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Mapping Stochastic Collective Behavior Distinguishes Subtle Mutations in Social Bacteria
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The genotype-to-phenotype problem (G2P) for multicellular development asks how genetic inputs control
collective phenotypic outputs. However, this is a challenging problem due to gene redundancy and stochasticity,
causing mutations to have subtle phenotypic effects and replicates to display significant variation. We approach
this problem using the model organism Myxococcus xanthus, a motile self-organizing bacterium that forms
three-dimensional cell aggregates that mature into spore-filled fruiting bodies when under starvation stress. We
develop a high-throughput imaging method using three-dimensional-printed microscopes to efficiently collect
large phenotypic datasets. Our automated methods for analysis and visualization produce a map of phenotypic
variation in M. xanthus development. We demonstrate that even subtle effects on developmental dynamics caused
by mutation can be identified, discriminated, characterized, and given statistical significance, with implications
for future gene annotation studies and the effect of environmental factors on G2P.
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1. INTRODUCTION

Development is an energetically expensive and compli-
cated part of many organisms’ life cycles. For a genetically
specified multicellular phenotype to be realized, the process
requires the stepwise self-organization of increasingly ordered
states and an active and robust dampening response to dis-
ruptive forces, such as environmental stress and mutation
[1-3]. The control systems for development involve nonlin-
ear redundant branching and intersecting intracellular and
intercellular signal transduction pathways that provide spa-
tiotemporal coordination of the transcriptional, translational,
and post-translational events required for the cellular collec-
tive to manifest a final phenotype [4,5]. This complicated
genotype-to-phenotype problem, abbreviated as G2P, is the
broad task of understanding the iterative process of genetic
cause and phenotypic effect that eventually results in biologi-
cal emergence.

We use the Gram-negative delta-proteobacterium Myxo-
coccus xanthus as a model organism. In the laboratory on an
agar substrate, M. xanthus exists as a single-species motile
biofilm called a swarm. Under nutrient-rich conditions, a
swarm will expand across an agar surface as its component
cells grow and move (swarming). In contrast, under non-
nutritive (starvation) conditions, a swarm will not expand,
although its component cells are in fact moving around faster
within it. Instead, a starving swarm will undergo a trans-
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formation over a period of approximately one day, during
which swarm cells organize into a discrete number of mound-
shaped aggregates distributed nonrandomly across the swarm
area, with each aggregate harboring a bolus of thousands of
cells. Over the next few days, the cells at the center of each
aggregate differentiate into quiescent myxospores, at which
point the aggregates are considered to have matured into a
fruiting body. The entire process represents a rudimentary but
robust form of multicellular development and can therefore be
studied as an example of G2P [6]. We note that throughout this
work we use the term “phenotype” to refer to the collective,
rather than cellular, characteristics.

Development of a multicellular prokaryote, such as the
formation of an M. xanthus fruiting body, may be less compli-
cated than development of a eukaryote, such as the formation
of a mouse, fly, or flatworm, but it is still complicated enough
to involve hundreds of genes arranged in branching net-
works of intersecting pathways. Central to M. xanthus fruiting
body development is the extracellular protein A-signal, a
diffusible proxy for local cell density. The pathway for A-
signal-mediated communication includes receptors, response
regulators, and effectors that influence cell motility and cell-
cell interactions [7]. The Frz pathway, another two-component
system, also plays a crucial role in regulating cell move-
ment and aggregation in response to external signals [8]. The
crosstalk between the regulation of these genes and cell motil-
ity, which changes the rates and types of cell-to-cell signaling,
creates feedback that further affects multicellular develop-
ment. Additionally, the interaction between genetic regulatory
pathways and environmental factors, including prey bacteria,
further complicates the process [9]. Many of the genes known
to be involved in these networks and pathways were first
identified through mutation and phenotypic characterization
[10]. It is a foundational protocol in developmental biol-
ogy: first, a wild-type strain is selected and its development
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phenotype is characterized, then mutations are introduced into
the wild-type genome to create new (mutant) strains, and their
development phenotypes are characterized, then the pheno-
types of the mutant strains are compared to wild-type, and,
if a strain displays a significant deviation, the gene(s) and
other genetic element(s) affected by the mutation are deemed
more likely to be involved in development. This information
can then be used for genome annotation and to guide future
research.

A requisite condition to establish significance when char-
acterizing and quantifying a developmental phenotype is a
defined boundary that distinguishes the phenotype of wild-
type from a near-wild-type mutant. There are at least three
confounding factors that make this difficult. First, devel-
oping biological systems exhibit an inherent phenotypic
stochasticity, and efforts at holding genome sequence and ex-
perimental conditions constant can only reduce the variation
to a nontrivial baseline. Second, biological systems are also
phenotypically robust to the impact of mutation because evo-
lution guides the genes, networks, and pathways that control
development to incorporate redundancies due, at least in part,
to mechanisms such as duplication and divergence [11]. Third,
developmental processes are often difficult to observe, record,
and analyze in replicates sufficient to establish significance
(see Fig. 1).

Statistical techniques that are useful in the face of highly
stochastic events such as gene expression are a topic of ac-
tive interdisciplinary research [12], and the inherent ability
of living systems to submit to statistical study is an open
epistemological question [13]. But, if a baseline variation can
be determined for wild-type, any differences distinct from that
baseline can distinguish phenotypes.

Although a developmental program is encoded in an organ-
ism’s genome, having full information about that genome is
often insufficient on its own to predict phenotype. A reciprocal
approach to this problem is a systematic determination of
an organism’s developmental phenotype to infer the function
of the complex genomic network. Understanding the range
of developmental phenotypes adds new information in the
quest to map incomplete genetic network data to (often in-
completely described) developmental outcomes. The range of
developmental outcomes thus warrants its own systematic in-
vestigation. Indeed, the collection, analysis, and interpretation
of collective phenotypic data has been identified as a central
challenge in understanding biological systems as a whole,
known as phenomics [14,15]. Here, we approach that chal-
lenge in the context of multicellular bacterial development.

In this study, we describe the design, construction, and
operation of an experimental setup for observing many in-
stances of M. xanthus development and an analysis pipeline
that quantifies distinctive features of development to display
them on a phenotypic map. We use this map to demonstrate
that even for a single strain (wild-type), with environmental
factors held constant to the highest feasible degree, a multi-
modal distribution of developmental phenotypes emerges that
tends to funnel towards a singular mature state—developed
fruiting bodies.

We then employ this distribution of wild-type phenotypes
to distinguish between wild-type M. xanthus development and
four near-wild-type mutants, demonstrating that the impact

of genotype in the G2P mapping is to shift these phenotype
distributions. That such shifts are visible even in what may be
considered minimal mutations shows that we can assess the
phenotypic impact of what would otherwise be silent muta-
tions. The perspective of phenotype as a distribution that can
be perturbed can also inform future studies on the impacts of
environmental variables, potentially uncovering multimodal
developmental patterns in organisms beyond bacteria.

II. RESULTS

A time-lapse brightfield microcinematography assay of M.
xanthus development is initiated upon the settling of cells
from liquid suspension onto an agar surface. The entire devel-
opment assay is recorded at 4 x magnification with one image
taken per minute over 24 h so that the final dataset consists of
1440 sequential images (frames). Initially, local cell density
varies across the field of view, with denser areas appearing
darker. Black spots are occasionally visible in the first hour,
which is either small tight cell clumps transferred from sus-
pension or small pieces of extracellular material. Movement
becomes evident in subsequent hours as the gray areas move
and change shape, and black spots disperse. Over the next
several hours, the different gray areas fade, and the entire field
of view becomes a more homogeneous population. The move-
ment then appears to speed up and become more synchronous.
Transient darker gray regions begin to emerge across the
field of view, and the population appears effervescent. Sub-
sequently, darker and less transient ridges appear, moving in
an amoeboid or sluglike fashion, eventually consolidating into
the initial population of aggregates. These initial aggregates
are unstable, merging if they collide, while others occasionally
divide in binary fission. Aggregates undergo coarsening when
a significant subset of the aggregates distributed across the
field of view shrink and disappear. The remaining aggregates
become more stationary and stable. Throughout these aggre-
gation dynamics, the space between aggregates is teeming
with cells and cell movement. Once the stable field of aggre-
gates is established, the cell activity seems to diminish.

In our study, we observed over 500 wild-type time series,
with each fruiting body assay requiring a sealed chamber
with sufficient temperature, oxygenation, and humidity for
development to occur. The 96 independent microscopes of our
image acquisition setup (Fig. 2) combined with a high-volume
sample preparation protocol allow for dozens of time series
to be collected simultaneously, maintaining environmental
variables such as agar percentage, day-to-day cell culture
variation, and ambient humidity to the greatest possible ex-
tent. Consistent temperature was also manually verified across
samples. Cells are inoculated from liquid culture and sealed in
each slide assembly, where the aggregates begin to form. We
report the spectrum of development behaviors, which mani-
fested to varying degrees. Coarsening varied, as did the length
of the slug phase and the occurrence of aggregation. Rippling,
previously described [16], appeared intermittently, and could
dominate the entire field of view. We also observed pulsing,
a distinct wavelike pattern where an aggregate seemingly
propagates a signal throughout the field of view. Additionally,
fruiting body merging, dividing, and other features varied
in intensity and duration, even in replicates designed to be
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FIG. 1. Stochasticity is inherent to multicellular behaviors in social bacteria. (a) A bacterial colony undergoing fruiting body development
is exposed to stochastic noise on multiple scales. At the cellular level, gene expression depends on thermally driven chemical events, and
environmental factors such as variations in temperature and humidity introduce further uncertainty. Thus, both direct and indirect effects of
genotype arrive at a final phenotype, via multiple developmental paths. (b) Images of final developmental phenotype for separate aggregation
assays at 24 h post-inoculation. Pictured are a range of outcomes from the wild-type M. xanthus strain as well as the four mutant strains used
in this study. Aggregates are visible as dark spots, seen from above. Scale bar, 250 um. (c¢) The average final area and final count of wild-type
(WT) aggregates and those for four mutant strains are reported with boxplots. Although there are some differences in these typical metrics of
comparison, there is considerable overlap between wild-type and each of the mutant strains. N > 500 measurements for wild-type, taken over
25 different days; N = 15 measurements for each mutant strain, taken over two different days.

biologically and technically identical. Based on our obser-
vations of the video data, we note that the formation of M.
xanthus aggregation tended to follow a sequence of events: an
initiation of aggregation from the undifferentiated swarm, an
increase in the area of the nascent aggregates, and eventual

stability. The dynamics of each of these stages varied from
video to video [Figs. 3(d) and 3(e)]. While it is not yet clear
whether these are prescribed stereotyped events necessary for
fruiting body formation, these stages are present in all our
videos that form maturing fruiting bodies.
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FIG. 2. High-throughput time series acquisition setup. (a) A single microscope, at 1.2 kg and 24 x 19 x 25 cm?, with 3D-printed armature,
4x objective lens, light source, heated stage, camera, and Raspberry Pi microcomputer. (b) Slide assembly for each developmental experiment.
Sandwiched between a glass coverslip and a glass slide, two silicone gaskets create a sealed enclosure containing a disk of non-nutritive agarose
on which a colony of M. xanthus has been inoculated. Aggregate development is imaged over a 24-h period with one image taken each minute.
(c) Panoramic photograph of full image acquisition setup including 96 microscopes and a central hub computer. (d) Basic network architecture

for centralized image storage and control of all 96 microscopes.

Towards creating a map of developmental phenotype dis-
tribution in M. xanthus, we sought a set of metrics to quantify
how aggregation proceeds. After observing many instances
of fruiting body aggregation, we identified variations in de-
velopment (timing, rates of area change, etc.) and chose
metrics to capture as many types of variation as possible.
The information-dense nature of time series data compelled
us to identify metrics that could be reproducibly measured
regardless of variations in image acquisition parameters such
as lighting and camera properties. We then produced a dataset
of wild-type aggregation time series recorded over 25 separate
days, measuring the 10 quantitative metrics for each video.
These 10 metrics consist of three metrics related to tim-
ing (start time—when aggregation begins, peak time—when
the area occupied by aggregates is maximized, and stability
time—when the number of aggregates becomes stable), as
well as the mean and standard deviation in the average ag-
gregate area at peak time and 24 h. The number of identifiable
aggregates at peak time and 24 h was also measured, along
with the fraction of aggregates that disperse after forming. Our
method here distinguishes parameters that may be under a ge-
netic influence and identifies new characteristics in phenotype
that can be compared.

The specific formulas used to determine each phenotypic
metric are detailed in the Supplemental Material (Table S1)
[17]. These metrics are extracted with a custom Python image
processing algorithm that identifies and measures each aggre-
gate, as described in the Methods section. Values for these
metrics across the wild-type dataset are shown in Fig. 3(a),
with the distributions illustrating averages and variation for
each metric. Peak time, aggregate count at peak time, and the

fraction of aggregates that disperse exhibit bimodal distribu-
tions. Long-tailed distributions, such as the standard deviation
(o) of area and aggregate count (both at peak time and after
24 h), indicate the presence of abnormal phenotypes with
extreme values in these metrics.

To visualize the wild-type dataset, we used these 10 phe-
notypic metrics to represent each time series as a point in a
10-dimensional phenotype space. Points closer together in-
dicate more phenotypic similarity than points far apart. To
simplify the dataset while maintaining its structure, we uti-
lized principal component analysis (PCA) to reduce the ten
dimensions to two dimensions, named PC1 and PC2. These
two dimensions are each a single numerical measure, each a
differently weighted mathematical composite of the 10 quan-
titative features. PC1 and PC2 show the most variation across
the wild-type dataset when compared to any other linearly
independent combination of input metrics. In fact, PC1 and
PC2 account for 56% of the variance across the full wild-type
dataset of over 500 time series. The resulting distribution of
points in this 2D space represents the wild-type phenotype
profile, a visualization of the distribution of developmental
phenotypes for our model system, including variations in dy-
namics. The definition of this phenotype space in terms of
PC1 and PC2 allows for quantitative phenomics in M. xanthus
aggregation, which would otherwise be cumbersome in the
10-dimensional space.

To interpret the meaning of PC1 and PC2, we can consider
how each developmental metric is weighted. The weights,
which range from —1 to 1, indicate the significance of each
metric within either PC1 or PC2, with larger absolute values
indicating more strongly weighted metrics. Both PC1 and PC2
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FIG. 3. Quantitative breadth of wild-type phenotype. (a) Histograms display the range of phenotypic metrics across over 500 wild-type
aggregate development time series. Bimodal shapes in peak time (when total aggregate area is maximum), aggregate count at peak time, and
fraction of aggregates that disperse reflect the two most common groupings of metrics. Long-tailed distributions, such as standard dev. (¢) of
area and aggregate count (both at peak time and after 24 h) indicate the presence of abnormal phenotypes. All y-axes display probability density.
(b) By using PCA to combine information from all 10 metrics, each wild-type time series is plotted as a single datapoint in a phenotypic feature
space. PC1 primarily measures aggregate area, and PC2 correlates with the number and timing of aggregates. For example, while moving in
the direction of the arrow labeled “N,.”, datapoints will have higher numbers of aggregates at peak time. Units of PC1 and PC2 are arbitrary,
although the origin at (0,0) represents average behavior across the full wild-type dataset. A contour is drawn enclosing 90% of the datapoints,
separating typical phenotypes from rare phenotypes. Within typical behavior, two separate clusters—Mode 1 and Mode 2—contain 50% of
the wild-type datapoints. (c) Curves displaying the total number of aggregates over time (top) and mean area of aggregates over time (bottom)
illustrate the developmental differences and similarities between the two wild-type modes. The central line represents the median at each
time point, and the colored bands span the 25th to 75th percentiles at each time point, i.e., half the data about the median. In Mode 1, more
aggregates develop at an earlier time, most of which disperse. The final number of aggregates is comparable for both modes. The rates of
increase of mean area are also similar across the two modes. (d).(e) Two representative time series each for Mode 1 and Mode 2 phenotypes at
three relevant time points. Mode 1 displays many dense aggregates that form early and then disperse. This causes an early peak time. Mode 2
displays aggregates that form later, most of which persist through the 24 h of development, slowly growing in area and darkening. This causes
a late peak time. Scale bar is 100 um.
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contain a mix of all 10 metrics, with groups of metrics being
more significant than any single metric. The top weighted
metrics for PC1 are the number of aggregates at peak time,
the fraction of aggregates that disperse, peak time, and start
time. For PC2, the top metrics are mean area at peak time,
standard deviation in area at peak time, standard deviation in
area at 24 h, and mean area at 24 h. The full list of weights
is provided in Table S2 in the Supplemental Material [17]. In
summary, PC1 primarily reflects timing and the total number
of fruiting bodies that form, which are negatively correlated
in the wild-type dataset. That is, earlier aggregation and peak
times tend to result in more fruiting bodies (especially at peak
time), while later results in fewer. PC2, on the other hand, is
independent of PC1 and characterizes area. Large aggregates
can occur in large or small numbers and early or late relative to
the average wild-type behavior. The precise variation of each
metric in PC1, PC2 space is illustrated in the Supplemental
Material (Fig. S1) [17]. We have observed that the metrics
most capable of distinguishing developmental phenotypes are
variation in timing and the dynamics of aggregate area, which
emphasizes the general importance of including dynamics in
phenotype quantification. We have also retained all metrics in
the PCA to maximize the ability to distinguish developmental
phenotypes across the full dataset.

Two primary modes of aggregate formation were observed,
as illustrated by the shaded regions in Fig. 3(b). Significantly,
both modes could be observed in time series acquired on
the same day, with the same cell culture and environmental
conditions, indicating a role for developmental stochasticity
in determining which assay developed according to one mode
or the other. “Mode 1” features aggregates that start forming
and peak in total aggregate area sooner than other wild-type
assays. Mode 1 aggregates are generally numerous, small, and
dark at peak time, but a large fraction of them disappear before
24 h of development. These aggregates tend to be dynamic and
lack a well-defined shape until after peak time [see Fig. 3(d)].
In contrast, Mode 2 aggregation is less mature early on, with
either no visible aggregates or aggregates with fewer layers
of cells able to block light [see Fig. 3(e)]. These aggregates
are more static and form with more well-defined shapes, and
more of them tend to persist through the 24 h of development.
Because these aggregates tend to persist once they form, the
time of peak total area is extremely late for Mode 2 when
stable aggregates are still growing slowly. Although there are
fewer Mode 2 aggregates at peak time than most wild-type
assays, the mean number and size of these aggregates at 24 h is
equal to that of Mode 1, as well as wild-type assays in general.
Both modes demonstrate more consistently sized aggregates
than other wild-type assays, both at peak time and at 24 h. The
histograms of all 10 metrics for the two modes are presented
in the Supplemental Material (Fig. §2) [17]. This analysis
shows that the bimodal shape of three metrics [peak time,
aggregate count at peak time, and fraction of aggregates that
disperse; see Fig. 3(a)] is associated with the separation of
the two wild-type aggregation modes. The two modes thus
represent a confluence of metrics that arise from two distinct
developmental pathways towards fruiting body aggregation,
both of which can occur in the wild-type genetic background.

Exceptional phenotypes in our wild-type dataset were ob-
served, including those that produce unusually large fruiting

bodies. These occur by a variety of mechanisms, such as large
aggregates forming either extremely early with defined shapes
from initial formation or extremely late with shapes that only
become visible towards the end of 24 h (time series in Sup-
plemental Material, Fig. S3) [17]. These abnormal behaviors
are present at the margins of PCA phenotype space because
they represent a confluence of multiple abnormal metrics,
revealing more information than standard statistical tests on
one metric at a time. Some rare behaviors observed include
failure to aggregate, which occurred in about 2% of wild-type
assays, and failure for aggregates to stabilize after 24 h, which
occurred in about 17% of wild-type assays.

To test the sensitivity of our methods, we selected four
mutant strains with 60—80 replicates each over two to six sep-
arate days, which were developmentally similar to wild-type
in final outcome. In preliminary experiments, all four strains
produced three replicates each that were manually identified
as “near-wild-type” with no significant difference in final ag-
gregate size and number when compared to wild-type using a
Student’s t-test. Three of the mutant strains contained simple
reporter genes, such as DK10546 constitutively producing
GFP (Green Fluorescent Protein), to investigate whether in-
troducing reporter genes into a prokaryotic genome would
significantly impact cellular behavior or emergent pheno-
types. Standard statistical tests distinguish one mutant strain,
DK7517, from wild-type because it produces smaller than
average aggregates (Fig. 1), but this difference is not highly
pronounced. As the distribution of wild-type final mean ar-
eas is non-Gaussian, the Kolmogorov-Smirnov test was used
instead of a Student’s t-test to distinguish two distributions,
which assumes normality of the underlying distributions. See
the Methods section for more information on each strain.

To compare the mutant strains with wild-type, the devel-
opmental data were projected onto the same PC1 and PC2
axes that were calculated from the wild-type data. PCA was
thus performed only once, giving a single standard phenotype
space in which the mutant phenotype distributions could be
directly compared to the wild-type phenotype distribution.
This method allowed us to visualize and compare multiple
metrics simultaneously. We drew two contours to capture the
typical behavior and variability of each mutant strain’s de-
velopment. The first contour enclosed 50% of the datapoints
and represented the median region in PCA space, while the
second contour was wider and enclosed 90% of the datapoints,
which served as a boundary for abnormal phenotypes. We
compared the distribution of the mutant strain points with that
of wild-type to calculate a p-value for the null hypothesis.
This p-value was determined using bootstrapping, a nonpara-
metric, data-driven statistical method that did not make any
assumptions about the dataset beforehand.

All four mutant strains showed phenotype distributions
that differed from the wild-type distribution in a subtle but
measurable manner (see the Supplemental Material, Fig. S4)
[17]. DK10546 and DK4322 exhibited a preference for Mode
1 behavior, whereas Mode 2 was rarely expressed. Figure 4(b)
highlights some of the rare behaviors observed in certain
replicates. DK10546 replicates showed more extreme ver-
sions of Mode 1 behavior, in which many small aggregates
formed early but dispersed by 24 h. DK4322 replicates also
showed a more extreme version of Mode 1 behavior, in which
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aggregates had irregular shapes at peak time. The final ag-
gregates were slightly larger and more varied in area than
those in typical wild-type assays. Some DK6665 replicates
formed aggregates from sparse, small points that formed late
and grew steadily over the 24-h period, a behavior rarely ob-
served in wild-type. This strain also had difficulty dispersing
random initial cell clumps present at inoculation, a behav-
ior not observed in wild-type. DK7517 replicates displayed
late aggregates that did not significantly darken, a noticeable
deviation from even exceptional wild-type behavior. 2% of
mutant strains and wild-type failed to aggregate, and 30-45%
of mutant assays failed to stabilize after 24 h, significantly
higher than the 17% observed in wild-type.

III. DISCUSSION

Each fruiting body formation event is a complex interplay
of genetic background, controllable environmental factors
such as temperature or substrate stiffness, and uncontrollable
factors such as local variations in initial cell density or gene
expression changes unique to a particular cell population. Ge-

netic changes can affect the likelihood of multiple outcomes,
and we have observed that most mutants behave similarly to
the wild-type strain most of the time [18,19]. However, when
broadening our understanding of phenotype as a distribution
of developmental pathways, we can observe shifts in this
distribution as a response to genetic changes. These obser-
vations show that the role of genotype in the G2P mapping
is more generally to alter the distribution of phenotypes than
to determine phenotype. This understanding of phenotype as
a reshuffling of outcomes, rather than a guaranteed result, is
a significant re-interpretation that aligns with the nature of
living systems, which are adaptable and tuned by evolution to
exhibit a range of behaviors. Biostatistical techniques, such as
probabilistic latent variable models, support this perspective
and complement the analysis presented in our study [20].
Additionally, the observation of the two developmental modes
in the wild-type phenotype map underscores the ability of
our approach to access information in the G2P mapping that
otherwise would be hidden.

The statistical method presented in this study characterizes
phenotype by supplementing mean behavior with information
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about abnormal behavior, either locally or globally. Local
abnormal behavior refers to groupings of behavior that fall
within the scope of wild-type but are still considered outside
the norm. Global abnormal behavior, on the other hand, refers
to behaviors never expressed in the wild-type profile. Measur-
ing mean behavior may not be sufficient to capture variations,
and abnormality analysis is a promising area for identifying
the effects of single-gene mutations, especially when mean
behavior is not strongly affected due to the masking effects of
developmental pathways that have evolved to be robust. This
work demonstrates the value of measuring the boundaries of a
phenotype distribution to observe changes from wild-type that
would otherwise be washed out when considering only mean
behavior. However, it requires sufficient replicates to reliably
observe abnormal behavior [11]. Furthermore, an increased
level of attention to abnormal phenotypes can suggest fruitful
new research directions, possibly uncovering distributions of
behaviors that are long-tailed, or even unexpected physics or
new biological behaviors that were previously unexpected.

Our results suggest that the wild-type genome has a low
failure rate in producing mature fruiting bodies, as observed
using our methods. Previous reports have indicated that up
to 10% of wild-type cell lines do not successfully germi-
nate new colonies after development [21], but it is unclear if
fruiting body morphogenesis is lacking in these failed sporu-
lation assays or if biological factors such as disruptions in
signaling pathways for cell differentiation into myxospores
are the cause. Using time-lapse imaging, we found that only
2% of captured wild-type movies did not yield aggregation
of fruiting bodies, indicating that factors other than physical
aggregation contribute significantly to the failure of fruiting
bodies to germinate. While the cause of the failure rate is
unknown in cases where fruiting bodies mature under normal
dynamics but remain unable to germinate wild-type colonies
post-starvation, the quantification of this failure rate is crucial
for mechano-physio modeling.

It is important to confirm that data deviating significantly
from the mean in studies of stochastic systems are not just the
result of inconsistent measurement conditions but instead rep-
resent genuine and rare behavior. To achieve this, the metrics
used in this study were selected to minimize dependence on
imaging setup. Additionally, manual vetting was conducted on
data points that fell on the margins of PCA phenotype space.
This approach emphasizes the significance of evaluating ex-
ceptional data to ensure accurate and reliable results.

In this work, we present methods that can be applied to any
stochastic system that has many comparable replicates and
multiple relevant metrics measured for each replicate. This
approach can be compared to machine learning, which is pow-
erful but lacks transparency in how categorization is achieved
and is often sensitive to small variations in image acquisition
that can vary from day to day or lab to lab. In cases in which
image processing can measure clearly apparent aspects of a
system, our method greatly simplifies the unprocessed image
data to preserve phenotypic relevance over image acquisition
noise. Further reduction of the phenotypic dataset from ten to
two dimensions avoids the problem of the “curse of dimen-
sionality” [22], reproducibly preserving relevant similarities
and differences between datapoints to reveal overall structure
and guide new investigations. Other types of time series image

data are especially amenable to analysis with our methods,
particularly with large datasets.

In choosing the metrics to quantify developmental phe-
notype, we have observed that the multimodal behavior of
wild-type was revealed when considering both aggregation
timing and the size of aggregates at multiple developmental
timepoints. We found that the choice of developmental metrics
was best guided by attempting to find metrics that include not
just final phenotypic state but also snapshots of development
at various times, revealing differing developmental pathways.
We also observed the importance of choosing metrics that are
robust to changes in imaging parameters by not relying on
pixel-specific information, but rather on concrete quantities
such as aggregate size. These principles also improve the
likelihood of replication in other laboratories.

Although this study analyzed 60 or more replicates for each
mutant strain, it is possible to differentiate a strain from wild-
type with fewer replicates. By examining the distribution of
many subsamples of wild-type aggregation in PCA space, we
discovered that only 15 replicates collected over two days are
required to detect deviations from wild-type behavior for each
of the mutant strains mentioned (p < 0.05). Notably, with this
same sample size, conventional statistical tests that rely on
individual metrics (such as average aggregate area after 24 h)
can only distinguish DK7517 as different from wild-type,
and with less statistical power than the method utilized in
this study. Since the distribution of final mean areas is not
Gaussian, as determined by a Shapiro-Wilk normality test, we
selected the Kolmogorov-Smirnov test as the standard test for
distinguishing two distributions, rather than a Student’s t-test,
which assumes normality of the underlying distributions.

Our study found that the use of common reporters has
indirect effects on fruiting body formation dynamics in M.
xanthus. Reporter genes, such as GFP and Tn5 lac, are
frequently used to mark successful transfection and for quan-
titative assays. However, the attachment of these tags to a
molecule of interest can cause additional molecular noise and
nontarget effects [23-25], leading to stochastic variation in the
overall cell population [26]. The Tn5 lac reporter gene, which
was designed to identify gene expression during M. xanthus
fruiting body morphogenesis, can promote adjacent deletions
[27] and disrupt regulatory regions, leading to changes in phe-
notype [28]. While the use of reporter genes is valuable, their
impact should be assessed, particularly in biophysical studies
that focus on developmental dynamics where differences may
be more apparent.

The process of identifying gene function by the presence
of a strong mutant phenotype, although extensively used,
has fundamental limitations. It is generally exceptional for a
single gene disruption to undeniably affect phenotype, and
the effects of most genes will be more subtle or masked.
Indeed, the process of canalization, in which evolution tends
to push towards developmental phenotypes that are robust to
genetic and environmental variation, was early observed as a
universal phenomenon across multiple domains of life [29].
This fundamental robustness is a central part of G2P, and
moving beyond a qualitative description to a quantitative
framework capable of measuring incremental rather than
abrupt phenotypic changes is a necessary step we take in this
work.
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The results suggest a gene annotation method that is sensi-
tive enough to detect the impact of single gene mutations that
would otherwise go unnoticed. Each mutant strain has a signa-
ture distribution in a PCA space, which can be used to identify
strains with similar functions based on their impact on devel-
opment. These signatures can be compared to those of well-
understood genes to assign a function to unknown genes. The
signatures are independent of any specific biological model
and rely solely on visually observable traits. As more experi-
ments are done using this method, a quantitative phenome for
fruiting body development can be developed, which creates
a common language for gene function comparison. Uncom-
mon developmental phenotypes can expose the regulatory
mechanisms of fruiting body formation, and studying these
“exceptions” can provide valuable insights into the “rule.”

We anticipate that slight changes in experimental proto-
col can have subtle yet detectable impacts on behavior. In
our experiments, we discovered a new variable that has not
traditionally been controlled for in M. xanthus culture: the
age of the agar plate from which colonies are harvested for
liquid bacterial culture. While it is expected that reintroduc-
ing bacteria to liquid culture will reset their metabolic state,
our analysis found that colonies from agar plates at least
three days old produce fewer fruiting bodies (see the Sup-
plemental Material, Fig. S5) [17]. This suggests that colonies
“remember” the age of the plate they were harvested from, al-
though the underlying mechanism is unknown. We expect that
other protocol variables may also have measurable phenotypic
effects.

The methods presented in this study are sensitive and can
be used to measure how organisms respond to changes in
environmental variables. Like running replicates of single-
gene mutants, running replicates in different environments
can reveal corresponding changes in phenotype. In the future,
fruiting body aggregation can be observed on agar surfaces
with a range of stiffness values. The resulting shift in the
phenotypic distribution would reveal the extent to which this
aspect of the environment affects aggregation, such as the
likelihood of Mode 1 or Mode 2 behavior, and the simi-
larity of this shift to that observed in mutant strains can
be analyzed to test potential mechanisms. This approach
can address the missing environmental information of the
genotype-phenotype problem and broaden the understanding
of “wild-type behavior” as a function of environmental con-
ditions. By identifying subregions in phenotype space with a
root cause, the contour bounding abnormal wild-type behavior
can provide a measure of the relevant physical and biological
mechanisms that have yet to be characterized and help in
organizing knowledge gained from future experiments.

IV. CONCLUSIONS

In this study, we have shown that wild-type DK1622
M. xanthus exhibits significant variation in fruiting body
morphogenesis, with a consistent bimodal pattern of dynamics
even held under the most stringent and established experimen-
tal conditions. The observed bimodal variation suggests the
existence of differences in collective cellular fates that may
be influenced by unknown stimuli. Our findings emphasize the
importance of controlling experimental variables when char-

acterizing cellular behavior, particularly when investigating
single-gene mutations.

Furthermore, our investigation of modified strains car-
rying reporter genes revealed that the bimodal distribution
was suppressed, indicating that the wild-type distribution is
genotype-specific. These results suggest that specific devel-
opmental stages and requirements may be necessary prior to
phenotype bifurcations. The process of fruiting body morpho-
genesis in wild-type M. xanthus is not a clockwork example,
but rather it expresses significant variation and genotype-
specific distributions. While some aspects may be random,
much of the process appears to be biologically regulated and
dependent on specific developmental stages and requirements.

Our method of analysis proved effective, with reliable re-
sults obtained from a small number of replicates. The visual
and quantitative nature of our approach makes it an ideal
language for data presentation, with potential applications in
gene annotation and investigations of the genotype-phenotype
problem under different environmental conditions. Overall,
our study provides a foundation for understanding the impact
of single-gene disruptions on M. xanthus development and
lays the groundwork for future investigations into the complex
interplay between genes, environment, and cellular behavior.
The identification of extreme phenotypes exhibited during
our analysis can potentially provide insight into the state of
cellular processes during morphogenesis.

V. METHODS
A. Imaging setup

An array of compact microscopes controlled by a central
computer can simultaneously collect time series images for
96 experiments. Each microscope is equipped with a single
4x objective lens, a Peltier device for maintaining stage and
sample temperature, a red-light source, and a camera con-
trolled by a Raspberry Pi. The microscopes are held in place
by a 3D-printed armature and assembly hardware, which also
provides a focus knob for higher image quality. Details on
microscope design are included in the Supplemental Material,
with additional required hardware detailed in Table S3 [17].

To ensure uniform control and central storage of all mi-
croscopes’ time series output, each Raspberry Pi unit is
networked via ethernet and two 64-port network switches to
a central hub computer. The computer runs Piserver software
that allows software to be changed and updated for all Rasp-
berry Pi units simultaneously. Custom Python software with a
convenient GUI is used to control image acquisition from each
camera via SSH and organize output in a centralized image
storage location. All custom software is available via Github
at github.com/masp01/3D-scope-myxo-tracking.

B. Cell culture

To recover long-term stock cultures, nutrient rich CTTYE
media agar containing 1% Casein Peptone, 0.5% Bacto Yeast
Extract, 10 mM Tris (pH 8.0), 1 mM KH(H;)POy (pH 7.6),
and 8 mM MgSO, was used. The harvested cells were used
to inoculate broth cultures in CTTYE with vigorous shaking
at 32°C and grown to an approximate density of 4 x 108
cells/mL (100 Klett or 0.7 Assp).
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The cells were centrifuged and washed with TPM buffer
[10 mM Tris (pH 7.6), 1 mM KH(H;)PO4, 8 mM MgSO4]
before resuspension to a final concentration of 4 x 10°
cells/mL. For the development assay, approximately 4 x 107

The strains used in this study are as follows:

cells (10 pL aliquots) were spotted onto a TPM agar slide,
a nutrient-limited medium, and incubated on the microscope
stage at 32°C for 24 h. The TPM slides were prepared as
previously described [30].

Strain

Description

DK1622

To establish a stable baseline for fruiting body development assays, the nominal wild-type strain used in our experiments

was genetically modified from a naturally occurring M. xanthus isolate [31]. This modification was necessary as strains
directly isolated from soil have a high rate of developmental failure in a laboratory setting. It is important to note that the

DK10546

DK6665

DK4322

DK7517

genetic modification was only performed to establish a more reliable baseline for our experiments, and it did not affect any
other aspects of the strain’s behavior or characteristics.

The constitutively expressing GFP labeled strain is used to track motility and cell dynamics during development. Used as
an experimental control for fluorescence microscopy, the construct was generated fusing a copy of the pilA promoter to the
coding sequence of GFP (pilAp-GFP), which was then reinserted into the M. xanthus chromosome [32]. This study showed
an increased likelihood of early aggregation with many dispersing aggregates over wild-type for this strain.

The Tn5 26658 sasB7 mutant was generated from a mutation created in suppressor developmental gene sasB [33].
Previous work observed no visible phenotypic impact on the mutant as the strain can still proceed through development via
other regulatory channels. This study observed initial cell clumps having an unusually high impact on final aggregates due
to a lack of dispersal of initial cell clumps relative to wild-type.

The spiA::Tn5-lacZ strain is a reporter fusion for the developmental gene spi with lacZ for g-galactosidase assays. The spi
gene has been shown to be induced at 2 h into development and is developmentally regulated by C signal pathways. In
previous work, the transposon insertion was characterized as not interfering with development or affecting spore production
[34]. This study showed a higher likelihood of irregular aggregate shapes at early times for this strain than wild-type.

Generated via a Tn5-LacZ insertion into a TA synthesis gene, as a reporter gene involved in toxin and antitoxin production
also for B-galactosidase assays [35] to isolate regulatory mutants. This reporter fusion was shown to be expressed during
vegetative growth while peaking during lag phase. In this study, late and immature aggregates were more likely to develop

in this strain than wild-type.

C. Image processing pipeline

Phenotype was automatically quantified for each fruiting
body aggregation assay in this study by running 144 individ-
ual TIFF images (10 min between each frame over 24 h of
total development) from each time series through a custom
Python image processing and analysis pipeline to identify
in each frame which pixels could belong to a fruiting body,
based on their gray value. The analysis code is available via
Github at github.com/masp01/3D-scope-myxo-tracking. The
information for the position and geometry of each aggregate
was filtered to remove noise and spurious aggregates. This
detailed data summary for each time series then had alist of 10
specific numbers extracted from it, each of which captures one
overall feature, such as the time at which aggregation began
or the average size of the final fruiting bodies. The values of
these 10 metrics together were then used in further analysis.
The full details of all phenotypic metrics are available in the
Supplemental Material, Table S1 [17].

D. Statistical methods

To calculate p-values that test the null hypothesis of mutant
development datapoints in PCA space being drawn from the

same distribution as the wild-type development datapoints,
we first generate the contours for the wild-type PCA data
[Fig. 3(c)] by starting with Gaussian kernel density estima-
tion (KDE) and using standard root-finding techniques to
draw contours from the density estimate that capture 50%
and 90% of the PCA datapoints. An appropriate kernel size
for the KDE is validated by using 75% of the wild-type
dataset, and ensuring that, across many subsamples of the
remaining 25% (verification data), the distribution of enclosed
points is centered on the appropriate percentage. When this
distribution is skewed, it indicates overfitting of the original
contour. With these contours drawn, we use a data-driven
statistical technique based on bootstrapping. Given a sample
size N, 10000 random samples of that size are drawn from
the wild-type dataset, which contains 569 datapoints sampled
over 25 different days. Each subsample has a characteristic
pair of numbers, (nsg, n9p), which corresponds to the num-
ber of points in the sample that fall inside the 50% and
90% contours, respectively. Once the distribution of these
pairs for wild-type data is known, nsp and ngg are calcu-
lated for a sample of mutant PCA datapoints of size N.
The fraction of wild-type videos that have both nsy and ngg
greater than the mutant sample’s values of nsy and ngy gives
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the p-value, or the probability that a sample of wild-type
data of size N would exhibit the same distribution. Con-
tours for mutant strains are shown in Fig. 4 for visualization
only, and they do not figure into the calculation of the p-
values.
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