
FLNET2023: Realistic Network Intrusion Detection
Dataset for Federated Learning

Pratyay Kumar∗, Jiefei Liu∗, Abu Saleh Md Tayeen∗, Satyajayant Misra∗, Huiping Cao∗,
Jayashree Harikumar†, and Oscar Perez†

∗New Mexico State University, Las Cruces, New Mexico, USA
Email: {pratyay, jiefei, tayeen, misra, hcao}@nmsu.edu

†DEVCOM Analysis Center, WSMR, New Mexico, USA
Email: jayashree.harikumar.civ@army.mil, oscar.a.perez46.civ@army.mil

Abstract—Developing new defensive mechanisms to respond
to evolving security threats is crucial for enforcing network
security. Recently, defenses leveraging Federated Learning (FL)
have become prominent in Intrusion Detection Systems (IDS) to
incorporate the surging growth and distributed nature of the
network infrastructure. To evaluate these FL-based IDSes and
to achieve better detection performance, researchers commonly
perform equal and balanced partitions of the existing popular
datasets, such as NSL-KDD, UNSW-NB15, and CICDDoS2019,
among clients. However, partitions of these datasets are not
representative of the class-imbalanced scenarios found in real-
world networks where each client may possess different cat-
egories of attack traffic with an uneven number of instances
in their dataset. Moreover, they overlook the fundamental data
distribution property in a network environment where data
must be associated with individual IP addresses, particularly
the destination IPs that are identifiable as FL clients. To fill
these gaps, we introduce a novel dataset, Federated Learning
for Networks (FLNET2023), which is strategically generated
by gathering data from network traffic across ten unique
routers within a real-world network topology emulated using
the CORE tool. We also evaluate the FLNET2023 using two FL
aggregation algorithms and compare its performance against the
latest intrusion detection dataset, CICDDoS2019, with traditional
partitions to demonstrate the challenges of FL-based IDSes on
realistic datasets.

Index Terms—Network intrusion detection system, federated
learning, DoS, DDoS, Web Attacks, Infiltration Attacks.

I. INTRODUCTION

As the Internet expands, the increasing variety of cyber-
attacks necessitates the use of an Intrusion Detection System
(IDS) that monitors network traffic and detects signs of such
attacks. Recently, combining Federated Learning (FL) [1]
with IDS has gained much popularity because of their abil-
ity to train machine learning (ML) models across multiple
decentralized nodes/devices while preserving device privacy
and reducing communication costs [2]–[4]. Since there are
no designated datasets for evaluating FL-enabled IDSes, the
existing prominent network intrusion detection datasets have
been extensively used for FL experiments. For example, the
NSL-KDD [5], the UNSW-NB15 [6], the CICIDS2017 [7],
and the CICDDoS2019 [8] datasets, have been widely adopted
due to their contemporary collection of network traffic sce-
narios, encompassing a more comprehensive range of attack
types.

However, most of these existing datasets are becoming
dated. Further, while evaluating FL-enabled IDSes [2]–[4],
these datasets have been equally partitioned (i.e., data are
divided across multiple clients such that each client has an
equal number of data instances) and balanced (i.e., the number
of data instances belonging to different classes are the same)
for the convenience of better performance. Nonetheless, these
partitions do not accurately represent the real-world networks’
class-imbalanced nature, where each device, depending on its
location in the network, may gather different types of attack
traffic with an unequal number of instances in their dataset.
This may pose significant challenges, including performance
degradation and convergence problem for the global model
in FL-enabled IDSes. Additionally, in contemporary central-
ized dataset partitions, traffic data are not mapped to the
IP addresses of the devices that are considered clients for
the FL-based IDS environment. As a result, the partitioning
process leads to data being improperly and incorrectly allo-
cated to different devices/routers, which distorts the genuine
distribution of network traffic. While intentional unequal and
imbalanced partitions from existing datasets may mimic the
class imbalance property, they lack realistic mapping and
authentic distribution of real-world networks.

To address these gaps in FL-enabled IDSes, in this paper,
we introduce a strategy of creating datasets by presenting
FLNET2023 that can better capture real-world network traffic
scenarios in a distributed environment and thus is more
suitable for FL experiments. The contributions of our paper
are as follows:

1) We utilized the Common Open Research Emulator
(CORE) [9], a tool developed by the U.S. Naval Re-
search Laboratory, to design the testbed configuration
with real-world network topology, simulate diverse nor-
mal traffic, and implement various attack types. We
chose the CORE to take advantage of its ability to
replicate real-world network behaviors accurately.

2) We collected the data in a distributed manner over ten
routers to reflect the realistic FL scenario for network
environments. We labeled our dataset and made it pub-
licly available.

3) We evaluated our dataset with two FL aggregation

MILCOM 2023 - 2023 IEEE Military Communications Conference (MILCOM): TRACK 5 – Machine Learning for Communications and
Networking

979-8-3503-2181-4/23/$31.00 ©2023 IEEE 345

M
IL

C
O

M
 2

02
3

- 2
02

3
IE

EE
 M

ili
ta

ry
 C

om
m

un
ic

at
io

ns
 C

on
fe

re
nc

e
(M

IL
C

O
M

) |
 9

79
-8

-3
50

3-
21

81
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

M
IL

C
O

M
58

37
7.

20
23

.1
03

56
27

2

Authorized licensed use limited to: New Mexico State University. Downloaded on July 09,2024 at 22:32:23 UTC from IEEE Xplore. Restrictions apply.

algorithms and compared our results with those of the
traditional partitions of the CICDDoS2019 dataset in
an FL setting. We also discussed the challenges of
using our dataset in FL-based IDS through experimental
results.

The remainder of this paper is organized as follows: We
present an overview of related work in Section II. Section III
elaborates on our process of benchmark dataset generation
using the CORE with details of its characteristics. In Sec-
tion IV, we evaluate our dataset in FL scenario and discuss the
implications of our results. Finally, in Section V, we conclude
by summarizing our findings and suggesting future work.

II. RELATED WORK

FL has attracted significant interest in recent years due to its
distributed learning nature and the ability to secure the privacy
of user data. Several researchers utilized FL for intrusion
detection in networks. Al-Marri et al. [2] proposed an FL-
based IDS by integrating mimic learning with FL to prevent
reverse engineering attacks on clients’ models. They equally
distributed the NSL-KDD [5] dataset among ten clients to
run the FL experiments. Rahman et al. [3] proposed an FL-
based IoT intrusion detection scheme and compared it to the
centralized and self-learning approaches. They experimented
with three different data distribution scenarios: i) data dis-
tribution per attack type, ii) equal data distribution of all
attack types, and iii) random data distribution of all attack
types of the NSL-KDD [5] dataset among four clients. Li
et al. [10] utilized FL-empowered architecture to mitigate
DDoS attacks in industrial IoT devices. They ran simulations
by randomly distributing the UNSW-NB15 [6] dataset among
four devices to test their method. Qin et al. [11] combined
Binarized Neural Network and FL to design a framework
to detect attacks from incoming network packets. They split
the CICIDS2017 [12] among several gateway nodes of the
network. Zhang et al. [4] proposed FLDDoS, an FL-based
DDoS attack detection model. They shuffled and unevenly
divided the CICDDoS2019 [8] dataset among 21 clients to
show the detection performance of FLDDoS.

The existing intrusion detection datasets used by the works
mentioned above were collected centrally and were not in-
trinsically designed for the FL. Moreover, in all of the FL
experiments the datasets were partitioned in a way that ignores
the class imbalance that occurs in the real-world networks
owing to each node having insight obtained based only on its
data and the proper allocation of data to its owners. Therefore,
to overcome these shortcomings, in this paper, we introduce
a novel intrusion detection dataset that is collected using
a system to emulate distributed environment and is more
suitable for testing FL-based IDSes.

III. FLNET2023 DATASET GENERATION

In this section, we outline the methodology involved in
generating our benchmark dataset, FLNET2023, which is

Fig. 1: Network Topology

publicly available with accompanying necessary documenta-
tion1. We first describe the real-world network topology used
in our data-gathering procedure. Second, we delve into the
generation of both normal and attack traffic using various
tools. Third, we discuss the feature extraction and labeling
process of our dataset. Finally, we describe the characteristics
of our dataset.

A. Network Topology

We chose Europe’s GEANT-2012 network topology, a
renowned research and education network obtained from
the Internet Topology Zoo [13] to mimic a realistic and
complex environment, allowing the collection of our dataset.
This real-world topology, depicted in Figure 1, symbolizes
a comprehensive large-scale network infrastructure similar to
those in Internet Service Providers (ISPs) with 40 nodes, each
representing primary routers serving specific geographical
locations or functions.

We replicated the GEANT-2012 topology within the emu-
lator, CORE [9] as it provides the essential functionality of
accurately emulating real-world network dynamics, making it
an indispensable tool for our data collection procedure. In this
emulated environment, we collected network traffic data from
a subset of ten strategically chosen router nodes identified
by {D1, D2, D3, ..., D10} as illustrated in Figure 1. These
nodes effectively cover different network regions maintaining
multiple connections. By choosing such nodes, we ensured
a broader, more representative dataset that captured various
network behaviors and conditions.

B. Traffic and Attack Orchestration

Using CORE and the topology in Figure 1, we generated
normal traffic as well as attack traffic from various categories,
including Denial of Service (DoS), Distributed Denial of
Service (DDoS), Web attacks, and Infiltration attacks. The
choice of these attack types was motivated by their com-
mon occurrence in real-world scenarios, their potential for
significant harm, and the diversity in their attack patterns,
which present unique challenges in detection. To generate the

1Dataset-URL: https://github.com/nsol-nmsu/FML-Network

MILCOM 2023 - 2023 IEEE Military Communications Conference (MILCOM): TRACK 5 – Machine Learning for Communications and
Networking

346
Authorized licensed use limited to: New Mexico State University. Downloaded on July 09,2024 at 22:32:23 UTC from IEEE Xplore. Restrictions apply.

normal traffic and to orchestrate each attack traffic category,
we employed the most commonly used and up-to-date open-
source tools that allow different traffic configurations. We
detail the traffic generation process for each type below.

1) Normal traffic: We generated normal traffic using the
hping32 tool. We utilized several representative types of net-
work protocols, such as TCP, UDP, and ICMP, and considered
a variety of devices and traffic patterns.

2) DoS attack: We generated attack traffic from two types
of DoS attacks: DoS Hulk and DoS SlowHTTP, each with
a unique attack strategy. To orchestrate these attacks, we
employed the Hulk3 and the SlowHTTPTest4 tools. The pri-
mary objective of these attacks is to deplete server resources,
thereby disrupting service access for legitimate users. In our
emulation, nodes such as R2, R4, R21, and R28 in Figure 1
were the servers.

3) DDoS attack: To orchestrate DDoS attacks at different
layers of the OSI (Open Systems Interconnection) model, we
utilized the MHDDoS5 tool that facilitated the emulation of
Layer-4 TCP and Layer-7 attacks, including BOT, STOMP,
and DYN. The primary objective of these attacks is to inundate
the network services with a flood of traffic, causing service
disruptions for legitimate users. In our emulation, we set
up victims’ systems using Python’s built-in HTTP server on
routers R6, D9, D5, and D10 as shown in Figure 1.

4) Web attack: To emulate web attacks, we targeted
common threats, including SQL Injection (SQLi), Cross-site
scripting (XSS), and Command Injection. These threats were
orchestrated using specific tools: sqlmap6 for SQLi, xsstrike7

for XSS attacks, and commix8 for Command Injection. To
emulate a realistic attack scenario, we deployed Flask-based
web applications on routers R13, R14, and R28 and set up
PostgreSQL databases on these routers with specific vulner-
abilities that are exploited by the orchestrated web attacks
which can lead to severe consequences, such as data leakage.

5) Infiltration attack: We chose to orchestrate a man-in-
the-middle (MITM) attack for this category as it allows one
to stealthily gain sensitive information, making it a particularly
dangerous network threat. The orchestration of this attack was
performed using the bettercap9 tool, which facilitates ARP
spoofing. The essence of this attack lies in intercepting and
potentially altering or monitoring communications between
two entities without detection. In our emulation, the attackers
were workstations connected to different routers.

C. Features and Labels
To construct our dataset, we utilized the command-line

interface of the Wireshark tool10 to capture network traffic

2Hping3, https://www.kali.org/tools/hping3/
3Hulk, https://github.com/grafov/hulk
4SlowHTTPTest, https://github.com/shekyan/slowhttptest
5MHDDoS, https://github.com/MatrixTM/MHDDoS
6Sqlmap, https://github.com/sqlmapproject/sqlmap
7XSStrike, https://github.com/s0md3v/XSStrike
8Commix, https://github.com/commixproject/commix
9Bettercap, https://www.bettercap.org/
10Tshark, 2019. https://tshark.dev/

in the form of Packet Capture (PCAP) files. Most of these
PCAP files serve as a comprehensive record of raw traffic
data. For example, 1 Gb PCAP file generated by DDoS TCP
attack houses an exact copy of every byte from over 3,675,374
packets on the network. To ensure precise labeling of data for
different types of attacks, packets were captured separately
for each attack scenario.

After successfully capturing the raw network traffic, we
next extracted flow-based features from the PCAP files. For
this task, we employed the CICFlowMeter11, a robust flow an-
alyzer tool. It facilitated the extraction of 82 distinct features.
The set of features for each flow extracted from every PCAP
file was stored in separate CSV files for further analysis. The
last phase of our process involved labeling the flow-based
data in the CSV files. We carefully executed this task with
custom scripts, ensuring each attack traffic flow data point was
accurately associated with its corresponding attack category.
We generated separate CSV files for each attack category,
which removed the chances of errors and ensured proper
labeling.

D. Dataset Characteristics

Our dataset, FLNET2023, presents the distributed nature
of networks and maintains the correct allocation of flows to
each node because we collected the data from ten different
routers positioned at distinct locations. Moreover, our dataset

Label Train Test
Normal 2,368,998 189,836

DDoS Bot 87,808 22,667
DDoS Dyn 322,920 15,341

DDoS Stomp 389,560 92,286
DDoS TCP 1,861,672 302,081
DoS Hulk 1,644,381 108,345

DoS SlowHTTP 97,706 12,092
Infiltration MITM 30,222 1,870

Web Command Injection 330 345
Web SQL Injection 441 221

Web XSS 3,069 1,533

TABLE I: Overall class distribution of FLNET2023 dataset

illustrates the class-imbalanced property of real-world scenar-
ios where each device may encounter different categories of
attacks and can have an unequal number of data instances.
For instance, in our dataset, router D1 contains 205,215
data instances representing four types of attack traffic: DDoS
Bot (87,808), DoS SlowHTTP (10,590), Infiltration-MITM
(2341), Web-Command Injection (330), and Normal traffic
(104,146). On the other hand, router D6 captures mostly DoS
Hulk attacks with 404,462 instances, intermixed with 207,480
instances of Normal traffic. We show the combined statistics
of each traffic category across all nodes for our training and
testing sets in Table I.

11CICFlowMeter, 2017. https://github.com/ISCX/CICFlowMeter

MILCOM 2023 - 2023 IEEE Military Communications Conference (MILCOM): TRACK 5 – Machine Learning for Communications and
Networking

347
Authorized licensed use limited to: New Mexico State University. Downloaded on July 09,2024 at 22:32:23 UTC from IEEE Xplore. Restrictions apply.

1 2 3 4 5 6 7 8 9 10
Client index

0.0

0.5

1.0

1.5

2.0

2.5

N
um

be
r o

f i
ns

ta
nc

es
1e6

Normal
DDoS-bot
DDoS-dyn
DDoS-stomp
DDoS-tcp
DoS-hulk
DoS-slowhttp
Infiltration-mitm
Web-command-injection
Web-sql-injection
Web-xss

Fig. 2: Class distribution of the FLNET2023 per client

Figure 2 illustrates an important characteristic of our
dataset. It highlights the significant discrepancy in the dis-
tribution of instances for various attack classes across all
nodes/clients. The disparity in the number of instances is
particularly noticeable when comparing classes such as the
Web-based SQL injection and command injection to classes
like DDoS Stomp, DDoS TCP, and DDoS Hulk. The former
classes contain substantially fewer instances, rendering them
less visible in the overall bar graph. For instance, the total
number of instances in SQL injection, and command injection
classes across all clients are 441 and 330, respectively, as
compared to the DDoS Stomp and DDoS TCP classes, which
contain 389,540 and 1,861,596 instances respectively.

Unlike the CICDDoS2019 dataset, we narrowed our focus
on DDoS attacks by choosing a few subcategories of this
attack category. This decision was made for convenience,
driven by the primary aim of our research: to generate a
realistic and class-imbalanced dataset. In reality, not all types
of DDoS attacks will occur with equal frequency at the same
time. Therefore, we chose to orchestrate only the DDoS Dyn,
DDoS Stomp, DDoS Bot, and DDoS TCP attack categories,
which are some of the most prevalent and impactful in
real-world scenarios. Simultaneously, recognizing the diverse
threats in real-world networks, our dataset extends beyond
DDoS attacks including a broader range of attack types,
such as web-command-injection, web-sql-injection, and an
infiltration attack in the form of a man-in-the-middle attack.

IV. EVALUATION

A. Experiment Setup

To evaluate the dataset, we opted for a multi-class classifi-
cation task in the FL settings aiming to detect either normal
traffic or different categories of attack traffic. We chose a
Multi-Layer Perceptron (MLP) model to do the classification
in our experiments. Our MLP model comprises four layers (in-
cluding three hidden layers) with hidden layer sizes 64, 128,
and 64, respectively. We used a Stochastic Gradient Descent
(SGD) optimizer with a learning rate of 0.01 for training. To

construct the FL setup for our emulated data, we considered
our data-collecting routers as clients and assumed the presence
of a central router or node to function as the server. We
compared the performance of the classification task on our
dataset and the commonly used CICDDoS2019 [8] dataset.
Considering the vast scale (millions of records) of the original
CICDDoS2019 dataset, we followed an approach similar to
other studies, drawing a sample of 10,000,000 instances from
this dataset. This included 5,000,000 instances representing
normal traffic flow and 5,000,000 instances embodying ten
distinct DDoS attack flows. We allocated 80% of this data
for training and the remaining 20% for testing. To create the
FL scenario for the CICDDoS2019 dataset, we divided its
training data using different partition methods to distribute it
among ten network devices/clients. We elaborate on these data
partition methods below.

1) Equal and Balanced (EB): This partitioning method is
widely used in [2], [3]. In this method, Equal (E) means all
the clients get the same number of instances and Balanced
(B) let each partition keep the same attack data distribution
as the original dataset. For example, suppose a centralized
dataset consists of 100 normal traffic and 100 attack traffic
instances (representing three attack types) with attack data
distribution ratios of 2:2:1. If the dataset is distributed to two
clients, the total number of instances in each client is 100,
where 50 instances are of normal traffic and 20, 20, and 10
instances are of the three different attack traffic, respectively.

2) Equal and Imbalanced (EI): In this case, the training
data size for each client is the same. However, the Imbal-
anced (I) property randomly produces the clients’ attack data
distribution. Thus, the data distribution ratios will not remain
the same as the original dataset [3], [11].

3) Unequal and Imbalanced (UI): Here, Unequal (U)
means the training dataset size of each client is not the same.
This data partition method divides the dataset into random-
sized subsets and generates different data distribution from
the original dataset [3], [4].

We performed our FL experiments using the Flower frame-
work [14] on a server machine with Intel Xeon 5220R 2.20G
CPUs, 512GB RAM, and 4 Nvidia RTX A4000 GPUs. We
implemented the Multi-Layer Perceptron (MLP) model using
the PyTorch library12.

B. Aggregation Algorithms

In this paper, we utilized two FL aggregation algorithms,
namely Federated Averaging (FedAvg) [1] and Federated
Averaging with server Momentum (FedAvgM) [15] to evaluate
our dataset. In the FedAvg, the server updates the weights
using wt+1 ← wt − ∆w. Here, wt represents the weight of
the global model at communication round t, wt+1 represents
the weight updated by the FedAvg at round t + 1, and
∆w represents an aggregate of the weights from the clients.
However, due to the presence of class imbalanced data at

12PyTorch, 2019. https://pytorch.org/

MILCOM 2023 - 2023 IEEE Military Communications Conference (MILCOM): TRACK 5 – Machine Learning for Communications and
Networking

348
Authorized licensed use limited to: New Mexico State University. Downloaded on July 09,2024 at 22:32:23 UTC from IEEE Xplore. Restrictions apply.

Performance Metrics
Partition Aggregation Accuracy Precision Recall F1 Training time (min)

Centralized - 0.837± 0.002 0.733± 0.004 0.704± 0.003 0.665± 0.025 485.17± 7.671
CICDDoS2019 FedAvg 0.836± 0.000 0.730± 0.001 0.701± 0.001 0.664± 0.006 202.998± 11.349

(EB) FedAvgM 0.835± 0.001 0.732± 0.005 0.700± 0.003 0.656± 0.020 210.076± 9.031
CICDDoS2019 FedAvg 0.835± 0.000 0.729± 0.000 0.700± 0.001 0.661± 0.003 202.657± 7.081

(EI) FedAvgM 0.834± 0.002 0.725± 0.007 0.698± 0.005 0.665± 0.008 200.901± 5.799
CICDDoS2019 FedAvg 0.835± 0.001 0.730± 0.002 0.700± 0.003 0.667± 0.015 219.499± 6.180

(UI) FedAvgM 0.835± 0.001 0.729± 0.001 0.701± 0.002 0.662± 0.007 231.949± 17.414

FLNET2023 FedAvg 0.682± 0.007 0.285± 0.049 0.366± 0.004 0.277± 0.008 239.410± 3.104
dataset FedAvgM 0.812± 0.009 0.420± 0.075 0.458± 0.042 0.428± 0.061 243.303± 6.028

TABLE II: Performance comparison between CICDDoS2019 and FLNET2023 dataset

the clients, the FedAvg algorithm suffers from performance
degradation as well as convergence issues.

To address these issues, Hsu et al. introduced the FedAvgM
algorithm. Unlike the FedAvg, the FedAvgM incorporates
momentum during the accumulation of model updates by the
server, thereby accelerating network training and reducing the
impact of data/class imbalanced issues from the clients. To
add momentum at the server, the FedAvgM [15] computes
v using v ← βv + ∆w and update the global model with
wt+1 ← wt − v, where the momentum β ∈ [0, 1], and v
represents an all-ones matrix with the same dimension as w.
If we set β as zero, it will correspond to exactly the FedAvg.
After tuning with several values, we set β = 0.7 for FedAvgM
in our experiments.

C. Metrics

To evaluate our dataset on the multi-class classification
task, we utilized the performance metrics defined as fol-
lows, Accuracy = (TP + TN)/(TP + TN + FP +
FN), Precision(Pre) = TP/(TP + FP), Recall(Rec) =
TP/(TP+FN), F1 = (2×Pre×Rec)/(Pre+Rec), where
TP (True Positive) represents the number of instances cor-
rectly classified as an attack; TN (True Negative) represents
the number of instances correctly classified as normal; FP
(False Positive) represents the number of instances incorrectly
classified as an attack; FN (False Negative) represents the
number of instances incorrectly classified as normal.

D. Results and Discussion

We performed experiments with all three data partitions
(defined in Section IV-A) of the CICDDoS2019 dataset and
our dataset, FLNET2023, using both FedAvg and FedAvgM
aggregation algorithms. We ran each experiment three times
and showed the performance metric values in M ±S form in
Table II where M represents the average and S represents the
standard deviation of the recorded metrics. From Table II, we
observe that the performance of both aggregation algorithms
on EB, EI, and UI partitions is very similar. All of them can
reach around 83% accuracy and 66% F1-score.

Table II includes the results of the centralized scenario
(as a reference, Row 1 in the table) where 80% of the

unpartitioned CICDDoS2019 dataset was used for training,
and 20% of the dataset was used for testing the global model
in the central server node. The FedAvg algorithm in the
centralized scenario obtained 83.7% accuracy and 66.5% F1-
score. The performance of the FL strategies on different types
of partitions (EB, EI, UI) on the CICDDoS2019 dataset is
very close to the centralized scenario. These results show
that the EB, EI, and UI do not affect the performance of the
global ML model trained with the FL aggregation algorithms.
However, all these data partition methods are not realistic as
they assume that all clients have all attack categories. In the
real-world scenario, as exhibited by FLNET2023, each client
may have different classes of attacks with an unequal number
of instances. This property may cause performance and model
convergence issues.

The last two rows of Table II show the results of both
FL aggregation algorithms on our FLNET2023 dataset. We
observe that the FedAvg and the FedAvgM achieved 57% less
F1-score and 34% less F1-score on FLNET2023 respectively
compared to those of the EB partition of the CICDDoS2019
dataset. This performance degradation is caused by the fact

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Rounds

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Lo
ss

1e 2
FLNET2023 loss
CICDDoS2019 (EB) loss

FLNET2023 accuracy
CICDDoS2019 (EB) accuracy

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Fig. 3: Loss/Accuracy of FedAvgM for the global model on
CICDDoS2019 (EB) and FLNET2023 dataset

that the global model on the FLNET2023 does not converge.
To further demonstrate this issue, we plot Figure 3 to show
the loss/accuracy changes of the global model. Here, the X-

MILCOM 2023 - 2023 IEEE Military Communications Conference (MILCOM): TRACK 5 – Machine Learning for Communications and
Networking

349
Authorized licensed use limited to: New Mexico State University. Downloaded on July 09,2024 at 22:32:23 UTC from IEEE Xplore. Restrictions apply.

axis represents the rounds, the left Y-axis represents the loss
value, and the right Y-axis represents the accuracy. The figure
shows that for the EB data partition of the CICDDoS2019
dataset, the global model converged and learned fast (the loss
value has been stable since round 3). However, the global
model did not converge when we used FLNET2023 in FL
settings. Both the loss value and the prediction accuracy values
fluctuate with the communication rounds. This indicates that
the local models do not guide the global model in the correct
convergence direction.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Accuracy Precision Recall F1

Fig. 4: Local model experiments for FLNET2023 dataset

To find the rationale for the underwhelming performance
of the FL aggregation algorithms over the FLNET2023, we
performed experiments with each client in a centralized
scenario. That means we allowed each client to train their
models individually using their respective class-imbalanced
local dataset. We then utilized the corresponding class data
extracted from the testing set to evaluate their trained models.
As illustrated in Figure 4, the accuracy and F1-score for
all clients’ models exceeded 90% and hovered around 80%,
respectively. However, the FLNET2023 dataset, when tested
in an FL-based scenario, exhibited an obvious contrast. As
per Table II, the FedAvg achieved merely around 68.2%
accuracy and 27.7% F1-score. Although the FedAvgM did
better, achieving 81.2% accuracy and 42.8% F1-score, it still
fell short compared to the performance of the single client
models. That means the FedAvgM does, to some extent,
mitigate the impact of data/class imbalanced issues, yet the
overall performance remains significantly lower. By analyzing
the results from Figure 3 and 4, it’s clear that the primary
contributor to FLNET2023’s underperformance is the class
imbalance problem.

Thus, our experiments highlight the challenges faced by
FL-enabled IDS, which include performance degradation and
convergence issues due to the local class imbalance nature
of clients. In a real-world FL-based network environment,
it’s quite possible for each device to experience no intrusion
at all or only observe a limited variety of attack classes.
This situation can result in class imbalance and unequal
distribution of instances among clients. To better embody
these circumstances, we’ve generated a new representative
network intrusion dataset for FL-enabled IDSes.

V. CONCLUSIONS

In this paper, we introduced a novel benchmark dataset,
FLNET2023 for FL-based network intrusion detection sys-

tems. We generated the dataset using the CORE emulator
featuring a realistic network topology and a diverse range
of traffic and attack types. We thoroughly analyzed the
dataset, establishing its unique characteristics, and assessed
the efficacy of FL aggregation algorithms in the context
of IDSes. Our experimental results highlight the challenges
posed by local class imbalance indicating a clear path for
future research to enhance the efficacy of FL-based IDS. Our
work can serve as a foundation for further explorations into
network intrusion detection, while the newly created dataset
will provide a realistic basis for such investigations. In the
future, we plan to solve the challenges highlighted by our
dataset.

ACKNOWLEDGMENT

This work was sponsored by the DEVCOM Analysis Center
and was accomplished under Cooperative Agreement Number
W911NF-22-2-0001. This work was also partially funded by
the U.S. Department of Energy, DE-SC0023392.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, and et al., “Communication-
efficient learning of deep networks from decentralized data,” in Artificial
Intelligence and Statistics. PMLR, 2017, pp. 1273–1282.

[2] N. A. A. Al-Marri, B. S. Ciftler, and M. M. Abdallah, “Federated
mimic learning for privacy preserving intrusion detection,” in IEEE
BlackSeaCom. IEEE, 2020, pp. 1–6.

[3] S. A. Rahman, H. Tout, C. Talhi, and A. Mourad, “Internet of things
intrusion detection: Centralized, on-device, or federated learning?” IEEE
Network, vol. 34, no. 6, pp. 310–317, 2020.

[4] J. Zhang, P. Yu, L. Qi, S. Liu, H. Zhang, and J. Zhang, “FLDDoS: DDoS
attack detection model based on federated learning,” in 2021 IEEE 20th
International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom). IEEE, 2021, pp. 635–642.

[5] M. Tavallaee, E. Bagheri, W. Lu, and et al., “A detailed analysis of the
KDD CUP 99 data set,” in IEEE Symposium on CISDA. IEEE, 2009,
pp. 1–6.

[6] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),”
in MilCIS Conference. IEEE, 2015, pp. 1–6.

[7] I. Sharafaldin, A. Gharib, A. H. Lashkari, and A. A. Ghorbani, “Towards
a reliable intrusion detection benchmark dataset,” Software Networking,
vol. 2018, no. 1, pp. 177–200, 2018.

[8] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, “De-
veloping realistic distributed denial of service (ddos) attack dataset and
taxonomy,” in ICCST. IEEE, 2019, pp. 1–8.

[9] J. Ahrenholz, C. Danilov, T. R. Henderson, and J. H. Kim, “CORE: A
real-time network emulator,” in MILCOM. IEEE, 2008, pp. 1–7.

[10] J. Li, L. Lyu, X. Liu, and et al., “FLEAM: A federated learning
empowered architecture to mitigate ddos in industrial IoT,” IEEE
Transactions on Industrial Informatics, vol. 18, no. 6, pp. 4059–4068,
2021.

[11] Q. Qin, K. Poularakis, K. K. Leung, and L. Tassiulas, “Line-speed and
scalable intrusion detection at the network edge via federated learning,”
in IFIP Networking Conference. IEEE, 2020, pp. 352–360.

[12] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization.”
ICISSP, vol. 1, pp. 108–116, 2018.

[13] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE Journal on Selected Areas in
Communications, vol. 29, no. 9, pp. 1765–1775, 2011.

[14] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, T. Parcollet, and N. D.
Lane, “Flower: A friendly federated learning research framework,”
arXiv preprint arXiv:2007.14390, 2020.

[15] T.-M. H. Hsu, H. Qi, and M. Brown, “Measuring the effects of non-
identical data distribution for federated visual classification,” arXiv
preprint arXiv:1909.06335, 2019.

MILCOM 2023 - 2023 IEEE Military Communications Conference (MILCOM): TRACK 5 – Machine Learning for Communications and
Networking

350
Authorized licensed use limited to: New Mexico State University. Downloaded on July 09,2024 at 22:32:23 UTC from IEEE Xplore. Restrictions apply.

