MILCOM 2023 - 2023 IEEE Military Communications Conference (MILCOM) | 979-8-3503-2181-4/23/$31.00 ©2023 IEEE | DOI: 10.1109/MILCOMS58377.2023.10356377

MILCOM 2023 - 2023 IEEE Military Communications Conference (MILCOM): TRACK 5 - Machine Learning for Communications and
Networking

CAFNet: Compressed Autoencoder-based Federated
Network for Anomaly Detection

Abu Saleh Md Tayeen*, Satyajayant Misra*, Huiping Cao*, Jayashree Harikumar'
*New Mexico State University, Las Cruces, New Mexico, USA
Email: {tayeen, misra, hcao} @nmsu.edu
TDEVCOM Analysis Center, WSMR, New Mexico, USA
Email: jayashree.harikumar.civ@army.mil

Abstract—Federated Learning (FL) is a promising collabo-
rative training paradigm that utilizes decentralized on-device
data. Using supervised learning approaches in FL-based network
intrusion detection systems often leads to poor -classification
performance because of the highly imbalanced data with limited
labeled network traffic anomalies from data collected by edge de-
vices. Furthermore, detecting zero-day anomalies/attacks without
a priori knowledge is difficult. Due to these constraints, unsuper-
vised learning-based methods, such as autoencoders, which only
use benign traffic to build the detection model, appear to be the
desired choice to identify anomalous network traffic. In this work,
we propose a Compressed Autoencoder-based Federated Network
(CAFNet) framework for network anomaly detection to deal with
the labeled data scarcity issue while preserving data owner’s
privacy and reducing communication overhead. Our framework
leverages the latent representation of autoencoders to capture
important information in the input features of the distributed
network devices and eliminate the transmission of redundant
information (weights) during federated training. Our extensive
experimental results with three publicly available network intru-
sion detection datasets show that our proposed framework can
significantly lower communication cost up to 65% of the state-
of-the-art model compression strategies used in traditional FL
as well as achieves attack detection performance comparable to
conventional FL framework.

Index Terms—Network anomaly detection, federated learning,
autoencoder.

I. INTRODUCTION

With an increased number of cyber attacks on networks,
it has become crucial to find efficient solutions to detect
such attacks or anomalies. In recent years, various machine
learning (ML) algorithms have been applied to the network
security domain for building models to effectively detect net-
work attacks [1]. However, such ML-based solutions are often
designed on the unseemly assumption that there is an ample
amount of data available in a central host to train the model and
such data can be collected from network devices without any
privacy concerns. These conventional schemes also consume
high network bandwidth and incur long transmission latency
due to the explosion of big data generated by distributed
network devices.

Researchers [2]-[6] have attempted to address these issues
by proposing network Intrusion Detection System (IDS) using
Federated Learning (FL) [7]. FL is a collaborative training

paradigm that can build a model without centralizing raw
data from distributed devices and preserve their privacy. Most
of these FL-based IDSes use supervised learning approaches
which rely on well-labeled, sufficient, and balanced datasets
(i.e., similar number of benign and attack traffic samples)
to achieve high detection accuracy. However, in practice, it
is expensive, time-consuming, and very difficult to collect
and label attack/anomalous traffic data. In addition, devices
participating in an FL environment may not experience all
types of attacks or may encounter no intrusions at all depend-
ing on their location in the network. Therefore, the training
set of these devices becomes highly imbalanced resulting in
poor performance of the detection models. Moreover, zero-
day (i.e., novel) attacks constantly occur and it is hard for any
supervised approach to guarantee its detection performance on
new/unknown attacks that do not exist in the training dataset.
To address this issue, a number of unsupervised Autoencoder
(AE)-based approaches have been proposed. These approaches
use only benign data during the training for network anomaly
detection [8]-[12]. However, these methods are either under
a centralized framework which poses the risk of privacy
leakage [8]-[10] or do not deal with the communication cost
in FL [11], [12].

Motivation: Motivated by the above challenges, in this paper,
we propose and design an AE-based unsupervised learning
method to build a detection model using only benign data,
in combination with the FL framework. The newly proposed
method is called Compressed Autoencoder-based Federated
Network (CAFNet) framework for network anomaly detection.
Our framework addresses the dataset imbalance issue by
waiving the requirement of collecting or labeling attack traffic
data for training as well as taking advantage of the privacy
preservation and communication reduction properties of FL.
To further improve communication efficiency, we capitalize
on the latent space representation characteristics of the autoen-
coders to perform model compression in our framework. The
main contributions of our work are summarized as follows.

1) We propose a framework to detect anomalous traffic uti-
lizing autoencoders and FL for a networking environment
where devices only contain benign data for training.

979-8-3503-2181-4/23/$31.00 ©2023 IEEE 325
Authorized licensed use limited to: New Mexico State University. Downloaded on July 09,2024 at 22:35:35 UTC from IEEE Xplore. Restrictions apply.

MILCOM 2023 - 2023 IEEE Military Communications Conference (MILCOM): TRACK 5 - Machine Learning for Communications and
Networking

2) We introduce a new way of reducing communication
costs in FL by exploiting the intrinsic characteristics of
autoencoders.

3) We conduct experiments on three representative datasets
and show that the anomaly detection performance and
the communication efficiency achieved by our proposed
method is better than the baseline methods.

The remainder of the paper is organized as follows. In
Section II, we describe the background knowledge and related
works. We present the proposed framework in Section III. In
Section IV, we evaluate and discuss the experimental results.
Finally, we conclude in Section V.

II. BACKGROUND AND RELATED WORK
A. Autoencoder (AE)

An Autoencoder (AE) is one of the classical artificial neural
networks which has emerged as a suitable approach to anomaly
detection [13]. An AE is considered an unsupervised learning
technique as it does not require any class labels to train. The
training of the AE is performed by feeding the model with
only normal/benign observations. A simple illustration of the
architecture of an autoencoder model is shown in Figure 1.

T =~-. N . N
n r 1
oL 1@k l eb 1@
\ (RN . 1 i 1
O | |\ ey O
OO 7o /|@: ;

1 1 ’ \ [

1 1 \ 1 1 1
O I" vy, AN S “ 1 [.
1 vy \ 1 1 ',
olill@ /e g 0\ @ e
! v, Vi I ‘Y Y

il . \ v . Y y .
wl; wa) Wesr nwWq - hw,_q
" " 1 LY . " Al
," . - v '\ i
[A 1 \ 1 O 1
O @ R Q Sov O H b @
1 \} \ 1 1
1 ’ A
ol H1 Wl O]
el ek Vol Ve
O' ' B R I \ B II.
' 1 o, Se \ U
@ e le
" . N
o} .19 &9
Encoded T
Input Data Reconstructed
Data Dasa

8

Fig. 1: Architecture of an Autoencoder

In practice, a generic autoencoder consists of two parts: the
encoder and the decoder. The encoder and the decoder parts
have a symmetrical structure from the middle hidden layer,
sometimes called the bottleneck layer. The task of the encoder
is to map an input sample, x;, with ¢ dimensions from the
input layer to a latent representation, z;, with ¢’ dimensions
in the bottleneck layer, where ¢ > ¢’ in general. It compresses
the input data to preserve non-redundant information in the
latent representation. The task of the decoder is to map the
latent representation z; back into the input space. It attempts
to reconstruct input x; from the latent space by producing z
at the output layer.

Let us denote the weight matrices of the hidden layers that
connect the encoder and the decoder to the bottleneck layer as

we € R" 9 and wy € RY %" respectively, where h is the num-
ber of neurons in the hidden layer immediately before/after
the bottleneck layer. Since these parameters, {w.,wy}, of the
AE model involve direct connection to the latent space in
the bottleneck layer, we name them as latent representation
parameters. The AE model learns to minimize a loss function
with respect to the parameters, W = (wy, - - We, W, * -+ Wy)
using a stochastic gradient descent based training algorithm.
Generally, Mean Square Error (MSE) defined in Equation 1 is
used as a loss function, L.

n

1 2
LW;X) = - Z(Hl‘; —x)[|) (1
i=1
, where X = {1,292, ---x,} is the training dataset and

||z} — ;|| is the reconstruction error, .

B. FL-based IDS

There exist several research works that have utilized FL
to design network IDS. Researchers in [2], [3] evaluated a
FL-based IDS for IoT devices with NSL-KDD dataset under
various real-world scenarios to show that it obtains accuracy
comparable to the centralized approach. Zhang et al. [4]
proposed a DDoS attack detection model based on FL. They
used K-means clustering during aggregation and applied a
data re-sampling algorithm on the client side to solve the
data imbalance problem. Mothukuri et al. [5] proposed a FL-
based IoT network anomaly detection approach that uses seven
gated recurrent unit models, each for a separate window size
of the input and a random forest ensembler to combine the
predictions. Weinger et al. [6] showed the performance degra-
dation problem of traditional FL-based anomaly detection in
the context of IoT networks due to class imbalance issue. They
proposed five data augmentation schemes to solve this issue.

All of these works employ supervised learning methods to
build attack detection models. However, these methods fail
to address the data imbalance problem due to the lack of
sufficient labeled data and can not provide assurance of high
accuracy on unknown attacks. Though few works combined
FL and AE-based methods and proposed network IDSes [11],
[12] to address these issues, they differ from ours because
they do not focus on reducing the communication cost in FL.
Our paper’s main contribution lies in the exploitation of the
AE attributes to improve the communication efficiency in a
FL-based network anomaly detection framework.

ITI. DESIGN OF CAFNet FRAMEWORK
A. Collaborative Training:

CAFNet collaboratively trains an AE model utilizing decen-
tralized benign traffic data from multiple network devices. In
particular, this framework consists of two components:

1) Central Node (CN): The central node is generally a cen-
tralized server in the network with rich storage and computing
resources. It sends a global model to all participating nodes
and acts as an aggregator of local model updates from them.

326

Authorized licensed use limited to: New Mexico State University. Downloaded on July 09,2024 at 22:35:35 UTC from IEEE Xplore. Restrictions apply.

MILCOM 2023 - 2023 IEEE Military Communications Conference (MILCOM): TRACK 5 - Machine Learning for Communications and
Networking

2) Edge Node (EN): The edge nodes are routers or network
security gateways that are equipped with storage and comput-
ing power. The ENs use their local traffic data to train the
global model and then upload the updated model parameters
to the CN. The edge nodes act as clients and can use their
local AE models to detect anomalous network traffic. Our
framework is illustrated in Figure 2. The collaborative training

@ Download global AE latent parameters l l
{we » Wy }

@ Aggregate AE latent parameters
Aggregatlon

@ Upload local AE latent parameters
Central

@ AE Training Process Node %

O l © i

ci

4o

Fig. 2: CAFNet framework

algorithm of our framework is given in Algorithm 1 with
the code executed at the CN and ENs presented together.
In Algorithm 1, W& denotes the global AE model at the ¢-
th round, W€ denotes the local AE model of the c-th EN,
{wS,wS} are the latent representation parameters of the
global AE model at the ¢-th round, and {wg,,w§, } are the
latent representation parameters of the local AE model of the
c-th EN at the ¢-th round. We describe the different phases of
this algorithm in detail below.

1) Initialization: The CN starts the training of CAFNet by
initiating execution of CN-Main function in Step 1. In Step 2
of Algorithm 1, the CN generates the global AE model, W,
and initializes its parameters with random values.

2) Updating of the global model: In each communica-
tion round, ¢, the CN ﬁrst retrieves the latent representation
parameters, w and wd (defined in subsection II-A) from
the current global AE model, W, in Step 4. In Steps 5
to 16 of Algorithm 1, the CN sends these parameters to each
of the |C| ENs participating in the training process. After
receiving the updated parameters {w¢ +1,wdtﬂ} of the local
AE model for all ¢ € C for communication round ¢ + 1, the
CN aggregates these parameters in Step 7 using FedAvg [7].
Finally, in Step 8 of Algorithm 1, the CN updates its latent
representation parameters of the current global AE model,
W and generates a new global AE model, W5 ,, for the
next round, ¢ + 1.

3) Updating of local models Each EN receives the latent
representation parameters, w and wd , of the global AE
model from the CN. As shown in the EN-Update function
of Algorithm 1, each EN first retrieves the latent represen-
tation parameters, {wt,wS}, of its local AE model W€ in
Step 10. Second, it replaces these parameters with w& and
de in Step 11 and updates its local AE model W€ with the
modified latent representation parameters in Step 12. Third, in
Steps 13 to 15, each EN trains its local AE model, W€ using
mini-batches from its local dataset with a learning rate, 7.
Finally, each EN uploads the latent representation parameters,
{w¢, w§} of its updated AE model, W° to the CN in Steps 16
and 17.

Algorithm 1: CAFNet framework training

1 CN-Main:
Initialize W&
foreach round t = 0,1,--- do
Get {w(,t , wdt} from W&
foreach client ¢ € C do
L {wgwrl s w§t+1 } < EN-Update(c, {wg s wi b

o B W

e FedAVg({weHl J W3, 4 Yeed)

G
v {w€t+1 Wy g ¥

{w et+1’ dtac
8 Wt+1 ~— W,

9 EN-Update(c, {wS, w§}):

10 Get {wg, wg} from W°

no | fws s}« {wC,w}

12 W« Weu{ws, wg}

13 foreach local epoch j from 1 to E do

14 foreach batch b of size B do

15 | W W —nv L(Wb)
16 Get {wg, wg} from W€

17 return {wS, w§}

B. Anomaly Detection

AE-based anomaly detection is accomplished using the
reconstruction error, 7, as the anomaly score. An AE model
trained on only normal/benign data learns the data distribution
of normal network traffic behavior. It is able to successfully
reconstruct the samples that are similar to those in the training
dataset resulting in small r values. However, when an anoma-
lous sample is given to the trained AE model, it reconstructs
the sample poorly as the model has not seen samples similar
to that during the training. As a result, anomalies produce
large r values. A fixed threshold value, J, is obtained from
the reconstruction errors of the training data and is used
as a decision boundary for detecting anomalous data. The
samples that generate r values greater than ¢ are classified
as anomalous, whereas the ones with 7 values less than or
equal to J are classified as normal (benign) samples.

After training is completed, the ENs find out the value of the
threshold, §, and utilize it to decide whether a traffic sample
is anomalous or not during the testing stage. To determine
the threshold, &, each EN feeds the network traffic samples
from their local training dataset to their trained AE model and
calculates reconstruction errors of all samples. The mean value

327

Authorized licensed use limited to: New Mexico State University. Downloaded on July 09,2024 at 22:35:35 UTC from IEEE Xplore. Restrictions apply.

MILCOM 2023 - 2023 IEEE Military Communications Conference (MILCOM): TRACK 5 - Machine Learning for Communications and
Networking

is calculated from all the reconstruction errors and marked as
the threshold value. Thus, each EN has its own threshold.

IV. EVALUATION
A. Datasets

We evaluated the performance of the CAFNet framework
on three public network intrusion detection datasets, namely
CICDDo0S2019 [14], Bot-IoT [15], and UNSW-NB15 [16].
Since CICDDo0S2019 and Bot-IoT datasets contain millions of
records and UNSW-NBI15 has more attack flow instances than
benign flow instances, we applied random undersampling and
oversampling methods to get a sample of these datasets.

1) CICDDoS2019: This dataset [14] contains over millions
of realistic DDoS attack samples in 12 different categories
such as DNS, MSSQL, NetBIOS, SNMP, SSDP, and UDP. We
took a sample of 250,000 benign flow instances and 250,000
attack flow instances from this dataset for our experiments.

2) Bot-IoT: This dataset [15] includes normal traffic flows
as well as DoS and DDoS attack flows generated by botnets for
different IoT devices, such as smart fridge and smart lights. We
chose a sample of 300,000 benign flow instances and 200,000
attack flow instances from this dataset for our experiments.

3) UNSW-NBI5: In this dataset, Moustafa et al. [16] im-
plemented various attack traffic categories such as Backdoors,
DoS, Shell-code, and Worms. In our experiments, we used a
sample of 60,000 benign flow instances and 40,000 attack flow
instances from this dataset.

B. Experiment Setup

1) Preprocessing datasets: To preprocess the datasets, we
utilized the following pipeline. We first cleaned it up by
removing feature values containing NaN (Not a Number),
blanks, and infinity. Second, we removed socket-based features
such as ‘Flow ID’, ‘Source IP’, etc. to allow the model to
learn from the characteristics of the flows itself. Moreover,
we removed features with zero variance, i.e., features with
constant values and duplicate features. Third, we performed
encoding (i.e., convert to float/numeric values) of the categori-
cal features. Fourth, we applied min-max-based normalization
on the features to eliminate the impact of large variance of
the feature values and thus reducing model training time and
improving model accuracy. After data preprocessing, we are
left with 41, 65 and 59 features for the CICDDoS2019, Bot-
IoT, and UNSW-NBI5 datasets respectively.

2) Implementation details: We utilized the PyTorch [17]
Python library to implement the AE models and the
CAFNet framework. In our experiments, we applied the strat-
ified K-Fold technique to the sampled datasets to perform
K-fold cross-validation, where one fold is used for testing
and the rest are used for training. In our case, K = 5. We
distributed the training dataset over ten ENs in a network with
different proportions, i.e., each EN does not have equal number
of training data instances. We also equally divided the testing
data among all the ENs.

In our experiments, we used two AE model architectures:
AEI and AE2. Since UNSW-NB15 dataset is much smaller in
size compared to the other datasets, we used a lighter (i.e., less
number of hidden layers) AE model architecture, AEI only for
this dataset to prevent overfitting. In AE], the encoder consists
of one hidden layer with 32 neurons and a bottleneck layer
with 8 neurons. In AE2, the encoder consists of two hidden
layers with 32 and 16 neurons respectively and a bottleneck
layer with 8 neurons. The decoder parts of the AE models
have a symmetrical architecture from the bottleneck layer. We
applied Rectified Linear Units (ReLU) activation function on
the output of all hidden layers. We used Adam optimizer with
learning rate, 7 = 0.001 and the Mean Square Error (MSE)
as the loss function to train the AE models.

3) Metrics: To evaluate the anomaly detection performance
of our framework, we used metrics including Accuracy (Acc),
Precision (Pre), Recall (Rec), and Fl-score (F'1). Let us
denote the number of instances correctly classified as an
anomaly/attack with TP (True Positive), the number of in-
stances correctly classified as normal/benign with T'N (True
Negative), the number of instances incorrectly classified as an
anomaly/attack with F'P (False Positive), and the number of
instances incorrectly classified as normal with F'N (False Neg-
ative). Accuracy (Acc) is the percentage of correctly classified
samples, i.e., Acc=(TP+TN)/(TP+TN + FP+ FN).
Precision (Pre) is the ratio of correctly detected attack samples
to all detected attack samples, i.e., Pre = TP/(TP + FP).
Recall (Rec) represents the percentage of correctly classified
attack samples, i.e., Rec = TP/(TP 4+ FN) and F1-Score
(F'1) is the harmonic mean of Precision and Recall, i.e., F'1 =
2x (Prex Rec)/(Pre+ Rec). To measure the communication
efficiency of the the CAFNet, we defined the metric for ENs
to CN communication cost, I' = (2] T;) x |C|, where T;
is the amount of bits/bytes required to communicate the ¢-th
model parameter of the AE model, W, and |C| is the number
of ENs.

4) Threshold (§) selection: Selecting the threshold, § to
determine whether a testing sample is anomalous or not is a
very important step. As mentioned in Section III-B, each EN
computes its own ¢ value using the reconstruction errors of its
local training dataset. Usually classical statistical methods such
as mean and maximum are applied on these reconstruction
errors to choose the threshold [9], [10]. In our experiments,
we tested with statistical measures including maximum, min-
imum, mean, median, and different percentiles to find a best-
performing threshold value. We found that choosing mean of
the reconstruction errors as § gives the best trade-off between
precision and recall performance metrics for the test dataset.

C. Baseline Methods

To evaluate our proposed method, CAFNet, we compare it
with the following baselines.

1) Non-federated: In this scenario, all ENs train their AE
models with their local dataset without the help of Federated

328

Authorized licensed use limited to: New Mexico State University. Downloaded on July 09,2024 at 22:35:35 UTC from IEEE Xplore. Restrictions apply.

MILCOM 2023 - 2023 IEEE Military Communications Conference (MILCOM): TRACK 5 - Machine Learning for Communications and
Networking

TABLE I: Performance comparison of all methods on different datasets

Method CICDDoS2019 Bot-IoT UNSW-NBI15
Pre [Rec [F1 Pre [Rec [F1 Pre [Rec [F1

[Non-federated | 094 £ 0.002 | 0.4 & 0.017 | 0.94 £ 0009]| 093 & 0.003 | 0.85 £ 0026 | 0.88 £ 0.015][0.87 & 0.001 [0.97 £ 0003 | 092 & 0.001 |

[Vanilla [093 £ 0.001 | 0.04 £ 0.026 | 0.94 £ 0.013]| 093 £ 0002 | 085 & 0030 | 0.89 £ 0.017]| 0.87 & 0.004 | 097 & 0.007 | 0.92 & 0.002 |
RM-10 0.90 £ 0.003 0.86 £+ 0.017 0.88 + 0.011 0.82 £ 0.037 0.57 + 0.042 0.66 £ 0.045 0.86 =+ 0.002 0.93 £ 0.012 0.89 + 0.006
RM-5 0.92 £ 0.004 0.89 + 0.022 0.90 + 0.013 0.85 £ 0.046 0.68 + 0.073 0.74 £ 0.068 0.86 £ 0.002 0.95 £ 0.015 0.91 £ 0.008
PQ-4 0.80 £ 0.028 0.54 £+ 0.027 0.62 £+ 0.017 0.73 £ 0.079 0.47 + 0.149 0.55 £+ 0.143 0.86 £ 0.007 0.91 £ 0.023 0.89 £+ 0.015
PQ-8 0.92 £ 0.005 0.78 £ 0.019 0.84 £+ 0.011 0.82 £ 0.026 0.55 £ 0.059 0.64 £ 0.049 0.87 £ 0.003 0.96 £ 0.004 0.91 £ 0.001
PQ-16 0.93 £ 0.003 0.90 £+ 0.033 091 £ 0.018 0.90 £ 0.007 0.70 £ 0.019 0.78 £ 0.013 0.87 £ 0.004 0.97 £ 0.011 0.92 + 0.004

[CAFNet [093 £ 0.003 [092 & 0.012 | 0.93 £ 0.007]| 0.92 £ 0.005 | 0.80 & 0.045 | 0.85 & 0.028][0.87 & 0.001 | 0.95 £ 0.006 | 0.91 & 0.003 |

learning (FL). It is similar to a centralized scenario where each
EN is trained separately in a centralized way.

2) Vanilla FedAvg: In this scenario, a joint AE model is
trained at CN by applying FedAvg [7] algorithm to the model
parameters received from the ENs. The joint model is then
shared with all ENs. This simulates the basic FL scenario
without implementing any model compression. As a result,
the cost of communicating a model parameter with dimension,
m will be m x u, where u is the number of bits required to
transmit a real value. We refer to this method as Vanilla.

3) Random mask FedAvg: This scenario simulates a FL
setup that applies FedAvg [7] algorithm to the local AE models
that are compressed by a structured update strategy [18]. We
chose a random mask structure for each EN to limit its model
updates by setting a certain percentage, p of weight elements
to be zero. As a result, the cost of communicating a model
parameter with dimension, m will be (m — 55 x m) x u,
where u is the number of bits required to transmit a real value.
In this case, higher percentage (p) value represents higher
compression. We ran our experiments using random masks for
all EN models to remove 5% or 10% of the random elements
from their weight matrices (model parameters). When p = 5,
we denote the Random mask FedAvg method as RM-5 and
when p = 10, we denote it as RM-10 in our results.

4) Probabilistic quantization FedAvg: This scenario is sim-
ilar to the scenario defined in subsection IV-C3 except that
the local AE models are compressed by a sketched update
strategy [18]. We chose to compress the local AE model
updates by probabilistically distributing weights into encoded
buckets. For example, consider a vector V = (v1,va, - Up,)
representing a model parameter. Let vy,q, = maxi< jgm(vj)
and Uy, = minj<j<m,(v;). The 1-bit or 2-level quantized
(compressed) vector, V' of V is generated as follows.

3 HH Vj—=VUmin
o — Umaz, With probability PT——)
J H 13 VUmaz —Vj
Umin, With probability —mat—=i—

In this case, each EN can encode the vector V'’ into a bit
vector such that v; =1if v§ = Umaz and 0 otherwise. Thus,
instead of sending V' to CN, each EN can only transmit this
bit vector and two real values, v;,q, and v,,;,,. Therefore, if k-
level quantization is used, the cost of communicating a model

parameter with dimension, m will be (m X [logs k]) + (2 X u)
where u is the number of bits required to transmit a real value.
The less the number of levels used for quantization, the more
compressed the model will be. In our experiments, we used
three different quantization levels where & € {4,8,16}. We
denote Probabilistic quantization FedAvg method for each of
the k values as PQ-4, PQ-8, and PQ-16 in our results.

D. Results and Discussion

We evaluate our proposed framework, CAFNet on two
aspects: model performance and communication efficiency.
First, we compare the anomaly detection performance of
CAFNet with the baseline methods using metrics Pre, Rec,
and F'l1. Second, we compare the communication cost of
CAFNet and the baseline methods.

1) Model performance: In Table I, we present the overall
performance of all the methods on the three datasets. In our
experiments, we perform 5-fold cross validation and compute
the Pre, Rec, and F'1 achieved by the local AE models on
their test datasets and show the results in M + S form where
M and S represents mean and standard deviation respectively.

The experimental results in Table I show that our
CAFNet framework outperforms all the baselines except
Vanilla. Compared with the Vanilla method, our framework
is only 1%, 4%, and 1% lower on Fl-score for datasets
CICDDo0S2019, Bot-IoT, and UNSW-NBI5 respectively. Since
CAFNet only communicates the latent representation param-
eters of the local AE models, some encapsulated information
encoded in the other parameters gets lost, and thus causes a
dip in the Fl-score. In terms of recall, CAFNet obtains 2%
and 14% higher performance compared to the PQ-16 method
and 3% and 18% higher performance compared to the RM-5
method in detecting attacks for CICDD0S2019 and Bot-IoT
datasets respectively.

2) Communication efficiency: The major benefit of our
CAFNet framework is that it significantly reduces the commu-
nication overhead when each EN transmits model parameters
to the CN and vice versa. That is because each EN and CN
only sends the latent representation parameters instead of all
the parameters of the model. To demonstrate the communi-
cation efficiency of CAFNet, we compute the cost of EN to
CN communication required for all ENs in each federated

329

Authorized licensed use limited to: New Mexico State University. Downloaded on July 09,2024 at 22:35:35 UTC from IEEE Xplore. Restrictions apply.

MILCOM 2023 - 2023 IEEE Military Communications Conference (MILCOM): TRACK 5 - Machine Learning for Communications and

Networking

1.0 CICDD0S2019 240§ 10 BotloT 240§ 10 UNSW-NB15 240§
] Accuracyl) 210‘2] Accuracyl i 210'2] Accuracy.) 210 2
0.8 B Communication Cost g 0.8 W Communication Cost g 0.8 B Communication Cost g
. 180 = . 180 = . 180 =
S o} S 9] Q 9]
e 150 & e 150 & o6 150 &
> @ > @ > @
@ 1208 @ 120 8 3 120 8
goa 9 5 go4 2 § go4 % §
< =] < =] £ £=]
60 8 60 8 60 8
0.2 5 5 0.2 5 5 0.2 .-
£ £ £
0.0 O P & D © 2 ° g oo O P P © P g 00 O P P © 0 g

N AS b . S AS () N2 AS b | 5 A & N2 AS b . A A ()
REEIE S SR SIS © RPN I © RO S SRS ©

Fig. 3: Comparison of accuracy and communication cost of all methods on different datasets.

method. In Figure 3, we compare, the communication cost,
I', per communication round during training and the average
model accuracy of all methods on the three datasets used in
the experiments during testing.

Figure 3 also shows that our proposed method,
CAFNet achieves 2%, 14%, and 3% higher accuracy than the
PQ-16 method with 9%, 62%, and 50% lower communication
cost for UNSW-NB15, Bot-IoT, and CICDDoS2019 datasets
respectively. Moreover, as shown in Figure 3, our method
achieves 88% and 80% accuracy for datasets CICDDoS2019
and Bot-IoT respectively which are very close to the
accuracy of the Vanilla method while requiring 88% and 95%
less communication cost than Vanilla. Thus, these results
demonstrate the trade-off between the model accuracy and
communication cost of our CAFNet method, which support
compression of data.

V. CONCLUSIONS

In this paper, we propose CAFNet, a communication ef-
ficient FL-based framework, for network anomaly detection.
CAFNet adopts the unsupervised learning technique of autoen-
coders to build anomalous traffic detection models by training
them using only on-device benign data from distributed edge
devices. A distinct characteristic of CAFNet is that it employs
the inherent latent space property of autoencoders to shrink the
model size, which in fact reduces the communication cost up
to 95%. In the future, we plan to explore different variants of
autoencoders to improve the performance of our framework.

ACKNOWLEDGMENT

This work was sponsored by the DEVCOM Analysis Center
and was accomplished under Cooperative Agreement Number
WO11INF-22-2-0001. This work was also partially funded by
the U.S. Department of Energy, DE-SC0023392.

REFERENCES

[1] J. Lansky, S. Ali, M. Mohammadi, M. K. Majeed, S. H. T. Karim, and
et al., “Deep learning-based intrusion detection systems: a systematic
review,” IEEE Access, vol. 9, pp. 101 574-101 599, 2021.

[2] S. A. Rahman, H. Tout, C. Talhi, and A. Mourad, “Internet of things
intrusion detection: Centralized, on-device, or federated learning?” IEEE
Network, vol. 34, no. 6, pp. 310-317, 2020.

330

[3]

[4]

[5]

[6]

[7]

[8]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

S. Kim, H. Cai, C. Hua, and et al., “Collaborative anomaly detection
for internet of things based on federated learning,” in 2020 IEEE/CIC
Int’l Conf. on Communications in China (ICCC), 2020, pp. 623-628.
J. Zhang, P. Yu, L. Qi, S. Liu, H. Zhang, and J. Zhang, “FLDDoS: DDoS
attack detection model based on federated learning,” in 20th IEEE Int’l
Conf. on Trust, Security and Privacy in Computing and Communication
(TrustCom), 2021, pp. 635-642.

V. Mothukuri, P. Khare, R. M. Parizi, S. Pouriyeh, and et al., “Federated-
learning-based anomaly detection for IoT security attacks,” IEEE Inter-
net of Things Journal, vol. 9, no. 4, pp. 2545-2554, 2021.

B. Weinger, J. Kim, A. Sim, M. Nakashima, N. Moustafa, and K. J. Wu,
“Enhancing IoT anomaly detection performance for federated learning,”
Digital Communications and Networks, vol. 8, no. 3, pp. 314-323, 2022.
B. McMahan, E. Moore, D. Ramage, and et al., “Communication-
efficient learning of deep networks from decentralized data,” in Artificial
Intelligence and Statistics. PMLR, 2017, pp. 1273-1282.

S. Zavrak and M. Iskefiyeli, “Anomaly-based intrusion detection from
network flow features using variational autoencoder,” IEEE Access,
vol. 8, pp. 108346-108 358, 2020.

K. Yang, J. Zhang, Y. Xu, and J. Chao, “DDoS attacks detection with
autoencoder,” in IEEE/IFIP NOMS. 1EEE, 2020, pp. 1-9.

W. Xu, J. Jang-Jaccard, A. Singh, Y. Wei, and F. Sabrina, “Improving
performance of autoencoder-based network anomaly detection on nsl-
kdd dataset,” IEEE Access, vol. 9, pp. 140 136-140 146, 2021.

Z. Wang, P. Wang, and Z. Sun, “SDN traffic anomaly detection method
based on convolutional autoencoder and federated learning,” in GLOBE-
COM 2022-2022 IEEE Global Communications Conference. 1EEE,
2022, pp. 4154-4160.

G. de Carvalho Bertoli, L. A. P. Junior, O. Saotome, and A. L. dos
Santos, “Generalizing intrusion detection for heterogeneous networks:
A stacked-unsupervised federated learning approach,” Computers &
Security, vol. 127, p. 103106, 2023.

R. Bhatia, S. Benno, J. Esteban, T. Lakshman, and J. Grogan, “Unsuper-
vised machine learning for network-centric anomaly detection in IoT,”
in Proc. of the 3rd ACM CONEXT workshop on Big-DAMA for Data
Communication Networks, 2019, pp. 42-48.

I. Sharafaldin, A. H. Lashkari, S. Hakak, and et al., “Developing realistic
distributed denial of service (DDoS) attack dataset and taxonomy,” in
Int’l Carnahan Conf. on Security Technology. 1EEE, 2019, pp. 1-8.
N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards
the development of realistic botnet dataset in the internet of things
for network forensic analytics: Bot-IoT dataset,” Future Generation
Computer Systems, vol. 100, pp. 779-796, 2019.

N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),”
in MilCIS Conference. 1EEE, 2015, pp. 1-6.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, and et al.,
“PyTorch: An imperative style, high-performance deep learning li-
brary,” Advances in Neural Information Processing Systems, vol. 32,
p. 8024-8035, 2019.

J. Kone¢ny, H. B. McMahan, F. X. Yu, P. Richtdrik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

Authorized licensed use limited to: New Mexico State University. Downloaded on July 09,2024 at 22:35:35 UTC from IEEE Xplore. Restrictions apply.

