. This entailed programming the XMPU with
the relevant memory addresses and enabling isola-
tion.

3) Once activated, this application writes specific key-
words to these memory locations. At this point,
the adversary on the APU attempted to access the
aforementioned memory addresses . The XMPU
immediately prevented this access by generating an
interrupt, thus upholding the security measures set
by the XMPU.

o Adversary Process: We describe two scenarios for the
attack process with and without XMPU protection.

1) XMPU disabled: After termination of the victim
process, we disable the XMPU protection for this
memory addresses as the process is no longer alive.
We then ran an adversary process to read the mem-
ory residue. We found that the adversary was able
to read the keywords written by the victim process
and the keywords written by the adversary, which
were written before the RPU initiated a transaction.
Even though the victim process had terminated and
the XMPU was no longer active, the victim’s data
persisted within these memory locations allowing a
different process to read it.

2) XMPU enabled: In this scenario, when the vic-
tim’s process is terminated, we request memory
protection for executing the adversary process. The
embedded OS allocated the same memory locations
(as they remained unchanged in the XMPU reg-
isters) to the adversary process. Once again, our
adversary process gained access to the victim’s data
and its own data (written prior to RPU’s initiation),
revealing a lack of proper memory initialization by
the XMPU after a process has terminated.

Figures 3 to 7 illustrate the overview of attack procedure
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Fig. 5. Oscar’s access attempt to Bob’s addresses is denied, triggering an
interrupt.
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Fig. 6. After Bob’s termination, the XMPU fence is lifted, granting Oscar
access to Bob’s memory contents.

described above. Oscar represents the adversary using the
APU, while Bob represents the victim using the RPU. In
Figure 3, Oscar exploits the disabled XMPU to write data
into Bob’s memory addresses. In Figure 4, Bob activates the
XMPU fence and adds his data. In Figure 5, Oscar’s attempt to
access Bob’s addresses is thwarted, resulting in an interrupt. In
Figure 6, After Bob’s process ends, the XMPU fence is lifted,
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Fig. 7. Following Bob’s termination, Oscar initiates a request for isolation
rom XMPU, thereby gaining access to the contents of Bob’s memory.

allowing Oscar to access the contents within Bob’s memory.
In Figure 7, In an alternate scenario, the XMPU isolation
remains active after Bob’s termination. Oscar then initiates
a request for isolation from the XMPU, which leads to the
same memory addresses being accessed but with the ID in the
XMPU configuration changed from Bob’s to Oscar’s.

The above sequence highlights the role of the XMPU
in governing memory access when Bob’s process is active,
while also highlighting the potential exposure of Bob’s data
following his process termination.

B. Programming steps for executing the attack sequence

We illustrate the programming steps for demonstrating the
lack of XMPU protection for a terminated process/application
ran on the RPU. The RPU can access various types of memory,
namely OCM, DDR, and ATCM. For the purpose of protec-
tion, memory regions are designated into three classes: secure,
non-secure, or not-defined. The designations are explained
below.

o Secure (S): This class of memory is accessible only to
application running on RPU. The data stored in this
memory is considered to be confidential and should not be
accessible to any other process. These specific addresses
are configured in the XMPU register with an ID that
permits access only to the RPU application. Any attempt
of unauthorized access triggers an error interrupt.

o Non-Secure (NS): This class of memory is accessible by
both the task running on the RPU and tasks running
on other IPs, such as the APU. The data stored in this
memory is less critical and is intended to be shared among
multiple IPs. In this scenario, the XMPU is configured
with these memory addresses, but isolation is not enabled
for them.

o Not-Defined (ND): The Not-defined class comprises
memory addresses located within various memory regions
that are currently unallocated and available for use by
applications or IPs as needed. When a request is made
for access to these addresses, their configuration in the
XMPU can be determined based on the criticality of the
user’s data. They can be set as either Secure or Non-
Secure addresses accordingly.
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XMPU Register Configuration: The following XMPU
registers are used to configure various memory regions as
secure or non-secure:

o Control registers: These registers serve the purpose of
enabling or disabling read and write access to the des-
ignated memory addresses as configured in the associ-
ated configuration registers. They are designed with a
width of 32 bits, and their initial default value is set
to 0x00000013. This default value implies that any user
can access the memory regions without any isolation. To
implement isolation and restrict access, these registers
need to be programmed with the value 0x00000010.

o SMID register: The System Management ID (SMID)
register is a 32-bit wide register, with the least significant
10 bits designated for configuration with the intended
SMIDs required for accessing the respective addresses. If
any other ID attempts to access these addresses, it triggers
an interrupt, initiating an error handling process within
the system. Additionally, the ID values can be masked
with a 10-bit mask value to make them invisible, thereby
preventing potential side-channel attacks on IDs.

o END_HI/LOW and START_HI/LOW registers: The com-
bination of the START_HI and END_HI registers, when
used together as a pair, constitute a 44-bit start address
within a memory region. In this pair, START_HI uses its
least significant 12 bits, while END_HI employs its entire
32 bits to create a 44-bit start address. Similarly, for the
end address, it is formed by combining END_LOW([11:0]
with END_HI[31:0]. The classification of these start
and end addresses as either ’secure” or “’non-secure” is
determined by the programming performed in the control
registers, followed by the configuration of the correspond-
ing ID that is permitted in the System Management ID
(SMID) register.

o LOCK registers: When enabled (zero™ bit of the register),
all XMPU registers can only be programmed once (during
boot), and their settings can only be reset through an
internal or external Power On Reset (POR). In scenarios
involving multiple tenants, the lock register should be set
to a value of 0x0. This allows for the flexible configu-
ration of memory addresses within the XMPU registers
in response to specific demands. It also facilitates the
activation or deactivation of isolation as required.

XMPU registers are configured with memory addresses
based on the criticality and necessity of data handled by a
victim process, as well as the availability of addresses in
the memory regions. These configurations classify memory
regions as either secure” or “non-secure” depending on their
specific usage requirements. This flexible approach ensures
that data security is tailored to the unique demands of each
process while optimizing resource allocation.

Once the ZCU 102 board is successfully configured, we exe-
cute the attack sequence which allows us to investigate XMPU
memory residue protection. We find that, Xilinx currently does
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Disabling XMPU
Disabling ...
Writing DDR_XMPUQO_CTRL PASS!
Writing DDR_XMPUI_CTRL PASS!
Writing DDR_XMPU2_CTRL PASS!
Writing DDR_XMPU3_CTRL PASS!
Read/Write Of Various Memories
Read/Write Of RPU(Secure) Memory
Reading RPU_OCM_S_BASE PASS!
Writing RPU_OCM_S_BASE PASS!
Reading RPU_DDR_LOW_S_BASE PASS!
Writing RPU_DDR_LOW_S_BASE PASS!
Reading RPU_ATCM_S_BASE PASS!
Writing RPU_ATCM_S BASE PASS!
APU has written 0x11223344 into RPU(Secure) Memory

Fig. 8. APU (adversary) writes data into secure memory addresses of RPU.

Read/Write Of Various Memories
Read/Write Of RPU(S) Memory

Reading RPU_OCM_S_BASE
Writing RPU_OCM_S_BASE
Reading RPU_DDR_LOW_S_BASE
Writing RPU_DDR_LOW_S_BASE
Reading RPU_ATCM_S_BASE
Writing RPU_ATCM_S_BASE

APU is denied access into RPU(Secure) Memory

FATLED!
FAILED!
FAILED!
FAILED!
FAILED!
FAILED!

Fig. 9. APU (adversary) is denied access to the secure memory addresses of
RPU.

not sanitize the memory after a process is terminated, which
can leave memory residue with sensitive data.

V. RESULTS

In this section, we provide results with illustrations from
each step described in Section 3. These results also highlight
the implementation aspects of the attack.

Watermarking of RPU memory region by APU: As
described in the attack scenario, the APU, acting as a proxy
for the victim, writes specified keyword 0x11223344 into
specific memory locations of the RPU. These memory lo-
cations are then programmed into the specialized XMPU
registers to create isolation during RPU usage. These APU
write operations demonstrate that the XMPU does not initialize
memory addresses for isolation before or after the start and
end of a process, as described next.

Figure 8 shows how to disable isolation protections. First,
the APU writes values to the XMPU’s CTRL registers to
disable isolation. These writes are valid transactions (denoted
by "PASS!”), which prevents interrupts from being triggered
by the error handler. Next, the APU writes data to differ-
ent memories, including the On-chip Memory (OCM) used
by secure masters, DDR, which is the on-board memory
used widely across FPGA IPs, and Tightly Coupled Memory
(ATCM). The RPU frequently accesses these memories from
FPGA reset through shutdown.

XMPU protection activation and RPU watermarking:
Then, the RPU process (victim) enables isolation protections
and stores the keyword Oxaabbccdd in its memory addresses
at locations that the APU had not written to previously. When
the APU attempts to access these protected addresses, it is
blocked and an interrupt is raised, which is handled by the
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Disabling XMPU
Enabling ...
Writing DDR_XMPUO_CTRL PASS!
Writing DDR_XMPUI_CTRL PASS!
Writing DDR_XMPU2_CTRL PASS!
Writing DDR_XMPU3_CTRL PASS!
Read/Write Of Various Memories
Read/Write Of RPU(Secure) Memory
Reading RPU_OCM_S_BASE PASS!
Writing RPU_OCM_S BASE PASS!
Reading RPU_DDR_LOW_S_BASE PASS!
Writing RPU_DDR_LOW_S_BASE PASS!
Reading RPU_ATCM_S_BASE PASS!
Writing RPU_ATCM_S_BASE ... PASS!
APU has read 0x11223344, Oxaabbccdd from RPU(Secure) Memory

Fig. 10. APU (Adversary) Accesses Both Its Data and the Victim’s Data
from RPU’s Secure Memory addresses.

error handler. This demonstrates that the XMPU provides
isolation for an active process.

Although the RPU enabling the XMPU and accessing its
own addresses is similar to what is shown in Figure 8, Figure
9 shows that the APU is now denied access to the RPU’s
protected memory addresses.

XMPU protection deactivation and watermark check:
After the victim process is terminated and XMPU isolation
is deactivated, the APU can still access the memory locations
where it originally wrote the value 0x11223344. It can also
access the memory locations where the RPU had written the
value ”Oxaabbccdd”. This is shown in Figure 10. This shows
that XMPU does not clear memory after a process terminates,
and it does not clear memory even when isolation is disabled.

These experiments were conducted in a controlled environ-
ment, where we have full knowledge of the specific memory
addresses that we wanted to manipulate. These addresses were
all associated with the RPU subsystem. We also had the
flexibility to program the XMPU, enabling or disabling it as
needed for our attack scenario.

This simulated setup emulated a multi-tenant environment,
which is a real-world scenario where adversarial applications
may try to infiltrate the memory addresses of a victim ap-
plication running on the RPU. We did not just focus on
RPU memory, but also extended our analysis to include
shared memory space between the APU and RPU, and various
peripheral components.

Figure 11 illustrates our findings based on the ZCU102
platform. This figure shows that the XMPU can effectively
isolate active processes. However, it also reveals a critical
vulnerability: the inability to sanitize memory after a process
terminates or even when isolation is reset (i.e., transitioning
from an enabled to a disabled state).

The results shown above indicate that an adversary can
enter as a new process after XMPU’s isolation is disabled,
and then read the terminated victim’s data. This suggests
that XMPU does not sanitize memory after a process has
been terminated, leaving it vulnerable to readout. The same
results were observed when XMPU remained enabled as the
adversary entered as a new process. In this case, instead of
disabling and then re-enabling isolation for a new process,
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Fig. 11. Extensive Attack Scenario by APU on RPU.

the XMPU configuration register was simply updated with a
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0 /usr/sbin/dropbear -i -r /etc/dropbear/dropbear_rsa_host_key -B
0 -sh
kuworker/3:2-c

0 /usr/sbin/dropl

-1 /etc/dropbear/dropbear_rsa_host_key -B

events_unbound]

[

[N TN

userwork
userwork

0 c .
0 ps -ef

1874 ):00 /usr/sbin/droj

pbear ~i -z /etc/dropbear/dropbear_rsa_host_key -B

1875
2056
2429
2430
2456
2457
2458
2776
2802
2803
2811
2819
2824
2825
2826
2827
2828
2829
2830
2840

kworker/3:2-c

usr/sbin/dror

¢/dropbear/dropbear_rsa_host_key -B

Fig. 12. (Step 1) Process list before Victim model was terminated. Victim’s
pid is observed to be 2835.

Fig. 14. (Step 2) Process list after adversary start execution. Adversary id is
seen to be 2840.

0 /usr/sbin/dropbear ~i -r /etc/dropbear/dropbear_rsa_host_key -B
0 ~sh
0 (kuorker/3:2-c

bin/d)

Fig. 13. (Step 1) Process list after victim model is terminated.

new ID to allow access. However, the memory addresses and
isolation settings remained unchanged in the XMPU registers.
As a result, the adversary process was still able to read these
previously accessed memory locations from the terminated
process, highlighting that XMPU did not initialize memory,
consistent with the results shown above.

Next, we will illustrate how the adversary can access the
locations of the previous process and attempt to determine
its nature. This will be demonstrated through a scenario
in which the victim executes a critical application named
critical_application.py which only writes Oxffffffff into mem-
ory, and we will show how the adversary can access this
data and leverage this information. The adversary runs an
application named adversary.py which only scrapes data from
the physical addresses obtained in the steps below.

Step 1. Polling for process ID: Figures 12 and 13 show the
active processes (pids) obtained from the attacker’s terminal by
executing the ps -ef command. Figure 12 shows the processes
running critical_application.py, while Figure 13 shows the
processes after it is terminated.

After the victim is terminated, the adversary requests for its
memory protection by isolation (Step2) and start execution.
Figure 14 shows that the adversary starts executing its own
code with pid 2840.

Step 3. Scraping virtual addresses: In the second step of the
process, the adversary requests initiation of memory protection
by isolation. This changes the ID value in the XMPU config-
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aaab0fcf1000-aaab11306000 rw-p 00000000 00:00 0 [heap]
ffffa52a5000-ff££fa6b2£000 rw-p 00000000 00:00 0
ffffa8035000-f£££a805b000 rw-s 00000000 00:05 733 /dev/dri/renderD128

Fig. 15. (Step 3) Virtual address of the adversary process ranges from
Oxaaab0fcf1000 to Oxaaab11306000 in the heap.

uration register from the victim’s to the adversary’s, while
leaving the memory addresses in the XMPU configuration
unchanged (retaining the victim’s settings).

It is important to note that when a process requests isolation
via the embedded OS, it is assigned virtual memory addresses,
which is mapped to the physical addresses pre-configured in
the XMPU registers. Consequently, physical addresses remain
invariant, even though the virtual addresses may change. Every
process that requests isolation uses the same physical ad-
dresses for its execution in the FPGA’s onboard memory unless
the physical addresses in the XMPU registers are reconfigured
differently by a secure master. Since these registers are not
accessible from the user space, the adversary does not know
the physical addresses at this point.

However, the adversary can simply requests isolation and
learn the virtual addresses assigned to it by PetaLinux. In
Step 4, we describe how these virtual addresses can then be
converted to a physical addresses. This conversion reveals the
physical memory locations that the victim previously used,
as they are the same physical addresses that were initially
configured in the XMPU registers.

To obtain critical information about the virtual
address space, adversary executes the command vim
/proc/2840/maps, which enables adversary to access the
memory map of the process with the PID 2840. Figure 15
provides adversary with valuable insight into the heap’s virtual
address range, specifically ranging from Oxaaab0fcf1000 to
Oxaaab11306000. This range signifies the virtual address
space used and allocated by the victim model for storing its
data.

Step 4. Mapping virtual addresses to physical addresses:
Adversary executes the command xxd to perform a hexdump
of the heap memory associated with the specified process
ID (PID). The resulting output is saved to a file for further
analysis. By using the grep command and searching for
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aaab0fd8ef10:
aaab0fd8ef20:
aaab0fd8ef30:
aaab0fd8ef40:
aaab0fd8ef50:
aaab0fd8ef60:
aaab0fd8ef70:

0000 0000 0000 0000 0000 0000 0000
ffff ffff ffff ffff ffff ffff ffff
ffff ffff ffff ffff ffff ffff ffff
ffff ffff ffff ffff ffff ffff ffff
ffff ffff ffff ffff ffff ffff ffff
ffff ffff ffff ffff ffff ffff ffff
ffff ffff ffff ffff ffff ffff ffff

aaab0fd8f0d0:
aaab0fd8£0el:
aaab0fd8f0f0:
aaab0fd8f100:
aaab0fd8fr110:
aaab0fd8fr120:
aaab0fd8f130:

ffff ffff ffff ffff ffff ffff ffff
ffff ffff ffff ffff ffff ffff ffff
ffff ffff ffff ffff ffff ffff ffff
ffff ffff ffff ffff ffff ffff ffff
ffff ffff ffff ffff ffff ffff ffff
ffff fcff fffc ffff feff fffe fffe
feff fffd ffff feff ffff fff4 f7f5

Fig. 16. (Step 4) This figure illustrates a hexadecimal dump of the vic-
tim’s data (ffff ffff) located in the virtual memory addresses ranging from
Oxaaab0fd8ef20 to Oxaaab0fd8f130.

xilinx—zcul02-20222: /READ# devmem O0x70c6drf20
OxFFFFFFFFE
xilinx—zcul02—-20222: " /READ# devmem 0x70c6df24
OXFFFFFFFE
xilinx—zculO02-20222: " /READ# devmem O0x70c6drfz28
OXFFFFFFFFE
xilinx—zcul02—20222: /READ# devmem O0Ox70cédrfz2c

OxFFFFFFFE

xilinx—zcul02-20222:  /READ#
OxFEFFFFFED
xilinx—zculO02-20222: " /READ#
OxFFFFFEFF
xilinx—zcul02-20222: " /READ#
OxXFFFFFFF4
xilinx—zculO02-20222: " /READ#
OxF 7F5F8FD

devmem O0x70cé6el30

devmem Ox70c6elz24
devmem O0x70céelZz8

devmem O0x70c6df88

Fig. 17. (Step 5) The figure shows the data read is OXFFFFFF which identifies
that the read out is of victim’s.

the pixel values ffff ffff, which represent the data written
by victim application (critical_application.py). Figure 16
shows the memory range encompassing the victims writes of
OxfTffffff, spanning from memory addresses Oxaaab0fd8ef20
to Oxaaab0fd8f130. To translate these virtual memory ad-
dresses to physical addresses, we refer to the information ob-
tained from the page maps file associated with the PID. Thus,
adversary obtains a range of 0x70c6df20 to 0x70c6e130 for
physical addresses.

Step 5. Scraping memory residue: To read data from
physical addresses, adversary uses the command devmem
(physical_address). Thus, adversary retrieves data from the
physical addresses obtained in Step 4. In order to demonstrate
that adversary was able to retrieve the victim’s data Oxffffffff
(corrupted image) from these physical locations, adversary ran
the devmem command for each individual physical memory
location, ranging from 0x70c6df20 to 0x70c6e130. The
results of each devmem command execution are illustrated
in Figure 17. However, since the steps are automated, the
devmem command is executed for all the physical address
locations specified in Step 4.

Step 6. Analysis of data scraped from victim: In this
example, we as adversary have knowledge of what the victim
was writing, allowing us to identify it in the hexdump during
Step 4. From there, we converted those virtual addresses
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0000 0000 0000 0000 9102 0000 0000 0000
0200 0100 0100 0700 0700
0600 0300 0400 0000 0700

2aaafl1676000:
0:

0700 0600 0100 0000 0000
0200 0200 0300 0100 0300

0100 0500 0100 0200 0000

0000 0000 0300 0000 0000

aaaari67607 0000 0000 0000 0100 0000 0000
aaaafl676080: 0000 0000 0000 0000 0000 0000 0000 0000
aaaafl676090: 8007 71f1 aaaa 0000 7012 71f1 aaaa 0000

UUUUUOUUUUOUUOUY
UUUUUUUUUUUUUOUY
UUUUUUUUUUUUUOUY
UUUUUUUUUUUUUOUY
UUUUUUUUUUUUUOUY
UUUUUUUUUUUUUOUY
UUUUUUUUUUUUUOUU
UUUUUUUUTUUUUOUU
UUUUUUUUUUUUUOUU
UUUUUUUUTUUUUOUU
UUUUUUUUTUUUUOUU
UUUUUUUUUUUUUUUU
UUUUUUUUUUUUUUUU
UUUUUUUUUUUUUUUU
UUUUUUUUUUUUUUUU
UUUUUUUUUUUUUUUYU
UUUUUUUUUUUUUUUYU
UUUUUUUUUUUUUOUY
UUUUUUUUUUOUUOUY
UUUUUUUUUUOUUOUY
UUUUUUUUUUUUUOUY
UUUUUUUUUUUUUOUY
UUUUUUUUUUUUUOUY
UUUUUUUUUUUUUOUY
UUUUUUUUUUUUUOUY
UUUUUUUUTUUUUOUU
UUUUUUUUTUUUUOUU
UUUUUUUUTUUUUOUU
UUUUUUUUTUUUUOUU
UUUUUUUUUUUUUUUU
UUUUUUUUUUUUUUYT
UVRUVRWUTWUTWTVW

5555
5555 5¢
5555
5555
5554 5

aaaafl714060: 5556 5255 5652

Fig. 18. (Step 4) Experiment with victim writing 0x55555555 into memory.

to physical addresses and proceeded to Step 5 to scrape
memory residue from these addresses. However, in a real-
world scenario, the adversary may not have prior knowledge
of the type of application the victim is running or the domain
it is associated with. Therefore, the adversary needs to identify
the domains for which this board is being used as hardware
accelerators and work on obtaining reference files from those
domains for effective comparison, as explained in Section 3
in Step 6 - Profiling and Reconstruction.

Following the steps described in Section 3, we have shown
that XMPU does not sanitize memory residue left by a
terminated victim in both scenarios described under Adversary
Process in Section 4. If the adversary has prior knowledge of
the victim applications, it can mount a potent attack on the
memory residue to reconstruct the victim usage scenario.

Our experiments did not stop at the victim writing Oxffffffff;
we also tested various other identifiers, such as 0x55555555,
as shown in Figure 18, to validate the robustness of our
approach. These additional tests reaffirmed the effectiveness of
our approach in exposing the XMPU security vulnerabilities.

VI. CONCLUSION

The Xilinx Memory Protection Unit promises protection for
active processes by isolating them from each other. However,
as this paper shows, XMPU does not clear the memory for
terminated processes, leaving it exposed to attacker processes
even when the victim process ran under XMPU protection. It
is worth noting that memory reconfiguration solely takes place
during the First Stage Boot Loader (FSBL) phase, immediately
following a power-on reset. Erasing memory upon process
termination can lead to a performance overhead and increased
reconfiguration time, which may explain Xilinx’s decision
not to do so. However, as this paper has shown, failing to
clear memory leaves private data belonging to the terminated
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process exposed to other processes. This is a serious security
flaw in the XMPU architecture.
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