2023 International Conference on Machine Learning and Applications (ICMLA) | 979-8-3503-4534-6/23/$31.00 ©2023 IEEE | DOI: 10.1109/ICMLA58977.2023.00044

2023 International Conference on Machine Learning and Applications (ICMLA)

Multi-Model-based Federated Learning to
Overcome Local Class Imbalance Issues

Jiefei Liu*, Huiping Cao*, Abu Saleh Md Tayeen*, Satyajayant Misra*, Pratyay Kumar* and Jayashree Harikumar'
*New Mexico State University, Las Cruces, New Mexico, USA
Email: {jiefei, hcao, tayeen, misra, pratyay } @nmsu.edu
fDEVCOM Analysis Center, WSMR, New Mexico, USA
Email:jayashree.harikumar.civ@army.mil

Abstract—Federated learning (FL) is gaining much popularity
in designing Intrusion Detection Systems (IDS) due to its ability
to maintain data privacy and reduce communication costs.
Existing FL-based IDS are generally tested with balanced class
distribution for all clients where each client has data with
all attack traffic categories. This is a very strong assumption.
In reality, we often encounter a local class imbalance issue,
which means that each client only has traffic with a few
number of attack types. This issue creates a critical challenge
in FL by leading to poor model performance and convergence.
Several studies have made efforts to solve this issue through the
clustering of local model parameters. However, their methods
are costly and require either prior knowledge or training to
select the number of clusters. In this work, we propose a Multi-
Model-based Federated Learning (MMFL) framework, which
automatically groups the local models of clients having similar
class distribution, and a novel data augmentation method to
add instances with unknown attack types to the datasets of
local devices. Our extensive experiments with two large latest
intrusion detection datasets show that MMFL outperforms the
five baselines on the intrusion detection task.

Index Terms—Multi-model federated learning, Intrusion de-
tection, Local class imbalance, Clustering.

[. INTRODUCTION

Federated Learning (FL) [1] has gained significant attention
as a promising alternative to the centralized Machine Learning
(ML) architecture to address communication overhead and
data privacy concerns. In the network Intrusion Detection
Systems (IDS), many researchers [2]-[5] have utilized FL
to develop IDS. In a typical FL-based IDS, each network
device uses its traffic dataset to train a local intrusion detection
model and sends only the local model parameters to the
central server for aggregation and subsequent dissemination
back to clients. This process is generally iterated to produce
an improved global model that can detect malicious network
traffic.

Although many proposed FL-based IDSes have shown
improved performance over preliminary solutions, they rely
on a strong assumption that client devices have uniform class
distribution in their dataset. That means, every client has data
for all attack traffic categories or types. This assumption is not
realistic. In the real world, due to the distributed geographic
locations of clients, the class distribution is often imbalanced.
In extreme cases, some clients may not have samples for

certain attack categories. This issue termed as local class
imbalance poses a significant challenge in FL by hindering
the global model convergence and degrading its performance.

Few researchers modified the aggregation strategy [6] or
proposed a new loss function [7] to mitigate the impact of
the local class imbalance issue. However, these methods try
to implicitly deal with the problem rather than eliminating
it. Some works [8]-[11] attempted to group the clients with
the same data distribution utilizing the L2-based distance of
local model parameters and generate multiple global models.
However, their methods either need pre-training iterations or
pre-defined optimal value as a parameter to select the number
of clusters, which is an impractical FL scenario. Moreover,
these methods utilize all the model parameters to perform
the clustering, which may not generate effective client groups
and can be computationally expensive. Some works [10], [11]
employ multiple models for multi-task learning instead of
solving the class imbalance issue of single-task learning.

To address the above-mentioned issues, in this paper, we
propose a Multi-Model-based FL framework, MMFL, for
a single-task FL-enabled system such as network intrusion
detection. In contrast to the existing methods, MMFL trains
multiple global models by aggregating local models of clients
belonging to each cluster. The final prediction of an instance
utilizes the votes of global models, each of which represents
a similar class distribution. For each client, we augment the
instances with a special type of instance to accommodate the
attack types that do not occur in that specific client.

The contributions of our paper are as follows:

1) Our proposed framework, MMFL, automatically groups
clients and train multiple global models. The grouping
algorithm utilizes only partial local model parameters
of clients. This framework also incorporates an online
option to group clients dynamically in every round that
allows clients to drop and join.

2) MMFL offers a novel data augmentation strategy which
introduces unknown-attack traffic to each client to ac-
count for class imbalance issue in different local devices.

3) We evaluated MMFL on two common and most recent
network intrusion detection datasets: CICDDo0S2019 [12]
and CICIDS2017 [13] by creating class imbalanced par-
titions and compared its performance with five baselines.

1946-0759/23/$31.00 ©2023 IEEE 265
DOI 10.1109/ICMLA58977.2023.00044
Authorized licensed use limited to: New Mexico State University. Downloaded on July 09,2024 at 22:27:17 UTC from IEEE Xplore. Restrictions apply.

The remainder of this paper is organized as follows: We
provide an overview of related works in Section II. Section III
presents the details of our framework, MMFL. In Section 1V,
we describe the data, our experimental setup, and the results.
Finally, in Section V, we conclude with future works.

II. RELATED WORK

Several researchers [2]-[5] proposed FL-integrated IDS to
strengthen IoT network security. These works assumed that
the datasets of all clients are balanced in terms of classes
and quantity. However, in a real-world scenario, the network
devices that act as FL clients may not have the same class
distribution, which is denoted as the local class imbalance.
We note that some works (e.g., [14], [15]) build FL systems
to protect against malicious clients. Such studies showed
that the global model might fail to converge or produce
incorrect predictions when the data of malicious clients is
heterogeneous (non-iid). Our work focuses on addressing
the local class imbalance issue, instead of considering the
existence of malicious clients.

Several researchers attempted to address this issue by
proposing methods that only try to reduce the impact of the
local class/data imbalance on the performance of FL. For
instance, Hsu et al. [6], modified the FedAvg [1] by adding
momentum to the server and proposed FedAvgM. The authors
in [7] designed an online FL monitoring method to track the
imbalance in FL systems globally and provide a new loss
function to mitigate the impact of the global imbalance.

Other research works [8]-[11], [16] focused on clustering
clients or using multiple models to deal with class imbalance
problems in FL. Duan et al. [8] proposed FedGroup which
groups the clients using a cosine similarity-based metric and
federally trains each group model. Bhuyan et al. [11] extended
the FedAvg by proposing three algorithms for selecting clients
and assigning multiple models to learn multiple uncorrelated
tasks simultaneously. Ghosh et al. [9] proposed IFCA frame-
work to identify the cluster membership of each client and
optimize the cluster models in a distributed setting. In the
FeSEM [10], the authors used K-means clustering with L2
distance to group the clients’ models and performed multi-
center aggregation. Cao et al. [16] created several global
models through a random selection of clients to mitigate
the effects of malicious clients. The final predictions are
obtained through the use of majority voting from multiple
global models.

In all the cluster-based approaches [8]-[10], the number
of clusters needs to be known at the beginning of the
FL process. Finding the optimal value of clusters requires
completing a full FL training which is costly and impractical.
Other studies [10], [11] resort to multi-task learning, which
either trains multiple uncorrelated models or treats the model
personalization for every node as a different task. Unlike the
mentioned literature that uses all the weights in the client
models, our framework designs a simple yet effective cluster-
ing method to group the clients based on partial information
of the client models.

266

III. MMFL FRAMEWORK

We first describe our major technical contributions in
MMFL design in Section III-A. Then we provide an overview
of MMFL and the details of its training and testing procedures.

A. Multi-model Design and Novel Data Augmentation
Method

Our designed framework particularly wants to overcome the
local class imbalance issue. We design two novel strategies.

The first strategy is that our framework generates multiple
global ML models. This is one important characteristic of
MMFL. This characteristic makes it different from other
traditional FL frameworks (e.g., vanilla FL framework [1]),
which generates only one global model. Since datasets across
clients in FL are imbalanced (i.e., there is a variation in the
number of samples for different classes/labels), training only
one global model worsens its convergence and performance.
Our intuition behind the design of MMFL is that clients
in FL can be partitioned into different clusters or groups.
Clients with similar class distribution belong to the same
group. Learning a global ML model for each group can
alleviate the divergence problem and improve the classifica-
tion performance. Furthermore, our MMFL designs a new
clustering strategy to group clients using partial information
in the clients’ local models (Section III-C), which is different
from other multi-model-based FLL methods (Section II).

The second strategy is a novel data augmentation method.
When the distribution of the attack traffic in the clients is
different, a model built on a specific client caters towards the
data distribution in that client. A model built for a dataset
without an attack type (e.g., A1) performs very poorly in the
prediction stage when the testing instance is of this attack type
(e.g., Al). To make these models to accommodate predicting
instances with all possible attack types, we introduce a new
type of fake attack traffic, called unknown attack. For client
k, we add instances with this unknown attack traffic and let
Uy, represent the set of such instances. When the client id is
unknown, we use U to represent this instance set for a general
client. Instances in U} are of attack types that do not exist
in the original local dataset of client k. For example, given
that the whole system can process five different attack types
(A1 — A5), a local device has instances for normal traffic and
traffic of attack types Al, A2, and A3. Using this strategy,
the updated dataset should include instances from attack types
A4 and A5 and those instances are put in U and labeled as
unknown attack instances.

B. Overview of MMFL

MMFL is devised to operate in networks with devices such
as routers and security gateways that are considered as clients.
The clients are mainly responsible for collecting relevant
data and training local ML models. We assume (as most FL.
frameworks do) that there exists one central server which
coordinates the training process by clustering clients, dis-
tributing the global ML models to the corresponding clients,
receiving model updates from the clients, and performing

Authorized licensed use limited to: New Mexico State University. Downloaded on July 09,2024 at 22:27:17 UTC from IEEE Xplore. Restrictions apply.

per cluster aggregation of the received models. After the
training is completed, the produced global models are used
during deployment to detect anomalous network traffic. Our
MMFL framework is illustrated in Figure 1.

Training

[Initial Global Model]

Calculate similarity and
clustering

Distribute models
for next round

—

(" Testing)

L[Ignore the noise prediction]—)[Confidence filtering H Majority voting]

-

Aggregrate

[Global Models

Fig. 1: Overview of MMFL framework (static and dynamic).

C. Training of MMFL

Algorithm 1 presents the training procedure of our frame-
work, MMFL. The algorithm takes two parameters as input:
i) the total number of training rounds, 7'; and ii) isDynamic:
a boolean value to decide whether the clustering of clients
is static (i.e., perform clustering only in the first round) or
dynamic (i.e., perform clustering in every round). Dynamic
clustering allows handling of clients that may drop due to
connection issues during the FL training. The training in
Algorithm 1 produces a set G of global models as output.

The training of MMFL starts on the server side in Step 1.
In Step 2, the server initializes a single global model, W.
In Steps 3 to 6, the server assigns each client a copy of
this global model, . Here, Wt’“ denotes the global model
assigned to the k-th client at round ¢. In Step 4, the server
shares with all the clients a public dataset that contains
data for all class labels. This dataset is utilized to create U
instances (i.e.,unknown attack) for each client.

Steps 7 to 23 represent the training process of MMFL for
T rounds. In each training round, ¢, the server first allots
two sets, W and G to store the local models of the clients
and the global models respectively (Step 8). The server then
distributes the allocated global models to their respective
clients and collects the locally trained models in Steps 9

Algorithm 1: MMFL Training Procedure

Input: i) T'(int) : total number of training rounds;

ii) isDynamic (bool): whether the clustering is static or dynamic

Output: A set, G of global models

1 Function Server ():

2 Initialize a global model, Wy

3 for k < 1 to K clients do

4 Send a dataset used to generate unknown-attack instances
to client k.

5 WF + Wy

6 end for

7 for t < 0 to T rounds do

8 W<—0,G+0

9 for k< 1to K do

wF « LocalTrain(k, W, e)

W+ Wu wf

12 end for

13 if isDynamic or t = 0 then

14 | {C1,Cy---CRr} = HeuristicCluster (W, &)

15 end if

16 for j < 1to R do

17 W/ « FedAvg(Cj)

18 G+ GuU W]:"

19 end for

20 for j < 1to R do

21 | Wl < W Vkifwf € Cy
22 end for

23 end for

24 return G

to 12 by invoking the LocalTrain function. When LocalTrain
function is invoked for the k-th client at round ¢, the client
trains its assigned global model, W} with its local dataset.
Here, wf (Line 10) denotes the locally trained model for the
k-th client at round ¢. If the clustering strategy is dynamic
(i.e., isDynamic is true) or this is the first round of training
(i.e., t = 0), the server clusters the local models of the clients
into R groups (Function HeuristicCluster) in Step 14.

One major difference of our method compared with other
existing multi-model approaches is the strategy (Heuristic-
Cluster) we designed to cluster (or group) the clients. First,
to compute the two models’ similarity in the grouping process,
we did not utilize all the values of the hidden features.
Instead, for each model, we extract the weight changes of
its last layer as its features. We used such features based on
a theorem in [7], which states that if two models’ last layers
are linear, the gradients of weights of the last layer are the
same when the class labels of the input data are identical.
Second, we did not use existing clustering algorithms such as
K-means to group the clients. Instead, we designed a simple
but effective heuristic strategy. We randomly choose a client
C as a seed for one group and grow this group by adding
other clients who do not belong to any existing group and
whose model similarity with C' is above a threshold ¢ until
no client can be added to this group. Then, we randomly
choose another client who does not belong to any group yet
and grow it using the same procedure for the next group.
This heuristic process terminates when all the clients belong
to some group. In reality, the similarity threshold, § = 0.8
can help generate good grouping which is consistent with our

267

Authorized licensed use limited to: New Mexico State University. Downloaded on July 09,2024 at 22:27:17 UTC from IEEE Xplore. Restrictions apply.

experimental setting. Our experiments show that setting the
similarity threshold is much easier when we use the weight
changes of the last layer compared with using all the weights.

In Steps 16 to 19, the server applies the FedAvg [1]
aggregation operation on the models in each cluster and
generates R global models. Here, ng denotes the global
model produced from the j-th cluster. The server then assigns
the new global models to the corresponding clients for round
t + 1 training in Steps 20 to 22.

D. Making Predictions using MMFL

The set of multiple global models, G, is used to make
predictions for forthcoming traffic. Each global model can
predict an instance to be normal, unknown, or a specific type
of attack traffic. For example, given an instance, a global
model g; can predict it to be normal, an unknown attack, A,
or attack A, while another global model g, can predict it to
be normal, an unknown attack, As, or attack As. If a model
predicts an instance to be unknown attack or the prediction (to
normal or a specific attack) has low confidence, this model is
ignored when aggregating the predictions. The final prediction
decision of an instance comes from the majority voting of
the remaining global models. If all the global models predict
an instance to be unknown traffic, the final prediction is an
unknown attack (which is a wrong prediction).

IV. EXPERIMENTS
A. Data

1) Datasets: We selected the commonly used intrusion
detection datasets CICDD0S2019 [12] and CICIDS2017 [13]
for our experiments. Considering the extensive scale (millions
of records) of the original CICDD0S2019 dataset, we fol-
lowed an approach similar to other studies [17] that selected
41 useful features and drew 10,000,000 samples. The sam-
ples include 5,000,000 instances of normal traffic flows and
5,000,000 instances of ten different DDoS attack traffic flows
with each class having an equal size. We split this dataset
into three subsets: i) 50% of the dataset as training, ii) 40%
of the data for generating unknown attack instances, and iii)
the remaining 10% of the data for testing.

Similar to the other studies [18], we preprocessed the
CICIDS2017 dataset and selected 40 useful features. We
removed instances of three classes such as ‘Heartbleed’, ‘Infil-
tration’, and ‘Bot’ from the dataset because they had an overly
low number of instances. The centralized model was not able
to learn with too few samples and after the partition the clients
did not get sufficient instances to train their local models for
those classes. Instances of classes like ‘FTP Patator’ and ‘SSH
Patator’ were generated using the same brute force function.
Therefore, we combined instances of those classes and labeled
them as a ‘brute-force’ class. Finally, for the CICIDS2017
dataset, we got 2,203,723 instances of normal traffic flows and
467,261 instances of eight different attack traffic flows. Since
this dataset is smaller in size compared to the CICDD0S2019
dataset, to avoid under-fitting, we split 60% of it for training,

268

30% of it to generate unknown-attack instances for all the
clients, and 10% of it for testing.

N Normal DDoS SSDP
mms Normal Emm Dos Slowloris s DDoS SNMP DDoS LDAP
s DDoS N FTP Patator DDoS DNS B DDoS NTP
I DoS Goldeye W Brute Force DDoS MssQL N UDP-Lag
EEE Dos Hulk Il SSH Patator DDoS NetBIOS mmm SYN
|

Dos SlowHTTP DDoS UDP

© N O w =

Clients

o W

J

©

(a) CICIDS2017 (b) CICDD0S2019
Fig. 2: Data and class distribution for 20 partitions

2) Extreme Class Imbalance Partition: In order to create
a realistic IDS simulation, the client should expect to see
only a few types of attacks with the majority of traffic
being normal. Thus our partition contains less than three
types of attacks, and the normal traffic outweighs the attack
traffic. As a result, there may be issues with local data and
class imbalance. Figure 2 demonstrates the class distribution
across 20 partitions for both CICIDS2017 and CICDD0S2019
datasets. The green label represents normal traffic, while other
colors indicate different types of attack traffic. Due to the
limited number of attack instances for CICIDS2017, each
partition has more normal traffic.

B. Experimental Settings

We performed all the experiments on a server with Intel
Xeon 5220R 2.20 G CPUs, 512 GB RAM, and 4 Nvidia
RTX A4000 GPUs with 16 GB memory per GPU. The
Flower framework [19] was utilized for running FedAvg and
FedAvgM, and we implemented the models using PyTorch.
We made our code publicly available'.

1) Models: To evaluate the performance of the proposed
methods, we chose the multi-class classification task, which
categorizes the normal traffic and different kinds of attack
traffic flows. We selected the Multi-Layer Perceptron (MLP)
as the clients’ model that had one input layer, two fully
connected layers with hidden unit sizes of 64 and 128,
respectively, and a softmax output layer.

2) Parameters: In all the experiments, we set the default
number of clients to 20. We used Adam optimizer with a
learning rate, n = 0.01 to train the models. We set the default
number of epochs e for local model training in each client
to be 10, We limited the maximum training round, 7', to 20
for all FL methods. To enhance clustering quality, in the first
round of Algorithm 1 (i.e., t = 0), we set the value of e
larger (five times the default e value) than the other rounds.

Thttps://github.com/JiefeiLiu/FL_Multi_model

Authorized licensed use limited to: New Mexico State University. Downloaded on July 09,2024 at 22:27:17 UTC from IEEE Xplore. Restrictions apply.

CICDDo0S2019 CICIDS2017

Methods Accuracy FI Accuracy Fl1
Centralized 0.837 £+ 0.002 0.656 +0.014 0.963 £ 0.002 0.867 = 0.003
NonFed 0.990 £+ 0.024 0.960 £ 0.098 0.927 £ 0.039 0.707 £ 0.105
FedAvg 0.590 £ 0.022 0.204 £ 0.032 0.845 +0.014 0.317 £ 0.042
FedAvgM 0.630 £ 0.050 0.249 £ 0.079 0.872 £ 0.010 0.419 £+ 0.044
FeSEM 0.579 £+ 0.009 0.155 £ 0.011 0.846 4+ 0.004 0.329 +£0.018
Random (Static) 0.595 £ 0.006 0.229 +£0.015 0.838 £+ 0.006 0.259 +0.043
Random (Dynamic) | 0.608 +0.011 0.249 £+ 0.020 0.853 £ 0.001 0.313 +£0.037
MMFL (Static) 0.813 +0.003 | 0.586 + 0.007 || 0.944 + 0.009 | 0.766 + 0.024
MMFL (Dynamic) | 0.793 +0.009 | 0.559 +0.012 || 0.943 +£ 0.005 | 0.792 £+ 0.010

TABLE I: Performance comparison with CICDD0S2019 and CICIDS2017 datasets

After extensive experiments, we set the threshold, § = 0.8 for
the similarity threshold.

3) Metrics: To evaluate our method, we utilized the per-
formance metrics defined as follows,

4 B TP+ TN _ 2x Prex Rec
ceuracy = Tp +TN+FP+FN'~~ Pre+ Rec
Here, Pre = zptrp, Rec = b, and TP/FP

(True/False Positive) represents the number of instances
correctly/wrongly classified as an attack; TN/FN
(True/False Negative) represents the number of instances
correctly/wrongly classified as normal. The reported F'1
value is the macro average of the F'1 for all the class labels.

C. Baselines

As references, we implemented two models.

i) Centralized. This method trains one model centrally
using the data from all the clients. Note that this model
is not for FL. We use this method as a reference which
provides the upper bound of performance for all FL-
based algorithms.

ii) NonFed. This method does not use any FL framework.
It trains an MLP model for each client with their local
data and the model is tested using instances with attack
types existing in their local data.

We also compared our framework, MMFL, with the following
baseline models.

o FedAvg [1]. This method uses the conventional FL frame-
work to produce a single global model by aggregating a
large fraction of the client models. The experiments set
the fraction to be 90%.

o FedAvgM [6]. This method modifies the FedAvg by
adding momentum during aggregation at the server and
aggregates one global model. In our experiments, the
fraction is set to 90% and the momentum is set to 0.7.

o FeSEM [10]. This method utilizes K-means clustering
to group local models and create global models. This
model computes the L2 distance between weights from
all layers of the local models to determine similarity. In
our experiments, the number of clusters is set to 4.

e Random (Static). This FL method is similar to our
method. The difference is that instead of using clustering,
the server randomly selects the clients to assign different

269

global models in the first round. Then, it uses the same
clients’ assignment for the rest of the training rounds.
More concretely, when the FL training starts, the server
will initialize |G| global models, where |G| is a parameter.
In our experiments, we set |G| = 5 for this method.

o Random (Dynamic). This FL method is exactly the same
as the Random (Static) method except that it randomly
selects the clients for global models in every training
round. We set |G| =5 for this method.

D. Performance Comparison

We ran each experiment five times on both datasets and
present the accuracy and F1-score metric values using M £+ S
form in Table I where M and S represent the mean and the
standard deviation of those values respectively.

Table I shows the results. Our framework MMFL (both
static and dynamic versions) achieves the highest accuracy
and F'1 score for both the CICDDo0S2019 and CICIDS2017
datasets. For example, when tested on CICDD0S2019 dataset,
the accuracy of MMFL (static) is generally more than 30%
higher than the other baselines. The improvement on the F'1
metric is even more significant. MMFL (static) achieves a
dramatic improvement with an F'1 score that almost doubles
(CICIDS2017) and triples (CICDD0S2019) the F'1 scores of
all the other methods.

Note that the FedAvgM is designed to reduce the impact
of data/class imbalance. Thus, it can improve the FedAvg,
as shown in Table I. However, our MMFL method still
dramatically outperforms the FedAvgM method.

The NonFed baseline shows the overall best performance
which denotes that the MLP model fits with local training
data reasonably well. Note that this is not a FL. method. Each
client’s model is not tested against any instance of attack
types not in that client’s training data. This is an ideal but not
realistic setting, thus the good performance cannot be matched
in a real FL setting. The Centralized baseline provides an
upper bound for all the FL. methods.

Among all the FL. methods, MMFL is the only method that
achieves comparable performance to the Centralized method.

E. Impact of Parameters

We conducted experiments to assess the effect of the
number of clients and the size of unknown attack traffic on
the performance of our framework.

Authorized licensed use limited to: New Mexico State University. Downloaded on July 09,2024 at 22:27:17 UTC from IEEE Xplore. Restrictions apply.

b 0.8 ~— = *

-~ ¥

>

£ 0.6 —

3 7 SE=X=----

8 / —e— Static accuracy =&~ Dynamic accuracy

<04| —— Static F1 —& Dynamic F1
1015202530 50 100

Number of clients

Fig. 3: Performance comparison with different numbers of
clients on CICDD0S2019 dataset

1) Impact of varying the number of clients: In this ex-
periment, we used the CICDD0S2019 dataset and varied the
number of clients from 10 to 100 because existing works [2]—
[5] generally used 10-20 clients in FL for IDS setting. In
Figure 3, we depict the performance (i.e., accuracy and F'1)
of MMFL (static) and MMFL (dynamic) with an increasing
number of clients. From Figure 3, we found that with ten
clients, the MMFL (static) and the MMFL (dynamic) ob-
tained 5% and 12% lower accuracy compared to the scenario
where there are 20 clients. This is because with the ten-
client scenario each cluster may only have one model to
aggregate and this will make it difficult for the global model to
converge. As the number of clients increases, the performance
of MMFL becomes stable.

0.8 0.8 e ————®
//_' ’/’
-
’/
= 0.6 0.61 ¢ T A
= ==
g e
=1
304 0.4 e
< /
4
0.2 —e— Static accuracy 0.2 ,/ —& - Dynamic accuracy
. —%— Static F1 <l L —a= Dynamic F1
0150 02 04 o6 %100 02 04 06

Percentage of unknown attack traffic Percentage of unknown attack traffic

(a) Static framework (b) Dynamic framework

Fig. 4: Performance comparison with different unknown-
attack sample size on CICDDo0S2019 dataset

2) Impact of different unknown attack sample size: The
size of the unknown attack traffic U for specific clients
affects the model performance. We vary the percentage of
unknown attack traffic instances over the total number of
attack instances in each client k. The results in Figure 4 show
that the performance improves with the increase in the size
of U. However, we cannot keep increasing the size of U just
to improve the prediction accuracy because the dataset that
is sent to each client to generate unknown attack instances
(Line 3 in Algorithm 1) may not be sufficient to sample a
large U. Therefore, selecting an appropriate unknown attack
sample size for clients is crucial. After conducting extensive
experiments, we have determined that an unknown attack
sample size of 0.4 balances the two factors well.

V. CONCLUSIONS

This paper introduced a multi-model-based FL framework,
MMFL and a new data augmentation strategy to facilitate the

270

federated learning process in IDS for scenarios where clients
do not have instances of all attack types. Our framework
creates multiple global models for different groups of clients
determined by a simple yet effective clustering algorithm. It
utilizes the data augmentation method to address the local
class imbalance issue in clients. Our extensive experiments
on FL-based IDS tasks have demonstrated that MMFL out-
performs the baselines. In the future, we aim to enhance the
robustness of MMFL by exploring alternative data sharing
methods from server to client for data augmentation and
considering the existence of malicious clients.

ACKNOWLEDGMENT

This work has been sponsored by the DEVCOM Analysis
Center and accomplished under Cooperative Agreement Num-
ber WO11NF-22-2-0001. This work has also been partially
funded by the Department of Energy, DE-SC0023392 and
NSF #1914635.

REFERENCES
(1]

McMahan Brendan, Moore Eider, and et al. Communication-efficient
learning of deep networks from decentralized data. In Artificial
Intelligence and Statistics, pages 1273-1282. PMLR, 2017.

Noor Ali Al-Athba Al-Marri, Bekir S Ciftler, and Mohamed M Ab-
dallah. Federated mimic learning for privacy preserving intrusion
detection. In IEEE (BlackSeaCom), pages 1-6, 2020.

Li Jianhua, Lyu Lingjuan, and et al. FLEAM: A federated learning
empowered architecture to mitigate DDoS in industrial IoT. IEEE
Transactions on Industrial Informatics, 18(6):4059-4068, 2021.
Qiaofeng Qin, Konstantinos Poularakis, Kin K Leung, and et al. Line-
speed and scalable intrusion detection at the network edge via federated
learning. In IFIP Networking Conference, pages 352-360. IEEE, 2020.
Viraaji Mothukuri, Prachi Khare, Parizi Reza M, and et al. Federated-
learning-based anomaly detection for IoT security attacks. [EEE
Internet of Things Journal, 9(4):2545-2554, 2021.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the
effects of non-identical data distribution for federated visual classifica-
tion. arXiv preprint arXiv:1909.06335, 2019.

Wang Lixu, Xu Shichao, and et al. Addressing class imbalance in
federated learning. In AAAI, volume 35, pages 10165-10173, 2021.
Moming Duan and et al Fedgroup: Efficient federated
learning via decomposed similarity-based clustering. In IEEE
ISPA/BDCloud/Social Com/SustainCom, 2021.

Avishek Ghosh, Jichan Chung, and et al. An efficient framework for
clustered federated learning. NeurIPS, 33:19586-19597, 2020.

Long Guodong and et al. Multi-center federated learning: clients
clustering for better personalization. WWW, 26(1):481-500, 2023.
Neelkamal Bhuyan and Sharayu Moharir. Multi-model federated
learning. In Int’l Conf. on COMSNETS, pages 779-783. IEEE, 2022.
Iman Sharafaldin, Arash Habibi Lashkari, Saqib Hakak, and Ali A
Ghorbani. Developing realistic distributed denial of service (DDoS)
attack dataset and taxonomy. In /CCST, pages 1-8. IEEE, 2019.
Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. To-
ward generating a new intrusion detection dataset and intrusion traffic
characterization. ICISSp, 1:108-116, 2018.

Cao Xiaoyu and et al. Provably secure federated learning against
malicious clients. In AAAI volume 35, pages 6885-6893, 2021.
Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. Local
model poisoning attacks to Byzantine-Robust federated learning. In
29th USENIX Conf. on Security Symposium, pages 1605-1622, 2020.
Sai Praneeth Karimireddy and et al. Byzantine-robust learning on
heterogeneous datasets via bucketing. arXiv:2006.09365, 2020.
Hussain Faisal, Abbas Syed Ghazanfar, and et al. IoT DoS and DDoS
attack detection using ResNet. In INMIC, pages 1-6. IEEE, 2020.
Osama Faker and Erdogan Dogdu. Intrusion detection using big data
and deep learning techniques. In ACM SE Conf., pages 86-93, 2019.
Daniel J Beutel, Taner Topal, and et al. Flower: A friendly federated
learning research framework. arXiv preprint arXiv:2007.14390, 2020.

(3]

[4

(51

[13]

Authorized licensed use limited to: New Mexico State University. Downloaded on July 09,2024 at 22:27:17 UTC from IEEE Xplore. Restrictions apply.

