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Abstract 
We report a systematic investigation of anisotropic magnetocaloric effects in single crystal Cr2Te3. 
Single crystal samples are synthesized by chemical vapor transport and characterized by X-ray and 
Laue diffraction methods. The maximum magnetic entropy change −ΔSMmax is 4.50 J kg−1 K−1 for 
the easy c-axis (3.36 J kg−1 K−1 for the hard axis along ab-plane) and the relative cooling power 
RCP is 296.7 J kg−1 for the easy c-axis (183.84 J kg−1 for the hard axis along ab-plane) for a 
magnetic field change of 9 T near the Curie temperature. The magneto-crystalline anisotropy 
constant Ku is estimated to be 580.12 kJ m−3 at 140 K, decreasing to 148.60 kJ m−3 at 168 K. 
Meanwhile, the maximum of the rotational magnetic entropy change -ΔSMR(T, H) between the c-
axis and the ab-plane is about 1.14 J kg−1 K−1 for magnetic-field change of 9 T. The critical 
exponents are estimated by analyzing magnetocaloric effects, which indicate 2D-Ising type 
magnetic system. The accuracy of estimated critical exponents is verified by scaling analysis. The 
maximum magnetic entropy change −ΔSMmax ∼5.25 J kg−1 K−1 (along the c-axis) and the 
corresponding adiabatic temperature change ΔTad ∼3.31 K (along the c-axis) are estimated by 
analyzing heat capacity measurements with a magnetic field up to 9 T. 

 

Introduction  
After the important breakthrough of long-range intrinsic magnetism down to the monolayer limit 
in two-dimensional materials, transition-metal chalcogenides have received renewed interest from 
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the academic community because a few of these binary phases may describe room temperature 
ferromagnetism down to monolayer limit which could be suitable for low dimensional spintronics 
applications 1. The remarkable potential of device applications lies in the tunable correlation 
between the structure and physical properties of ultrathin layers of transition metal 
chalcogenides.2–7. Among these transition metal chalcogenides, chromium telluride (CrxTey) 
binary phases have gained significant attention because of their potential applications in 
spintronics. Previously, many binary phases of CrxTey (such as, CrTe8, CrTe29,10, Cr2Te311–14, 
Cr3Te415, Cr5Te616 , Cr0.62Te 17, Cr5Te818,19) have been studied to explore their structure-property 
relationships. Some Cr-Te binary phases exhibit near room temperature ferromagnetic properties 
inbulk and layered forms8,15,16,20. Reportedly, these compounds exhibit ferromagnetic properties, 
with Curie temperatures (TC) ranging from 160 to 340 K, depending on their chromium 
concentration21. In these compounds, the c-axis features alternating stacks of chromium-deficient 
and chromium-rich layers. The vacancy within the chromium content significantly influences both 
their structure and magnetic properties.22. Recently, there has been a report of critical behavior and 
magnetocaloric effect in Se-doped CrTe where a very high relative cooling power (RCP) and a 
large change of magnetic entropy are observed23. There is also another report of the evolution of 
this NiAS-type structure with Se content24.  

In this article, anisotropic magnetocaloric properties of single crystal Cr2Te3 are reported. The 
magnetic properties of bulk Cr2Te3 and the correlation between their structural and magnetic 
properties have been reported before25–28. Recently, there have been more studies on Cr2Te3 in both 
bulk and layered forms11–14. The neutron diffraction study depicts ferromagnetic ordering of Cr 
moments in Cr2Te3 along the c-axis and the volume of the unit cell decreases as the temperature 
decreases 27,29. The average calculated magnetic moment is 2.7 μB/Cr atom in this material, which 
is significantly smaller than that of an isolated Cr3+ ion30. According to John Goodenough31, this 
reduction of the effective magnetic moment may originate from a spiral antiferromagnetic spin 
structure. However, a different approach suggested by A. F. Anderson et al.30 indicates that this 
phenomenon may be due to magnetic moment canting. Yao Wen et al. reported that the Curie 
temperature of Cr2Te3 can be tuned close to room temperature (~280 K) by decreasing sample 
thickness to 1 or 2 unit-cell limits, which is also supported by the anomalous Hall effect 
measurement14. Fang Wang et al. reported the organic solution phase synthesis of Cr2Te3 nanorods 
with ultra-high coercivity11. Roy et al. have grown Cr2Te3 thin films by molecular beam epitaxy 
which show large perpendicular magnetic anisotropy12,13.  

However, our goal here is to explore the anisotropic magnetocaloric properties of single crystal 
Cr2Te3 which has not been reported before. Magnetic refrigeration using the magnetocaloric effect 
(MCE) has a huge potential to meet the worldwide demand for environmentally friendly, and 
energy-efficient thermal management32,33. As Cr2Te3 exhibits a second-order magnetic phase 
transition, it exhibits a change in magnetic entropy over a broad temperature range, and it does not 
exhibit any magnetic or thermal hysteresis. Due to the 2nd order nature of its magnetic phase 
transition, this material may be suitable for potential magnetocaloric applications because there is 
a gradual transition from the low-temperature phase to the high-temperature phase. 
In contrast, in a 1st order magnetic phase transition there is a temperature range where both phases 
coexist34. Till date, anisotropic magnetocaloric properties have been reported in other layered 
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magnetic materials, such as CrI335, CrCl336,37, CrSbSe338, and Cr4Te520. There are reports on 
estimating critical exponents by analyzing the anisotropic magnetocaloric effects in some 
materials, such as Cr2Ge2Te639 and Cr5Te819.  

Here, we report the anisotropic magnetocaloric properties of a single crystal Cr2Te3 sample by 
studying field-dependent isothermal magnetization along its c-axis and ab-plane. By analyzing the 
magnetocaloric effects (MCE), we show there is a 2nd order (paramagnetic to ferromagnetic) 
magnetic phase transition. Moreover, by estimating its magnetocaloric effects as a function of field 
and temperature, we calculate its full width at half maximum (FWHM), and refrigerant capacity 
or relative cooling power (RCP). With the help of these physical parameters, the critical exponents 
related to its magnetic phase transition are estimated. We then verify the accuracy of our estimated 
critical exponents by scaling analysis. Finally, we estimate adiabatic temperature change and 
change of magnetic entropy from the temperature and field dependent heat capacity measurements.  

Sample Synthesis and Phase Characterizations 
Single crystal samples are synthesized by the chemical vapor transport (CVT) method. These CVT 
experiments are performed in a Thermo Scientific Lindberg Blue M three-zone furnace equipped 
with UP150 model program controllers. Cr (Alfa Aesar, powder, -100+325 mesh, 99.99% metals 
basis) and Te (Thermo Scientific, shot, 2-5 mm diameter, 99.9999% metals basis) are used as 
received without further purification. Stoichiometric amounts of Cr and Te are combined in a fused 
quartz tube. Between 35-50 mg of solid iodine is used as the vapor transport agent. The iodine is 
added to the tube, which is then sealed under vacuum. The sealed tube is, at minimum, long enough 
to equal the distance between two zones of a three-zone furnace. This tube is then placed inside 
the three-zone furnace. All three zones are heated up at a rate of 100oC per hour, with the charge 
zone reaching 900oC and the crystallization zone reaching 800oC. This temperature gradient is 
held for one week, then the furnace is cooled at a rate of 100oC per hour to room temperature.  
 
Room temperature powder x-ray diffraction (XRD) measurements were conducted at the Pair 
Distribution Function (PDF) beamline (28-ID-1) of the National Synchrotron Light Source-II. We 
collected our data on grounded single crystal samples in capillary transmission geometry using a 
PerkinElmer amorphous silicon detector placed 1000 mm downstream from the sample 17. The 
setup utilized a 74.5 keV (λ = 0.1665 Å) x-ray beam. Two-dimensional diffraction images were 
radially integrated to obtain intensity vs. 2-theta data using the pyFAI software package. The 
Rietveld refinement was conducted by utilizing the GSAS-II software package40. Figure 1 (a) 
shows the Rietveld fit to experimental data using the symmetry space group P3$1c, which agrees 
well with previous crystallographic studies on this material27,41. This is a different space group 
from the reported Cr0.62Te phase symmetry space group P3$m1 which is also the same as the 
reported symmetry space group of Cr5Te8 phase17,42. The refined unit cell parameters are a, b = 
6.7920(2) Å, and c = 12.0887(2) Å. The refined fractional coordinates, occupancies of Cr and Te 
sites, and the isotropic thermal displacement parameters (Uiso) are shown in the Supporting 
Information (Table S1). All Rietveld refinement fit parameters are also included in the Supporting 
Information (Table S2). Figure 1 (b) and (c) shows the refined crystal structure of trigonal Cr1.77Te3 
generated using the Vesta software package43. The Cr deficient site, 2c (0.3333, 0.6667, 0.2500) 
is shown with half-white half-purple balls. We believe that the Cr deficient sites are not correlated, 
rather they are randomly distributed throughout the lattice giving rise to short-range order. The 
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Laue diffraction is used to determine the crystallographic axes of the single crystal sample using 
structural parameters determined from the Rietveld refinement, which is shown in Figure 1(d). A 
good agreement between experimental and simulated Laue data indicates accuracy of our 
estimated crystal structure and phase by Rietveld refinement. The refined structural model well-
agrees with literature confirming the synthesis of the correct compound.  
 
 

Results and discussions  
Figure 2 shows temperature (T) dependent magnetization (M) along the c-axis and parallel to the 
ab-plane (out-of-plane and in-plane, respectively) for a single crystal sample with an application 
of 0.1 T magnetic field (H). These M(T) curves demonstrate an anisotropic magnetic response 
when fields are applied along two distinct directions for temperatures below the transition 
temperature. M(T) for field parallel to the ab-plane is shown in the inset of Figure 2 for clarity. 
Along the c-axis, a rapid upturn occurs around 170 K upon cooling, signifying a paramagnetic to 
ferromagnetic phase transition. The magnetization along the c-axis is about 13 times greater than 
that along the ab-plane. The M(T) measurements point to a large uniaxial magnetic anisotropy in 
Cr2Te3. The difference between zero-field-cooling (ZFC) and field-cooling (FC) data below ~30 
K is due to random orientation of finite-size magnetic domains44. A decrease of magnetization for 
magnetic field parallel to the ab-plane below the transition temperature in Fig. 2 is reported before 
for CrSiTe345, CrI346, Cr5Te847,48, etc. and explained as an effect of increasing magnetic anisotropy 
with decreasing temperature46. Temperature dependence of magnetic anisotropy of Cr2Te3 is 
discussed below. 

To confirm the nature of the paramagnetic-to-ferromagnetic phase transition, we have calculated 
the dM/dT vs T which is shown in Figure 3(a). This dM/dT vs T graphs show negative peaks for 
the field along both directions which give us an approximate phase transition temperature ~170 K, 
and this is in good agreement with the previously reported transition temperature of Cr2Te3 
sample49. The temperature-dependent inverse magnetic susceptibility curves are shown in Figure 
3(b). The quasilinear portion in the paramagnetic phase has intercepts in the positive x-axis for the 
field along both directions (along the c-axis and parallel to the ab-plane) which indicates a 
paramagnetic-to-ferromagnetic phase transition. To calculate the Curie-Weiss temperature, the 
linear portions of the paramagnetic region of both curves are fitted with the equation 1/χ = (T-θ)/C. 
From these fits, we get the Curie-Weiss temperature θC = +194.290 ± 2.333 K and +183.138 ± 
0.634 K along the c-axis and parallel to the ab-plane, respectively. These are consistent with 
previous studies of Cr2Te3 which have shown ferromagnetic ordering down to the monolayer 
limit49 and are also confirmed by the neutron diffraction studies30.  

To further explore the field-dependent magnetization along the easy and hard axis, we performed 
isothermal field-dependent magnetization at 2 K, as shown in Figure 4. The M(H) at 2 K along the 
c-axis saturates at ~ 0.35 T field but does not saturate along the ab-plane even at 9 T field. The 
saturated magnetic moment at 2 K for the H || c-axis is 2.25 µB/Cr. The measured (unsaturated) 
magnetic moment at 2 K for H || ab-plane is 2.14 µB/Cr at 9 T field. These results (Figures 2 and 
4) confirm that the c-axis exhibits the magnetic easy axis of the single-crystal Cr2Te3 sample. 
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To further explore magnetic anisotropy properties, we performed field-dependent isothermal 
magnetization studies around its phase transition temperature (~170 K). Figures 5(a) and 5(b) 
describe isothermal magnetizations from 140 to 210 K at 2 K interval for fields up to 9 T applied 
along the c-axis and parallel the ab-plane, respectively. All magnetic and heat capacity studies are 
performed using a Quantum Design Physical Property Measurement System (PPMS) 9 Tesla 
Dynacool model. There is a clear difference between field-dependent magnetization curves along 
the c-axis and ab-plane, particularly in the low-magnetic-field region. Below TC, the magnetization 
along the c-axis tends to saturate for small fields, whereas it increases slowly with applied magnetic 
field along the ab-plane. This points to the presence of large magnetic anisotropy in Cr2Te3. The 
micromagnetic energy density can be expressed as EA = Ku sin2(θ − φ)50, where Ku is the uniaxial 
magneto-crystalline parameter, θ is the orientation of the preferred magnetization, ϕ is the 
orientation toward which the magnetization point. When θ − ϕ = 90º (i.e., H || ab-plane), the 
magneto-crystalline anisotropy is maximum. The uniaxial anisotropy parameter Ku is related to 
the saturation field HS and saturation magnetization MS by 2Ku/MS = μ0HS, where μ0 is the vacuum 
permeability. We estimate MS by using a linear fit of M(H) curves for field parallel to the ab-plane 
above 6 T. The saturation magnetization monotonically decreases with increasing temperature. We 
then determined HS from the intersection point of two linear fits to isothermal M(H) curves for H 
|| ab-plane: One corresponds to fitting the saturated regime at a high field, while the other 
corresponds to fitting the unsaturated linear regime at the low magnetic field. This procedure is 
explained in detail in the anisotropic magnetic entropy change studies of VI351 and CrSbSe338. 
Figure 6 shows the temperature-dependent magnetic anisotropy, along with the temperature-
dependent saturation magnetization and saturation magnetic field in the Figure 6 insets. The 
estimated Ku decreases monotonically from 580.1196 kJ m−3 at 140 K to 150.6002 kJ m−3 near TC. 
The observed decrease in Ku with increasing  
temperature arises exclusively from local spin clusters fluctuating randomly around the 
macroscopic magnetization vector, activated by nonzero thermal energy 52,53. This rapid increase 
of magnetic anisotropy with decreasing temperature could explain the decrease of magnetization 
for H || ab-plane with decreasing temperature below the phase transition,46 as seen in Figure 2.  
To study anisotropic MCE in the single-crystal Cr2Te3 system, we estimate changes in magnetic 
entropy along different axes in this material.  The change of magnetic entropy -ΔSM (T, H) is 
defined as the following33,54: 

()!(+, -) = 0 1"#(%,')"' 2 3-
'

)
  (1a) 

Using the Maxwell’s relation ∂S(T, H)/∂H = ∂M(T, H)/∂T, this can be expressed as following: 

()!(+, -) = 0 1"!(%,')"% 2 3-
'

)
						  (1b) 

For isothermal magnetization measured at small discrete magnetic fields and temperature intervals, 
-ΔSM(T, H) is the isothermal change of entropy in the interval of the magnetic field from 0 to H 
and can be approximated as 
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The calculated −ΔSM values as a function of temperature in various fields up to 9 T applied along 
the c-axis and parallel to the ab-plane are shown in Figures 7(a) and 7(b), respectively. All these 
−ΔSM(T, H) curves show a pronounced peak around the phase transition temperature, and the peak 
asymmetrically broadens on both sides with increasing magnetic field. However, it is clear from 
these two figures that the -ΔSM curves along the ab-plane are much more asymmetric in 
comparison to -ΔSM curves along the c-axis. Also, −ΔSM reaches a maximum of	∼4.5 J kg−1 K−1 
along the c-axis and ∼3.36 J kg−1 K−1 along the ab-plane. The small negative value of magnetic 
entropy change is observed in the case of H || ab-plane at low magnetic field values below 
transition temperature. However, all the values are positive along the c-axis. This kind of behavior 
is reported before in CrI3 35 and VI351 and explained as an effect of the competition between the 
temperature dependence of magnetization and magnetic anisotropy. In Cr2Te3, magnetic 
anisotropy increases as temperature decreases (Figure 6), while magnetization for H || ab-plane 
exhibits the opposite trend below the transition temperature (Figure 2). The rotational magnetic 
entropy change, ΔSRM determined by rotating the field from the c-axis to the ab-plane can be 
expressed as: 

ΔSRM = SM(T, Hc) - SM(T, Hab) = ΔSM(T, Hc) - ΔSM(T, Hab)             (3) 

Figure 7(c) shows temperature-dependent rotational magnetic entropy change for different fields. 
The anisotropy is gradually suppressed at higher fields, as seen in Figure 7(c). Interestingly, it 
splits into many peaks (in the scattered pattern) on both sides of the TC for a field above 3 T for 
single-crystal Cr2Te3. Up to 3 T magnetic field, there is a visible peak near TC. But above 3 T, there 
is a discrepancy in the pattern of the curves, which is an indication of decreasing anisotropy due 
to the increasing magnetic field.  

To further explore the nature of this magnetic phase transition, we use a proposed universal scaling 
analysis55 to analyze our -ΔSM data. We first normalize all −ΔSM curves against the respective 
maximum −ΔSMmax value, namely, ΔSM/ΔSMmax. We then rescale the temperature T below and 
above TC, as defined in the following equations: 

θ− = (Tpeak − T)/(Tr1 − Tpeak), for T < Tpeak,    (4) 

θ+ = (T − Tpeak)/(Tr2 − Tpeak), for T > Tpeak,    (5) 

where θ± are the rescaled temperatures, Tr1 and Tr2 are temperatures of two selected reference 
points corresponding to -ΔSM(Tr1, Tr2) = -ΔSMmax/2. As shown in Figures 8(a)-(b), all −ΔSM(T, H) 
curves for different fields collapse into a single curve, implying a second-order magnetic phase 
transition in single-crystal Cr2Te3. In Figure 8(b), some -ΔSM(T, H) curves do not collapse into the 
scaled curve for a narrow window of the scaled temperature because of the highly asymmetric 
nature of these curves in this region. This type of phenomenon has been reported before for VI3 56. 

For a material undergoing a second-order magnetic phase transition57, the various parameters of 
ΔSM(T) curves obey different field-dependent power laws, as following58,59:  

|ΔSMmax| = a Hn,   (6) 
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δTFWHM = m Hb,   (7) 

RCP = d Hc,    (8) 

Here ΔSMmax is the maximum value of -ΔSM, δTFWHM is the full width at half maximum of -ΔSM 
(T, H) curve and RCP is the relative cooling power. The RCP determines the cooling efficiency of 
a refrigerant and corresponds to the quantity of heat that can be transferred between the cold and 
hot sections of the refrigerator in an ideal thermodynamic system 32,55. This process plays a vital 
role in magnetic refrigerators. RCP is expressed as: 

RCP = ΔSMmax × δTFWHM   (9) 

Therefore, |ΔSMmax|, RCP, and δTFWHM are all related to the applied magnetic field with power law 
relation, as expressed in equations (6)-(8). Here exponents c, n, and b are related to the critical 
exponents β, γ, and δ, by the following relations55: 

c = 1 + 1/δ,       (10a)  

b = 1/Δ=1/βδ,      (10b) 

  7(+.) = 1 + 1/,0/122 = 1 + 1 9: ;1 − 0
/=.   (10c) 

Here, β, γ, and δ are called critical exponents of a magnetic phase transition60. Therefore, by 
analyzing the magnetocaloric effect (MCE) we will be able to estimate these critical exponents. 
The critical exponents obtained from the MCE analysis are reliable because it is a direct method 
61,62. These critical exponents are also related by the Widom’s law: δ = 1+γ/β63. Figures 9(a) and 
9(b) represent the field dependence of −ΔSMmax and RCP for the field along the c-axis and parallel 
to the ab-plane, respectively. The calculated values of RCP are approximately 296.958 and 183.889 
J kg−1 field along the c-axis and parallel to the ab-plane, respectively, with a magnetic field change 
of 9 T. Fitting of −ΔSMmax gives n(TC) = 0.651±0.009 and 1.029±0.032 for H || c-axis and H || ab-
plane, respectively [Figures 9(a)-(b)]. Among these values, the n value along the c-axis is very 
close to 0.667 which is the mean-field model (β = 0.5, γ = 1) n value. Fittings of the RCP data give 
us c = 1.125±0.011 and 1.589±0.017 [Figures 9(a)-(b)], which then yield δ = 7.994 and 1.699 for 
H || c-axis and H || ab-plane, respectively.  

Similarly, Figures 10(a)-(b) show the magnetic field dependent δTFWHM for field applied along the 
c-axis and parallel to the ab-plane, respectively. The estimated values of δTFWHM are 65.914 K and 
54.682 K for a magnetic field change of 9 T field along the c-axis and parallel to the ab-plane, 
respectively. These field dependent δTFWHM curves fit well with equation (7) and fittings of the 
δTFWHM curves give b = 0.529±0.005 and 0.648±0.004 field along the c-axis and parallel to the ab-
plane, respectively [Figures 10(a)-(b)]. Then using equation (10b) we estimate Δ = 1.889 and 1.544 
field along the c-axis and parallel to the ab-plane respectively. After solving all these equations, 
we estimate β = 0.236, γ = 1.652, and δ = 7.994 for H || c-axis whereas we estimate β = 0.909, γ = 
0.635, and δ = 1.699 for H || ab-plane. The estimated critical exponent values for fields applied 
along the ab-plane are different from those estimated values for field along the c-axis. We will 
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later verify their reliability by universal scaling analysis. Similar differences in estimated critical 
exponent values for two axes have been reported before for VI356. Table I shows our estimated 
critical exponent values with other reported and numerically estimated critical exponent values. 

For a material undergoing a second-order magnetic phase transition, the maximum magnetic 
entropy change follows a power law dependence with applied magnetic field: −ΔSmaxM = a Hn, 
where a is a constant and the exponent n is associated with the magnetic order. This can be 
expressed in another way n(T, H) = d ln|ΔSM|/d ln(H). Using this expression, all n(T) curves for 
each magnetic field can be estimated. Figure 11 describes the n(T) for various fields. All n(T) 
curves follow a pattern described next. At low temperatures, well below TC, n(T) is about 1. On 
the other side, well above TC, n is close to 2 because of the Curie-Weiss law. At T = TC, n(T) has a 
minimum. It could be found that with a field change of 9 T the n values are 1.09 and 1.81 far below 
and above TC, respectively. This behavior perfectly aligns with the universal law of n59. With a 
reduction of magnetic field, the n value remains nearly unchanged at and above the transition 
temperature. However, it deviates at a lower temperature which might be due to the magnetic 
anisotropy effect35.  

For a second-order magnetic phase transition, -ΔSM vs. T corresponding to different magnetic 
fields can be rescaled using the scaled equation of state: H/Mδ = f(ε/M1/β), where δ and β are critical 
exponents34,64. Here the reduced temperature ε = (T – TC)/TC). The -ΔSM(T, H) can be rewritten in 
another form: 

∆)!(+, -) = -
#&'
∆ 	? ; 3

'# ∆)
=.    (11) 

Here f and ? are two scaling functions. Figures 12(a)-(b) show −ΔSM/H(1−α)/Δ vs. ε/H1/Δ for H || c-
axis and H || ab-plane, respectively. This scaled equation of state suggests that, with the correct 
critical exponents, all rescaled curves under different fields and temperatures should converge into 
two universal curves when the field is applied along two directions. The accurate collapse and 
superimposition of these curves validate the credibility of the critical exponents estimated by 
analyzing the magnetocaloric effects.  

The estimated critical exponent values are listed in Table I along with other theoretical and 
experimental values. Taroni et al. have shown that for 2D magnets the critical exponent β is within 
a range of 0.1 ≤ β ≤ 0.2565. Our estimated β value lying in this range indicates that Cr2Te3 might 
behave like a 2D magnetic material. We also find that β is very close to that of the tri-critical mean-
field model, while γ value approaches the 2D-Ising model value. All these imply this Cr2Te3 cannot 
be simply described as the 2D-Ising type system because multiple magnetic interactions are present 
in this material.  

We can use the critical exponents to estimate the range of magnetic exchange interaction in Cr2Te3. 
For a homogeneous magnet, the universality class of the magnetic phase transition is contingent 
on the exchange distance J(r). Theoretically, Fisher et al. considered this type of magnetic ordering 
as an attractive interaction of spins66. A renormalization group theory analysis indicates that the 
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magnetic interactions decay with distance r as J(r) ∼ 1/r(d+σ), where d is the spatial dimensionality, 
and σ > 0. Moreover, the critical exponents γ can be expressed as following: 

@ = 1 + 4
3 B
7 + 2
7 + 8E(F +

8(7 + 2)(7 − 4)
34(7 + 8)4 	× H1 +

2I;3 2: =(77 + 20)
(7 − 4)(7 + 8) L (F4							(12) 

Here I ;54= = 3 − 0
6 ;

5
4=

4
, Δσ = σ – d/2, and n is the spin dimensionality. Using spatial dimension 

d = 2 in equation (12), our estimated σ values are 1.5403, 1.4625, and 1.4267 for the spin 
dimensionality n = 1, 2, and 3, respectively. From the correlation length critical exponent υ = γ/σ 
we estimate values of the critical exponent α = 2 − υd ≈ −0.1452, −0.2592, and -0.3167 for n = 1, 
2, and 3, respectively. Moreover, applying the Rushbrooke inequality relation60, we evaluate α = -
0.1248 from our estimated β and γ values. This α = -0.1248 value is very close to the above-
estimated value of α = -0.1452 for n = 1 and d = 2.  

For the spatial dimension d = 3, our computed σ values using equation (12) are 2.1467, 2.2213, 
and 2.3511 for n = 1, 2, and 3, respectively. After following the above-mentioned procedure, we 
calculate α = -0.3089, -0.2313, and -0.1082 for n = 1, 2, and 3, respectively. The calculated α values 
are not a good match with the calculated α = -0.1248 from Rushbrooke’s inequality relation60 using 
the critical exponents values estimated from the magnetocaloric effect (MCE). This is a 
confirmation that critical exponents estimated for Cr2Te3 from MCE are close to those for the 2D 
magnetic system with spin dimensionality n = 1. Moreover, estimated σ < 2 shows the existence 
of a long-range magnetic ordering in this material. As for a 2D system, long-range magnetic 
ordering exists due to the presence of strong magneto-crystalline anisotropy which can reduce 
thermal fluctuation67.  

For Cr2Te3, c-axis is the magnetic easy-axis, as discussed before. For H || ab-plane, the estimated 
critical exponent values are β = 0.9091, γ = 0.6353, and δ = 1.6989. These values do not fit well 
with any known theoretical model values (Table I). Moreover, from the Rushbrook’s formula, we 
calculate α = 2 - 2β - γ = -0.4535 for H || ab-plane. To identify the spatial and spin dimensionality 
of our sample, we use this γ = 0.6353 value in Equation 12 for various combinations of spatial and 
spin dimensions (such as, d:n = 3:3, 3:2, 3:1, 2:3, 2:2, 2:1), which yield imaginary σ values for all 
those combinations. Hence, it is not feasible to perform above mentioned analysis on our system 
from the estimated critical exponent values for H || ab-plane.  

Cr2Te3 is not a layered van der Walls (vdW) material like CrI31, Cr2Ge2Te61, etc. For Cr2Te3, 
ferromagnetism originates from the magnetic ordering of Cr moments. The neutron diffraction 
studies show ferromagnetic ordering of Cr magnetic moments along the c-axis29,30. In this material, 
there are covalently bonded Cr atoms between layers of Cr-Te atoms, as shown in Figure 1(b) 22,68. 
This crystal structure could explain the two-dimensional nature of magnetism of Cr2Te3 as seen in 
our analysis.  

Temperature dependent heat capacity Cp of a single crystal Cr2Te3 sample for different magnetic 
fields (up to 9 T) applied along its c-axis is shown in Figure 13(a). A sharp λ-type peak is observed 
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at ~171 K in zero magnetic field Cp which indicates a paramagnetic to ferromagnetic phase 
transition. With an increase of the magnetic field, the peak’s height is reduced, and the width is 
broadened. The peak also shifts toward the higher temperature with an increasing magnetic field. 
The estimated heat capacity change ΔCp = Cp(T, H) – Cp(T, 0) as a function of temperature for 
different fields is plotted in Figure 13(b). It should be noted that ΔCp < 0 for T < TC and ΔCp > 0 
for T > TC and it changes rapidly from negative to positive value at TC. This rapid upturn shown 
in Figure 13(b) confirms a paramagnetic to ferromagnetic phase transition in this material35. The 
total entropy S(T, H) can be determined from heat capacity data by the following relation:   

)(+, -) = 0 7*(%,')
% 3+

%

)
	    (13) 

Here it is assumed that the lattice and electronic contributions do not dependent on applied 
magnetic field69. In an adiabatic magnetization process, the magnetic entropy change ΔSM should 
be expressed as ΔSM(T, H) = ΔSM(T, H) − ΔSM(T, 0).  

Next, we are going to estimate the adiabatic temperature change ΔTad for various temperatures 
around the magnetic phase transition. The adiabatic temperature change is defined as change of 
temperature of a material during the adiabatic magnetization/demagnetization process. The 
adiabatic temperature change due to the change of magnetic field can be estimated from the 
following relation: ΔTad(S, H) = T(S, H) − T(S, 0), where T(S, H) and T(S, 0) are the temperatures 
in the field H ≠ 0 and H = 0, respectively, at a constant entropy34. Figures 13(c)-(d) show 
temperature-dependent ΔTad and -ΔSM, respectively, determined from heat capacity data for 
various applied fields. All these curves reach the maximum near the Curie temperature and 
increase with the increasing magnetic field. In Figure 13(c), with the increase of the magnetic field, 
ΔTad curves have broadened and their peaks have shifted to higher temperatures just like 
temperature-dependent specific heat graphs. It is worth noting that peaks of ΔTad curves have 
shifted from 171 K at 1 T to 175 K at 9 T magnetic field. The maximum of −ΔSM and ΔTad curves 
are 5.25 J kg−1 K−1 (whereas 4.5 J kg-1 K-1 from isothermal magnetization) and 3.31 K, respectively, 
for 9 T applied magnetic field.  

Conclusion  

In summary, we have systematically studied the anisotropic magnetocaloric effects (MCE) of 
single crystal Cr2Te3. We have grown these Cr2Te3 samples by CVT and characterized by 
synchrotron x-ray diffraction. The second-order nature of the paramagnetic-to-ferromagnetic 
phase transition near TC ≈ 170 K has been verified by the scaling analysis of magnetocaloric effect. 
The critical exponents β, γ, and δ are estimated by analyzing the magnetocaloric effect, and the 
scaling analysis of temperature and field-dependent magnetic entropy change confirms the 
accuracy of our estimated critical exponents. A large magneto-crystalline anisotropy constant Ku 
is estimated to be 580.1196 kJ m−3 at 146 K. Using the heat capacity measurements, we estimate 
adiabatic temperature ΔTad = 3.53 K for 9 T magnetic field. Our analysis shows that Cr2Te3 behaves 
like a 2D Ising system with long-range magnetic ordering. 
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Table I: Estimated critical exponent values of Cr2Te3, including other experimental and theoretical 
critical exponent values.  

 

Composition Techniques β γ δ 
Cr2Te3  
(this work) 

Magnetocaloric 
Effect (MCE)  

0.236 1.652 7.994 

Theory70 Mean-field model 0.5 1 3 

Theory71 3D Heisenberg 
model  

0.365 1.386 4.82 

Theory71 3D XY model 0.345 1.361 4.81 

Theory71 3D Ising model  0.325 1.24 4.80 
Theory 71 Tri-critical mean 

field model 
0.25 1 5 

Theory72 2D Ising model 0.125 1.75 15 

Cr5Te6 16 Kouvel-Fisher plot 0.406 1.199 3.99 

Cr4Te520 Kouvel-Fisher plot 0.387 1.287 4.32 

Cr0.62Te17 Kouvel-Fisher plot 0.315 1.81 6.75 

Cr5Te8 18 Kouvel-Fisher plot 0.321 1.27 4.9 

 

 



 12 

References: 

(1) Gong, C.; Li, L.; Li, Z.; Ji, H.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.; Wang, Y.; Qiu, Z. Q.; Cava, 
R. J.; Louie, S. G.; Xia, J.; Zhang, X. Discovery of Intrinsic FerromagneSsm in Two-Dimensional van 
Der Waals Crystals. Nature 2017, 546 (7657), 265–269. hXps://doi.org/10.1038/nature22060. 

(2) Wang, M.-C.; Huang, C.-C.; Cheung, C.-H.; Chen, C.-Y.; Tan, S. G.; Huang, T.-W.; Zhao, Y.; Zhao, Y.; 
Wu, G.; Feng, Y.-P.; Wu, H.-C.; Chang, C.-R. Prospects and OpportuniSes of 2D van Der Waals 
MagneSc Systems. Ann Phys 2020, 532 (5), 1900452. 
hXps://doi.org/hXps://doi.org/10.1002/andp.201900452. 

(3) Zhang, W.; Wong, P. K. J.; Zhu, R.; Wee, A. T. S. Van Der Waals Magnets: Wonder Building Blocks 
for Two-Dimensional Spintronics? InfoMat 2019, 1 (4), 479–495. 
hXps://doi.org/hXps://doi.org/10.1002/inf2.12048. 

(4) Ningrum, V. P.; Liu, B.; Wang, W.; Yin, Y.; Cao, Y.; Zha, C.; Xie, H.; Jiang, X.; Sun, Y.; Qin, S.; Chen, X.; 
Qin, T.; Zhu, C.; Wang, L.; Huang, W. Recent Advances in Two-Dimensional Magnets: Physics and 
Devices towards Spintronic ApplicaSons. Research 2023, 2020. 
hXps://doi.org/10.34133/2020/1768918. 

(5) Tong, Q.; Liu, F.; Xiao, J.; Yao, W. Skyrmions in the Moiré of van Der Waals 2D Magnets. Nano Le< 
2018, 18 11, 7194–7199. 

(6) Li, Y.; Yang, B.; Xu, S.; Huang, B.; Duan, W. Emergent Phenomena in MagneSc Two-Dimensional 
Materials and van Der Waals Heterostructures. ACS Appl Electron Mater 2022, 4 (7), 3278–3302. 
hXps://doi.org/10.1021/acsaelm.2c00419. 

(7) GiberSni, M.; Koperski, M.; Morpurgo, A. F.; Novoselov, K. S. MagneSc 2D Materials and 
Heterostructures. Nat Nanotechnol 2019, 14 (5), 408–419. hXps://doi.org/10.1038/s41565-019-
0438-6. 

(8) Eto, T.; Ishizuka, M.; Endo, S.; Kanomata, T.; Kikegawa, T. Pressure-Induced Structural Phase 
TransiSon in a Ferromagnet CrTe. J Alloys Compd 2001, 315 (1), 16–21. 
hXps://doi.org/hXps://doi.org/10.1016/S0925-8388(00)01237-8. 

(9) Freitas, D. C.; Weht, R.; Sulpice, A.; Remenyi, G.; Strobel, P.; Gay, F.; Marcus, J.; Núñez-Regueiro, 
M. FerromagneSsm in Layered Metastable 1T-CrTe2. Journal of Physics: Condensed Ma<er 2015, 
27 (17), 176002. hXps://doi.org/10.1088/0953-8984/27/17/176002. 

(10) Zhang, X.; Lu, Q.; Liu, W.; Niu, W.; Sun, J.; Cook, J.; Vaninger, M.; Miceli, P. F.; Singh, D. J.; Lian, S.-
W.; Chang, T.-R.; He, X.; Du, J.; He, L.; Zhang, R.; Bian, G.; Xu, Y. Room-Temperature Intrinsic 
FerromagneSsm in Epitaxial CrTe2 Ultrathin Films. Nat Commun 2021, 12 (1), 2492. 
hXps://doi.org/10.1038/s41467-021-22777-x. 

(11) Wang, F.; Du, J.; Sun, F.; Sabirianov, R. F.; Al-Aqtash, N.; Sengupta, D.; Zeng, H.; Xu, X. 
FerromagneSc Cr2Te3 Nanorods with Ultrahigh Coercivity. Nanoscale 2018, 10 (23), 11028–
11033. hXps://doi.org/10.1039/C8NR02272K. 

(12) Pramanik, T.; Roy, A.; Dey, R.; Rai, A.; Guchhait, S.; Movva, H. C. P.; Hsieh, C.-C.; Banerjee, S. K. 
Angular Dependence of MagneSzaSon Reversal in Epitaxial Chromium Telluride Thin Films with 



 13 

Perpendicular MagneSc Anisotropy. J Magn Magn Mater 2017, 437, 72–77. 
hXps://doi.org/hXps://doi.org/10.1016/j.jmmm.2017.04.039. 

(13) Roy, A.; Guchhait, S.; Dey, R.; Pramanik, T.; Hsieh, C.-C.; Rai, A.; Banerjee, S. K. Perpendicular 
MagneSc Anisotropy and Spin Glass-like Behavior in Molecular Beam Epitaxy Grown Chromium 
Telluride Thin Films. ACS Nano 2015, 9 (4), 3772–3779. hXps://doi.org/10.1021/nn5065716. 

(14) Wen, Y.; Liu, Z.; Zhang, Y.; Xia, C.; Zhai, B.; Zhang, X.; Zhai, G.; Shen, C.; He, P.; Cheng, R.; Yin, L.; 
Yao, Y.; Getaye Sendeku, M.; Wang, Z.; Ye, X.; Liu, C.; Jiang, C.; Shan, C.; Long, Y.; He, J. Tunable 
Room-Temperature FerromagneSsm in Two-Dimensional Cr2Te3. Nano Le< 2020, 20 (5), 3130–
3139. hXps://doi.org/10.1021/acs.nanoleX.9b05128. 

(15) Wang, Y.; Kajihara, S.; Matsuoka, H.; Saika, B. K.; Yamagami, K.; Takeda, Y.; WadaS, H.; Ishizaka, K.; 
Iwasa, Y.; Nakano, M. Layer-Number-Independent Two-Dimensional FerromagneSsm in Cr3Te4. 
Nano Le< 2022, 22 (24), 9964–9971. hXps://doi.org/10.1021/acs.nanoleX.2c03532. 

(16) Zhang, L.-Z.; Xiao, Q.-L.; Chen, F.; Feng, Z.; Cao, S.; Zhang, J.; Ge, J.-Y. MulSple MagneSc Phase 
TransiSons and CriScal Behavior in Single Crystal Cr5Te6. J Magn Magn Mater 2022, 546, 168770. 
hXps://doi.org/hXps://doi.org/10.1016/j.jmmm.2021.168770. 

(17) Liu, Y.; Petrovic, C. CriScal Behavior of the Quasi-Two-Dimensional Weak ISnerant Ferromagnet 
Trigonal Chromium Telluride ${\mathrm{Cr}}_{0.62}\mathrm{Te}$. Phys Rev B 2017, 96 (13), 
134410. hXps://doi.org/10.1103/PhysRevB.96.134410. 

(18) Zhang, X.; Yu, T.; Xue, Q.; Lei, M.; Jiao, R. CriScal Behavior and Magnetocaloric Effect in Monoclinic 
Cr5Te8. J Alloys Compd 2018, 750, 798–803. 
hXps://doi.org/hXps://doi.org/10.1016/j.jallcom.2018.03.318. 

(19) Mondal, R.; Kulkarni, R.; Thamizhavel, A. Anisotropic MagneSc ProperSes and CriScal Behaviour 
Studies of Trigonal Cr5Te8 Single Crystal. J Magn Magn Mater 2019, 483, 27–33. 
hXps://doi.org/hXps://doi.org/10.1016/j.jmmm.2019.02.082. 

(20) Zhang, L.-Z.; Zhang, A.-L.; He, X.-D.; Ben, X.-W.; Xiao, Q.-L.; Lu, W.-L.; Chen, F.; Feng, Z.; Cao, S.; 
Zhang, J.; Ge, J.-Y. CriScal Behavior and Magnetocaloric Effect of the Quasi-Two-Dimensional 
Room-Temperature Ferromagnet $\mathrm{Cr}{}_{4}\mathrm{Te}{}_{5}$. Phys Rev B 2020, 101 
(21), 214413. hXps://doi.org/10.1103/PhysRevB.101.214413. 

(21) Ipser, H.; Komarek, K. L.; Klepp, K. O. TransiSon Metal-Chalcogen Systems Viii: The Cr�Te Phase 
Diagram. Journal of the Less Common Metals 1983, 92 (2), 265–282. 
hXps://doi.org/hXps://doi.org/10.1016/0022-5088(83)90493-9. 

(22) Dijkstra, J.; Weitering, H. H.; Bruggen, C. F. Van.; Haas, C.; Groot, R. A. De. Band-Structure 
CalculaSons, and MagneSc and Transport ProperSes of FerromagneSc Chromium Tellurides (CrTe, 
Cr3Te4, Cr2Te3). Journal of Physics: Condensed Ma<er 1989, 1 (46), 9141. 
hXps://doi.org/10.1088/0953-8984/1/46/008. 

(23) Hamad, M. Kh.; Nlebedim, I. C.; Maswadeh, Y.; Hamad, R.; Ziq, Kh. A. Room Temperature 
Magnetocaloric Effect in CrTe1−xSex Alloys. The European Physical Journal Plus 2022, 137 (11), 
1259. hXps://doi.org/10.1140/epjp/s13360-022-03487-9. 



 14 

(24) Hamad, M. Kh.; Nlebedim, I. C.; Ziq, K. A. EvaluaSon of the CriScal Behavior near FerromagneSc 
to ParamagneSc Phase TransiSon in CrTe1-XSex Alloys: An Experimental Study. Physica B Condens 
Ma<er 2023, 665, 415072. hXps://doi.org/hXps://doi.org/10.1016/j.physb.2023.415072. 

(25) Hashimoto, T.; Hoya, K.; Yamaguchi, M.; Ichitsubo, I. MagneSc ProperSes of Single Crystals Cr2-
ΔTe3. J Physical Soc Japan 1971, 31 (3), 679–682. hXps://doi.org/10.1143/JPSJ.31.679. 

(26) Sato, K.; Aman, Y.; Hirai, M.; Fujisawa, M. ReflecSvity Spectra in Single Crystals of Cr3Te4, Cr2Te3 
and Cr2Se3 between 0.3 and 23 EV. J Physical Soc Japan 1990, 59 (2), 435–438. 
hXps://doi.org/10.1143/JPSJ.59.435. 

(27) Andresen, A. F.; Zeppezauer, E.; Boive, T.; Nordström, B.; Brändén, C. I. The MagneSc Structure of 
Cr2Te3, Cr3Te4, and Cr5Te6. Acta Chem Scand 1970, 24, 3495–3509. 

(28) Youn, S. J.; Kwon, S. K.; Min, B. I. CorrelaSon Effect and MagneSc Moments in Cr2Te3. J Appl Phys 
2007, 101 (9), 09G522. hXps://doi.org/10.1063/1.2713699. 

(29) Hamasaki, T.; Hashimoto, T.; Yamaguchi, Y.; Watanabe, H. Neutron DiffracSon Study of Cr2Te3 
Single Crystal. Solid State Commun 1975, 16 (7), 895–897. 
hXps://doi.org/hXps://doi.org/10.1016/0038-1098(75)90888-1. 

(30) Andresen, A. F.; Rasmussen, S. E.; Hirvisalo, E. L.; Munch-Petersen, J. A NEUTRON DIFFRACTION 
INVESTIGATION OF Cr$sub 2$Te$sub 3$ AND Cr$sub 5$Te$sub 6$. Acta Chem Scand 1963, 17, 
1335–1342. 

(31) John B. Goodenough: MagneNsm and the Chemical Bond; interscience: New York, 1963; Vol. I. 

(32) Gschneidner Jr., K. A.; Pecharsky, V. K.; Pecharsky, A. O.; Zimm, C. B. Recent Developments in 
MagneSc RefrigeraSon. Materials Science Forum 1999, 315–317, 69–76. 
hXps://doi.org/10.4028/www.scienSfic.net/MSF.315-317.69. 

(33) Pecharsky, V. K.; Gschneidner Jr, K. A. Magnetocaloric Effect and MagneSc RefrigeraSon. J Magn 
Magn Mater 1999, 200 (1), 44–56. hXps://doi.org/hXps://doi.org/10.1016/S0304-
8853(99)00397-2. 

(34) Franco, V.; Blázquez, J. S.; Ingale, B.; Conde, A. The Magnetocaloric Effect and MagneSc 
RefrigeraSon Near Room Temperature: Materials and Models. Annu Rev Mater Res 2012, 42 (1), 
305–342. hXps://doi.org/10.1146/annurev-matsci-062910-100356. 

(35) Liu, Y.; Petrovic, C. Anisotropic Magnetocaloric Effect in Single Crystals of ${\mathrm{CrI}}_{3}$. 
Phys Rev B 2018, 97 (17), 174418. hXps://doi.org/10.1103/PhysRevB.97.174418. 

(36) Liu, Y.; Petrovic, C. Anisotropic Magnetocaloric Effect and CriScal Behavior in 
${\mathrm{CrCl}}_{3}$. Phys Rev B 2020, 102 (1), 14424. 
hXps://doi.org/10.1103/PhysRevB.102.014424. 

(37) Mondal, S.; Midya, A.; PaSdar, M. M.; Ganesan, V.; Mandal, P. MagneSc and Magnetocaloric 
ProperSes of Layered van Der Waals CrCl3. Appl Phys Le< 2020, 117 (9), 092405. 
hXps://doi.org/10.1063/5.0019985. 



 15 

(38) Liu, Y.; Hu, Z.; Petrovic, C. Anisotropic Magnetocaloric Effect and CriScal Behavior in 
${\mathrm{CrSbSe}}_{3}$. Phys Rev B 2020, 102 (1), 14425. 
hXps://doi.org/10.1103/PhysRevB.102.014425. 

(39) Liu, W.; Dai, Y.; Yang, Y.-E.; Fan, J.; Pi, L.; Zhang, L.; Zhang, Y. CriScal Behavior of the Single-
Crystalline van Der Waals Bonded Ferromagnet 
${\mathrm{Cr}}_{2}{\mathrm{Ge}}_{2}{\mathrm{Te}}_{6}$. Phys Rev B 2018, 98 (21), 214420. 
hXps://doi.org/10.1103/PhysRevB.98.214420. 

(40) Toby, B. H.; Von Dreele, R. B. GSAS-II: The Genesis of a Modern Open-Source All Purpose 
Crystallography So|ware Package. J Appl Crystallogr 2013, 46 (2), 544–549. 
hXps://doi.org/hXps://doi.org/10.1107/S0021889813003531. 

(41) Bensch, W.; Helmer, O.; Näther, C. DeterminaSon and RedeterminaSon of the Crystal Structures 
of Chromium Tellurides in the ComposiSon Range CrTe1.56–CrTe1.67: Trigonal Di-Chromium Tri-
Telluride Cr2Te3, Monoclinic Penta-Chromium Octa-Telluride Cr5Te8, and the Five Layer 
Superstructure of Trigonal Penta-Chromium Octa-Telluride Cr5Te8. Mater Res Bull 1997, 32 (3), 
305–318. hXps://doi.org/hXps://doi.org/10.1016/S0025-5408(96)00194-8. 

(42) Liu, Y.; Petrovic, C. Anomalous Hall Effect in the Trigonal ${\mathrm{Cr}}_{5}{\mathrm{Te}}_{8}$ 
Single Crystal. Phys Rev B 2018, 98 (19), 195122. hXps://doi.org/10.1103/PhysRevB.98.195122. 

(43) Kieffer, J.; Valls, V.; Blanc, N.; Hennig, C. New Tools for CalibraSng DiffracSon Setups. J Synchrotron 
Radiat 2020, 27 (2), 558–566. hXps://doi.org/10.1107/S1600577520000776. 

(44) Tian, C.-K.; Wang, C.; Ji, W.; Wang, J.-C.; Xia, T.-L.; Wang, L.; Liu, J.-J.; Zhang, H.-X.; Cheng, P. 
Domain Wall Pinning and Hard MagneSc Phase in Co-Doped Bulk Single Crystalline 
${\mathrm{Fe}}_{3}{\mathrm{GeTe}}_{2}$. Phys Rev B 2019, 99 (18), 184428. 
hXps://doi.org/10.1103/PhysRevB.99.184428. 

(45) Casto, L. D.; Clune, A. J.; Yokosuk, M. O.; Musfeldt, J. L.; Williams, T. J.; Zhuang, H. L.; Lin, M.-W.; 
Xiao, K.; Hennig, R. G.; Sales, B. C.; Yan, J.-Q.; Mandrus, D. Strong Spin-La}ce Coupling in CrSiTe3. 
APL Mater 2015, 3 (4), 041515. hXps://doi.org/10.1063/1.4914134. 

(46) Richter, N.; Weber, D.; MarSn, F.; Singh, N.; Schwingenschlögl, U.; Lotsch, B. V; Kläui, M. 
Temperature-Dependent MagneSc Anisotropy in the Layered MagneSc Semiconductors 
$\mathrm{Cr}{\mathrm{I}}_{3}$ and $\mathrm{CrB}{\mathrm{r}}_{3}$. Phys Rev Mater 2018, 2 
(2), 24004. hXps://doi.org/10.1103/PhysRevMaterials.2.024004. 

(47) Liu, Y.; Abeykoon, M.; Stavitski, E.; AXenkofer, K.; Petrovic, C. MagneSc Anisotropy and Entropy 
Change in Trigonal ${\mathrm{Cr}}_{5}{\mathrm{Te}}_{8}$. Phys Rev B 2019, 100 (24), 245114. 
hXps://doi.org/10.1103/PhysRevB.100.245114. 

(48) Wang, Y.; Yan, J.; Li, J.; Wang, S.; Song, M.; Song, J.; Li, Z.; Chen, K.; Qin, Y.; Ling, L.; Du, H.; Cao, L.; 
Luo, X.; Xiong, Y.; Sun, Y. MagneSc Anisotropy and Topological Hall Effect in the Trigonal 
Chromium Tellurides ${\mathrm{Cr}}_{5}{\mathrm{Te}}_{8}$. Phys Rev B 2019, 100 (2), 24434. 
hXps://doi.org/10.1103/PhysRevB.100.024434. 



 16 

(49) Zhong, Y.; Peng, C.; Huang, H.; Guan, D.; Hwang, J.; Hsu, K. H.; Hu, Y.; Jia, C.; Moritz, B.; Lu, D.; Lee, 
J.-S.; Jia, J.-F.; Devereaux, T. P.; Mo, S.-K.; Shen, Z.-X. From Stoner to Local Moment MagneSsm in 
Atomically Thin Cr2Te3. Nat Commun 2023, 14 (1), 5340. hXps://doi.org/10.1038/s41467-023-
40997-1. 

(50) Cullity, B. D.; Graham, C. D. IntroducNon to MagneNc Materials, 2nd ed.; Wiley, 2008. 
hXps://doi.org/10.1002/9780470386323. 

(51) Yan, J.; Luo, X.; Chen, F. C.; Gao, J. J.; Jiang, Z. Z.; Zhao, G. C.; Sun, Y.; Lv, H. Y.; Tian, S. J.; Yin, Q. W.; 
Lei, H. C.; Lu, W. J.; Tong, P.; Song, W. H.; Zhu, X. B.; Sun, Y. P. Anisotropic MagneSc Entropy 
Change in the Hard FerromagneSc Semiconductor $\mathrm{V}{\mathrm{I}}_{3}$. Phys Rev B 
2019, 100 (9), 94402. hXps://doi.org/10.1103/PhysRevB.100.094402. 

(52) Zener, C. Classical Theory of the Temperature Dependence of MagneSc Anisotropy Energy. 
Physical Review 1954, 96 (5), 1335–1337. hXps://doi.org/10.1103/PhysRev.96.1335. 

(53) Carr, W. J. Temperature Dependence of FerromagneSc Anisotropy. Physical Review 1958, 109 (6), 
1971–1976. hXps://doi.org/10.1103/PhysRev.109.1971. 

(54) Amaral, J. S.; Reis, M. S.; Amaral, V. S.; Mendonça, T. M.; Araújo, J. P.; Sá, M. A.; Tavares, P. B.; 
Vieira, J. M. Magnetocaloric Effect in Er- and Eu-SubsStuted FerromagneSc La-Sr Manganites. J 
Magn Magn Mater 2005, 290–291, 686–689. 
hXps://doi.org/hXps://doi.org/10.1016/j.jmmm.2004.11.337. 

(55) Franco, V.; Conde, A. Scaling Laws for the Magnetocaloric Effect in Second Order Phase 
TransiSons: From Physics to ApplicaSons for the CharacterizaSon of Materials. InternaNonal 
Journal of RefrigeraNon 2010, 33 (3), 465–473. 
hXps://doi.org/hXps://doi.org/10.1016/j.ijrefrig.2009.12.019. 

(56) Liu, Y.; Abeykoon, M.; Petrovic, C. CriScal Behavior and Magnetocaloric Effect in 
${\mathrm{VI}}_{3}$. Phys Rev Res 2020, 2 (1), 13013. 
hXps://doi.org/10.1103/PhysRevResearch.2.013013. 

(57) Oesterreicher, H.; Parker, F. T. MagneSc Cooling near Curie Temperatures above 300 K. J Appl Phys 
1984, 55 (12), 4334–4338. hXps://doi.org/10.1063/1.333046. 

(58) Franco, V.; Conde, A.; Romero-Enrique, J. M.; Blázquez, J. S. A Universal Curve for the 
Magnetocaloric Effect: An Analysis Based on Scaling RelaSons. Journal of Physics: Condensed 
Ma<er 2008, 20 (28), 285207. hXps://doi.org/10.1088/0953-8984/20/28/285207. 

(59) Franco, V.; Blázquez, J. S.; Conde, A. Field Dependence of the Magnetocaloric Effect in Materials 
with a Second Order Phase TransiSon: A Master Curve for the MagneSc Entropy Change. Appl 
Phys Le< 2006, 89 (22), 222512. hXps://doi.org/10.1063/1.2399361. 

(60) Stanley, H. E. IntroducNon to Phase TransiNon and CriNcal Phenomena; Oxford University press, 
1971. 

(61) Fan, J.; Pi, L.; Zhang, L.; Tong, W.; Ling, L.; Hong, B.; Shi, Y.; Zhang, W.; Lu, D.; Zhang, Y. 
InvesSgaSon of CriScal Behavior in Pr0.55Sr0.45MnO3 by Using the Field Dependence of 



 17 

MagneSc Entropy Change. Appl Phys Le< 2011, 98 (7), 072508. 
hXps://doi.org/10.1063/1.3554390. 

(62) Samatham, S. S.; Ganesan, V. CriScal Behavior, Universal Magnetocaloric, and Magnetoresistance 
Scaling of MnSi. Phys Rev B 2017, 95 (11), 115118. hXps://doi.org/10.1103/PhysRevB.95.115118. 

(63) Widom, B. EquaSon of State in the Neighborhood of the CriScal Point. J Chem Phys 2004, 43 (11), 
3898–3905. hXps://doi.org/10.1063/1.1696618. 

(64) Kadanoff, L. P. Scaling Laws for Ising Models near ${T}_{c}$. Physics Physique Fizika 1966, 2 (6), 
263–272. hXps://doi.org/10.1103/PhysicsPhysiqueFizika.2.263. 

(65) Taroni, A.; Bramwell, S. T.; Holdsworth, P. C. W. Universal Window for Two-Dimensional CriScal 
Exponents. Journal of Physics: Condensed Ma<er 2008, 20 (27), 275233. 
hXps://doi.org/10.1088/0953-8984/20/27/275233. 

(66) Fisher, M. E.; Ma, S.; Nickel, B. G. CriScal Exponents for Long-Range InteracSons. Phys Rev Le< 
1972, 29 (14), 917–920. hXps://doi.org/10.1103/PhysRevLeX.29.917. 

(67) Mermin, N. D.; Wagner, H. Absence of FerromagneSsm or AnSferromagneSsm in One- or Two-
Dimensional Isotropic Heisenberg Models. Phys Rev Le< 1966, 17 (22), 1133–1136. 
hXps://doi.org/10.1103/PhysRevLeX.17.1133. 

(68) Bian, M.; Kamenskii, A. N.; Han, M.; Li, W.; Wei, S.; Tian, X.; Eason, D. B.; Sun, F.; He, K.; Hui, H.; 
Yao, F.; Sabirianov, R.; Bird, J. P.; Yang, C.; Miao, J.; Lin, J.; Crooker, S. A.; Hou, Y.; Zeng, H. Covalent 
2D Cr2Te3 Ferromagnet. Mater Res Le< 2021, 9 (5), 205–212. 
hXps://doi.org/10.1080/21663831.2020.1865469. 

(69) Engelbrecht, K.; Bahl, C. R. H.; Nielsen, K. K. Experimental Results for a MagneSc Refrigerator 
Using Three Different Types of Magnetocaloric Material Regenerators. InternaNonal Journal of 
RefrigeraNon 2011, 34 (4), 1132–1140. 
hXps://doi.org/hXps://doi.org/10.1016/j.ijrefrig.2010.11.014. 

(70) ArroX, A. Criterion for FerromagneSsm from ObservaSons of MagneSc Isotherms. Physical 
Review 1957, 108 (6), 1394–1396. hXps://doi.org/10.1103/PhysRev.108.1394. 

(71) Kaul, S. N. StaSc CriScal Phenomena in Ferromagnets with Quenched Disorder. J Magn Magn 
Mater 1985, 53 (1), 5–53. hXps://doi.org/hXps://doi.org/10.1016/0304-8853(85)90128-3. 

(72) Le Guillou, J. C.; Zinn-JusSn, J. CriScal Exponents from Field Theory. Phys Rev B 1980, 21 (9), 
3976–3998. hXps://doi.org/10.1103/PhysRevB.21.3976. 

  



 18 

 

 

 

 
Figure 1: (a) Rietveld fit to background subtracted powder diffraction data. Black dots and the 
red line represent measured and calculated intensities, respectively. A residue plot (blue), and 
calculated Bragg reflection tick marks are shown below. The observed and calculated intensities, 
and the fit residue above Q ~ 4 Å-1 are multiplied by 5 for clarity. (b) 3-Dimentional, and (c) 
along crystallographic c-axis polyhedral views of the refined crystallographic unit cell. Blue, 
green, and half purple half white balls represent, Cr (0, 0, 0) (fully occupied), Cr (0.3333, 
0.6667, 0.9968) (fully occupied), and Cr (0.3333, 0.6667, 0.2500) partially occupied sites, 
respectively. Light green balls represent Te sites. (d) Laue diffraction image of the single crystal 
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Cr2Te3 sample. The sample is oriented along the crystallographic (001) axis. Arrows show the 
direction to the other crystallographic axes, as simulated by the QLaue software. 

 

 

 

Figure 2: Temperature dependent zero-field-cooled (ZFC) and field-cooled (FC) magnetization for 
0.1 T magnetic field applied along the c-axis (out-of-plane) and ab-plane (in-plane). The inset 
shows FC and ZFC magnetizations for field along the ab-plane.  
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Figure 3: (a) dM/dT vs T graphs for H || c-axis and H || ab-plane (the inset shows dM/dT vs T for 
H|| ab-plane for clarity) (b) temperature dependent inverse magnetic susceptibility for H || c-axis 
and H || ab-plane.  
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Figure 4: Field dependence of magnetization at 2 K for field applied along the c-axis and ab-plane 
of a single crystal sample. 



 23 

 



 24 

   

 

Figure 5: Isothermal field-dependent magnetizations along the (a) c-axis and (b) ab-plane around 
the paramagnetic to ferromagnetic transition from 140 K to 210 K. 
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Figure 6: Temperature dependence of the calculated anisotropy constant Ku, the estimated 
saturation field HS (inset), and the saturation magnetization MS (inset) below transition 
temperature.   
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Figure 7: Temperature dependence change of magnetic entropy change with increasing magnetic 
field along the (a) c-axis and (b) the ab-plane near the paramagnetic to ferromagnetic phase 
transition. (c) Temperature dependence of magnetic entropy change −ΔSRM obtained by rotating 
from the ab-plane to the c-axis in various fields. 
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Figure 8: The normalized magnetic entropy (ΔSM/ΔSMmax) as a function of rescaled temperature θ 
along the (a) c-axis and (b) ab-plane. 

 



 31 

 

 



 32 

 

Figure 9: Magnetic field dependence of the maximum magnetic entropy change −ΔSmaxM and the 
relative cooling power (RCP) with power-law fitting in blue and red solid lines, respectively for 
field applied along the (a) c-axis and (b) ab-plane.  
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Figure 10: Magnetic field dependence of calculated δTFWHM with fitting curve for magnetic field 
applied along the (a) c-axis and (b) ab-plane. 
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Fig 11: Temperature dependence of n for various magnetic fields applied along the c-axis. 
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Figure 12: The scaling of change of magnetic entropy curves: −ΔSM /H(1−α)/Δ vs. ε/H1/Δ along the 
(a) c-axis and (b) ab-plane. 

 



 38 

 



 39 

 



 40 

 

 



 41 

  

Figure 13: (a) Temperature dependence of single crystal Cr2Te3 sample specific heat for different 
magnetic fields applied along the c-axis. (b) Temperature dependence of change of specific heat 
[ΔCp = Cp(T, H) – Cp(T, 0)] for different magnetic fields applied along the c-axis. (c) Temperature 
dependence of adiabatic temperature change ΔTad for single crystal Cr2Te3 sample estimated from 
heat capacity data for different magnetic fields. (d) Temperature dependence change of magnetic 
entropy estimated from heat capacity for different magnetic fields applied along the c-axis. 
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