
Multi-Model-based Federated Learning to
Overcome Local Class Imbalance Issues

Jiefei Liu∗, Huiping Cao∗, Abu Saleh Md Tayeen∗, Satyajayant Misra∗, Pratyay Kumar∗ and Jayashree Harikumar†
∗New Mexico State University, Las Cruces, New Mexico, USA

Email: {jiefei, hcao, tayeen, misra, pratyay}@nmsu.edu
†DEVCOM Analysis Center, WSMR, New Mexico, USA

Email:jayashree.harikumar.civ@army.mil

Abstract—Federated learning (FL) is gaining much popularity
in designing Intrusion Detection Systems (IDS) due to its ability
to maintain data privacy and reduce communication costs.
Existing FL-based IDS are generally tested with balanced class
distribution for all clients where each client has data with
all attack traffic categories. This is a very strong assumption.
In reality, we often encounter a local class imbalance issue,
which means that each client only has traffic with a few
number of attack types. This issue creates a critical challenge
in FL by leading to poor model performance and convergence.
Several studies have made efforts to solve this issue through the
clustering of local model parameters. However, their methods
are costly and require either prior knowledge or training to
select the number of clusters. In this work, we propose a Multi-
Model-based Federated Learning (MMFL) framework, which
automatically groups the local models of clients having similar
class distribution, and a novel data augmentation method to
add instances with unknown attack types to the datasets of
local devices. Our extensive experiments with two large latest
intrusion detection datasets show that MMFL outperforms the
five baselines on the intrusion detection task.

Index Terms—Multi-model federated learning, Intrusion de-
tection, Local class imbalance, Clustering.

I. INTRODUCTION

Federated Learning (FL) [1] has gained significant attention

as a promising alternative to the centralized Machine Learning

(ML) architecture to address communication overhead and

data privacy concerns. In the network Intrusion Detection

Systems (IDS), many researchers [2]–[5] have utilized FL

to develop IDS. In a typical FL-based IDS, each network

device uses its traffic dataset to train a local intrusion detection

model and sends only the local model parameters to the

central server for aggregation and subsequent dissemination

back to clients. This process is generally iterated to produce

an improved global model that can detect malicious network

traffic.

Although many proposed FL-based IDSes have shown

improved performance over preliminary solutions, they rely

on a strong assumption that client devices have uniform class

distribution in their dataset. That means, every client has data

for all attack traffic categories or types. This assumption is not

realistic. In the real world, due to the distributed geographic

locations of clients, the class distribution is often imbalanced.

In extreme cases, some clients may not have samples for

certain attack categories. This issue termed as local class
imbalance poses a significant challenge in FL by hindering

the global model convergence and degrading its performance.
Few researchers modified the aggregation strategy [6] or

proposed a new loss function [7] to mitigate the impact of

the local class imbalance issue. However, these methods try

to implicitly deal with the problem rather than eliminating

it. Some works [8]–[11] attempted to group the clients with

the same data distribution utilizing the L2-based distance of

local model parameters and generate multiple global models.

However, their methods either need pre-training iterations or

pre-defined optimal value as a parameter to select the number

of clusters, which is an impractical FL scenario. Moreover,

these methods utilize all the model parameters to perform

the clustering, which may not generate effective client groups

and can be computationally expensive. Some works [10], [11]

employ multiple models for multi-task learning instead of

solving the class imbalance issue of single-task learning.
To address the above-mentioned issues, in this paper, we

propose a Multi-Model-based FL framework, MMFL, for

a single-task FL-enabled system such as network intrusion

detection. In contrast to the existing methods, MMFL trains

multiple global models by aggregating local models of clients

belonging to each cluster. The final prediction of an instance

utilizes the votes of global models, each of which represents

a similar class distribution. For each client, we augment the

instances with a special type of instance to accommodate the

attack types that do not occur in that specific client.
The contributions of our paper are as follows:

1) Our proposed framework, MMFL, automatically groups

clients and train multiple global models. The grouping

algorithm utilizes only partial local model parameters

of clients. This framework also incorporates an online

option to group clients dynamically in every round that

allows clients to drop and join.

2) MMFL offers a novel data augmentation strategy which

introduces unknown-attack traffic to each client to ac-

count for class imbalance issue in different local devices.

3) We evaluated MMFL on two common and most recent

network intrusion detection datasets: CICDDoS2019 [12]

and CICIDS2017 [13] by creating class imbalanced par-

titions and compared its performance with five baselines.

265

2023 International Conference on Machine Learning and Applications (ICMLA)

1946-0759/23/$31.00 ©2023 IEEE
DOI 10.1109/ICMLA58977.2023.00044

20
23

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 M

ac
hi

ne
 L

ea
rn

in
g

an
d

Ap
pl

ic
at

io
ns

 (I
CM

LA
) |

 9
79

-8
-3

50
3-

45
34

-6
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

M
LA

58
97

7.
20

23
.0

00
44

Authorized licensed use limited to: New Mexico State University. Downloaded on July 09,2024 at 22:27:17 UTC from IEEE Xplore. Restrictions apply.

The remainder of this paper is organized as follows: We

provide an overview of related works in Section II. Section III

presents the details of our framework, MMFL. In Section IV,

we describe the data, our experimental setup, and the results.

Finally, in Section V, we conclude with future works.

II. RELATED WORK

Several researchers [2]–[5] proposed FL-integrated IDS to

strengthen IoT network security. These works assumed that

the datasets of all clients are balanced in terms of classes

and quantity. However, in a real-world scenario, the network

devices that act as FL clients may not have the same class

distribution, which is denoted as the local class imbalance.

We note that some works (e.g., [14], [15]) build FL systems

to protect against malicious clients. Such studies showed

that the global model might fail to converge or produce

incorrect predictions when the data of malicious clients is

heterogeneous (non-iid). Our work focuses on addressing

the local class imbalance issue, instead of considering the

existence of malicious clients.

Several researchers attempted to address this issue by

proposing methods that only try to reduce the impact of the

local class/data imbalance on the performance of FL. For

instance, Hsu et al. [6], modified the FedAvg [1] by adding

momentum to the server and proposed FedAvgM. The authors

in [7] designed an online FL monitoring method to track the

imbalance in FL systems globally and provide a new loss

function to mitigate the impact of the global imbalance.

Other research works [8]–[11], [16] focused on clustering

clients or using multiple models to deal with class imbalance

problems in FL. Duan et al. [8] proposed FedGroup which

groups the clients using a cosine similarity-based metric and

federally trains each group model. Bhuyan et al. [11] extended

the FedAvg by proposing three algorithms for selecting clients

and assigning multiple models to learn multiple uncorrelated

tasks simultaneously. Ghosh et al. [9] proposed IFCA frame-

work to identify the cluster membership of each client and

optimize the cluster models in a distributed setting. In the

FeSEM [10], the authors used K-means clustering with L2

distance to group the clients’ models and performed multi-

center aggregation. Cao et al. [16] created several global

models through a random selection of clients to mitigate

the effects of malicious clients. The final predictions are

obtained through the use of majority voting from multiple

global models.

In all the cluster-based approaches [8]–[10], the number

of clusters needs to be known at the beginning of the

FL process. Finding the optimal value of clusters requires

completing a full FL training which is costly and impractical.

Other studies [10], [11] resort to multi-task learning, which

either trains multiple uncorrelated models or treats the model

personalization for every node as a different task. Unlike the

mentioned literature that uses all the weights in the client

models, our framework designs a simple yet effective cluster-

ing method to group the clients based on partial information

of the client models.

III. MMFL FRAMEWORK

We first describe our major technical contributions in

MMFL design in Section III-A. Then we provide an overview

of MMFL and the details of its training and testing procedures.

A. Multi-model Design and Novel Data Augmentation
Method

Our designed framework particularly wants to overcome the

local class imbalance issue. We design two novel strategies.

The first strategy is that our framework generates multiple

global ML models. This is one important characteristic of

MMFL. This characteristic makes it different from other

traditional FL frameworks (e.g., vanilla FL framework [1]),

which generates only one global model. Since datasets across

clients in FL are imbalanced (i.e., there is a variation in the

number of samples for different classes/labels), training only

one global model worsens its convergence and performance.

Our intuition behind the design of MMFL is that clients

in FL can be partitioned into different clusters or groups.

Clients with similar class distribution belong to the same

group. Learning a global ML model for each group can

alleviate the divergence problem and improve the classifica-

tion performance. Furthermore, our MMFL designs a new

clustering strategy to group clients using partial information

in the clients’ local models (Section III-C), which is different

from other multi-model-based FL methods (Section II).

The second strategy is a novel data augmentation method.

When the distribution of the attack traffic in the clients is

different, a model built on a specific client caters towards the

data distribution in that client. A model built for a dataset

without an attack type (e.g., A1) performs very poorly in the

prediction stage when the testing instance is of this attack type

(e.g., A1). To make these models to accommodate predicting

instances with all possible attack types, we introduce a new

type of fake attack traffic, called unknown attack. For client

k, we add instances with this unknown attack traffic and let

Uk represent the set of such instances. When the client id is

unknown, we use U to represent this instance set for a general

client. Instances in Uk are of attack types that do not exist

in the original local dataset of client k. For example, given

that the whole system can process five different attack types

(A1−A5), a local device has instances for normal traffic and

traffic of attack types A1, A2, and A3. Using this strategy,

the updated dataset should include instances from attack types

A4 and A5 and those instances are put in U and labeled as

unknown attack instances.

B. Overview of MMFL

MMFL is devised to operate in networks with devices such

as routers and security gateways that are considered as clients.

The clients are mainly responsible for collecting relevant

data and training local ML models. We assume (as most FL

frameworks do) that there exists one central server which

coordinates the training process by clustering clients, dis-

tributing the global ML models to the corresponding clients,

receiving model updates from the clients, and performing

266

Authorized licensed use limited to: New Mexico State University. Downloaded on July 09,2024 at 22:27:17 UTC from IEEE Xplore. Restrictions apply.

per cluster aggregation of the received models. After the

training is completed, the produced global models are used

during deployment to detect anomalous network traffic. Our

MMFL framework is illustrated in Figure 1.

Initial Global Model

Device 1 Device 2 Device 3 Device 4 Device K

Client Models

Global Models

Distribute models
for next round

if isDynamic or t = 0

Aggregrate

No

Yes

Extract last layer weight
changes of models

Calculate similarity and
clustering

Training

Ignore the noise prediction Confidence filtering Majority voting

Testing

Fig. 1: Overview of MMFL framework (static and dynamic).

C. Training of MMFL

Algorithm 1 presents the training procedure of our frame-

work, MMFL. The algorithm takes two parameters as input:

i) the total number of training rounds, T ; and ii) isDynamic:
a boolean value to decide whether the clustering of clients

is static (i.e., perform clustering only in the first round) or

dynamic (i.e., perform clustering in every round). Dynamic
clustering allows handling of clients that may drop due to

connection issues during the FL training. The training in

Algorithm 1 produces a set G of global models as output.

The training of MMFL starts on the server side in Step 1.

In Step 2, the server initializes a single global model, W0.

In Steps 3 to 6, the server assigns each client a copy of

this global model, W0. Here, W k
t denotes the global model

assigned to the k-th client at round t. In Step 4, the server

shares with all the clients a public dataset that contains

data for all class labels. This dataset is utilized to create U
instances (i.e.,unknown attack) for each client.

Steps 7 to 23 represent the training process of MMFL for

T rounds. In each training round, t, the server first allots

two sets, W and G to store the local models of the clients

and the global models respectively (Step 8). The server then

distributes the allocated global models to their respective

clients and collects the locally trained models in Steps 9

Algorithm 1: MMFL Training Procedure

Input: i) T (int) : total number of training rounds;
ii) isDynamic (bool): whether the clustering is static or dynamic
Output: A set, G of global models

1 Function Server():
2 Initialize a global model, W0

3 for k ← 1 to K clients do
4 Send a dataset used to generate unknown-attack instances

to client k.
5 Wk

0 ← W0

6 end for
7 for t ← 0 to T rounds do
8 W ← ∅, G ← ∅
9 for k ← 1 to K do

10 wk
t ← LocalTrain(k,Wk

t , e)
11 W ← W ∪ wk

t
12 end for
13 if isDynamic or t = 0 then
14 {C1, C2 · · ·CR} = HeuristicCluster (W , δ)
15 end if
16 for j ← 1 to R do
17 W g

j ← FedAvg(Cj)

18 G ← G ∪W g
j

19 end for
20 for j ← 1 to R do
21 Wk

t+1 ← W g
j , ∀k if wk

t ∈ Cj

22 end for
23 end for
24 return G

to 12 by invoking the LocalTrain function. When LocalTrain
function is invoked for the k-th client at round t, the client

trains its assigned global model, W k
t with its local dataset.

Here, wk
t (Line 10) denotes the locally trained model for the

k-th client at round t. If the clustering strategy is dynamic

(i.e., isDynamic is true) or this is the first round of training

(i.e., t = 0), the server clusters the local models of the clients

into R groups (Function HeuristicCluster) in Step 14.

One major difference of our method compared with other

existing multi-model approaches is the strategy (Heuristic-
Cluster) we designed to cluster (or group) the clients. First,

to compute the two models’ similarity in the grouping process,

we did not utilize all the values of the hidden features.

Instead, for each model, we extract the weight changes of

its last layer as its features. We used such features based on

a theorem in [7], which states that if two models’ last layers

are linear, the gradients of weights of the last layer are the

same when the class labels of the input data are identical.

Second, we did not use existing clustering algorithms such as

K-means to group the clients. Instead, we designed a simple

but effective heuristic strategy. We randomly choose a client

C as a seed for one group and grow this group by adding

other clients who do not belong to any existing group and

whose model similarity with C is above a threshold δ until

no client can be added to this group. Then, we randomly

choose another client who does not belong to any group yet

and grow it using the same procedure for the next group.

This heuristic process terminates when all the clients belong

to some group. In reality, the similarity threshold, δ = 0.8
can help generate good grouping which is consistent with our

267

Authorized licensed use limited to: New Mexico State University. Downloaded on July 09,2024 at 22:27:17 UTC from IEEE Xplore. Restrictions apply.

experimental setting. Our experiments show that setting the

similarity threshold is much easier when we use the weight

changes of the last layer compared with using all the weights.

In Steps 16 to 19, the server applies the FedAvg [1]

aggregation operation on the models in each cluster and

generates R global models. Here, W g
j denotes the global

model produced from the j-th cluster. The server then assigns

the new global models to the corresponding clients for round

t+ 1 training in Steps 20 to 22.

D. Making Predictions using MMFL

The set of multiple global models, G, is used to make

predictions for forthcoming traffic. Each global model can

predict an instance to be normal, unknown, or a specific type

of attack traffic. For example, given an instance, a global

model g1 can predict it to be normal, an unknown attack, A1,

or attack A2, while another global model g2 can predict it to

be normal, an unknown attack, A2, or attack A3. If a model

predicts an instance to be unknown attack or the prediction (to

normal or a specific attack) has low confidence, this model is

ignored when aggregating the predictions. The final prediction

decision of an instance comes from the majority voting of

the remaining global models. If all the global models predict

an instance to be unknown traffic, the final prediction is an

unknown attack (which is a wrong prediction).

IV. EXPERIMENTS

A. Data

1) Datasets: We selected the commonly used intrusion

detection datasets CICDDoS2019 [12] and CICIDS2017 [13]

for our experiments. Considering the extensive scale (millions

of records) of the original CICDDoS2019 dataset, we fol-

lowed an approach similar to other studies [17] that selected

41 useful features and drew 10,000,000 samples. The sam-

ples include 5,000,000 instances of normal traffic flows and

5,000,000 instances of ten different DDoS attack traffic flows

with each class having an equal size. We split this dataset

into three subsets: i) 50% of the dataset as training, ii) 40%

of the data for generating unknown attack instances, and iii)

the remaining 10% of the data for testing.

Similar to the other studies [18], we preprocessed the

CICIDS2017 dataset and selected 40 useful features. We

removed instances of three classes such as ‘Heartbleed’, ‘Infil-

tration’, and ‘Bot’ from the dataset because they had an overly

low number of instances. The centralized model was not able

to learn with too few samples and after the partition the clients

did not get sufficient instances to train their local models for

those classes. Instances of classes like ‘FTP Patator’ and ‘SSH

Patator’ were generated using the same brute force function.

Therefore, we combined instances of those classes and labeled

them as a ‘brute-force’ class. Finally, for the CICIDS2017

dataset, we got 2,203,723 instances of normal traffic flows and

467,261 instances of eight different attack traffic flows. Since

this dataset is smaller in size compared to the CICDDoS2019

dataset, to avoid under-fitting, we split 60% of it for training,

30% of it to generate unknown-attack instances for all the

clients, and 10% of it for testing.

(a) CICIDS2017 (b) CICDDoS2019

Fig. 2: Data and class distribution for 20 partitions

2) Extreme Class Imbalance Partition: In order to create

a realistic IDS simulation, the client should expect to see

only a few types of attacks with the majority of traffic

being normal. Thus our partition contains less than three

types of attacks, and the normal traffic outweighs the attack

traffic. As a result, there may be issues with local data and

class imbalance. Figure 2 demonstrates the class distribution

across 20 partitions for both CICIDS2017 and CICDDoS2019

datasets. The green label represents normal traffic, while other

colors indicate different types of attack traffic. Due to the

limited number of attack instances for CICIDS2017, each

partition has more normal traffic.

B. Experimental Settings

We performed all the experiments on a server with Intel

Xeon 5220R 2.20 G CPUs, 512 GB RAM, and 4 Nvidia

RTX A4000 GPUs with 16 GB memory per GPU. The

Flower framework [19] was utilized for running FedAvg and

FedAvgM, and we implemented the models using PyTorch.

We made our code publicly available1.

1) Models: To evaluate the performance of the proposed

methods, we chose the multi-class classification task, which

categorizes the normal traffic and different kinds of attack

traffic flows. We selected the Multi-Layer Perceptron (MLP)

as the clients’ model that had one input layer, two fully

connected layers with hidden unit sizes of 64 and 128,

respectively, and a softmax output layer.

2) Parameters: In all the experiments, we set the default

number of clients to 20. We used Adam optimizer with a

learning rate, η = 0.01 to train the models. We set the default

number of epochs e for local model training in each client

to be 10, We limited the maximum training round, T , to 20

for all FL methods. To enhance clustering quality, in the first

round of Algorithm 1 (i.e., t = 0), we set the value of e
larger (five times the default e value) than the other rounds.

1https://github.com/JiefeiLiu/FL Multi model

268

Authorized licensed use limited to: New Mexico State University. Downloaded on July 09,2024 at 22:27:17 UTC from IEEE Xplore. Restrictions apply.

CICDDoS2019 CICIDS2017
Methods Accuracy F1 Accuracy F1

Centralized 0.837± 0.002 0.656± 0.014 0.963± 0.002 0.867± 0.003
NonFed 0.990± 0.024 0.960± 0.098 0.927± 0.039 0.707± 0.105

FedAvg 0.590± 0.022 0.204± 0.032 0.845± 0.014 0.317± 0.042
FedAvgM 0.630± 0.050 0.249± 0.079 0.872± 0.010 0.419± 0.044
FeSEM 0.579± 0.009 0.155± 0.011 0.846± 0.004 0.329± 0.018

Random (Static) 0.595± 0.006 0.229± 0.015 0.838± 0.006 0.259± 0.043
Random (Dynamic) 0.608± 0.011 0.249± 0.020 0.853± 0.001 0.313± 0.037

MMFL (Static) 0.813± 0.003 0.586± 0.007 0.944± 0.009 0.766± 0.024
MMFL (Dynamic) 0.793± 0.009 0.559± 0.012 0.943± 0.005 0.792± 0.010

TABLE I: Performance comparison with CICDDoS2019 and CICIDS2017 datasets

After extensive experiments, we set the threshold, δ = 0.8 for

the similarity threshold.

3) Metrics: To evaluate our method, we utilized the per-

formance metrics defined as follows,

Accuracy =
TP + TN

TP + TN + FP + FN
,F1 =

2× Pre×Rec

Pre+Rec
.

Here, Pre = TP
TP+FP , Rec = TP

TP+FN , and TP/FP
(True/False Positive) represents the number of instances

correctly/wrongly classified as an attack; TN/FN
(True/False Negative) represents the number of instances

correctly/wrongly classified as normal. The reported F1
value is the macro average of the F1 for all the class labels.

C. Baselines

As references, we implemented two models.

i) Centralized. This method trains one model centrally

using the data from all the clients. Note that this model

is not for FL. We use this method as a reference which

provides the upper bound of performance for all FL-

based algorithms.

ii) NonFed. This method does not use any FL framework.

It trains an MLP model for each client with their local

data and the model is tested using instances with attack

types existing in their local data.

We also compared our framework, MMFL, with the following

baseline models.

• FedAvg [1]. This method uses the conventional FL frame-

work to produce a single global model by aggregating a

large fraction of the client models. The experiments set

the fraction to be 90%.

• FedAvgM [6]. This method modifies the FedAvg by

adding momentum during aggregation at the server and

aggregates one global model. In our experiments, the

fraction is set to 90% and the momentum is set to 0.7.

• FeSEM [10]. This method utilizes K-means clustering

to group local models and create global models. This

model computes the L2 distance between weights from

all layers of the local models to determine similarity. In

our experiments, the number of clusters is set to 4.

• Random (Static). This FL method is similar to our

method. The difference is that instead of using clustering,

the server randomly selects the clients to assign different

global models in the first round. Then, it uses the same

clients’ assignment for the rest of the training rounds.

More concretely, when the FL training starts, the server

will initialize |G| global models, where |G| is a parameter.

In our experiments, we set |G| = 5 for this method.

• Random (Dynamic). This FL method is exactly the same

as the Random (Static) method except that it randomly

selects the clients for global models in every training

round. We set |G| = 5 for this method.

D. Performance Comparison

We ran each experiment five times on both datasets and

present the accuracy and F1-score metric values using M±S
form in Table I where M and S represent the mean and the

standard deviation of those values respectively.

Table I shows the results. Our framework MMFL (both

static and dynamic versions) achieves the highest accuracy

and F1 score for both the CICDDoS2019 and CICIDS2017

datasets. For example, when tested on CICDDoS2019 dataset,

the accuracy of MMFL (static) is generally more than 30%

higher than the other baselines. The improvement on the F1
metric is even more significant. MMFL (static) achieves a

dramatic improvement with an F1 score that almost doubles

(CICIDS2017) and triples (CICDDoS2019) the F1 scores of

all the other methods.

Note that the FedAvgM is designed to reduce the impact

of data/class imbalance. Thus, it can improve the FedAvg,

as shown in Table I. However, our MMFL method still

dramatically outperforms the FedAvgM method.

The NonFed baseline shows the overall best performance

which denotes that the MLP model fits with local training

data reasonably well. Note that this is not a FL method. Each

client’s model is not tested against any instance of attack

types not in that client’s training data. This is an ideal but not

realistic setting, thus the good performance cannot be matched

in a real FL setting. The Centralized baseline provides an

upper bound for all the FL methods.

Among all the FL methods, MMFL is the only method that

achieves comparable performance to the Centralized method.

E. Impact of Parameters

We conducted experiments to assess the effect of the

number of clients and the size of unknown attack traffic on

the performance of our framework.

269

Authorized licensed use limited to: New Mexico State University. Downloaded on July 09,2024 at 22:27:17 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Performance comparison with different numbers of

clients on CICDDoS2019 dataset

1) Impact of varying the number of clients: In this ex-

periment, we used the CICDDoS2019 dataset and varied the

number of clients from 10 to 100 because existing works [2]–

[5] generally used 10-20 clients in FL for IDS setting. In

Figure 3, we depict the performance (i.e., accuracy and F1)

of MMFL (static) and MMFL (dynamic) with an increasing

number of clients. From Figure 3, we found that with ten

clients, the MMFL (static) and the MMFL (dynamic) ob-

tained 5% and 12% lower accuracy compared to the scenario

where there are 20 clients. This is because with the ten-

client scenario each cluster may only have one model to

aggregate and this will make it difficult for the global model to

converge. As the number of clients increases, the performance

of MMFL becomes stable.

(a) Static framework (b) Dynamic framework

Fig. 4: Performance comparison with different unknown-

attack sample size on CICDDoS2019 dataset

2) Impact of different unknown attack sample size: The

size of the unknown attack traffic U for specific clients

affects the model performance. We vary the percentage of

unknown attack traffic instances over the total number of

attack instances in each client k. The results in Figure 4 show

that the performance improves with the increase in the size

of U . However, we cannot keep increasing the size of U just

to improve the prediction accuracy because the dataset that

is sent to each client to generate unknown attack instances

(Line 3 in Algorithm 1) may not be sufficient to sample a

large U . Therefore, selecting an appropriate unknown attack
sample size for clients is crucial. After conducting extensive

experiments, we have determined that an unknown attack
sample size of 0.4 balances the two factors well.

V. CONCLUSIONS

This paper introduced a multi-model-based FL framework,

MMFL and a new data augmentation strategy to facilitate the

federated learning process in IDS for scenarios where clients

do not have instances of all attack types. Our framework

creates multiple global models for different groups of clients

determined by a simple yet effective clustering algorithm. It

utilizes the data augmentation method to address the local

class imbalance issue in clients. Our extensive experiments

on FL-based IDS tasks have demonstrated that MMFL out-

performs the baselines. In the future, we aim to enhance the

robustness of MMFL by exploring alternative data sharing

methods from server to client for data augmentation and

considering the existence of malicious clients.

ACKNOWLEDGMENT

This work has been sponsored by the DEVCOM Analysis

Center and accomplished under Cooperative Agreement Num-

ber W911NF-22-2-0001. This work has also been partially

funded by the Department of Energy, DE-SC0023392 and

NSF #1914635.

REFERENCES

[1] McMahan Brendan, Moore Eider, and et al. Communication-efficient
learning of deep networks from decentralized data. In Artificial
Intelligence and Statistics, pages 1273–1282. PMLR, 2017.

[2] Noor Ali Al-Athba Al-Marri, Bekir S Ciftler, and Mohamed M Ab-
dallah. Federated mimic learning for privacy preserving intrusion
detection. In IEEE (BlackSeaCom), pages 1–6, 2020.

[3] Li Jianhua, Lyu Lingjuan, and et al. FLEAM: A federated learning
empowered architecture to mitigate DDoS in industrial IoT. IEEE
Transactions on Industrial Informatics, 18(6):4059–4068, 2021.

[4] Qiaofeng Qin, Konstantinos Poularakis, Kin K Leung, and et al. Line-
speed and scalable intrusion detection at the network edge via federated
learning. In IFIP Networking Conference, pages 352–360. IEEE, 2020.

[5] Viraaji Mothukuri, Prachi Khare, Parizi Reza M, and et al. Federated-
learning-based anomaly detection for IoT security attacks. IEEE
Internet of Things Journal, 9(4):2545–2554, 2021.

[6] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the
effects of non-identical data distribution for federated visual classifica-
tion. arXiv preprint arXiv:1909.06335, 2019.

[7] Wang Lixu, Xu Shichao, and et al. Addressing class imbalance in
federated learning. In AAAI, volume 35, pages 10165–10173, 2021.

[8] Moming Duan and et al. Fedgroup: Efficient federated
learning via decomposed similarity-based clustering. In IEEE
ISPA/BDCloud/SocialCom/SustainCom, 2021.

[9] Avishek Ghosh, Jichan Chung, and et al. An efficient framework for
clustered federated learning. NeurIPS, 33:19586–19597, 2020.

[10] Long Guodong and et al. Multi-center federated learning: clients
clustering for better personalization. WWW, 26(1):481–500, 2023.

[11] Neelkamal Bhuyan and Sharayu Moharir. Multi-model federated
learning. In Int’l Conf. on COMSNETS, pages 779–783. IEEE, 2022.

[12] Iman Sharafaldin, Arash Habibi Lashkari, Saqib Hakak, and Ali A
Ghorbani. Developing realistic distributed denial of service (DDoS)
attack dataset and taxonomy. In ICCST, pages 1–8. IEEE, 2019.

[13] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. To-
ward generating a new intrusion detection dataset and intrusion traffic
characterization. ICISSp, 1:108–116, 2018.

[14] Cao Xiaoyu and et al. Provably secure federated learning against
malicious clients. In AAAI, volume 35, pages 6885–6893, 2021.

[15] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. Local
model poisoning attacks to Byzantine-Robust federated learning. In
29th USENIX Conf. on Security Symposium, pages 1605–1622, 2020.

[16] Sai Praneeth Karimireddy and et al. Byzantine-robust learning on
heterogeneous datasets via bucketing. arXiv:2006.09365, 2020.

[17] Hussain Faisal, Abbas Syed Ghazanfar, and et al. IoT DoS and DDoS
attack detection using ResNet. In INMIC, pages 1–6. IEEE, 2020.

[18] Osama Faker and Erdogan Dogdu. Intrusion detection using big data
and deep learning techniques. In ACM SE Conf., pages 86–93, 2019.

[19] Daniel J Beutel, Taner Topal, and et al. Flower: A friendly federated
learning research framework. arXiv preprint arXiv:2007.14390, 2020.

270

Authorized licensed use limited to: New Mexico State University. Downloaded on July 09,2024 at 22:27:17 UTC from IEEE Xplore. Restrictions apply.

