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Abstract. Internet-of-Things (IoT) device-type fingerprinting is the
process of identification of the specific type of an IoT device based on its
characteristics, such as network behavior. Such fingerprinting can be used
to detect anomalous behavior of the device, or even predict its behavior
should it get compromised. The typical approach to fingerprint an IoT
device-type is by collecting a significant number of short network trace
samples from these devices when it performs various activities and use
machine learning on these samples to construct the fingerprint. There are
several challenges to this approach. The first challenge is identifying the
exact set of packets that correspond to the observed device-type behav-
ior when it is performing some activity. The second challenge is that a
single organization may not have enough data corresponding to all pos-
sible activities of the loT device. We propose techniques to overcome the
above mentioned challenges. First, to enhance device-type fingerprinting
from small data sets, we designed a sliding-window based packet anal-
ysis behavioral model that provides improved data coverage associated
with the activities of the tasks. Second, to get a model of the network
behavior for the different activities of IoT devices deployed at various
organizations, we use distributed deep-learning model so as to protect
the privacy and confidentiality of the data. Finally, we alleviate the issue
of data shortage by supplementing the training data with synthetic data
generated using an Adversarial Autoencoder (AAE) neural network. We
evaluated our approach using three different sets of experiments using a
small set of representative devices. We estimate the best sliding window
size for modeling device behavior by comparing the distributed learn-
ing performance over a range of window sizes. For our distributed app-
roach, we achieve fingerprinting accuracy in the range of 94-99%, which
is an improvement over the centralized approach for the same data sets
and experiments. We demonstrate accuracy of 97%, on-par with state-
of-the-art fingerprinting approaches, when using synthetic training data
generated by our AAE. We note that, this is the first such method of
fingerprinting device-types in a collaborative privacy preserving manner
while alleviating small data sets.
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1 Introduction

1.1 Motivation

Internet-of-Things (IoT) now has a default presence in home and organizational
networks where they provide a wide range of services. A majority of IoT devices
are plug-and-play, and any user can connect an IoT device to an existing network.
However, an insecure or incorrectly configured IoT device is a significant security
risk as these devices have proven [1] to be easy targets for attackers. Therefore,
a network administrator needs to correctly identify the IoT device-types and
enforce the necessary security controls to prevent and detect attacks.

The traditional device-type identification approach is to create a digital fin-
gerprint from the network data generated by an IoT device and applying machine
or deep learning techniques. Therein lies the major shortcoming of this approach,
for a given timing window of packet capture, some devices generate a small
amount of data while others generate larger volume of data making generalized
analysis difficult. Therefore, a critical challenge in IoT device-type fingerprinting
is to generate an accurate fingerprint even with a limited amount of data.

1.2 System Model and Assumptions

Our system model consists of a network of IoT devices whose network traffic
can be captured by a network analyst. We assume the capability of capturing
all kinds of traffic such as device-to-device, device to the Internet and from the
Internet to a device. We do not make any assumptions on nature of the payload,
which may be encrypted, compressed, binary or plain-text.

1.3 Problem Statement

The problem of device-type fingerprinting is to identify the device-type of an
unknown IoT device based on the network traffic observed from the device. Let,
T = {t1,t2, -+ ,tn} be the set of traffic traces collected from a known device-
type D where each trace is a group of one or more network packets of fixed
size and indicative of different behavioral features of the device. The goal is to
build a machine learning model M (T') that will output True when tested on a
sample trace T of the same device-type D, and output False when tested on a
sample trace of some other device-type. Ideally, the selected traffic-traces should
encompass all possible behaviors of the device to enable a machine learning
model to accurately identify the device regardless of the sample of traffic-trace
being tested. However, it may not be possible or practical for one single observer
to collect all possible network traces of a given device-type. Therefore, we assume
that several entities are independently collecting sufficient number of traces from
the device-type.
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Now, the problem statement is as follows: to build a machine-learning model
for fingerprinting IoT device-types using traces collected by diverse entities. Let
(D,P,T)={(P1,Th), (P2, T3), -+ ,(Pn,Ty)} denote the collection of traces T =
{11, T, ,T,} of device-type D by a collection of parties P = {P;, Py, -+ , P}
where P; collects the packets in T; and does not share with any other party. From
these traces, the parties collaborate to build a single machine learning model
M(T) for accurate IoT device-type fingerprinting.

1.4 Limitations of Prior Art
Prior solutions [2-14] have one or both of the following limitations:

— Identifying IoT Device-type Behavior. For a network analyst, it is difficult
to accurately identify the boundaries of the behavior of the IoT device-type
as this requires a significant amount of data that encompasses the entire set
of behaviors of the device. In prior art, analysts spent considerable time with
the set of devices at their disposal to extract such behaviors, but it may not
be practically possible for an independent analyst to cover all behaviors of
the device.

— Unknown Devices and Privacy of Data. In prior art, if a new device is intro-
duced into the network, the machine learning models need to be trained again,
which is a significant effort and overhead. To avoid this, one may try to obtain
data of unknown devices from other networks, but due to the privacy concerns
this is difficult in practice.

In our work, we attempt to address the identified shortcomings of prior art and
provide an accurate device-type fingerprinting model.

1.5 Overview of Proposed Approach

First, to solve the problem of small data sets, we make the best possible use of
the collected device data with help of a sliding window packet analysis method.
Further, we employ AAEs to generate synthetic data to improve the fingerprint-
ing performance. We chose the AAE for our purpose, as opposed to a Generative
Adversarial Networks (GANs), due to the limited volume of available data and
the nature of our dataset. AAEs are better at handling heterogeneous data and
require less training samples to produce high-quality synthetic data. In our exper-
iments with synthetic data, 10% of samples in the training sets were generated
by our AAE.

Second, to learn about unknown behaviors of devices and also, possibly
unknown devices, we use a collaborative machine learning model where mul-
tiple parties train their local learning models using privately collected data and
share the trained parameters using an aggregation algorithm. The end result is
that the local machine learning models of individual parties are trained on the
combined data of all the parties without any exchange of the actual data. The
major advantage of the distributed deep learning model is that an individual
party will be able to fingerprint unknown device-types without having trained
on that device-type data.
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Finally, we performed three major sets of experiments to validate our app-
roach. In the first set of experiments, we compared the performance of the dis-
tributed learning model over a range of window sizes to estimate the window
size which is optimal for modeling device behavior. We found that a window size
of 10 packets gives the best performance with an average accuracy of 97%. In
the second set of experiments, we tested the sliding window protocol using cen-
tralized and distributed learning models. Our results show that the distributed
learning model performs on par and better when compared with the centralized
learning models with an accuracy range of 94-99% in testing. In the third set of
experiments, we tested the distributed learning model using real and mixed data
sets where the mixed data sets contain 10% of synthetic data from the AAE.
We found that the synthetic data did not degrade the model performance and
achieved a similar range of 94-99% accuracy.

1.6 Key Contributions

First contribution is that, we describe an approach to generate machine learning
models in a privacy preserving manner from small data sets. Second contribu-
tion, is the proof-of-concept usage of synthetic data for generating fingerprints
of ToT devices, which are of similar quality to the fingerprints generated from
real data. Third contribution is a comprehensive experimental validation of our
fingerprinting approach. Here we show that our approach achieves a minimum-
maximum true-positive rate (TPR) for fingerprinting IoT devices of 92%-99%,
respectively, with a mean TPR of 95%, which is the performance of state-of-the-
art centralized solutions.

Organization. In Sect. 2, we give an overview of related literature on IoT device-
type identification and fingerprinting work. In Sect. 3, we give the detailed outline
of our IoT device-type behavioral model using the sliding window approach,
the feature engineering for accurate device-type fingerprinting and the privacy
preserving deep learning model for collaborative fingerprinting. In Sect. 4, we
describe the adversarial auto-encoder design for generating synthetic data. In
Sect. 5, we describe our experimental evaluation and show the results of our
fingerprinting approach. We summarize our work in Sect. 6 and outline important
future challenges.

2 Related Work

2.1 IoT Device-Type Fingerprinting

Device-type fingerprinting has received considerable attention from the research
community. General device fingerprinting [15-17] explore several techniques
ranging from packet header features to physical features such as clock-skews.
Wireless device fingerprinting techniques have been discussed in [10-14]. These
works explore device-type identification by exploiting the implementation differ-
ences of a common protocol such session initiation protocol (SIP), across simi-
lar devices. Physical layer based device fingerprinting has received considerable
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attention [18-22] where the focus is on analyzing the physical aspects of devices
to fingerprint them. All these prior works focus on general wireless devices and
their applicability to IoT devices is an open question.

Vladimir et al. [18] developed a radiometric approach based on imperfec-
tions in analog components for fingerprinting network interface cards (NICs).
Such variations result in imperfect emissions when compared with the theoret-
ical emissions and manifest in the modulation of the transmitted signals of the
device. However, this work relies on the availability of link-layer frames from the
given device, which may not be possible for IoT devices as they are spread over
an area and are interconnected via different switches and routers.

Frangois et al. [12,23] describe a protocol grammar based approach for finger-
printing. They characterize a device based on the set of messages transmitted.
A message is represented using the protocol grammar syntax. To classify a given
device, the messages emitted by the device are compared with syntactic trees
of the stored fingerprints and depending on a similarity metric, the device label
is assigned. However, this approach is again specific to protocols that are well
known and whose grammar rules are available.

Gao et al. [24] develop a wavelet analysis technique to fingerprint wireless
access points based on frame inter-arrival time deltas. The approach does not
apply to IoT devices as these devices are usually end-points and do not forward
data to other devices.

Radhakrishnan et al. [20] described a technique for device-type identification
on general purpose devices like smartphones, laptops and tablet PCs using the
inter-arrival times of different packets to extract features specific to a particular
application, such as Skype. However, most IoT devices do not generate much
traffic and obtaining such statistics will involve considerable time and effort.

Franklin et al. [10] describe a passive fingerprinting method for identifying
the different types of 802.11 wireless device driver implementations on clients.
The authors explore the statistical relationship of the active channel scanning
strategy in a particular device driver implementation. This technique is useful
for identifying the type of device driver implementation but not for the type of
device.

In the IoT fingerprinting problem space, IoTSentinel by Miettinen et al. [25]
and ToTScanner by Siby et al. [26] are the currently known solution frameworks.
Miettinen et al. [25] describes IoTSentinel, a framework for device fingerprinting
and securing IoT networks. It focuses on device-type identification at the time of
device registration into a network. This approach uses packet header based fea-
tures to identify a particular device-type and applies machine learning models to
perform the fingerprinting. One shortcoming of this work is that it is susceptible
to packet header spoofing. Our approach provides better accuracy and stronger
security. ToTSentinel reports a mean identification rate of 50-100%, whereas our
approach reports a mean identification rate of 93-99%.

Siby et al. describe ToT'Scanner [26], an architecture that passively observes
network traffic at the link layer, and analyzes this traffic using frame header
information during specific observation time windows. This work is more con-
cerned with discerning the distinct devices and their presence based on the traffic
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patterns observed during the traffic capture time window. A shortcoming of this
approach is that two identical device-types could be classified as two different
device-types due to the variations in traffic generated during the traffic capture
time window. This approach is useful for network mapping at a high level, but
performing this analysis periodically can be cumbersome. In [27], Bezawada et
al. presented a centralized machine learning based model for fingerprinting IoT
devices. They experimented with 23 different device-types and showed that the
fingerprinting model was 99% accurate for identifying a majority of the device-
types. We select this model for this work as it has a small number of features.

2.2 Privacy Preserving Deep Learning For Fingerprinting

The collaborative privacy preserving deep learning approach was described by
Shokri et al. [28] and explored in depth by others [29-36]. The process considers a
group of N-participants in the training process and a global server that maintains
the final machine learning model and serves as a point of dissemination for
the necessary information. During local training, each participant trains the
neural network on its own private data using an optimization algorithm, such
as Stochastic Gradient Descent (SGD). Once the training of the model begins,
each client maintains a list of local parameters, i.e., weight-gradients and bias-
gradients. At the end of each training epoch, each participant selects exactly
O, most significant values from each layer, which contribute more towards the
gradient descent, and shares them with the global parameter server.

To date, there is one recently published paper that focuses on federated learn-
ing for IoT (F1410T) [37]. The work focuses on identifying unknown devices in the
network. The first step of their approach is to use a clustering method to generate
vector fingerprints, i.e., short representation of a device, using an unsupervised
clustering approach. Then, using supervised learning, they use these fingerprints
to identify the presence of unauthorized devices in the network. Their work has
similarities and dissimilarities with our work. The similarity is that both works
attempt to fingerprint devices for the purposes of security. The dissimilarity is
that their work focuses on identifying unauthorized devices based on a set of
fingerprints identified in the given network whereas our work focuses on gen-
eralizing the fingerprint representation and can be used in unknown networks
where we have not collected any data from the IoT devices. Importantly, our
work focuses on using small data sets and a small number of features, making it
simple to implement and deploy.

3 Device-Type Behavioral Model

In this section, we describe our behavioral model for fingerprinting IoT devices
and the pertinent features.
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3.1 Sliding Window Analysis for Behavior Coverage

We focus on designing the fingerprint of an IoT device-type based on the set of
observable network behaviors of the device as we intend that the fingerprints are
used by the network administrator for enforcing the necessary security policies.
IoT devices typically provide specific services such as video camera monitoring
the premises and sending the data feed to a network operator. A specific feature
and/or service of an IoT device-type is obtained by sending a network command
to the device. Therefore, a specific network behavior, b; of an IoT device may
be quantified by capturing the network packet trace t; generated during such
an interaction with the IoT device and extracting useful features. However, the
network analyst performing the fingerprinting might not be able to identify the
exact boundaries, starting and ending, of the packet trace ¢; that corresponds to
the specific behavior, b;. One plausible reason is that there may be other control
traffic from the IoT device that is being regularly transmitted regardless of the
service specific related traffic of the IoT device.

To address this issue, we use a sliding window mechanism to extract the
features of the network behavior where the term window refers to a fixed length
sequence of captured packets. The intuition is that as we slide the window over
a sequence of the captured network packets, at some point, the exact set of
packets that correspond to the behavior will be covered. Note that there will
still be other unrelated packets within the correct behavioral window, but that
is unavoidable in practice.

We illustrate this in Fig.1, where we consider a network trace of n packets
Pi, -, P,y; as the first window of behavior under the assumption that a device
behavior can be accurately modeled within n packets. The choice of n is subject
to practical considerations and complexity of the device. The next window is
given by the set of packets P11, , Piynt1, i-€., the next set of n packets
starting from the 2"¢ packet of the first window. Therefore, we do not miss any
sequence of n packets, one of which is the most probable candidate covering the
specific device-type behavior. Now, the challenge is to define the exact value of
n. In our work, we have used the existing experimental data of the IoT device-
types to estimate this number and set it to 10. This may not be true for all
devices; however, because of the tight coupling of windows, this is a reasonably
good estimate of n. Finally, it is important to note that the size of the window,

General Sliding Window of n Packets

Window 1: ..., P;, P, P, .., P, P -
Window 2: ..., P, Py, P .., Piins Pirnsrr -
Window 3: .., P., P, P.i, .. Piint1r Pisnezs oo

Illustrative Sliding Window for i=1, n=10

Window 1: ..., P,;, P,, P;, .., P, P,
Window 2: .., P, P3 P, .. Py, Py, ..
Window 3 By Py Bx v P11, Piay .o

Fig. 1. Sliding window coverage of a specific device-type behavior
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n, represents the minimum number of packets that need to be observed from an
IoT device-type to verify its registered fingerprint.

3.2 Network Traffic Features of Interest

Now, given a window of packets, the next important step is to extract the network
traffic features of interest. Prior research work [4-9,27] has identified various
features of interest to fingerprint IoT device-types. We categorize such features
into two specific types: protocol and behavioral.

Protocol specific features are used to identify the presence of a particular
protocol in a given packet header. These features may only be partially specific to
a particular device-type. Sample protocol specific features are: presence of TCP,
UDP, HTTPS, HTTP, IPv6, ICMP, and DHCP. These are all binary features,
i.e., if the protocol appears in the packet header, the feature is set to 1 otherwise
it is set to 0.

Behavior specific features are used to quantify the nature of data or
connections within a given window of packets. For instance, the payload
lengths of small IoT device-types like smart lights could be considerably dif-
ferent from the payload lengths of a large IoT device-types such as video
cameras. Furthermore, some device-types make many connections to neigh-
boring devices while some device-types maintain silence and only communi-
cate when requested. These are behavior specific trends of an IoT device-
type and are valuable for generating the fingerprint for the IoT device-type.
A few illustrative behavior specific features for a given window of pack-
ets are: payload length, payload entropy, packet header length, the
number of unique IP addresses observed, the number of distinct
sub-net IP addresses, number of distinct external destination IP
addresses, IP address variance, length of the longest IP
flow, number of packets with same source port and number of packets
with same destination port. Some of these features are extracted per packet
and stored while the other features are extracted from the entire window of
packets. As shown in Table 1, these features are numeric features. The intuition

Table 1. Packet Features

Feature Value

Payload Length Length in bytes (float)

Payload Entropy Byte entropy of payload (float)

Header Length Length of packet header in bytes

Common Source Port 1 if src.port < 1023, else 0

Common Destination Port |1 if src.port < 1023, else 0

IP Flows Count of packets with largest number of same source and destination IP
Unique IP Addresses Number of unique IP addresses in a packet window

IP Addresses in Subnet Number of IP addresses that belong to the same subnet in a packet window
External IP Addresses Number of IP addresses that do not belong to the same subnet

IP Variance Variance in IP addresses

TCP/UDP/HTTP/HTTPS | 1 if packet has a protocol field, else 0
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for using these features in device-type fingerprinting is that they are likely to
have different distributions across different device-types.

3.3 Privacy Preserving Deep Learning Model for Fingerprinting

Now, based on the features identified, we proceed to build a privacy preserving
deep learning model for fingerprinting IoT device-types. Unlike the approach
in [28], which described the first practical distributed deep learning model, we
engineer a neural network design that suits the current problem.

The process considers a group of N-participants in the training process and a
global server that maintains an aggregated deep learning model. Each participant
maintains a local parameter vector that it updates using its own private training
data and from the updates received from the global server. A parameter vector
consists of the weights and biases of a respective neural network. The server
periodically aggregates the parameter vector updates received from the users and
disseminates the information to the participants. The participants then swap out
their local parameters for the aggregated parameters that they received from the
server and begin the next round of training. After each round of aggregation, all
participants and the server will have equivalent parameter vectors. The number
of updates and aggregation steps that occur during the process is determined by
the number of training samples and two predefined hyper-parameters: batch_size
and epochs. Each participant has the same number of training samples, N, and
the swaps occur after each batch so the total number of swaps is: m *
epochs. Therefore, the parameter aggregation method is a critical factor in the
distributed learning process.

Decentralized Optimization. In our distributed learning model, parameter
aggregation is done through selective parameter swapping. Participants send the
parameters of their local model to the server and the server selects a portion of
the parameters in its model to swap out for the ones it received. The selective
parameter swapping operation is shown below.

— Server maintains an aggregated parameter vector, w,

— Server receives parameter vector, w;, from participant, P;

— Server computes index = indices of sort(|w; — wq|)

— Sets wg[indez[0 : O]] = w;[index[0 : O]] where O is a hyper-parameter that
determines how many parameters are swapped out; the server selects the
parameters with the greatest absolute difference between the received and
aggregated parameter vectors.

We found that the best value for @ is the length of the parameter vector divided
by the number of participants. We call this method “Decentralized Optimiza-
tion” because, instead of performing parameter optimization on the server, the
participants optimize their parameters locally then send their optimized param-
eters to the server during each round of aggregation. The participants optimize
the parameters of their local model using Adam optimization, an extension of
Stochastic Gradient Descent, described by [38].
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4 Data Synthesis

To address the problem of small data sets, we used an AAE [39] to generate
synthetic data for the IoT devices. We define and use the following terminology
for describing our AAE.

— Network fingerprint: a feature vector extracted from the network traffic of a
device.

— Latent vector: the compact and hidden representation of the input data, the
output of the bottleneck layer of the autoencoder.

— Prior distribution: the target distribution of the latent space produced by
the encoder given the training data. We used a Gaussian distribution with a
mean of 0.5 and standard deviation of 1.0.

— Reconstruction loss: the loss function minimized by the autoencoder, we used
mean squared error (MSE).

4.1 AAE Architecture

Our AAE consists of the following key components: encoder, decoder, recon-
struction discriminator and latent discriminator as shown in Fig. 2. The encoder
is a neural network with three hidden layers, which takes the network finger-
print as the input and outputs a 20-by-1 latent vector. The decoder is a neural
network with three hidden layers, which takes a 20-by-1 vector as input and out-
puts either a synthetic or a reconstructed fingerprint (depending on the source
of the input vector). The latent discriminator is a neural network classifier with
two hidden layers, that takes a 20-by-1 input vector and classifies it into one
of two classes: synthetic latent vector (output of encoder), or vector from prior
distribution. X represents original network fingerprint samples and is the input
to the encoder. The output of the encoder, Z, is a latent vector and has the same
dimensions as prior. The latent discriminator takes samples from prior and Z as
inputs.

T

latent (2)
softmax
Encoder Decoder -
Reconstruction Discriminator

v

prior Latent Discriminator

Fig. 2. Adversarial Auto-Encoder
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AAE Training. In the first step, of autoencoder update, the encoder and
decoder are updated on a mini-batch of samples from the original data. The
reconstruction loss from the decoder is back propagated through the decoder and
encoder to calculate the gradient. The encoder and decoder weights are updated
using the gradient. In the second step, of adversarial update, the mini-batch of
samples is fed forward through the encoder to produce the generated latent batch
(Z). The latent discriminator gradient is calculated using the latent vector (Z)
and a batch from the prior distribution and its weights are updated using the
gradient. The batch is fed forward through the encoder and the discriminator
to calculate the adversarial error by taking the classification error with the class
label inverted. The error is back propagated through the discriminator and the
encoder to calculate the gradient. The encoder’s weights are updated with the
gradient while the discriminator’s gradient is discarded.

Adversarial Decoder Training. The decoder training is quite similar as that
of the encoder training. In this round, the decoder is fine-tuned to generate
believable samples. This round also uses mini-batches from the original data;
however, the mini-batches are used as positive samples to train the discrimi-
nator. The decoder’s weights are updated with the calculated gradient and the
discriminator’s gradient is discarded.

Synthetic Data Generation. Compared to training the AAE, generating syn-
thetic data samples is straightforward. After the model is trained, the encoder,
latent discriminator, and reconstruction discriminator neural networks can all be
discarded. The only component that is used to generate data is the decoder. To
generate data, the decoder is given a random vector from the prior distribution
and it outputs a synthetic vector that is similar to the training data. Given a
random vector with shape (num_samples, latent shape), the decoder will produce
an output with shape (num_samples, num_features).

5 Performance Evaluation

5.1 Experimental Methodology

We implemented our approach using the numpy library in Python 3.11.4 on a
laptop running Windows 11 OS with Intel core® 19-13900H CPU®© 2600 MHz
processor with 32 GB RAM. We implemented our models using numpy expres-
sions instead of a machine learning framework because this gave us more con-
trol. We used a multi-layer perceptron (MLP) as the common neural network
architecture for every participant. For training, we used a one-vs-all model of
classification where a separate neural network binary classifier was trained for
each device-type. Each neural network has a different target vector where the
specific device-type was given the positive label while the rest of the device-types
were given the negative labels.
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All versions of the experiment used a MLP with two hidden layers, sizes 60
and 40. The rectified linear activation function (ReLU) has been used on the hid-
den layers and softmax on the network outputs. In all the experiments, the batch
size is 256 and learning rate is 0.001 with the Binary Cross Entropy (BCE) as
the loss function and Adam optimization with 0.9 betal and 0.999 beta2 as the
parameters. The weights are initialized randomly but any initialization scheme
can be used by participants. During the local training, the participants commu-
nicate asynchronously with the global parameter server. Once the participant’s
local model is updated with new weights downloaded from the server, the next
training epoch starts. In all the experiments, the value of 6 is set to the value
(1.0/number of participants).

During classification, we denote a correctly classified positive sample by true
positive (TP), an incorrectly classified positive sample as false negatives (FN),
a correctly classified negative sample as true negative (TN), and an incorrectly
classified negative sample as false positive (FP). We report standard classification
metrics as shown in Table 2.

Table 2. Machine Learning Metrics

Metric Name Definition
Recall (True Positive Rate) TPT+7PFP
TPITN
Accuracy TPIFPFFNITN
2T P
F1 (F-Score) 3TP1FPIFN
False Positive Rate %

Communication Model. All of the distributed learning experiments use a
single network model. We use a client-server architecture with four clients where
the parameter training is done by the clients and the aggregation is done by the
server. In our experiments, we simulate dispersed datasets by artificially parti-
tioning the data into five, non-overlapping, subsets of equal size. This partition-
ing is done by the server using 5-fold cross validation and the server maintains
a cumulative sum of confusion matrices of each iteration. We use this confusion
matrix to calculate the metrics, which we use to evaluate the model’s perfor-
mance. At the beginning of each iteration, the server partitions the data into
four training sets and one test set and sends each client a different training set.
Next, the clients send the means and standard deviations for each feature in their
training data to the server. Then, the server calculates the combined means and
standard deviations for each feature and sends them back to the clients. The
clients use the combined means and standard deviations to standardize their
training data, which they use to train their local models. At the end of the
iteration, the server computes a confusion matrix by testing its aggregated clas-
sifier with the data from the test set after standardizing it using the combined
means and standard deviations. Training is synchronized so each client sends an
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update after every batch then waits for the server to send aggregated parameters
back before resuming the training. Also, the server does not send the aggregated
parameters to the clients until each client has sent its parameters.

5.2 Data Sets

We collected data sets from a sample set of IoT devices such as Amazon Echo,
Philips Smart Light etc., as shown in Table 3. We also used some data collected
by one of our team members from WiFi access points (with prior permission),
standard access points and taxi-cab hot-spots (data available on request). The
access points in cabs are specifically meant for providing communication services
like WiFi, GPS and radio. We considered these aspects and treated them as IoT
devices. Also, since these devices are slightly more generic than a regular IoT
device, they pose some technical challenges in fingerprinting due to the noise in
their traffic. In our experiments with data synthesized by the AAE, the training
sets included 10% synthetic data while the testing sets only included original
data samples.

Table 3. Device Network Data

Device Type Packets
Amazon Echo 18670
Philips Smart Light | 49910
Taxi Cab WiFi APs | 49910
Standard WiFi APs | 11770

Omna 3110
Somfy 49910
" Recall Accuracy F1 False Positive Rate
08
Window size
006 - 5
5 7
@ 0.4 . 10
- 13
02
I 1

00 o
Amazon Cab Philips WiFi Omna Somfy ~ Amazon Cab Philips WiFi Omna Somfy ~ Amazon Cab Philips WiFi Omna Somfy ~ Amazon Cab Philips WiFi Omna Somfy
Device

Fig. 3. Packet Window Size Estimation
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5.3 Window Size Estimation

One of the difficult choices is the window size of the packets that should be
observed to fingerprint a device. Towards this, we measured the performance
of our distributed learning model with window sizes 5, 7, 10 and 13. From this
experiment, we found that the best value for window size is 10 packets. How-
ever, as shown in Fig. 3, the response in the model’s performance on individual
devices to different window sizes varied. We chose 10 as our estimated window
size because it had the best overall performance. The average Recall score with
window size 10 was 95.4% which is 2.7% higher than the worst performing win-
dow size, 5, and 0.1% higher than the next best window size, 13. We note that
identifying the best window size is a difficult task as the device needs to exhibit
significant device specific behavior in that window.

5.4 Centralized Learning Performance

To measure the baseline performance, we first performed experiments on the cen-
tralized learning mode, i.e., a single party training the machine learning model
using all the data.

We compare the performance of the sliding window approach on real and
synthetic data. As shown in Fig. 4, our sliding window approach performs well,
achieving recall in the range of 83% to 99% across all devices with an average
of 92%. The accuracy was in the range of 89% to 99% with an average of 95%.
One interesting note is that fingerprinting performance is greater when using
synthetic data. This is an encouraging aspect because it shows that the AAE
is able to generalize important features in the dataset. If good quality synthetic
data is available then it would help other researchers in the community to utilize
our method to enhance their experiments as well.

Recall Accuracy F1 False Positive Rate

0 06 Data type
5 = Original
o "
(2 mmm Synthetic

00 [—  E— W
Amazon Cab Philips WiFi Omna Somfy ~ Amazon Cab Philips WiFi Omna Somfy ~ Amazon Cab Philips Wifi Omna Somfy ~ Amazon Cab Philips WiFi Omna Somfy
Device

Fig. 4. Baseline Centralized Training Performance On Real and Synthetic Data

5.5 Distributed Learning Performance

The distributed learning method performs well for both real training data and
synthetic training data. We tested the distributed learning by training on the
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actual data samples and synthetic data samples while the testing was performed
real data samples. From Fig. 5, we note that the recall was in the range of 92%
to 99% while the accuracy ranged from 95% to 99%. In Fig. 6, we show that our
model performs better with four (4) clients than with two (2) clients. Finally,
in Fig.7 we present a comparison of the best results across all the experiments,
i.e., the best of centralized against the best of distributed learning model. The
distributed model in this case uses four clients and a window size of 10. The
distributed model performs better than the centralized model in all metrics.
The average recall score for the distributed model is 95.4% which is 3.4% higher

" Recall Accuracy F1 False Positive Rate
08
0 06 Data type
° = Original
? 04 mm Synthetic
02
-

00
Amazon Cab Philips Wifi Omna Somfy ~ Amazon Cab Philips WiFi Omna Somfy — Amazon Cab Philips WiFi Omna Somfy ~ Amazon Cab Philips WiFi Omna Somfy
Device

Fig. 5. Distributed Training Model On Real and Synthetic Data
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Fig. 6. Distributed Training Model Using 2 and 4 clients
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Fig. 7. The Comparison of Best of Distributed and Centralized Fingerprinting Models



A Small World—Privacy Preserving IoT Device-Type Fingerprinting 119

than the average recall of the best performing centralized model. One possible
reason for this surprising result is that the noise in local data sets seems to be
reduced considerably before updating the global neural network model. However,
we intend to explore this aspect more rigorously to verify if the same results are
achievable for a larger device collection.

6 Conclusion and Future Work

We addressed the problem of fingerprinting IoT devices when sufficient data is
not available to the analyst. Our sliding window approach attempts to maximize
the chances of covering behavior of device-type and also, increases the packet
traffic utilization for machine learning. Our approach generates the fingerprint-
ing model by sharing individual learning model parameters from collaborating
parties. We also described an adversarial auto-encoder mechanism to generate
synthetic samples that are useful in training the fingerprinting model. Our results
show that our approaches perform as good as the centralized learning models
with a TPR ranging from 92% to 99% and accuracy ranging from 95% to 99%.

There are several key challenges and future directions for our work. First,
the window size of packets is a difficult parameter to estimate as various devices
exhibit variable behavior in different packet windows. Second, the IoT devices
perform periodic upgrades to their firmware, which might make these devices
behave differently at times. Adapting to such changes and evolution in IoT
devices is a challenging task as the fingerprinting model might have to learn
“on-the-fly”. Third, the quality of synthetic data can dramatically change the
landscape of IoT fingerprinting. Better synthetic data can resolve the challenges
in data collection and analysis and could help the community immensely. Finally,
the future scope of our work is to explore the induction of new features into the
deep learning model as time evolves and to be able to handle adversarial or noisy
data samples from misbehaving participants.
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