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ABSTRACT
Mission-critical systems ensure the safety and security of any na-
tion. Attacks on mission-critical systems can have devastating con-
sequences. We need to design missions that can prevent, detect,
survive, recover, and respond to faults and cyber attacks. In other
words, we must design missions that are cyber-resilient. System engi-
neering techniques must be used to specify, analyze, and understand
where adverse events are possible and how to mitigate them while a
mission-critical system is deployed. This work introduces an end-
to-end methodology for designing cyber-resilient mission-critical
systems. The methodology first specifies a mission in the form of a
workflow. It then converts the mission workflow into formal repre-
sentation using Coloured Petri Nets (CPN). The methodology also
derives threat models from the mission specification. The threat
models are used to form a formal specification of attacks that can be
represented in CPN. These CPN attacks are plugged into potential
places in the CPN mission to design various attack scenarios. The
methodology finally verifies the state transitions of the CPN mis-
sion attached to attacks to analyze the resiliency of the mission. It
identifies in which state transition the mission succeeds, fails, and is
incomplete. The methodology is applied to a drone surveillance sys-
tem as a motivating example. The result shows that the methodology
is practical for resiliency analysis of mission-critical systems. The
methodology demonstrates how to restrict a mission to improve the
resiliency of mission-critical systems. The methodology provides
crucial insights in the early stages of mission specification to achieve
cyber resiliency.

CCS CONCEPTS
• Applied computing ! Cyberwarfare; • Software and its engi-
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1 INTRODUCTION
Cyber resiliency is conceptually identical to cyber survivability de-
fined for warfighter systems [12]. It focuses on evaluating cyber re-
silience goals, including anticipating, withstanding, recovering from,
and adapting to adverse cyber events that could impact mission-
related functions.

A mission-critical system is one whose failure significantly im-
pacts the mission-related functions [4, 10]. Examples of mission-
critical systems include navigational systems for a spacecraft and
drone surveillance systems for military purposes. These systems are
prone to adverse cyber events and physical attacks because they can
cripple a nation [2]. Mission-critical systems must fulfill survivabil-
ity requirements to continue a mission in the face of attacks. Thus,
cyber resilience engineering must specify and analyze a mission
before deployment to evaluate its resilience and gauge what failures
can be tolerated.

A mission can be described in the form of a workflow consisting
of various tasks executed by subjects and connected via different
types of control-flow operators [14]. The literature on mission re-
siliency introduces solutions to address the unavailability in the
context of assigning subjects to tasks [8, 9, 13]. Subjects have at-
tributes that provide them the capabilities to perform tasks. However,
adverse cyber events and physical attackers can disrupt the capabili-
ties of mission-critical systems, rendering performance degradation.
The performance degradation may cause a mission to abort or fulfill
only a subset of its objectives. In other words, attackers do not nec-
essarily remove mission-critical systems from service permanently;
they degrade their capabilities, but these systems may be able to
continue to complete the mission.

Many types of workflow resilience are defined: static, decremen-
tal, and dynamic resilience [13]. Static resilience refers to a situation
in which subjects become unavailable before the workflow exe-
cutes, and no subjects may become available during the execution.
Decremental resiliency expresses a situation where subjects become
unavailable before or during the execution of the workflow, and
no previously unavailable subjects may become available during
execution, while dynamic resilience describes the situation where
subjects may become unavailable at any time; a previously unavail-
able subjects may become available at any time. The different types
of attacks necessitate having various notions of resiliency.

Analyzing workflows manually to check for resiliency is tedious,
error-prone, and labour intensive. Towards this end, there is a need
for automated analysis of a mission and evaluating all potential
attacks and their effects. We use Coloured Petri Nets [5] for the
purpose of analysis.

In this paper, we introduce a methodology that systematically
analyzes various aspects of mission resiliency for mission-critical
systems. The methodology leverages the workflow definition to
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describe a mission. It also leverages a set of transformation rules [1]
to convert the workflow to Coloured Petri Nets (CPN). We use CPN
because it is suitable for modeling process interaction and provides
primitives for defining data types (i.e., colors). It is also associated
with a high-level programming language (i.e., CPN-ML [7]) and
Integrated Development Environment (i.e., CPN Tools [11]) that are
practical to simulate processes interaction, manipulate data values,
and verify state transitions of systems.

The methodology starts with specifying a mission, analyzing it,
and formally presenting it as a mission workflow. It uses specification
analysis to derive threat models. The mission workflow is converted
into the formal specification as a CPN mission. The threat models are
used to form a formal specification of attacks as CPN attacks. These
CPN attacks are used to demonstrate various attack scenarios. The
methodology then verifies the state transitions of the CPN mission
attached to attack scenarios. It analyzes the resiliency of the mission
and identifies in which state transition the mission succeeds, fails,
and is incomplete.

The methodology is applied to a drone surveillance system that
performs a data-collection mission. The application of our method-
ology to the drone surveillance system covers decremental resiliency
where the drone is attacked at the regions where it has to perform a
surveillance mission and collect meaningful data.

We analyzed two versions of decremental resiliency: one-shot
and decremental resiliency. One-shot resiliency refers to only one
drone’s capability being attacked [13], and decremental resiliency
demonstrate that various attacks degrade many capabilities. The
application shows that the methodology is practical for resiliency
analysis of mission-critical systems. The methodology helps to im-
prove mission-critical system resilience.

We proceed with this paper as follows. Section 2 describes a
surveillance drone mission as a motivating example. Section 3
presents our methodology of resiliency analysis for mission-critical
systems. Section 4 applies the first 3 steps of the methodology to
convert the drone surveillance specification. Section 5 applies steps 4
and 5 to describe the threat model and attack representations. Section
6 pursues applying the final 2 steps of the methodology to analyze
drone surveillance and its resiliency. Section 7 summarizes some
related work. Section 8 concludes the paper and points to future
directions.

2 MOTIVATING EXAMPLE
In this section, we briefly describe an example mission using a
surveillance drone example. The surveillance drone mission is to
collect data over a region of interest.

The drone has a camera that can take pictures (i.e., scanning) at
high and low altitudes and sensors capturing (i.e., measuring) heat
signals and radiation levels. The sensors are only accurate at low
altitudes. There are three regions of interest: Regions A, B, and
C. Region A is where the drone is regularly scheduled to perform
surveillance. This region is large and close to the deployment point
(base). Regions B and C are smaller but are further away from the
base. It is likely to be detected at low altitudes in Region A. There-
fore, the drone can only fly over Region A at high altitudes, from
where it can only use its camera to scan buildings and construction
sites. If the drone is instructed to fly over Regions B or C, it can

fly at high or low altitudes. However, due to the lack of visibility
over Regions B and C, only the heat and radiation sensors can cap-
ture meaningful data. Thus, the drone can only collect data with its
sensors over Regions B and C.

The drone keeps flying as long as the battery is enough to return
to the base. We assume the battery level contains 4 units. Flying
to Region A, B, or C takes 1 battery unit. Returning to the base
also takes 1 unit. Actuating the camera and sensors each take 1 unit.
The drone’s status is checked (camera is on, sensors are on, and the
battery is full) during deployment before flying to accomplish the
mission. The mission is considered a success if the drone collects
data and returns to the base.

Now, we need to analyze whether it is possible for the mission to
succeed and in which attack scenarios the mission fails. An attack
scenario changes the drone attributes, which can be attacked, and
renders it unable to perform a task. For instance, an attack scenario
defuses the drone camera and degrades its scanning capability. The
attack scenarios must cover all possible drone degradation. A mission
is resilient to an attack scenario if, after the attack occurs, it still
meets its objectives.

3 METHODOLOGY
This section illustrates a methodology for analyzing mission re-
siliency for any mission-critical system. As illustrated in Figure 1,
the methodology consists of seven steps, starting from a description
of mission specification as input and ending with mission resiliency
analysis. Steps 1, 2, and 3 are processed sequentially, as one step’s
output is the input for the next step. Step 4 gets the output from Step
1, processes it, and passes the outcome to Step 5. Notice that the
outcome from steps 3 and 5 are required to process step 6. The itera-
tion symbol (three arrows circle-shaped) expresses that the outcome
from step 5 is processed many times. For every attack attachment
designed in step 5, steps 6 and 7 are processed. The 7 steps are
described as follows.

• Step 1 - Description of Mission: It is an essential step to
define the mission subjects as active entities that execute tasks.
Each subject has a type and a set of typed variables that rep-
resents attributes corresponding to its properties. The values
of the attributes of a subject constitute its state. The state of a
subject determines whether it can execute a given task. Step
1 also defines a set of tasks, which are atomic units of the
mission. Tasks are performed as a control flow to form the
entire mission. The mission always starts with an initial task
and ends with a final task. Between the initial and final tasks,
a mission includes a set of intermediate tasks that may be
grouped into sub-sets of tasks, referred to as sub-workflow
in the formal representation. A mission also has a set of ob-
jectives to be accomplished by subjects. If all objectives are
achieved, the mission is succeeded. If some of objectives are
achieved but not all of them, the mission is incomplete. When
no objectives are satisfied, then the mission is failed.

• Step 2 - Formal Representation of Mission: This step for-
malizes the mission as a workflow. It formalizes the mission
into many sub-workflows and connects them into a main
workflow to represent the entire mission. It then instantiates

1293



Methodology for Resiliency Analysis of Mission-Critical Systems SAC ’24, April 8–12, 2024, Avila, Spain

Figure 1: Methodology for Resiliency Analysis

the workflow. It instantiates each subject and its attributes,
assigns each subject to tasks, and assigns initial conditions
for the subjects and objectives.

• Step 3 - Converting Formal Representation to Formal
Specification: The mission workflow generated by Step 2 is
transformed into a formal specification. The formal specifica-
tion is beneficial for verifying the correctness of the mission
and analyzing its resiliency.

• Step 4 - Threat Models: The threat model is derived directly
from the mission specification analysis. Step 4 uses each
subject’s attributes that are mutable and states the possible
changes of these attributes. It also expresses the impact to the
mission if an attribute is changed by attack.

• Step 5 - Formal Specification of Attacks: An attack is an
action taken by an adversary that changes the state of a sub-
ject in a way that renders it unable to perform a task it has
been assigned. Each attack described in the threat model is
designed as a formal specification. An attack requires pre-
conditions and postconditions to be inserted into the formal
specification of the mission. Step 5 defines the preconditions
and postconditions of the attacks and the changes on the sub-
jects these attacks can perform.

• Step 6 - Mission Specification Analysis: This step executes
iteratively as the number of attack scenarios would be at-
tached to the mission specification. For every attack scenario
attached to the mission specification, the state space of the
mission specification is generated, and mission state transi-
tions are verified and analyzed.

• Step 7 - Resiliency Analysis: Various types of mission re-
siliency can be analyzed, including static, decremental, and

dynamic resiliency [13]. The resiliency analysis highlights
the constraints that restrict the mission. These constraints
improve the mission’s resiliency.

4 MISSION SPECIFICATION TO FORMAL
REPRESENTATION

This section applies the first two steps of the methodology to the
surveillance drone to translate the mission described in section 2
into formal specification.

4.1 Surveillance Drone Mission Description
The specification of the surveillance drone mission is extracted from
the example description (section 2). The surveillance drone mission
specification is summarized as:
The set of subjects = {drone}, and the set of attributes = {location,
f ly_enabled, battery_level, instruction_issued, camera_enabled,
sensors_enabled, data_collected}.
The tasks are:

(1) check the drone status: camera is enabled, sensors are en-
abled, and battery is set to 4 units.

(2) If the drone is not instructed, fly to Region A to scan buildings
and construction sites.

(3) If the drone is instructed, fly to Region B or C to measure heat
signals and radiation levels.

(4) Return back to base after data is collected.

The objectives = {collect data, return to base}. Notice that we
italicized the mission elements, which are used to formalize the
drone mission representation.

4.2 Formal Representation of the Drone Mission
We use the workflow defined in [1] to represent a mission. A work-
flow consists of tasks connected through operators. The syntax of
the workflow is defined as follows.
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Definition 4.1 (Workflow). A workflow is defined recursively as:
W = ti ⌦ t|W1 ⌦W2|W1#W2|W1&W2|i f{C}W1 elseW2|

while{C}{W1}⌦ t f

where sequence, exclusive choice, and, conditioning, and iteration
operator

• t is a subject-defined atomic task.
• ti and t f are unique initial and final tasks, respectively.
• ⌦ denotes the sequence operator. W1 ⌦W2 specifies W2 is

executed after W1 completes.
• # denotes the exclusive choice operator. W1#W2 specifies that

either W1 executes or W2 executes but not both.
• & denotes the and operator. W1&W2 specifies that both W1

and W2 must finish executing before the next task can start.
• i f{C}W1 else W2 denotes the conditioning operator. C is a

Boolean-valued expression. Either W1 or W2 execute based
on the result of evaluating C but not both.

• while{C}{W1} denotes iteration operator. If C evaluates to
true, W1 executes repeatedly until the expression C evaluates
to false.

A mission is defined as one or many subjects performing tasks to
accomplish objectives.

Definition 4.2 (Mission). A mission is defined as 5-tuple M =�
W,S ,ST ,I ,O

�
where W is the workflow corresponding to the

mission, S is a set of subjects, ST ✓ S⇥Tasks
�
W
�

is the set of
subject to task assignments, I is the set initial conditions, and O

is the set of mission objectives. The conditions and objectives are
expressed in predicate logic.

The surveillance drone mission is divided into deploy sub-workflow,
Scan Region A, and Measure Region B/C sub-workflow. These three
sub-workflows connect to the main workflow, which starts with the
initial task and ends with the final task. Each sub-workflow includes
a set of tasks managed by operators. The operators are also used
to connect sub-workflows to the main workflow. The workflow of
surveillance drone mission is described as:

W = Init ⌦Check_Status⌦Deploy⌦ i f
�
instruction

�

{
�
Fly_to_RegionB # Fly_to_RegionC

�
⌦�

Measure_Radiation_level & Measure_Heat_Signal
�
}

else{Fly_to_RegionA⌦while{battery_level > 1}
{Scan_Buildings & Scan_Constructions}}⌦Return_to_Base⌦Final

The workflow diagram, Figure 2, illustrates the surveillance drone
mission. The dotted boxes represents the sub-workflows. It shows
that checking the drone status and deployment (giving the drone
instructions on where to fly) is a sub-workflow. The second sub-
workflow is to fly to Region A and perform the scan tasks, and
the third is to fly to Region B/C and perform the measure signals
tasks. These three sub-workflows connect to the main workflow,
which starts with the initial and final tasks. The return to base task
can be part of the main workflow since it does not represent any
sub-workflow. The visualization of the workflow helps ensure the
correctness of the workflow transformation to the CPN; hence, it is
useful. Now, we instantiate the workflow. We initialize each subject
and its attributes, assign each subject to a set of tasks, and set initial
conditions for the subjects and objectives. There is only one subject

type Drone, and is instantiated as S = {drone1 : Drone}. The subject
type Drone has a set of attributes as:
Drone.Attributes = {type : string; location : string;
f ly_enabled : bool; battery_level 2 {1,2,3,4};
instruction_issued : bool; camera_enabled : bool;
sensors_enabled : bool; data_collected : bool}
The subject drone1 is assigned to every task as:
ST = {

�
drone1, transition

�
|t 2 Tasks

�
W
�
}.

Let I be a predicate logic formula giving the initialization condi-
tions as:
I = 9 s : S |

�
type

�
s
�
= Drone

�
^
�
location

�
s
�
= “base”

�
^�

f ly_enabled
�
s
�
= true

�
^
�
battery_level

�
s
�
= 4

�
^�

instruction_issued
�
s
�
= f alse

�
^�

camera_enabled
�
s
�
= true

�
^�

sensors_enabled
�
s
�
= true

�
^�

data_collected = f alse
�
.

Let O be a predicate logic formula that defines the mission objec-
tives as:
O = 9 s : S |

�
type

�
s
�
= Drone

�
^�

location
�
s
�
= “base”

�
^
�
data_collected

�
s
�
= true

�
.

As a result, the surveillance drone mission specification is de-
scribed as: Mdrone =

�
W,S ,ST ,I ,O

�
.

4.3 Converting Formal Representation to Formal
Specification

We consider CPN as a formal model that is practical to express
mission state transitions due to CPN providing color sets, a flexible
way to define data types to represent various types of subjects [5, 6].
A CPN is a directed bipartite graph where nodes correspond to places
P, transitions T , and Arcs A are directed edges from a place to a
transition or a transition to a place. The input place of transition
is where a directed arc exists between the place and the transition.
CPN operates on multisets of typed objects called tokens. Places are
assigned tokens at initialization. Transitions consume tokens from
their input places, perform some action, and output tokens on their
output places. The distribution of tokens over the places of the CPN
defines the states, referred to as markings. Transitioning from one
marking to another represents the system’s state transition (i.e., state
space). The CPN is formally defined as:

Definition 4.3 (Coloured Petri Nets (CPN)). CPN is defined as
9-tuple CPN =

�
P,T,A,⌃,V,C,G,E, I

�
, where P, T , A, ⌃, and V , are

sets of places, transitions, arcs, colors, and variables, respectively.
C, G, E, and I are functions that assign colors to places, guard
expressions to transitions, arc expressions to arcs, and tokens at
initialization expression, respectively.

We use transformation rules defined in [1] to convert the mission
workflow tuple into a CPN tuple as:

M =
�
W,S ,ST ,I ,O

� Trans.����!
Rules

CPN =
�
P,T,A,⌃,V,C,G,E, I

�

These transformation rules are explained briefly by applying them
to surveillance drone mission workflow:

Rule 1: Convert each task into a CPN transition.
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Figure 2: Surveillance Drone Mission Workflow

Figure 3: CPN Mission of the Surveillance Drone

Rule 2: Create input and output places for each transition, and create
input and output arcs to pair the input place to the transition
and the transition to the output place, respectively.

Rule 3: Produce a color set for each subject. The color set is a CPN
datatype structure such as Product, Record, List, and Union

[3]. The CPN color set combines primitive types such as Bool,
Int, and String. It also can be a compound of primitive types
and color sets. The color sets represent subject attributes. The
color set that represents the Drone is generated as:
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color : Drone = record {location : String;
f ly_enabled : Bool; battery_level : Int 2 {1,2,3,4};
instruction_issued : Bool; sensors_enabled : Bool;
camera_enabled : Bool; data_collected : Bool}

Rule 4: Assign the color sets to the CPN places and arcs to declare
their datatypes and declares a set of variables such that there
is a variable for each color set. For instance, the declaration
var drone1 : Drone declares a variable drone1 of type Drone.

Rule 5: Assign a guard expression for each CPN transition. The
guard expression must be valid (evaluated true) in order for a
transition to be executed (i.e., fired). For instance,
f ly_enabled

�
drone1

�
= true is a guard expression assigned

to the deployment transition. It ensures that the deployment
transition fires only if the drone1. f ly_enabled attribute is
assigned true.

Rule 6: Assign an arc expression for each input and output arc of
a transition. The arc expressions evaluate tokens to pass in
and out from transitions (i.e., bindings). When a token is
evaluated true by an arc expression, it enables the transition
that connects to be fired. For instance,
i f
�
instruction_issued

�
drone1

�
= true

�
{drone1}else{empty}

is an arc expression that ensures the drone1 token is instructed
so the token passes; otherwise, the token does not bind the
next transition, and the next transition will not be executed.

Rule 7: Initialize variables with values and assign these variables to
the CPN places as tokens. The initialization forms the initial
conditions of the mission. The tokens are then manipulated
in each CPN transition, generating the state transitions of the
CPN. For instance, the initial conditions of the surveillance
drone mission are described as:�
type

�
s
�
= Drone

�
^
�
location

�
s
�
= “deployment_point”

�
^�

f ly_enabled
�
s
�
= true

�
^
�
battery_level

�
s
�
= 4

�
^�

instruction_issued
�
s
�
= f alse

�
^
�
camera_enabled

�
s
�
= true

�
^�

sensors_enabled
�
s
�
= true

�
^
�
data_collected = f alse

�

Figure 3 illustrates the CPN model resulting from applying rules
1-7 to the surveillance drone mission Mdrone. To maintain readability,
we have explicitly omitted writing each arc expression into the CPN
model. It shows the primary CPN mission, the Drone Surveillance
Mission main model, and three sub-CPN models: Drone Deploy,
Region A, and Region B/C sub-models. These three sub-CPNs are
connected to the main CPN model through input and output ports,
allowing the token to traverse through the sub-CPN model and back
to the main CPN. The other three sub-CPNs, Camera Attack, Sensor
Attack, and Battery Attack, present CPN attack models, which are
discussed next.

5 THREAT MODELS AND ATTACK
REPRESENTATION

In this section, we describe the threat model and attack representa-
tions for the surveillance drone mission.

5.1 Surveillance Drone Threat Model
The threat model is derived directly from the mission description
(Step 1). The drone has mutable attributes that attackers can change.
The other attributes, such as the drone type and location, are omitted
as part of the threat model. For simplicity, we consider battery_level,

camera_enabled, and sensors_enabled are mutable attributes. Table
1 illustrates the threat model for the surveillance drone mission.

Subject Mutable
Attribute

Attack
Process Impact on the Mission

Drone battery_level Consume one
battery unit

It degrades the drone’s ability to
collect enough data and reduces
flying time, leading to mission is
incomplete; it might lead to mis-
sion fails if the drone does not
have enough battery to fly back to
the base

Drone camera_enabled Disable the
camera

The drone is incapable of collect-
ing data leading to mission is in-
complete

Drone sensors_enabled Disable the
sensors

The drone is incapable of collect-
ing data leading to mission is in-
complete

Table 1: Threat Model of the Surveillance Drone Mission

The attack degrading flying capability is considered to be con-
suming battery units. The battery consumption attack degrades the
drone capability to collect much data since data collection requires
battery. It also reduces the flying time of the drone (e.g., instead
of flying 5 hours in a regular situation, it will fly 3 hours when an
attack occurs). If the battery consumption attack occurs, we assume
the drone should abort the mission and fly back to the base, and the
mission is incomplete. Another possibility is that the drone does not
abort, keeps flying, loses its battery, then is incapable of flying back
to the base, and the mission fails.

If the camera or sensors are disabled by attacker, the drone cannot
collect data but can fly back to the base, and the mission is incom-
plete. Notice that, besides mission succeeds, we mentioned two
mission statuses: mission is incomplete and mission fails. Mission
success indicates that the drone collects data and flies back to the
base. The mission is incomplete indicates that the drone cannot col-
lect data but can fly back to the base. Mission failure demonstrates
that the drone cannot return to the base (e.g., lost). Analyzing the
mission status from the mission specification is essential to translate
the attacks into formal specification.

5.2 Formal Specification of Attacks
Each attack described in the threat model is formally specified as a
CPN attack (i.e., a sub-CPN model). The CPN attack can be plugged
into the proper place of the CPN mission based on precondition
and postcondition. From the surveillance drone threat model in
Table 1, three CPN attacks are formalized. These three CPN attacks
are presented in Figure 3 as Camera Attack, Sensor Attack, and
Battery Attack. These CPN attacks have the same precondition and
postcondition as the Drone datatype. They must receive a variable
of type Drone, change its values, and output a new variable of type
Drone. Hence, these attacks can be attached to any place in the
CPN mission if that place has a precondition and postcondition of
Drone datatype. The CPN battery attack decreases the value of the
drone variable’s attribute drone1.battery_level by 1 unit. The CPN
Camera attack changes the value of the drone variable’s attribute
drone1.camera_enabled to false, and the CPN sensor attack changes
the value of the drone variable’s attribute drone1.sensors_enabled
to false. For these changes in the drone’s attributes values, resiliency
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analysis is executed to verify where the CPN mission can succeed,
incomplete, and failed.

6 RESILIENCY ANALYSIS
This section pursues applying the methodology (Steps 6 and 7) to
the surveillance drone to analyze the drone mission and its resiliency.
CPNTools [11] are used to analyze the state space and state transi-
tions of the CPN mission to which CPN attacks are attached.

6.1 Drone Mission Specification Analysis
Various attack scenarios are created based on the drone threat model.
An attack scenario consists of the subject of the attack, the set of
attributes of the subject, which are attackable, and a limit on the
number of times the attack may occur. A mission is resilient to an
attack scenario if, after the attack occurs, there exists a successful
execution from the point at which the attack occurred.

We investigate the decremental resiliency of a mission that ex-
presses a mission-critical system is degraded during the execution of
the mission, and no previously unavailable capability may recover.
We start with one-shot resiliency, a version of decremental resiliency,
referring to only one subject’s capability being degraded. We then
decrement the resilience with different attacks and degrade various
capabilities to demonstrate a decremental resiliency analysis.

Resilience
Type Mission Region Attack Status

One-shot Scan buildings and
construction sites A Disable camera Incomplete

One-shot Capture heat signals
and radiation levels B Disable sensors Incomplete

One-shot Capture heat signals
and radiation levels B Disable camera Succeed

Decremental Scan buildings and
construction sites A Consume battery

many times Fail

Decremental Scan buildings and
construction sites A

Consume battery
once and disable

camera
Incomplete

Table 2: Verification Attack Scenarios

Table 2 examines five attack scenarios where the drone is at re-
gions A or B. The first three attack scenarios investigate one-shot
resiliency where one attribute (camera, battery, or heating and radia-
tion sensors) is disabled. The other two attack scenarios investigate
decremental resiliency where the battery and camera are consumed
and disabled, respectively. The first attack scenario expresses that
the drone’s camera fails while scanning region A. The drone had sur-
vived and returned safely to the base, but the mission is incomplete
because it could not collect data from the region. The second attack
scenario shows the drone’s sensors are disabled while measuring
the heat signals and radiation levels at region B. The drone returned
safely to the base, but the mission is incomplete since data collection
failed. The third attack scenario disables the camera at Region B;
however, the mission succeeds since the drone does not use the cam-
era but uses sensors to collect data and can safely return to the base.
The fourth attack scenario consumes the battery repeatedly until the
drone loses the power to return to the base. We refer to this situation
as a mission failure. The fifth attack scenario consumes the battery

one time and disables the camera. The drone can return to the base,
but the mission is incomplete because it cannot collect data.

6.1.1 State Space Analysis. The analysis examines the state space
of the CPN model with each attack scenario. Table 3 reports that all
CPNs of attack scenarios are strongly connected components (SCC).
It indicates that the state models generated from these CPNs are
acyclic; they do not have infinite loops. However, it reports dead
markings and dead transitions for each attack scenario, which are
our considerations for verification. Dead markings are states where
the CPN is terminated, and dead transitions are when the transitions
are not executed (no token visits them). Verifying the dead markings
signifies the values of the drone’ attributes where the mission is
terminated, whereas verifying the dead transitions signifies why the
drone did not execute specific tasks.

Region &
Attack Scenario

State Space SCC Graph Status

#Node
19

#Arcs
21

#Node
19

#Arcs
21

FullRegion-A,
Disable Camera Dead Markings

[19]
#Dead Transition

8
Live Transition

None
#Node

12
#Arcs

12
#Node

12
#Arcs

12
FullRegion-B,

Disable Sensors Dead Markings
[12]

#Dead Transition
9

Live Transition
None

#Node
12

#Arcs
12

#Node
12

#Arcs
12

FullRegion-B,
Disable Camera Dead Markings

[12]
#Dead Transition

10
Live Transition

None
#Node

15
#Arcs

16
#Node

15
#Arcs

16
FullRegion-A,

Consume Battery
Many Times Dead Markings

[15]
#Dead Transition

9
Live Transition

None
#Node

18
#Arcs

19
#Node

18
#Arcs

19
FullRegion-A, Consume

Battery One Time
and Disable Camera Dead Markings

[18]
#Dead Transition

7
Live Transition

None

Table 3: State Space Report

As mentioned, the first three attack scenarios examine one-shot
resiliency. The state space of the first attack scenario, Region-A &
Disable Camera, reports one dead marking, 19, and 8 dead tran-
sitions. The second attack scenario, Region-B & Disable Sensors,
shows one dead marking, 12, and 9 dead transitions. Similarly, for
the third attack scenario, Region-B & Disable Camera, it reports one
dead marking, 12, but 10 dead transitions. Even though the second
and third attack scenarios are similar, the second attack scenario
was incomplete with 9 dead transitions, and the third attack scenario
succeeds with 10 dead transitions. The 10th dead transition of the
third scenario is considerably firstly to be verified.

The fourth and fifth attack scenarios examine decremental re-
siliency. The state space of the fourth attack scenario, Region-A &
Consumes Battery Many Times, reports dead marking, 15, and 9
dead transitions. The fifth attack scenario, Region-A & Consume
Battery One Time and Disable Camera, reports dead marking, 18,
and 7 dead transitions. Next, the dead markings and dead transitions
are verified and explained.
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6.1.2 Formal Verification. We use CPN-ML programming language
[7] to verify dead marking and dead transition for each attack sce-
nario. We also use built-in functions provided by the CPNTools
[11], such as Reachable(x,y), SccReachable(x,y), AllReachable(),
DeadMarking(x), ListDeadMarkings(), and ListDeadTransitions(),
for the verification process. These functions return an execution
sequence for each dead marking where the mission is succeeded,
incomplete, or failed. We backtrack through the execution sequence
and locate the state where the attack occurs. While backtracking,
we verify the change of states in the sequence to inspect the rea-
sons that lead to dead transitions and what state values the sequence
terminates with at dead markings.

Verification of the state space of the first scenario (One-shot at
Region-A, Disable Camera) shows that the drone was instructed at
State 4 to fly to Region A to scan buildings and construction sites.
State 6 shows the drone was in region A. The attack occurred at the
State 8, and the camera was disabled. States 9 to 18 show that the
drone flew over Region A three times, consuming the battery and
leaving only one battery unit, and could not collect data. In State 19,
the CPN terminated with the drone returned to the base and mission
status “Incomplete” because no data had been collected.

In the second scenario (One-shot at Region B, Disable Sensors),
the drone was instructed in State 4 to fly to Region B to measure
heat signals and radiation levels, and in State 6, the drone was in
Region B. The attack occurred at State 8, and sensors were disabled.
In States 9,10, and 11, the drone consumed one battery unit and
could not collect data. In State 12, the CPN terminated with the
drone returned to the base and mission status “Incomplete”.

The third scenario (One-shot at Region B, Disable Camera) is
similar to the second scenario; the drone instructed at State 4 was in
Region B at State 6, and the attack occurred at State 8. The difference
is that the camera was disabled, but not the sensors. States 9, 10,
and 11 show that the drone was able to collect data, and in State 12,
the CPN terminated with the drone returned to the base and mission
status “Succeed”. Verifying the 10th dead transition of the third
scenario that differs from the second scenario, we found that the
dead transition is “SensorsAttack’Disable_Sensors 1” and did not
execute because the attack disabled the camera but not the sensors,
which caused the drone to be able to collect data, return to the base,
and the mission succeeded.

In the fourth scenario (Decremental at Region-A, Consumes bat-
tery Many Times), the drone instructed at State 4 was in Region A at
State 6, the attack occurred at State 7, and the battery consumed one
unit, leaving it with 3 units remaining. In State 10, the drone con-
tinuously flew over Region A, using the camera to scan the region
and consuming one battery unit, leaving it with 2 units remaining. In
State 11, another attack occurred, consuming one more battery unit,
leaving it with 1 unit. State 14 shows the drone used this 1 battery
unit for scanning, leaving it with zero unit. In State 15, the CPN
terminated with the drone did not return to the base and the mission
status “Fail”.

For the last decremental scenario (Decremental at Region-A, Con-
sumes battery One Time and Disable Camera), in State 7, the attack
occurred and disabled the drone’s camera first, and then another
attack occurred in State 10, consuming one battery unit, leaving
it with 3 units. From States 11 to 16, the drone continuously flew
over region A, consuming its battery, but was unable to use the

camera. In State 17, the battery reached one unit remaining, and the
drone decided to return to the base. The CPN terminated in State 18,
showing that the drone returned to the base with the mission status
“Incomplete”.

6.2 Drone Resiliency Analysis
The verification indicates that the drone must immediately abort
the mission when data collection is infeasible. Continuous flying
and consuming the battery without collecting data minimizes the
resilience level of the mission. Table 4 expresses constraints that
enhance the resiliency of the surveillance drone mission.

Resilience
Type Mission Region Mission Restriction

One-shot Scan buildings and
construction sites A Abort the mission if the camera

is disabled

One-shot Capture heat signals
and radiation levels B Abort the mission if the sensors

is disabled

One-shot Capture heat signals
and radiation levels B Abort the mission if the task is

infeasible

Decremental Scan buildings and
construction sites A Save enough battery to fly back

to the base

Decremental Scan buildings and
construction sites A Save battery and abort the mis-

sion if the task is infeasible

Table 4: Mission Restrictions

In summary, we have shown how to assess a mission’s decre-
mental resiliency and find the conditions required for the mission to
succeed. We can be confident that a mission can succeed under the
restricted workflow even with the occurrence of tasks’ degradation.

7 RELATED WORK
The literature on workflow resiliency problems introduces solutions
to address the unavailability [8, 9, 13, 14]. Our work argues that the
workflow resiliency problem can be viewed as degradation.

Wang et al. [13] introduce three types of resilience, static, decre-
mental, and dynamic. They use the term a user to refer to a subject,
an active entity doing tasks. Static resilience refers to a situation
in which subjects become unavailable before the workflow exe-
cutes, and no subjects may become available during the execution.
Decremental resiliency expresses a condition where subjects become
unavailable before or during the execution of the workflow, and no
previously unavailable subjects may become available during ex-
ecution, while dynamic resilience describes the situation where a
subject may become unavailable at any time; a previously unavail-
able subject may become available at any time. The different types
of resilience formulations capture various types of attack scenarios.

Yang et al. [14] address the workflow satisfiability problem that
ascertains whether a set of subjects can complete a workflow. The
authors investigate the computational complexity of the workflow
satisfiability problem in two aspects. One aspect considers either one
path or all paths of a workflow, and the other focuses on the possible
patterns in a workflow. They present a set of algorithms for solving
various types of problems of workflow satisfiability. They show that
many existential and universal workflow satisfiability problems are
NP-complete and NP-hard. Thus, they conclude that restrictions on
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workflow patterns induce such problems to be solvable in polynomial
time.

Mace et al. [8, 9] propose a quantitative measure of workflow
resiliency. They use a Markov Decision Process (MDP) to model
workflow to provide a quantitative measure of resilience. They refer
to binary classification, such as returning an execution sequence if
one exists and declaring the workflow resilient or returning false and
declaring the workflow not resilient. The authors show that the MDP
models give a termination rate and an expected termination step.

Abdelgawad et al. [1] address the static resiliency of mission
mission-critical system. The authors use workflow to describe a
mission for a mission-critical system. They then formalize rules that
convert the mission workflow into CPN. The formalization covers a
mission workflow that includes many subjects and objects. The work
focuses on verifying the static resiliency of the mission workflow.

Our methodology leverages other works for analyzing workflow,
using formal specifications, and investigating resiliency. We design
the methodology to cover all aspects of mission resiliency, static,
decremental, and dynamic resiliency. We differ from others in a
systematic way of analyzing mission specifications, constructing
mission workflow, generating threat models, and investigating vari-
ous attack scenarios that exercise mission resiliency. This methodol-
ogy provides reasonable restrictions that increase the resiliency of
missions for mission-critical systems.

8 CONCLUSION
This paper introduces a methodology that addresses the mission
resiliency analysis for mission-critical systems. The methodology
systematically analyzes various aspects of mission resiliency: static,
incremental, and dynamic. It consists of seven steps, starting from
a description of a mission, a formal representation of the mission,
converting the mission’s formal representation to formal specifica-
tion, constructing threat models, formal specification of attacks, and
ending with resiliency analysis. The methodology uses workflow for
the formal representation of the mission. It also utilizes Coloured
Petri Nets (CPN) to formally specify the mission and attacks.

We applied the methodology to a drone surveillance system as
a motivating example. CPN tools are used to verify various attack
scenarios. The results show that mission resiliency is a degradation
issue. When an attack occurs, a mission-critical system can continue,
and the mission can be accomplished. The methodology is practical
to explore the state transitions of a mission and verify which state the
mission succeeds, fails, and is incomplete. It provides restrictions
that must be added to the mission description to improve resiliency.

Future work will investigate the applicability of the methodology
to various mission-critical system application domains. It will also
investigate the effectiveness and scalability of the methodology on

complicated mission-critical systems that incorporate many subjects,
workflows, and objectives. These future investigations will unveil
the challenges of time and memory used to verify large tasks.
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