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Force-free electrodynamics is the theoretical paradigm used to describe electromagnetic fields in a
region where the inertia of plasma is negligible compared to the strength of the electromagnetic field. While
these fields are studied extensively around accreting black holes in an attempt to describe energy extraction,
force-free fields also routinely appear in the study of cosmological magnetic fields. Despite this, there are
no systematic studies of exact force-free fields in an expanding Universe. In this paper, we use geometric
methods to find a wide variety of force-free solutions in a fixed Friedmann-Lemaître-Robertson-Walker
metric background. The method we use can be directly generalized to any arbitrary electrically neutral
spacetime, and hence provides a powerful tool to study force-free fields in general.
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I. INTRODUCTION

Magnetic fields are known to permeate the Universe
from the scales of planets and stars to those of galaxies and
even galaxy clusters [1]. At the scale of galaxies, magnetic
fields have a strength of order 10−6 G and are coherent over
kpc scales. Micro-Gauss magnetic fields have also been
observed in galaxy clusters [2,3]. Recent observations
suggest that intergalactic space may harbor magnetic fields
of strength 10−16 G coherent over Mpc scales [4].
The currently accepted paradigm explaining the exist-

ence of this all-pervading magnetic field states that these
magnetic fields originated from the amplification of seed
magnetic fields via various astrophysical dynamos. While
at smaller scales (at the level of planets and stars), these
fields require constant rejuvenation to replenish the loss
from dissipation, the timescales for dissipation for large-
scale magnetic fields may be of the order of the age of the
Universe. While the amplification of the large-scale mag-
netic field is attributed to the gravitational collapse of flux-
frozen matter during structure formation, the dynamo effect
can only amplify a preexisting nonzero “seed” magnetic
field. The origin of such a seed magnetic field itself is not
well understood and is a subject of extensive study,
especially over the last two decades. Electroweak phase
transition [5,6] and inflationary generation of the seed
magnetic fields [7–9] are the most widely studied

phenomena for the generation of primordial magnetic fields
in the early Universe. Other mechanisms for the generation
of primordial magnetic fields include Lorentz invariance
violation [10], relativistic positron abundance [11], and
non-Gaussian perturbations to the baryon density, to name
a few [12].
A variety of methods exist for detecting and/or con-

straining magnetic fields in the Universe. At low redshifts,
these include the observation of Zeeman splitting [13] and
Faraday rotation of linearly polarized radio sources [14]. At
higher redshifts, the existence of magnetic fields can be
inferred from the effects of primordial magnetic fields on
the polarization of the cosmic microwave background
(CMB) [15–18], and the effects of magnetic pressure on
the abundance of light elements during big-bang nucleo-
synthesis [19], as well as the (non)detection of inverse-
Compton scattered CMB photons from blazar observations
[4,20]. Recently, it was shown that hydrodynamical sim-
ulations of structure formation in the Universe can also
constrain the primordial magnetic fields by studying their
ability to reproduce in the simulations the scaling relations
observed in dwarf galaxies [21].
When the energy stored in the electromagnetic field is

much greater than the plasma pressure, the Lorenz force
vanishes. Force-free electrodynamics is the framework that
describes such a system. Force-free fields can also be thought
of as the low-inertia limit of ideal magnetohydrodynamics—
i.e., the limit where thematter part of the stress-energy tensor
can be ignored in favor of a purely electromagnetic stress-
energy tensor.*radhikari@troy.edu
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Force-free plasma occurs naturally in various astrophysi-
cal contexts. For example, the solar corona is permeated by
such strong magnetic fields that it is essentially force-free.
The study of force-free fields is also important in the study
of relativistic jets. The strong magnetic fields generated
around the accreting black hole and neutron stars render
these systems force-free, and the fields are believed to
extract rotational energy from these compact objects to
power the highly collimated relativistic jets.
Force-free fields often appear in the study of primordial

magnetogenesis [22–28]. Several studies of primordial
magnetic fields assume the vanishing of the Lorentz force

]29–33 ]. To our knowledge, there has been no significant
and systematic attempt to study the types of force-free
fields allowed in the Friedmann-Lemaître-Robertson-
Walker (FLRW) metric. In this paper, we provide a
nonexhaustive list of solutions to the equations of force-
free electrodynamics (FFE) generated not by solving the
arising partial differential equations, but by using the
geometric study of the foliations of spacetime as laid out
in Refs. [34–36]. This method is suitable for generating
force-free fields not just in nonstationary spacetimes, but in
any arbitrary spacetime that is electrically neutral.

II. EQUATIONS OF FORCE-FREE
ELECTRODYNAMICS

Maxwell’s equation in an arbitrary spacetime is given by

dF ¼ 0; and " d " F ¼ j: ð1Þ

Here, F is the Maxwell field tensor, " is the Hodge star
operator, d is the exterior derivative on forms, and j denotes
the current density dual vector. Force-free electrodynamics
is defined by the constraint Fμνjν ¼ 0. The Maxwell field
tensor F is said to be magnetically dominated whenever
F2 > 0, F is electrically dominated whenever F2 < 0, and
a force-free electromagnetic field F is null whenever
F2 ¼ 0. As usual, F2 ¼ FμνFμν.
The kernel of F is the set of all tangent vectors that

annihilate F. In force-free electrodynamics, the current
density j is always such a vector field. It is well known that
the kernel of F forms the tangent space to a two-dimen-
sional submanifold. Starting with this fact, a comprehen-
sive study of geometric features of force-free fields was
done in Refs. [34–36], and we provide a concise summary
in the following sections.

A. The non-null force-free field

Details presented in this section were previously derived
in [34]. We will first consider the case of a magnetically
dominated field. In this case, about any point in spacetime,
we can construct an inertial frame field ðe0; e1; e2; e3Þ such
that gðeμ; eνÞ ¼ ημν, and further, e0 and e1 span the kernel

of F. Here, η is the Minkowski metric. We define vector
fields H and H̃ by

2H ¼ ½−gð∇e0e0; e2Þ þ gð∇e1e1; e2Þ'e2
þ ½−gð∇e0e0; e3Þ þ gð∇e1e1; e3Þ'e3 ð2Þ

and

2H̃ ¼ ½−gð∇e2e2; e0Þ − gð∇e3e3; e0Þ'e0
þ ½gð∇e2e2; e1Þ þ gð∇e3e3; e1Þ'e1: ð3Þ

We are guaranteed a magnetically dominated force-free
solution if

dðH♭ þ H̃♭Þ ¼ 0: ð4Þ

In this case, the magnetically force-free F can now be
written as

F ¼ u e♭2 ∧ e♭3; ð5Þ

where

dðln uÞ ¼ 2ðH þ H̃Þ♭: ð6Þ

The ♭ maps a tangent vector to its metrically equivalent
one-form. The difficulty of finding magnetically dominated
force-free fields is now reduced to finding a tetrad frame
field that satisfies the above requirements. Hidden in the
above statements is the fact that e0 and e1 span smooth two-
dimensional submanifolds. These submanifolds are
referred to as field sheets.
The electrically dominated field is very similar to the

above construction, except that it is e2 and e3 that span the
kernel of F.

B. The theory of null force-free fields

Solutions to null force-free electrodynamics satisfy a
different set of criteria, stemming from the fact that the
kernel of F in this case is spanned by a degenerate
distribution. For details, see [36].
Here, the kernel of F is spanned by a null geodesic vector

field l and a spacelike orthogonal vector field s. The tetrad
is completed by including another null vector n and a one-
form α such that

n · l ¼ −1; 0 ¼ l · s ¼ αðlÞ ¼ n · s ¼ αðnÞ ¼ αðsÞ;
αμαμ ¼ 1 ¼ sμsμ:

In this case, if the equipartition condition for the null mean
curvature is satisfied, i.e.,

gð∇sl; sÞ ¼ gð∇α♯l; α
♯Þ;
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then the force-free null field takes the form

F ¼ ðu · κÞα ∧ l♭: ð7Þ

Here, ♯ is the inverse map of ♭. In an adapted chart
ðx1; x2; x3; x4Þ where field sheets are given by the condition
x1; x2 ¼ const,

κ ¼ ðα3 l♭4 − α4 l♭3Þ−1; ð8Þ

where
!
α

l♭

"
¼

!
α3 α4
l♭3 l♭4

"!
dx3

dx4

"
: ð9Þ

Here, u ¼ uðx3; x4Þ is any smooth function of x3, x4.

III. FORCE-FREE SOLUTIONS

The conformal time coordinate chart often simplifies the
calculations in FLRW spacetimes. In this coordinate
system, the metric takes the following form:

ds2¼aðηÞ2
#
−dη2þ dr2

1−Kr2
þr2ðdθ2þsin2θdφ2Þ

$
: ð10Þ

Since we will rely primarily on the tetrad formalism
described above, we begin by listing a set of the canonical
orthonormal tetrad for the metric given above:

e0 ¼
1

aðηÞ
∂η; ð11aÞ

e1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2

p

aðηÞ
∂r; ð11bÞ

e2 ¼
1

aðηÞr
∂θ; ð11cÞ

e3 ¼
1

aðηÞr sin θ
∂φ: ð11dÞ

A. Solution I

Consider a Lorentz transformation of the canonical
tetrads given by

0

BBB@

ē0
ē1
ē2
ē3

1

CCCA¼

0

BBBBB@

α sinðθÞf2 0 rf1f2 rff2
0 1 0 0
ffiffiffi
β

p
rf2 0 f1α sinðθÞf2ffiffi

β
p α sinðθÞff2ffiffi

β
p

0 0 fffiffi
β

p − f1ffiffi
β

p

1

CCCCCA

0

BBB@

e0
e1
e2
e3

1

CCCA;

ð12Þ

where f is any function of r, α and β are real constants, and

f1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
β − f2

q
and f2 ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 sin2 θ − βr2

p :

Then the pair of vector fields ðē2; ē3Þ are involutive, and
further,

2ðH þ H̃Þ ¼ 2ȧðηÞ
aðηÞ

dηþ 2α2sin2θ − βr2

rðβr2 − α2sin2θÞ
dr

þ β2r2 cot θ
α2sin2θ − βr2

dθ: ð13Þ

It is easy to verify that dðH þ H̃Þ ¼ 0. Then, from
Eqs. (4) to (6),

u ¼ u0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 sin2 θ − βr2

p

aðηÞ2r2 sin θ
; ð14Þ

and our electrically dominated solution is given by

F1 ¼ u e♭0 ∧ e♭1

¼ u0 α

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2

p dη ∧ drþ u0
ffiffiffiffiffiffiffiffiffiffiffiffiffi
β − f2

p

sin θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2

p dr ∧ dθ

þ u0fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2

p dr ∧ dφ: ð15Þ

Here, the current density is given by

j1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2

p
f0

aðηÞ4r2 sin θ

#
fffiffiffiffiffiffiffiffiffiffiffiffiffi

β − f2
p ∂θ − csc θ∂φ

$
: ð16Þ

The Lorentz-invariant quantity F2 in this case is given by

F2
1 ¼ − 2u20ðα2 sin2 θ − βr2Þ

aðηÞ4r4 sin2 θ
: ð17Þ

From the above equation, we see that the solution is not
well defined when sin θ ¼ 0. For completeness, we also
record the magnitude of the square of the current density
vector:

j21 ¼
u20ðKr2 − 1Þf02β

aðηÞ6r2 sin2 θðf2 − βÞ
: ð18Þ

This solution holds some intriguing features that deserve
closer inspection. First, we note that the Lorentz trans-
formation that generates the solution is not valid when

χ ≡ α2 sin2 θ − βr2 ≤ 0:

Nonetheless, F1 does not depend on χ. This means that the
solution F1 is defined for all values of χ (except when
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sin θ ¼ 0 for an entirely different reason). As it turns out,
examining F2

1 tells us that our electrically dominated
solution smoothly transitions to a null solution when
χ ¼ 0, and further, to a magnetically dominated solution
when χ < 0. The tetrad formalism is unsuitable to handle
such a transition. So, we shift to a different formalism using
a foliation-adapted chart which was developed in [35].
About any point in spacetime, there exists a coordinate
chart ðx1;…; x4Þ that is adapted to field sheets, meaning
that the tangent space of the submanifolds defined by
constant values of x1 and x2 contains the kernel of F. Then,
F takes the form

F ¼ uðx3; x4Þdx3 ∧ dx4: ð19Þ

Here, we let

Mr ≡ gr3g34 − g33gr4; and Nr ≡ gr3g44 − g34gr4:

Then, as was shown in [35], the equations of FFE in this
coordinate system are given by

M4 ∂

∂x4
ln juj ¼ −∇rMr ð20Þ

and

N3 ∂

∂x3
ln juj ¼ −∇rNr: ð21Þ

To obtain a foliation-adapted chart for the case of this solution, we define the vector fields

X1 ¼ sin θ∂θ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
β − f2

p

f
∂φ; X2 ¼ ∂η −

α
r2f

∂φ;

X3 ¼ ∂η þ ∂r þ
#!

−β lnðcsc θ þ cot θÞ f0

f2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
β − f2

p
"
− αη

!
2

r3f
þ f0

r2f2

"$
∂φ;

and finally

X4 ¼ ∂φ:

It is easily verified that all of the vector fields fXig defined above commute with each other. Therefore, there exist
coordinate functions fxig such that Xi ¼ ∂xi for each i. The dual bases fdxig are such that

dx1 ¼ csc θdθ; dx2 ¼ dη − dr; dx3 ¼ dr;

and

dx4 ¼ −
α
r2f

dηþ
#
α
r2f

þ 2αη
r3f

þ αηf0

r2f2
þ β lnðcsc θ þ cot θÞf0

f2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
β − f2

p
$
drþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
β − f2

p

sin θf
dθ þ dφ:

Then,

dxið∂xjÞ ¼ δij;

as required. This will help us compute the determinant of the metric in the adapted basis, and also the quantitiesMr and Nr

as defined above. The relevant quantities in Eqs. (20) and (21) are given by

ffiffiffiffiffiffi−gp ¼ a4ðηÞr2sin2θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2

p ;

M1 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
β − f2

p
ð1 − Kr2Þ

a4ðηÞr2sin2θf
; M2 ¼ −αð1 − Kr2Þ

a4ðηÞr2f
; M3 ¼ 0;

M4 ¼ ð1 − Kr2Þχ
a4ðηÞr4sin2θf2

¼ −N3;

N1 ¼ −ð1 − Kr2Þ
a4ðηÞr5sin2θf3

½ðf0ηrþ ðrþ 2ηÞfÞα
ffiffiffiffiffiffiffiffiffiffiffiffiffi
β − f2

q
þ β lnðcsc θ þ cot θÞf0r3';
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and finally

N2 ¼ ðKr2 − 1Þ
a4ðηÞr5f3sin2θ

#!
αηþ βr2

lnðcsc θ þ cot θÞffiffiffiffiffiffiffiffiffiffiffiffiffi
β − f2

p
"
sin2θrαf0 − fðβr3 þ 2α2ηsin2θÞ

$
:

Noting that u ¼ uðx3; x4 ¼ φÞ, Eq. (20) becomes

M4 ∂

∂φ
ln juj ¼ 0;

i.e., u;φ ¼ 0, and Eq. (21) gives

χ
ð1−Kr2Þ

a4ðηÞr4sin2θf2
d
dx3

ln juj¼ χ

#
f0ð1−Kr2ÞþKrf
a4ðηÞr4sin2θf3

$
: ð22Þ

Notice how the factor χ cancels out in the above
equation, and hence we can smoothly transition from an
electrically dominated solution to a magnetically domi-
nated one.1

The above equation is satisfied by setting

u ¼ u0 fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2

p :

Therefore, in the adapted chart,

F1 ¼
u0fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2

p dx3 ∧ dx4:

It has been pointed out [37] that there is no a priori
reason for F2 to be preserved under time evolution, and
numerical simulations explicitly show this behavior. Here,
we have presented an analytic force-free field that tran-
sitions spatially from the magnetically dominated to null to
electrically dominated regions, and since this transition is
smooth without any discontinuity, there is no current sheet
where FFE approximation breaks down.
Using the method of tetrads and searching for Lorentz

transformations that satisfy Eqs. (4)–(6), we have been able

to generate several nontrivial solutions in FLRW space-
times. In the remainder of this section, we simply list the
solutions without referring to the generating Lorentz
transformation.

B. Solution II

Using a time-dependent Lorentz transformation, we
obtain the following electrically dominated solution:

F2 ¼
α

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2

p dη ∧ drþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
β − f2

p

sin θ
dη ∧ dθ

þ f dη ∧ dφ: ð23Þ

Here, f ¼ fðηÞ, and α and β are real constants. The current
density is then given by

j2 ¼
f0

a4r2 sin θ

!
−fffiffiffiffiffiffiffiffiffiffiffiffiffi
β − f2

p ∂θ þ
∂φ

sin θ

"
: ð24Þ

The Lorentz-invariant scalars in this case are

F2
2 ¼ −

2α2sin2θ þ 2β r2

a4r4sin2θ
ð25Þ

and

j22 ¼
f02 β

a6sin2θðβ − f2Þ
: ð26Þ

As in the previous case, this solution is not well defined
when sin θ ¼ 0.

C. Solution III

For K ¼ 1 and f ¼ fðθÞ, and a real constant α, we obtain another type-changing solution of the form

F3 ¼
& ffiffiffiffi

K
p

rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kr2 − 1

p '
α

sin θ

#&
f sin

&
α

ffiffiffiffi
K

p
η
'
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
β − f2

q
cos

&
α

ffiffiffiffi
K

p
η
''
dη ∧ dθ

−
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kr2 − 1
p

&
f cos

&
α

ffiffiffiffi
K

p
η
'
þ sin

&
α

ffiffiffiffi
K

p
η
' ffiffiffiffiffiffiffiffiffiffiffiffiffi

β − f2
q '

dr ∧ dθ
$
þ C sin θdθ ∧ dφ: ð27Þ

1Henceforth, such solutions will be referred to as type-changing solutions.
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Here, the current density is given by

j3 ¼
& ffiffiffiffi

K
p

rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kr2 − 1

p 'αf
a
&
η
'
4 sin

&
θ
'
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
β − f2

p
h
−
(
f cos

&
α

ffiffiffiffi
K

p
t
'
− sin

&
α

ffiffiffiffi
K

p
t
' ffiffiffiffiffiffiffiffiffiffiffiffiffi

β − f2
q )

∂η

þ
&
−f sin

&
α

ffiffiffiffi
K

p
t
'
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
β − f2

q
cos

&
α

ffiffiffiffi
K

p
t
'' ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kr2 − 1
p

∂r

i
: ð28Þ

In this case,

F2
3 ¼ −

2ð
ffiffiffiffi
K

p
rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kr2 − 1

p
Þ2αβr2 − 2C2 sin2 θ

aðηÞ4r4 sin2 θ
: ð29Þ

Once again, this solution is not well defined when
sin θ ¼ 0. Further, when K ¼ 0;−1, the solution above
does indeed satisfy the force-free Maxwell equation.
However, the coefficient terms become complex, making
the solution physically irrelevant.

D. Solution IV

We now present the following electrically dominated
force-free field:

F4 ¼ f1dη ∧ dθ þ f2dη ∧ dφþ f3dθ ∧ dφ; ð30Þ

where

f1 ¼
e−

η
ω2

sin θ
ðð2βαcos2θ þ ð2αk1 þ 2βk2Þ cos θ þ k3Þe

2η
ω2 − ðcos θβ þ k1Þ2e

4η
ω2 − ðcos θαþ k2Þ2Þ

1=2
; ð31Þ

f2 ¼ ðcos θαþ k2Þe
− η
ω2 þ e

η
ω2ðcos θβ þ k1Þ; ð32Þ

and

f3 ¼ −ω2 sin θðe
η
ω2β − αe−

η
ω2Þ: ð33Þ

Here, k1, k2, ω1, and ω2 are real constants. The current density is given by

j4 ¼
1

aðηÞ4r2

#
−ðf1 cot θ þ ∂θf1Þ∂η þ ð∂ηf1Þ∂θ þ

csc θ2

r2
ð∂ηf2 − ∂θf3 þ f3 cot θÞ∂φ

$
: ð34Þ

Here,

F2
4 ¼ −

2

aðηÞ4r4 sin2 θ
½sin2 θr2f21 þ r2f22 − f23' ð35Þ

and

j24 ¼
1

aðηÞ6r6
½csc θðr2∂ηf2 − ∂θf3 þ f3 cot θÞ2 þ ð∂ηf1Þ2 − r2ðf1 cot θ þ ∂θf1Þ2': ð36Þ

This solution is not valid during early and late times, in
addition to the usual pathology when sin θ ¼ 0.

E. Solutions V and VI

We continue with our presentation by illustrating a few
null solutions in FLRW spacetimes. The tetrad formalism

for generating null solutions is substantially different from
that of non-null solutions. As described in the aforemen-
tioned section, we begin with a null pregeodesic congru-
ence defined by

l ¼ csc θ
raðηÞ3

ð∂η −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2

p
∂rÞ: ð37Þ
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Here, l is a null vector satisfying ∇ll ∝ l. A simple
calculation shows that

∇ll ¼
ȧðηÞrþ aðηÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kr2

p

r2 sin θaðηÞ4
l: ð38Þ

The relevant null tetrad ðs; l; α♯; nÞ can be constructed by
defining the following vector fields:

n ¼ aðηÞr sin θ
2

ð∂η þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2

p
∂rÞ; ð39Þ

α♯ ¼ 1

r aðηÞ
∂θ; ð40Þ

s ¼ csc θ
r aðηÞ

∂φ: ð41Þ

Here, since

gð∇sl; sÞ ¼ gð∇α♯l; α
♯Þ ¼ ȧðηÞr − aðηÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a − Kr2

p

aðηÞ4r2 sin θ
; ð42Þ

we see that the equipartition condition for the null mean
curvature is satisfied. Additionally, since l, s forms an
involutive distribution, we are guaranteed the existence of a
null force-free field solution with a two-parameter prefac-
tor. To isolate the prefactor, we construct a foliation-
adapted chart with commuting vector fields, defined as
follows:

X1 ¼ ∂η þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2

p
; X2 ¼ ∂φ;

X3 ¼ ∂θ; and X4 ¼ l:

Our adapted chart is then defined by the following
coordinate one-forms:

dx1 ¼ dη −
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Kr2
p ; dx2 ¼ dφ;

dx3 ¼ dθ; and dx4 ¼ dηþ drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2

p :

The null and force-free field is then given by

F5 ¼ ðu · κÞα ∧ l♭ ¼ uðx3; x4Þ

×
!
dη ∧ dθ þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Kr2
p dr ∧ dθ

"
: ð43Þ

Here, κ ¼ − csc θ and is given by Eq. (8), and the current
density is then given by

j5 ¼
∂θ f þ f cot θ

aðηÞ4r2
(
−∂η þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2

p
∂r

)
: ð44Þ

As required, F2
5 ¼ 0, and since the current density is along

l, we have that j25 ¼ 0. It turns out that this null geodesic
congruence also satisfies the uniform equipartition con-
dition described in [36]:

gð∇sl; α♯Þ þ gð∇α♯l; sÞ ¼ 0: ð45Þ

This allows for the possibility of a generalized null
solution, which in this case is given by

F6 ¼ ∂θfðt̄; θ;φÞ
!
dη ∧ dθ þ dr ∧ dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Kr2
p

"

þ ∂φfðt̄; θ;φÞ
!
dη ∧ dϕþ dr ∧ dϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Kr2
p

"
: ð46Þ

The t in the above expression is the usual cosmic time given
by the relation

t̄ ¼ ηþ
Z

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2

p dr: ð47Þ

The current density in this case is given by

j6 ¼
csc θ∂2ϕf þ ∂2θf þ cot θ∂θf

aðηÞ4r2
ð∂η −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2

p
∂rÞ: ð48Þ

For clever choices of f, the solution above is valid
when r ≠ 0.

F. Solution VII

For f ¼ fðt̄; θÞ, where t is the cosmic time function
defined above, we have the following non-null force-free
solution with null current:

F7 ¼ f sin θ
!
dη ∧ dθ þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Kr2
p dr ∧ dθ

"

þ α sin θdθ ∧ dϕ: ð49Þ

Here, as usual, α is a real constant. This solution turns out to
be a non-null generalization of our previous null solution
F5. The current density in this case is given by

j7 ¼ −
2 cos θf þ sin θ∂θf

aðηÞ4r2
ð∂η þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2

p
∂rÞ: ð50Þ

We also have that

F♯
7 ¼ −

f sin θ
aðηÞ4r2

∂η ∧ ∂θ þ
f sin θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Kr2

p

aðηÞ4r2
∂r ∧ ∂θ

þ α
aðηÞ4r4 sin θ

∂θ ∧ ∂ϕ: ð51Þ

While it appears that the last term on the right-hand side of
the above equation is undefined when sin θ ¼ 0, the
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contraction of the Faraday tensor with itself does not suffer
from the same pathology—i.e.,

F2
7 ¼

2α2

aðηÞ4r4
: ð52Þ

This is an indication that the solution may just have a
coordinate singularity along sin θ ¼ 0. We demonstrate this
fact by explicitly transforming it into a Cartesian coordinate
system for the case when K ¼ 0. In the usual ðη; x; y; zÞ
coordinate system, where we have just transformed the
spatial spherical coordinates to Cartesian coordinates,

F7 ¼
1

r3
ðzxf dη ∧ dxþ zyf dη ∧ dy− ðx2 þ y2Þf dη ∧ dzαzdx ∧ dy− ðαyþ rxfÞdx ∧ dzþ ðxα− ryfÞdy ∧ dzÞ: ð53Þ

The above expression is well defined along the z axis.

IV. SOLUTION VIII

The FLRW metric is further simplified when we set
K ¼ 0, and in the Cartesian coordinates described above,
we are able to find two new non-null solutions. First, for the
constants c1, c2, c3, c4, we have the following force-free
field:

F8 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð−c21 þ c22Þf2 þ c2c24

p

c2
dη ∧ dx

þ c1f
c2

dη ∧ dzþ f dx ∧ dz; ð54Þ

where

f ¼ fðc1 ηþ c2 xþ c3Þ: ð55Þ

The current density is given by

j8 ¼
ðc21 − c22Þð∂ηfÞ

aðηÞ4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc22 − c21Þf2 þ c4c22

p

×
#
f
c1

∂η −
f
c2

∂x þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc22 − c21Þf2 þ c4c22

p

c1c2
∂z

$
: ð56Þ

The Lorentz scalars of the theory are given by

F2
8 ¼ −

2c4
aðηÞ4

ð57Þ

and

j28 ¼ −
c4ðc21 − c22Þ2ð∂ηfÞ2

c21aðηÞ6ððc21 − c22Þf þ c4c22Þ
: ð58Þ

A. Solution IX

As in the Cartesian case of the above example, we now
provide a secondary non-null solution given by

F9 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4c22 − ðc22 þ c21Þf2

p

c2
dx ∧ dy

þ c1f
c2

dx ∧ dzþ f dy ∧ dz: ð59Þ

Here, f¼fðc1xþc2yþc3Þ. The current density is given by

j9 ¼
ðc21 þ c22Þð∂x fÞ

aðηÞ4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc21 þ c22Þf2 − c4c22

p

×
#
−

f
c1

∂x þ
f
c2

∂y −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4c22 − ðc22 þ c21Þf2

p

c1c2
∂z

$
; ð60Þ

and we have

F2
9 ¼

2c4
aðηÞ4

ð61Þ

and

j29 ¼ −
ð∂xfÞ2ðc21 þ c22Þ2c4

c21aðηÞ6ððc21 þ c22Þf2 − c4c22Þ
: ð62Þ

A simple spatial rotation in the x, y plane can simplify
the expression for F9. Consider the transformation given by

#
x0

y0

$
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c21 þ c22
p

#
c2 −c1
c1 c2

$#
x

y

$
: ð63Þ

After the transformation, f ¼ fðc3 þ y0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ c22

p
Þ. The

constants can be absorbed by redefining f as fðc03 þ y0Þ.
The solution F9 then takes the form

F0
9 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4c22 − ðc21 þ c22Þf02

p

c2
dx0 ∧ dy0

þ f0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c21 þ c22

p

c2
dy0 ∧ dz: ð64Þ

By redefining the constants, we can rewrite the solution as

F0
9 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − f2

q
dx0 ∧ dy0 þ f dy0 ∧ dz: ð65Þ
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The comoving observer with four-velocity vμ ¼
aðηÞ−1∂η does not see an electric field in F0

9, while the
magnetic field is given by2

Bx ¼ −
f

aðtÞ3
and Bz ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 − f2

p

aðtÞ3
:

This solutiondescribes slabsof uniformmagnetic field that lie
in the xz plane, and the field orientation varies in the
perpendicular (y) direction. As the magnetic field strength
is constant throughout space but the field direction changes,
this field configuration describes the magnetohydrodynamic
“tangential discontinuity.” Indeed, the structure is force-free,
since the field lines have no tension force (there is no field-line
bending) and there are no magnetic pressure gradients. Now,
a posteriori, it seems easy to understand that the tangential
discontinuity remains a force-free solution in the FLRW
spacetime, since uniform expansion does not change the field
topology, but instead simply rescales the field strength.

V. CONCLUSION

In this paper, we have demonstrated the geometric
methods of foliations to generate both null and non-null

force-free electromagnetic fields for the FLRW spacetime.
The equations of force-free electrodynamics are in general
complex nonlinear partial differential equations, and exact
solutions are very difficult to come by. Even in the
extensively studied Schwarzschild and Kerr spacetimes,
where force-free electrodynamics is expected to describe
the tenuous plasma around accreting black holes, very few
exact solutions are known. In [38] we presented several
exact solutions to FFE in Kerr spacetime that were
generated by the study of foliations. Using the same
methods, a wide range of exact force-free fields allowed
by the FLRW geometry were found. The pathology along
the z axis seems to be a common feature of most of the
force-free solutions in both the spacetimes. We have
presented, to the best of our knowledge, the first force-
free field that transitions from electrically dominated to
null, and then to a magnetically dominated regime. We have
done so using a chart adapted to the foliation generating the
force-free field, as such solutions are not handled by the
tetrad formalism that describes the different geometrical
properties of the null and non-null solutions.
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