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ON THE ARITHMETIC OF POLYNOMIAL SEMIDOMAINS

FELIX GOTTI AND HAROLD POLO

Abstract. A subset S of an integral domain R is called a semidomain provided that the pairs (S,+)
and (S, ·) are semigroups with identities. The study of factorizations in integral domains was initiated
by Anderson, Anderson, and Zafrullah in 1990, and this area has been systematically investigated
since then. In this paper, we study the divisibility and arithmetic of factorizations in the more general
context of semidomains. We are specially concerned with the ascent of the most standard divisibility
and factorization properties from a semidomain to its semidomain of (Laurent) polynomials. As in the
case of integral domains, here we prove that the properties of satisfying the ascending chain condition
on principal ideals, having bounded factorizations, and having finite factorizations ascend in the class
of semidomains. We also consider the ascent of the property of being atomic and that of having unique
factorization (none of them ascends in general). Throughout the paper we provide several examples
aiming to shed some light upon the arithmetic of factorizations of semidomains.

1. Introduction

A subset of an integral domain containing 0 and 1 and closed under both addition and multiplication
is called a semidomain. As for integral domains, we say that a semidomain is atomic if every nonzero
element that is not a multiplicative unit factors into irreducibles. The first systematic study of factor-
izations in the context of integral domains was carried out by Anderson, Anderson, and Zafrullah in [2],
where they not only introduced and studied the bounded and the finite factorization properties but
also investigated further factorization properties, including being atomic, satisfying the ascending chain
condition on principal ideals (ACCP), and being factorial or half-factorial. With the same properties in
mind, here we study the arithmetic of the more general class of semidomains, putting special emphasis
on whether such properties ascend from a semidomain to its semidomain of (Laurent) polynomials.

A commutative semiring S is a nonempty set endowed with two compatible binary operations denoted
by ‘+’ and ‘·’ such that (S,+) and (S, ·) are commutative semigroups with identities. Commutative
semirings consisting of nonnegative real numbers (under the standard addition and multiplication) are
called positive semirings. Clearly, every positive semiring is a semidomain. The atomicity of positive
semirings consisting of rational numbers was first studied by Chapman, Gotti, and Gotti [14] and then
by Albizu-Campos, Bringas, and Polo [1]. Positive semirings were also studied by Baeth and Gotti [7]
in connection with factorizations of certain square matrices. Several examples of positive semirings were
recently given by Baeth, Chapman, and Gotti in [6], where for the first time additive and multiplicative
factorizations in positive semirings were considered simultaneously.

The algebraic structures of central interest in this paper are semidomains of polynomials and semido-
mains of Laurent polynomials. The arithmetic of certain semidomains of (Laurent) polynomials has
been considered in the literature in the past few years. In [12], Cesarz et al. studied the elasticity
of the semidomain R≥0[x], where R≥0 is the nonnegative ray of R. In addition, methods to factorize
polynomials in the semidomain N0[x] were investigated by Brunotte [9]. More recently, Campanini and
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2 F. GOTTI AND H. POLO

Facchini [11] provided a more systematic investigation of the arithmetic of factorizations in N0[x]. More
generally, semigroup semirings were considered by Ponomarenko in [37] from the factorization point of
view. Finally, it is worth emphasizing that the study of the algebraic structure of commutative semir-
ings has been significantly motivated by the applications and connections of commutative semirings to
theoretical computer science (see, for instance, [20] and the references therein).

The positive semirings we obtain as homomorphic images of semidomains of polynomials and semido-
mains of Laurent polynomials have also been investigated recently. Atomic and factorization aspects of
the additive structure of the semidomain N0[α], where α is a positive algebraic number, were first inves-
tigated by Correa-Morris and Gotti [17]. More recently, the elasticity and the omega-primality of N0[α]
have been considered by Jiang, Li, and Zhu [34]. Also, the atomicity of the multiplicative structure of
N0[α] was studied in [12], where the authors proved that N0[α] has full infinite elasticity for reasonable
quadratic algebraic integers α. On the other hand, Zhu [45] has recently studied several factorization
aspects of the homomorphic image N0[α±1] of the semidomain of Laurent polynomials N0[x±1], where α
is a positive algebraic number.

In Section 2, we briefly revise the definitions and terminology relevant to this paper.

In Section 3, we study the property of being atomic in the context of semidomains. It was proved
by M. Roitman [38, Proposition 1.1] that atomicity ascends from any integral domain R to the ring of
polynomials R[x] provided that the set of coefficients of any indecomposable polynomial over R has a
maximal common divisor. We start Section 3 generalizing this result: we prove that under the same
condition, atomicity ascends from any semidomain to its semidomain of (Laurent) polynomials. Given
the relevant role played by the existence of maximal common divisors in the ascent of atomicity, we also
prove that the existence of maximal common divisors is a condition that ascends from any semidomain to
its (Laurent) polynomial semidomain. We also justify why we do not consider the ascent of the studied
factorization properties to power series semidomains: we show in Example 3.3 that the semidomain of
power series N0!x" is not atomic (even though N0 satisfies the unique factorization property).

In Section 4, we investigate ACCP. First, we prove that the property of satisfying ACCP ascends from
any semidomain to its semidomain of (Laurent) polynomials. In [30, Theorem 1.3], Grams constructed
a celebrated example of an atomic domain that does not satisfy ACCP, disproving a wrong assertion
made by Cohn [16] on the equivalence of the condition of being atomic and that of satisfying ACCP.
Further examples have been given by Zaks [42] and Roitman [38] and, more recently, by Boynton and
Coykendall [8] and also by Gotti and Li [27–29]. In Example 4.3, we construct a positive semiring
(which, clearly, cannot be an integral domain) that is atomic but does not satisfy ACCP.

In Section 5, we consider both the bounded and the finite factorization properties. For the rest of
this section, let S be a semidomain. We say that S is a bounded factorization semidomain (BFS) if
there is a function ℓ : S \ {0} → N0 that is only zero on units and satisfies that ℓ(rs) ≥ ℓ(r) + ℓ(s)
for all r, s ∈ S \ {0}. On the other hand, we say that S is a finite factorization semidomain (FFS) if
every nonzero element has finitely many divisors up to associates. Both notions are extensions of the
corresponding notions introduced in [2] in the setting of integral domains. It is well known that the
bounded and the finite factorization properties ascend from an integral domain to its ring of (Laurent)
polynomials (see [2, Propositions 2.5 and 5.3] and [3, Corollary 2.2]). In Theorems 5.3 and 5.4, we extend
these results by proving that the same properties ascend from any semidomain to its semidomain of
(Laurent) polynomials.

In Section 6, we study factorial and length-factorial semidomains. As for integral domains, we say
that S is a factorial semidomain or a unique factorization semidomain (UFS) provided that every nonzero
element of S has a unique factorization into irreducibles. On the other hand, following the terminology
introduced by Chapman et al. in [13], we say that S is a length-factorial semidomain (LFS) if S is
atomic and any two distinct factorizations of the same element of S have distinct numbers of irreducible
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factors (counting repetitions). Length-factoriality was first studied by Coykendall and Smith in [19],
where they used the same notion to characterize UFDs. Length-factoriality has been more recently
investigated by several authors in [13,22,26] in the more general context of commutative monoids. We
prove that integral domains are the only semidomains where the unique factorization and the length-
factorial properties ascend to their corresponding (Laurent) polynomial semidomains: this is obtained
as a combination of Proposition 6.3 and Theorem 6.6. We conclude the paper with a few words on
half-factoriality and the elasticity of semidomains of polynomials.

2. Preliminaries

In this section, we introduce the notation and terminology we shall be using later. For a comprehensive
background on factorization theory and semiring theory, the reader can consult [21] and [25], respectively.
Following standard notation, we let Z,Q, and R denote the sets of integers, rational numbers, and real
numbers, respectively. Additionally, we let N denote the set of positive integers, while we let N0 denote
the set of nonnegative integers. Given r ∈ R and S ⊆ R, we set S<r := {s ∈ S | s < r}; we define S>r

and S≥r in a similar way. For m,n ∈ N0, we denote by !m,n" the discrete interval from m to n; that
is, !m,n" := {k ∈ Z | m ≤ k ≤ n}. Finally, for q ∈ Q>0, the relatively prime positive integers n and d
satisfying that q = n

d are denoted here by n(q) and d(q), respectively.

2.1. Monoids and Factorizations. Throughout this paper, a monoid1 is defined to be a semigroup
with identity that is cancellative and commutative. As we are primarily interested in the multiplicative
structure of certain semirings, unless otherwise specified we will use multiplicative notation for monoids.
Let M be a monoid with identity 1. A subsemigroup of M is called a submonoid if it contains 1. We set
M• := M \{1}, and we let U (M) denote the group of units (i.e., invertible elements) of M . In addition,
we let Mred denote the quotient M/U (M), which is also a monoid. The monoid M is reduced provided
that U (M) is the trivial group, in which case we naturally identify Mred with M . The Grothendieck
group of M is an abelian group G (M) for which there exists a monoid homomorphism ι : M → G (M)
satisfying the following universal property: for any monoid homomorphism f : M → G, where G is an
abelian group, there exists a unique group homomorphism g : G (M) → G such that f = g ◦ ι. The
Grothendieck group of a monoid is unique up to isomorphism. For a subset S of M , we let ⟨S⟩ denote
the smallest submonoid of M containing S, and S is a generating set of M provided that M = ⟨S⟩.

For b, c ∈ M , we say that b divides c in M if there exists a ∈ M such that c = ab, in which case we
write b |M c, dropping the subscript precisely when M = (N,×). Two elements b, c ∈ M are associates
if b |M c and c |M b. A submonoid N of M is divisor-closed if for each b ∈ N and d ∈ M the relation
d |M b implies that d ∈ N . Let S be a nonempty subset of M . An element d ∈ M is a common divisor
of S provided that d |M s for all s ∈ S. A common divisor d of S is a greatest common divisor of S
if d is divisible by all common divisors of S. Also, a common divisor d of S is a maximal common
divisor of S if every common divisor of the set {s/d | s ∈ S} belongs to U (M). We let gcdM (S) (resp.,
mcdM (S)) denote the set consisting of all greatest common divisors (resp., maximal common divisors)
of S, dropping the subindex M in the introduced notation when we see no danger of ambiguity. The
monoid M is a GCD-monoid (resp., an MCD-monoid) provided that every finite nonempty subset of M
has a greatest common divisor (resp., maximal common divisor).

An element a ∈ M \ U (M) is an atom if for all b, c ∈ M the equality a = bc implies that either
b ∈ U (M) or c ∈ U (M). We let A (M) denote the set of all atoms of M . The monoid M is atomic if
every element of M \U (M) can be written as a (finite) product of atoms. One can readily check that M
is atomic if and only if Mred is atomic. A subset I of M is an ideal of M provided that IM ⊆ I or,
equivalently, IM = I. An ideal I of M is principal if I = bM for some b ∈ M . The monoid M satisfies

1The standard definition of a monoid does not assume the cancellative and the commutative conditions.
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the ascending chain condition on principal ideals (ACCP) if every increasing sequence of principal ideals
of M (under inclusion) becomes constant from one point on. It is well known and not hard to verify
that monoids satisfying ACCP are atomic.

Assume now that M is atomic. We let Z(M) denote the free (commutative) monoid on A (Mred).
The elements of Z(M) are called factorizations, and if z = a1 · · ·aℓ ∈ Z(M) for a1, . . . , aℓ ∈ A (Mred),
then ℓ is called the length of z and is denoted by |z|. Let π : Z(M) → Mred be the unique monoid
homomorphism satisfying that π(a) = a for all a ∈ A (Mred). For each b ∈ M , the following sets
associated to b are fundamental in the study of factorization theory:

(2.1) ZM (b) := π−1(bU (M)) ⊆ Z(M) and LM (b) := {|z| : z ∈ ZM (b)} ⊆ N0.

We drop the subscript M in (2.1) whenever the same monoid is clear from the context. Following the
terminology in [2] and [31], we say that M is a finite factorization monoid (FFM ) if Z(b) is finite for
all b ∈ M , and we say that M is a bounded factorization monoid (BFM ) if L(b) is finite for all b ∈ M .
It follows directly from the definitions that every FFM is a BFM and, by virtue of [21, Corollary 1.3.3],
every BFM satisfies ACCP. Following the terminology in [43], we say that M is a half-factorial monoid
(HFM ) if |L(b)| = 1 for all b ∈ M . Finally, M is a unique factorization monoid (UFM ) if |Z(b)| = 1
for all b ∈ M . It follows from the definitions that every UFM is an HFM and also that every HFM
is a BFM. The atomic classes defined in this paragraph are those represented in the square of the
diagram in Figure 1. The same diagram was introduced by Anderson, Anderson, and Zafrullah in [2]
and, since then, it has been used as a methodology to study atomicity and the phenomenon of multiple
factorizations. Finally, we follow the terminology in [13] and say that M is a length-factorial monoid
(LFM ) if for all b ∈ M and z, z′ ∈ Z(b), the equality |z| = |z′| implies z = z′. It is clear that every UFM
is an LFM.

UFM HFM

FFM BFM ACCP monoid atomic monoid

/

/ /

/ / /

Figure 1. The implications in the diagram determine inclusions among the subclasses
of atomic monoids that we have previously mentioned. The diagram also emphasizes
(with red marked arrows) that each of the mentioned inclusions is proper.

2.2. Semirings. A commutative semiring S is a nonempty set endowed with two binary operations
denoted by ‘+’ and ‘·’ and called addition and multiplication, respectively, such that the following
conditions hold:

• (S,+) is a monoid with its identity element denoted by 0;

• (S, ·) is a commutative semigroup with an identity element denoted by 1 with 1 ̸= 0;

• b · (c+ d) = b · c+ b · d for all b, c, d ∈ S.

Let S be a commutative semiring. Since the operation of addition in S is cancellative, the distributive
law ensures that 0 · b = 0 for all b ∈ S. Throughout this paper, for any b, c ∈ S, we write bc instead of
b · c when there seems to be no risk of ambiguity. In the typical definition of a ‘semiring’ S, one does
not assume that the semigroup (S,+) is cancellative. However, we do so here because our semirings
of interest have cancellative additive structures. On the other hand, it is worth observing that a more
general notion of a ‘semiring’ S does not assume that the semigroup (S, ·) is commutative. However,
once again, this more general type of algebraic objects are not of interest in the scope of this paper.
Accordingly, from now on we will use the single term semiring to refer to a commutative semiring,
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tacitly assuming the commutativity of both operations. A subset S′ of S is a subsemiring provided that
(S′,+) is a submonoid of (S,+) that is closed under multiplication and contains 1. Observe that every
subsemiring of S is a semiring. The set S[x] (resp., S[x±1]) consisting of all polynomials (resp., Laurent
polynomials) with coefficients in S is also a semiring under the standard addition and multiplication
of polynomials (resp., Laurent polynomials). We call S[x] (resp., S[x±1]) the semiring of polynomials
(resp., semiring of Laurent polynomials) over S.

Definition 2.1. We say that a semiring S is a semidomain provided that S is a subsemiring of an
integral domain.

Let S be a semidomain. Then (S\{0}, ·) is a monoid, which we denote by S∗ and call themultiplicative
monoid of S. In Example 2.3, we show a semiring that is not a semidomain but still its subset of nonzero
elements is a multiplicative monoid. In order to reuse notation from ring theory, we refer to the units of
the monoid (S,+) as invertible elements of the semidomain S, so that we can refer to the units of the
multiplicative monoid S∗ simply as units of S, avoiding any risk of ambiguity. Also, following standard
notation from ring theory, we let S× denote the group of units of S, letting U (S) refer to the additive
group of invertible elements of S. In addition, we write A (S) instead of A (S∗) for the set of atoms of
the multiplicative monoid S∗ (in this paper, we do not consider the set of atoms of the additive monoid
of a semidomain, except briefly in Example 3.3). Finally, for any b, c ∈ S such that b divides c in S∗,
we write b |S c instead of b |S∗ c, and the term (greatest, maximal) common divisor in the context of
semidomains are to be understood in the multiplicative monoid S∗.

For the next example, we need the following lemma.

Lemma 2.2. For a semiring S, the following conditions are equivalent.

(a) S is a semidomain.

(b) The multiplication of S extends to the Grothendieck group G (S) of (S,+) turning G (S) into an
integral domain.

Proof. (b) ⇒ (a): This is clear.

(a) ⇒ (b): Let S be a semidomain, and suppose that S is embedded into an integral domain R.
We can identify the Grothendieck group G (S) of (S,+) with the subgroup {r − s | r, s ∈ S} of the
underlying additive group of R. It is easy to see then that G (S) is closed under the multiplication it
inherits from R, and it contains the multiplicative identity because 0, 1 ∈ S. Hence G (S) is an integral
domain having S as a subsemiring. !

Example 2.3. Notice that the set S := {(0, 0)} ∪ (N× N) is a monoid with the usual component-wise
addition, and it is closed under the usual component-wise multiplication with multiplication identity
(1, 1). Hence S is a semiring. Observe, on the other hand, that any extension of the multiplication of S
to G (S) = Z × Z making the latter a commutative ring must respect the identity (1, 0)(0, 1) = (0, 0)
and, therefore, will not turn G (S) into an integral domain. Hence it follows from Lemma 2.2 that S is
not a semidomain.

We say that S is atomic (resp., satisfies ACCP) if its multiplicative monoid S∗ is atomic (resp.,
satisfies ACCP), while we say that S is a BFS (resp., FFS, HFS, LFS, UFS ) provided that S∗ is a
BFM (resp., FFM, HFM, LFM, UFM). In addition, we call S a GCD-semidomain (resp., an MCD-
semidomain) if S∗ is a GCD-monoid (resp., an MCD-monoid). Note that when S is an integral domain,
we recover the usual definition of a UFD (as well as the definitions of a BFD, an FFD, and an HFD,
which are now standard notions in atomicity and factorization theory). Although a semidomain S can
be embedded into an integral domain R, the former may not inherit any atomic property from the
latter as, after all, the integral domain Q[x] is a UFD but it contains as a subring the integral domain
Z+ xQ[x], which is not even atomic.
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Let R be an integral domain containing S as a subsemiring. Then the semiring of polynomials S[x]
is a subsemiring of R[x], and so S[x] is also a semidomain. The elements of S[x] are, in particular,
polynomials in R[x] and, as a result, all the standard terminology for polynomials can be applied to
elements of S[x], including degree, order, leading coefficient, etc. Observe that S∗ is a divisor-closed
submonoid of S[x]∗ and, therefore, S[x]× = S× and A (S[x]) ∩ S = A (S). Following the terminology
in [38], we say that a nonzero polynomial in S[x] is indecomposable if it cannot be written as a product
of two non-constant polynomials in S[x]. Similarly, the semiring of Laurent polynomials S[x±1] over S
is also a semidomain. Observe that the multiplicative set {sxn | s ∈ S∗ and n ∈ Z} is actually a
divisor-closed submonoid of S[x±1]∗ and, as a consequence,

S[x±1]× = {sxn | s ∈ S× and n ∈ Z}.

Following the terminology in [6], we say that a subsemiring of R (under the standard addition and
multiplication) is a positive semiring if it consists of nonnegative numbers. The fact that underlying
additive monoids of positive semirings are reduced makes them more tractable. The reader can check
the recent paper [6] for several examples of positive semirings illustrating several aspects of their atomic
structure. The class of semidomains clearly contains those of integral domains and positive semirings.
As the following example illustrates, integral domains and positive semirings account for all semidomains
that can be embedded into Q.

Example 2.4. Suppose that S is a semidomain that is a subsemiring of Q, and assume that S is not
a positive semiring. Since S is not a positive semiring, it must contain a negative rational. By virtue
of [23, Theorem 2.9] any additive submonoid of Q containing both a negative rational and a positive
rational must be a subgroup of Q. As a result, the additive monoid of S is a subgroup of Q. Thus, S is
a subring of Q, and so an integral domain.

In general, there are semidomains that are neither integral domains nor positive semirings.

Example 2.5. Consider the semidomain N0[±α,β], where α,β ∈ R>0 are algebraically independent
elements over Q. Observe that the monoid (N0[±α,β],+) is not reduced. On the other hand, since α
and β are algebraically independent elements over Q, we see that −β ̸∈ N0[±α,β] and, therefore,
(N0[±α,β],+) is not a group. Hence the semidomain N0[±α,β] is neither an integral domain nor a
positive semiring.

3. Atomicity

Back in 1990, Anderson, Anderson, and Zafrullah posed the question of whether the property of
being atomic ascends from any integral domain to its polynomial ring [2, Question 1]. Three years
later, Roitman provided a negative answer for that question, constructing in [38] examples of atomic
domains whose polynomial rings are not atomic (in a parallel direction, examples of atomic monoids
with non-atomic monoid domains were constructed by Coykendall and Gotti in [18]). Roitman also
found a sufficient condition for the ascent of atomicity; this is [38, Proposition 1.1]. We proceed to
generalize this last result to the context of semidomains.

Theorem 3.1. For a semidomain S, the following statements are equivalent.

(a) S is atomic and, for any indecomposable polynomial
∑n

i=0 cix
i ∈ S[x]∗, the set mcd(c0, . . . , cn)

is nonempty.

(b) S[x] is atomic.

(c) S[x±1] is atomic.
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Proof. (a) ⇒ (b): Assume, towards a contradiction, that S[x] is not atomic. Let f be a minimum-degree
nonunit polynomial in S[x]∗ that does not factor into irreducibles. Then f must be indecomposable
and, as S is atomic, deg f ≥ 1. By assumption, we can write f = cg, where c is a maximal common
divisor of the set of coefficients of f . As any common divisor of the set of coefficients of g belongs to
S×, the fact that g is indecomposable implies that g is irreducible in S[x]. This, along with the fact
that f does not factor into irreducibles in S[x], guarantees that c is a nonzero nonunit of S that does
not factor into irreducibles. However, this contradicts that S is atomic.

(b) ⇒ (c): We claim that A (S[x]) ⊆ A (S[x±1]) ∪ S[x±1]×. To argue this, take f ∈ A (S[x]), and
assume that f /∈ S[x±1]× = {uxn | u ∈ S× and n ∈ Z}. Now write f = gh for some g, h ∈ S[x±1].
After replacing g and h by some of their associates in S[x±1], we can assume that g, h ∈ S[x]. Since
f ∈ A (S[x]), either g or h belongs to S[x]× and, therefore, S[x]× = S× ⊆ S[x±1]× implies that
f ∈ A (S[x±1]). Finally, it is clear that the fact that S[x] is atomic, in tandem with the established
inclusion A (S[x]) ⊆ A (S[x±1]) ∪ S[x±1]×, ensures that S[x±1] is atomic.

(c) ⇒ (a): The multiplicative submonoid M := {sxn | s ∈ S∗ and n ∈ Z} of S[x±1]∗ is atomic
because it is a divisor-closed submonoid. Since S∗

red
∼= Mred, we conclude that S is atomic.

Now suppose, for the sake of a contradiction, that there exists an indecomposable nonzero polynomial
f =

∑n
i=0 cix

i ∈ S[x] such that mcd(c0, . . . , cn) = ∅. As f is indecomposable and mcd(c0, . . . , cn) is
empty, ord f = 0. In addition, the fact that mcd(c0, . . . , cn) is empty ensures that deg f ≥ 1. Hence f
is a nonzero nonunit in S[x±1], and so we can write f = a1 · · · aℓ for some a1, . . . , aℓ ∈ A (S[x±1]).
After replacing a1, . . . , aℓ for some of their associates in S[x±1], we can assume that they all belong to
S[x]. Because f is indecomposable, we can further assume that deg ai = 0 for every i ∈ !1, ℓ − 1" and
deg aℓ = deg f . Since aℓ ∈ A (S[x±1]) ∩ S[x] and ordaℓ = 0, we see that aℓ ∈ A (S[x]), which implies
that every common divisor of the set of coefficients of aℓ belongs to S×. Hence a1 · · · aℓ−1 must belong
to mcd(c0, . . . , cn), which is a contradiction. !

As a consequence of Theorem 3.1, we obtain that if a semidomain S is an atomic MCD-semidomain,
then both extensions S[x] and S[x±1] are atomic. Next we show that in this case S[x] and S[x±1] are
also MCD-semidomains.

Proposition 3.2. For a semidomain S, the following statements are equivalent.

(a) S is an MCD-semidomain.

(b) S[x] is an MCD-semidomain.

(c) S[x±1] is an MCD-semidomain.

Proof. (a) ⇒ (b): Suppose that S is an MCD-semidomain, and consider the set

T =
{

(f1, . . . , fn) ∈ S[x]n | n ∈ N≥2 and mcd(f1, . . . , fn) = ∅
}

.

Assume, towards a contradiction, that T is nonempty, and take (g1, . . . , gm) ∈ T such that
∑m

i=1 deg gi
is as small as it can possibly be. Observe that (g1/g, . . . , gm/g) ∈ T for any common divisor g of
{g1, . . . , gm} in S[x]. For f =

∑n
i=0 cix

i ∈ S[x], set Cf := {c0, . . . , cn}. Set C :=
⋃m

i=1 Cgi . As S is an
MCD-semidomain, mcd(C) is nonempty. Take d ∈ mcd(C). Note that d |S[x] gi for every i ∈ !1,m".
Now suppose that u ∈ S[x] is a common divisor of the set {g1/d, . . . , gm/d}. It follows from the
minimality of

∑m
i=1 deg gi that u ∈ S. Therefore u is a common divisor of the set C/d in S, and the fact

that d belongs to mcd(C) guarantees that u ∈ S×. Hence d is a maximal common divisor of {g1, . . . , gm}
in S[x], contradicting that (g1, . . . , gm) ∈ T .

(b) ⇒ (c): Assume that S[x] is an MCD-semidomain, and fix f1, . . . , fk ∈ S[x±1]. Because S[x] is an
MCD-semidomain, we can pick d ∈ mcdS[x](g1, . . . , gk), where gi := x−ord fifi for every i ∈ !1, k". Note
that d is a common divisor of {f1, . . . , fk} in S[x±1]. Let f be a common divisor of {f1/d, . . . , fk/d} in
S[x±1]. Because the polynomial g := x−ordff ∈ S[x] divides gi/d in S[x] for every i ∈ !1, k", the fact
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that d ∈ mcdS[x](g1, . . . , gk) implies that g ∈ S[x]× = S×. Hence f ∈ S[x±]×, and so d is a maximal
common divisor of {f1, . . . , fk} in S[x±1]. Thus, S[x±1] is an MCD-semidomain.

(c) ⇒ (a): Suppose that S[x±1] is an MCD-semidomain. Since M = {sxn | s ∈ S∗ and n ∈ Z} is
a divisor-closed submonoid of S[x±1]∗ satisfying that U (M) = S[x±1]×, we see that M is an MCD-
monoid. This immediately implies that S is an MCD-semidomain because M and S∗ have isomorphic
reduced monoids. !

Let S be a semidomain, and consider the Grothendieck group G (S) of (S,+) as an integral domain
having S as a subsemiring (see Lemma 2.2). The subset of the ring of formal power series G (S)!x"
consisting of those power series with coefficients in S is a semidomain, which we call the semidomain
of formal power series over S and denote by S!x". In [39], Roitman proved that atomicity does not
ascend from an integral domain to its ring of formal power series. Next we show that the semidomain
of formal power series over S is not necessarily atomic, even when S is taken to be the UFS N0.

Example 3.3. Let us argue that N0!x" is not atomic. It is clear that N0!x" is reduced. Suppose, towards
a contradiction, that N0!x" is atomic. Set f :=

∑∞
i=0 x

i. Observe that we can write f = gh, where
either g :=

∑∞
i=0 cix

i or h :=
∑∞

i=0 dix
i is an irreducible of N0!x" that is not a polynomial. It is not hard

to verify that neither g nor h is equal to (1 − xk)−1 for any k ∈ N. Clearly, the inequality ci + di ≤ 1
holds for every i ∈ N. We can assume, without loss of generality, that c0 = · · · = ct = c(k+1)(t+1) = 1
and d0 = dt+1 = · · · = dk(t+1) = 1 for some t, k ∈ N (note that, implicitly, we are also assuming that
cj = 0 for every j ∈ !t+ 1, k(t+ 1) + t" and ds = 0 for every s ∈ {n ∈ N | n < k(t+ 1) and t+ 1 ! n}).
Set

C =
{

n ∈ N : t+ 1 ! n and dn = 1
}

⋃

{

n ∈ N : t+ 1 | n, cn = 1, and cn+j = 0 for some j ∈ !1, t"
}

.

Claim 1: C is empty.

Proof of Claim 1: Suppose, by way of contradiction, that C is nonempty. Let m be the minimal element
of C. If t+1 ! m, then m = k′(t+1)+ j for some j ∈ !1, t" and k′ ∈ N≥k. It is easy to see that the term
xk′(t+1) does not show up in h and, by the minimality of m, this term does not show up in g either. As
a result, there exist r, ℓ ∈ (t+ 1)N such that r + ℓ = k′(t+ 1), cℓ = 1, dr = 1, and max(r, ℓ) < k′(t+ 1).
The minimality of m now implies that cℓ+j = 1, which contradicts that dm = 1. Hence m = k′(t + 1)
for some k′ ∈ N≥k+1, which implies the existence of j ∈ !1, t" with cm+j = 0. Without loss of generality,
we can assume that cm+j−i = 1 for every i ∈ !1, j". It is easy to verify that dm+j = 0. Consequently,
there exist r, ℓ ∈ N<m with r+ ℓ = m+ j, cℓ = 1, and dr = 1. The minimality of m ensures that t+1 | r
which, in turn, implies that ℓ = k′′(t+1)+ j for some k′′ ∈ N. Since cm = 1, both equalities ck′′(t+1) = 0
and dk′′(t+1) = 0 hold. Again, there exist r′, ℓ′ ∈ N<k′′(t+1) with r′+ ℓ′ = k′′(t+1), cℓ′ = 1, and dr′ = 1.
The minimality of m guarantees that t + 1 | r′, which implies that cℓ′+j = 1, but this contradicts that
cℓ = 1. Thus, Claim 1 follows.

Since C is empty, if cn(t+1) = 1 for some n ∈ N, then cn(t+1)+j = 1 for all j ∈ !1, t". We proceed to
argue the following claim.

Claim 2: If cn(t+1) = 0 for some n ∈ N, then cn(t+1)+j = 0 for all j ∈ !0, t".

Proof of Claim 2: Suppose towards a contradiction that cn(t+1) = 0 for some n ∈ N and cn(t+1)+j = 1
for some j ∈ !1, t". It is not hard to see that dn(t+1) = 0, which implies that there exist r, ℓ ∈ N<n(t+1)

such that r+ ℓ = n(t+1), cℓ = 1, and dr = 1. Since C is empty, we see that t+1 | r (and, consequently,
t + 1 | ℓ). Then cℓ+j = 1. However, this contradicts the fact that cn(t+1)+j = 1, and so Claim 2 is
established.
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Therefore it follows from Claim 2 that 1+x+ · · ·+xt divides g in N0!x". Assume now that, for some
m ∈ N0, we can write

h =
m
∑

i=0

xri(t+1)
k

∑

i=0

xi(t+1) +
∞
∑

i=n

di(t+1)x
i(t+1),

where r0 = 0, ri+1 > ri + k for i ∈ !0,m− 1", and n > rm + k. Now assume, without loss of generality,
that dn(t+1) = 1.

Claim 3: d(n+j)(t+1) = 1 for every j ∈ !0, k".

Proof of Claim 3: Suppose, towards a contradiction, that there exists j ∈ !1, k" such that d(n+j)(t+1) = 0,
and assume that j is minimal. Since c(k+1)(t+1) = dk(t+1) = 1 and n > k, we have c(n+j)(t+1) = 0.
Consequently, there exist r, ℓ ∈ N such that r + ℓ = (n + j)(t + 1), cr = 1, and dℓ = 1. Clearly,
we can write ℓ = (ru + v)(t + 1), where u ∈ !0,m" and v ∈ !0, k". Observe that v < j; otherwise
d(ru+v−j)(t+1) = 1, which implies that dn(t+1) = 0. Thus,

(3.1) xn(t+1) · x(k+1)(t+1) = x(ru+v+k−j+1)(t+1) · xr,

where 1 ≤ v + k − j + 1 ≤ k. Since n > rm + k ≥ ru + (v + k − j + 1), the equality (3.1) generates a
contradiction. Hence Claim 3 follows.

By induction, we obtain that 1 + xt+1 + · · ·+ xk(t+1) divides h in N0!x". We have, therefore, argued
that both g and h are divisible by some non-constant polynomials in N0!x", which contradicts the
assumption made on g and h at the beginning of the proof. Hence N0!x" is not atomic.

Remark 3.4. As N0!x" is not atomic even though N0 is a UFS, most factorization properties do not
ascend, in general, from a semidomain to its semidomain of formal power series. In particular, the
statement of Theorem 4.1 is not longer true after replacing either S[x] or S[x±1] by S!x".

We conclude this section with a related question that the authors were unable to answer while working
on this paper. Following the terminology in [35], we say that a semidomain S is nearly atomic provided
that there exists s ∈ S such that st factors into atoms for each nonunit t ∈ S∗.

Question 3.5. Is the semidomain N0!x" nearly atomic?

4. Ascending Chains of Principal Ideals

Unlike the property of being atomic, it is well known that the property of satisfying ACCP ascends
from each integral domain to its ring of (Laurent) polynomials (this is not the case in the more general
context of commutative rings with identity, as shown by Heinzer and Lantz in [33]). In the next theorem,
we generalize this result to the context of semidomains. If S is a semidomain and f ∈ S[x]∗, then we
let c(f) denote the leading coefficient of f .

Theorem 4.1. For a semidomain S, the following statements are equivalent.

(a) S satisfies ACCP.

(b) S[x] satisfies ACCP.

(c) S[x±1] satisfies ACCP.

Proof. (a) ⇒ (b): Let (fnS[x])n∈N be an ascending chain of principal ideals in the semidomain S[x].
Since deg fn ≥ deg fn+1 for every n ∈ N, we can choose N1 ∈ N with deg fn = deg fN1

for every n ≥ N1.
On the other hand, for each n ∈ N, the fact that fn+1 divides fn in S[x] implies that c(fn+1) divides
c(fn) in S. Therefore (c(fn)S)n∈N is an ascending chain of principal ideals in S. Since S satisfies ACCP,
there exists N2 ∈ N such that c(fn) and c(fN2

) are associates in S∗ for every n ≥ N2. After setting
N := max{N1, N2}, we can take a sequence (sn)n∈N with terms in S∗ and a sequence (un)n∈N with
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terms in S× such that fn = snfN and c(fn) = unc(fN ) for every n ≥ N . Thus, for each n ∈ N with
n ≥ N ,

unc(fN ) = c(fn) = c(snfN ) = snc(fN),

which implies that sn ∈ S×. As a result, fnS[x] = fNS[x] for every n ≥ N , and so the ascending chain
of principal ideals (fnS[x])n∈N stabilizes. Hence S[x] satisfies ACCP.

(b) ⇒ (c): Now assume that S[x] satisfies ACCP. Let (xknfnS[x±1])n∈N be an ascending chain of
principal ideals of S[x±1], where (kn)n∈N is a sequence of integers and fn ∈ S[x] satisfies ord fn = 0 for
every n ∈ N. Take a sequence (ℓn)n∈N of integers and a sequence (gn)n∈N with terms in S[x] satisfying
ord gn = 0 and xknfn = (xkn+1fn+1)(xℓn+1gn+1) for every n ∈ N. As fn = fn+1gn+1 for each n ∈ N,
we see that (fnS[x])n∈N is an ascending chain of principal ideals in S[x]. Since S[x] satisfies ACCP,
(fnS[x])n∈N must stabilize, and so there is an N ∈ N such that fn and fn+1 are associates in S[x] for
every n ≥ N . This implies that gn+1 = fn/fn+1 ∈ S[x]× ⊆ S[x±1]× for every n ≥ N . Thus, xknfn and
xkn+1fn+1 are associates in S[x±1] for every n ≥ N , and so (xknfnS[x±1])n∈N stabilizes. Hence S[x±1]
satisfies ACCP.

(c) ⇒ (a): Suppose that S[x±1] satisfies ACCP. Since M = {sxn | s ∈ S∗ and n ∈ Z} is a divisor-
closed submonoid of S[x±1]∗, the former also satisfies ACCP. This immediately implies that S satisfies
ACCP because M and S∗ have isomorphic reduced monoids. !

It is well known that every monoid satisfying ACCP is atomic, and so the same statement holds for
semidomains. As we have mentioned in the introduction, the converse does not hold even in the class
of integral domains. We will construct in Example 4.3 an atomic positive semiring that does not satisfy
ACCP. First, we need the following lemma.

Lemma 4.2. For r ∈ Q ∩ (0, 1) with n(r) ≥ 2, consider the additive monoid Sr := ⟨rn | n ∈ N0⟩. Take
x ∈ S∗

r , and write x =
∑n

i=0 cir
i for coefficients c0, . . . , cn ∈ N0. If ci < n(r) for every i ∈ !0, n", then

|Z(x)| = 1.

Proof. Set z :=
∑n

i=0 cir
i ∈ Z(x). Suppose towards a contradiction that there exists a factorization

z′ ∈ Z(x) such that z′ ̸= z. It follows from [14, Lemma 3.1(1)] that z is the factorization of minimum
length of x. Hence there exists a sequence of factorizations z1, . . . , zt ∈ Z(x) with z1 = z′ and zt = z
such that for each j ∈ !1, t− 1", the factorization zj+1 can be obtained from zj by applying the identity
d(r)rk+1 = n(r)rk (see [36, Remark 3.4]). However, this would imply that, for some i ∈ !0, n", the
inequality ci ≥ n(r) holds, which is a contradiction. Hence |Z(x)| = 1. !

Example 4.3. Take r ∈ Q∩ (0, 1) with n(r) ≥ 2, and consider the additive monoid Sr := ⟨rn | n ∈ N0⟩.
By [14, Corollary 4.4], the monoid Sr is atomic and does not satisfy ACCP. We proceed to argue that Sr is
an MCD-monoid. Take s1, . . . , sk ∈ Sr for some k ∈ N. For each i ∈ !1, k", we can write si =

∑ni

j=0 ci,jr
j ,

where ci,j ∈ N0 for all i ∈ !1, k" and j ∈ !0, ni". By virtue of the identity n(r)rn = d(r)rn+1, there is no
loss of generality in assuming that ci,j < n(r) for all i ∈ !1, k" and j ∈ !0, ni − 1". In addition, the same
identity allows us to assume that n1 = · · · = nk. Set d := (min1≤i≤k ci,n1

)rn1 . Clearly, d is a common

divisor of s1, . . . , sk in Sr. Observe that, for some i ∈ !1, k", the equality si − d =
∑n1−1

j=0 ci,jrj holds,
where ci,j < n(r) for each j ∈ !0, n1 − 1". It follows now from Lemma 4.2 that the element si − d has
finitely many nonzero divisors in Sr, which implies that mcd(s1, . . . , sk) is nonempty. Hence Sr is an
MCD-monoid.

Let us now consider the additive monoidE(Sr) := ⟨es | s ∈ Sr⟩, where e is the Euler number. It follows
from Lindemann-Weierstrass Theorem that E(Sr) is the free monoid on the set M := {es | s ∈ Sr}.
Note that E(Sr) is closed under multiplication and, consequently, it is a positive semiring (cf. [7,
Example 4.15]). Observe that minE(Sr)∗ = 1 and, therefore, E(Sr)× = {1}. Since the multiplicative
submonoid M of E(Sr)∗ is isomorphic to the additive monoid Sr, the monoid M does not satisfy ACCP
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which, in turn, implies that E(Sr) does not satisfy ACCP (the property of satisfying ACCP transfers
from a reduced monoid to all its submonoids). To argue that the positive semiring E(Sr) is atomic, take
a nonzero nonunit element f := c1es1 + · · · + ckesk ∈ E(Sr), where c1, . . . , ck ∈ N and s1, . . . , sk ∈ Sr.
After taking s ∈ mcd(s1, . . . , sk) and letting d be the greatest common divisor of c1, . . . , ck in N, we can
write

f = des
(

c1
d
es1−s + · · ·+

ck
d
esk−s

)

,

where 0 is the only common divisor of s1 − s, . . . , sk − s in Sr. As a consequence of Lindemann-
Weierstrass Theorem, both N and M are divisor-closed submonoids of the multiplicative monoid E(Sr)∗

and, therefore, both P and {ea | a ∈ A (Sr)} are contained in A (E(Sr)). Thus, the fact that N and Sr are
atomic immediately implies that des factors into irreducibles in E(Sr). Set g := c1

d e
s1−s+ · · ·+ ck

d esk−s,
and write g = f1 · · · fm for some nonunit elements f1, . . . , fm ∈ E(Sr). As 0 is the only common divisor
of s1−s, . . . , sk−s in Sr, no element of the form et with t ∈ Sr divides g in E(Sr) and, therefore, fi ≥ 2
for any i ∈ !1,m". Then m ≤ log2(f1 · · · fm) = log2

(

c1
d e

s1−s + · · · + ck
d esk−s

)

. Hence, after assuming
that m is as large as it can possibly be, we obtain that f1 · · · fm is a factorization of g in E(Sr), and
so f factors into irreducibles. Thus, E(Sr) is atomic.

We take another look at the semidomain N0!x", now from the ACCP perspective.

Example 4.4. We have already argued in Example 3.3 that the semidomain N0!x" is not atomic. Thus,
it cannot satisfy ACCP. Let us identify an ascending chain of principal ideals that does not stabilize.
For each k ∈ N0, set fk :=

∑∞
n=0 x

n·2k . Observe that fk = (1 + x2k)fk+1 for every k ∈ N0, which
implies that (fkN0!x")k∈N0

is an ascending chain of principal ideals of N0!x". Since N0!x" is reduced,
the inclusion fkN0!x" ⊆ fk+1N0!x" is proper for every k ∈ N0. Consequently, the ascending chain of
principal ideals (fkN0!x")k∈N0

does not stabilize.

The main results we have established in this section are illustrated in the diagram of Figure 2.

S satisfies ACCP S is atomic

S[x] satisfies ACCP S[x] is atomic

S[x±1] satisfies ACCP S[x±1] is atomic

/

/

/

/

Figure 2. As proved in Theorems 3.1 and 4.1 the vertical implications in the above
diagram hold for every semidomain S. Grams’ construction in [30, Section 1] and
Roitman’s examples in [38, Section 5] confirm that neither the horizontal implications
nor the top-right implication are reversible, which is illustrated by red marked arrows.

5. The Bounded and Finite Factorization Properties

In this section, we study the bounded and the finite factorization properties. Specifically, we prove
that both properties ascend from a semidomain S to the semidomains S[x] and S[x±1]. Let us start
with a useful characterization of BFMs.

Definition 5.1. Given a monoid M , a function ℓ : M → N0 is a length function of M if it satisfies the
following two properties:
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(i) ℓ(u) = 0 if and only if u ∈ U (M);

(ii) ℓ(bc) ≥ ℓ(b) + ℓ(c) for every b, c ∈ M .

The following result is well known.

Proposition 5.2. [31, Theorem 1] A monoid M is a BFM if and only if there is a length function
ℓ : M → N0.

We are now in a position to discuss the results of this section.

Theorem 5.3. For a semidomain S, the following statements are equivalent.

(a) S is a BFS.

(b) S[x] is a BFS.

(c) S[x±1] is a BFS.

Proof. (a) ⇒ (b): Assume that S is a BFS. Then there exists a length function ℓ : S∗ → N0. Let us
argue now that the function ℓx : S[x]∗ → N0 given by ℓx(f) = ℓ(c(f)) + deg f is also a length function.
Since f ∈ S[x]∗ is a unit if and only if f = c(f) and c(f) ∈ S×, we see that for each f ∈ S[x]∗ the
equality ℓx(f) = 0 holds if and only if f ∈ S[x]×. Using now the fact that ℓ is a length function of S∗,
for any f, g ∈ S[x]∗ we see that

ℓx(fg) = ℓ(c(fg)) + deg fg ≥ (ℓ(c(f)) + deg f) + (ℓ(c(g)) + deg g) = ℓx(f) + ℓx(g).

Therefore the map ℓx is a length function of S[x]∗, which implies that S[x] is a BFS.

(b) ⇒ (c): Suppose now that S[x] is a BFS, and let ℓ : S[x]∗ → N0 be a length function of S[x]∗.
Proving that S[x±1] is a BFS amounts to showing that the map

ℓ̄ : S[x±1]∗ → N0 defined by ℓ̄(f) = ℓ
( f

xord f

)

is a length function. For each f ∈ S[x±1]∗, we observe that ℓ̄(f) = 0 if and only if f/xord f is a unit of
S[x], which happens precisely when f is a unit in S[x±1]. In addition, for all f, g ∈ S[x±1]∗,

ℓ̄(fg) = ℓ
( fg

xord fg

)

= ℓ
( f

xord f
·

g

xord g

)

≥ ℓ
( f

xord f

)

+ ℓ
( g

xord g

)

= ℓ̄(f) + ℓ̄(g).

As a consequence, ℓ̄ is a length function, and so S[x±1] is a BFS.

(c) ⇒ (a): This follows from the fact that {sxn | s ∈ S∗ and n ∈ Z} is a divisor-closed submonoid of
S[x±1]∗ whose reduced monoid is isomorphic to that of S∗. !

It is known that the class of BFDs is strictly contained in that one consisting of all integral domains
satisfying ACCP. Moreover, it turns out that there are semidomains satisfying ACCP that are neither
integral domains nor BFSs. Indeed, if M :=

〈

1
p | p ∈ P

〉

, then the semidomain E(M) satisfies ACCP
but it is not a BFS [7, Example 4.15].

We now turn our attention to the finite factorization property. For this property, the following
theorem goes parallel to Theorem 5.3.

Theorem 5.4. For a semidomain S, the following statements are equivalent.

(a) S is an FFS.

(b) S[x] is an FFS.

(c) S[x±1] is an FFS.
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Proof. (a)⇒ (b): Suppose that S is an FFS, and letK be a field containing S. Assume, by contradiction,
that S[x] is not an FFS. Take a nonunit f0 ∈ S[x]∗ such that

{

gS[x]× | g ∈ S[x] and g |S[x] f0
}

is infinite
(this element exists by [31, Corollary 2]). Now let (fn)n∈N be a sequence whose terms are non-associate
divisors of f0 in S[x]. For each n ∈ N0, let sn be the leading coefficient of fn. As sn |S s0 for every
n ∈ N and the set

{

tS× ∈ S∗
red | t |S∗ s0

}

is finite by [31, Corollary 2], after replacing (fn)n∈N by a
subsequence we can assume that snS× = s1S× for every n ∈ N. Then we can replace fn by s1s−1

n fn for
every n ∈ N≥2 and assume that each term of (fn)n∈N has leading coefficient s1. Because fn |K[x] f0 for
every n ∈ N and K[x] is an FFD (in fact, a UFD), we can take i, j ∈ N with i ̸= j and fiK× = fjK×.
Since both fi and fj have leading coefficient s1, we see that fi = fj, contradicting that they are not
associates in S[x]. Hence S[x] is an FFS.

(b) ⇒ (c): Suppose that S[x] is an FFS. By [31, Corollary 2], it suffices to show that every nonzero
f ∈ S[x] with ord f = 0 has only finitely many divisors in S[x±1] up to associates. To do so, fix a
nonzero f ∈ S[x] with ord f = 0. Now assume that xd1g1 and xd2g2 are divisors of f in S[x±1] for
some d1, d2 ∈ Z and g1, g2 ∈ S[x] with ord g1 = ord g2 = 0. Observe that g1 and g2 divide f in S[x]
and also that xd1g1 and xd2g2 are associates in S[x±1] if and only if g1 and g2 are associates in S[x].
As S[x] is an FFS, it follows from [31, Corollary 2] that f has only finitely many divisors in S[x] up to
associates, and so our previous observation ensures that f has only finitely many divisors in S[x±1] up
to associates. Therefore S[x±1] is an FFS.

(c) ⇒ (a): Suppose that S[x±1] is an FFS. Then S is an FFS because S∗ and the divisor-closed
submonoid {sxn | s ∈ S∗ and n ∈ Z} of S[x±1]∗ have isomorphic reduced monoids. !

In the class of integral domains, the bounded factorization property does not imply the finite factor-
ization property (see, for instance, [5, Example 4.7]). Hence the same statement must hold in the class
of semidomains. As the following example illustrates, there are positive semidomains that are BFSs but
not FFSs.

Example 5.5. Fix k ∈ N≥2 and observe that S = N0 ∪ R≥k is a positive semiring. It follows from
[6, Theorem 5.1] that S is a BFS with A (S) =

(

P<k2 ∪ [k, k2)
)

\ P · S>1. In addition, S is a reduced
semiring because minS∗ = 1. Showing that S is not an FFS amounts to observing that the equality
(k + 1)2 = (µ(k + 1))(µ−1(k + 1)) yields a factorization of (k + 1)2 for each µ ∈ R>1 close enough to 1
such that k < µ−1(k + 1) < µ(k + 1) < k + 2 ≤ k2.

In light of Example 3.3, the statements of Theorems 5.3 and 5.4 are not longer true if one replaces
either S[x] or S[x±1] by S!x".

The diagram of Figure 3 summarizes the results we have established in this section.

S is an FFS S is a BFS

S[x] is an FFS S[x] is a BFS

S[x±1] is an FFS S[x±1] is a BFS

/

/

/

Figure 3. As proved in Theorems 5.3 and 5.4, the vertical implications in the above
diagram hold for every semidomain S. The same theorems, along with Example 5.5,
ensure that none of the horizontal implications is reversible, which is illustrated by the
red marked arrows.
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6. Factoriality Properties

It is well known that an integral domain R is a UFD if and only if R[x] is a UFD. However, the same
result does not hold for the more general class of semidomains as indicated by the following example.

Example 6.1. While the semidomain N0 is a UFS, we will verify that the polynomial extension N0[x]
is not. To do so, consider the polynomial f(x) := x5 + x4 + x3 + x2 + x+1 ∈ N0[x]. We can factor f in
N0[x] in the following two ways:

(6.1) f(x) = (x+ 1)(x4 + x2 + 1) and f(x) = (x2 + x+ 1)(x3 + 1).

One can now verify that any decomposition of x + 1, x2 + x + 1, x3 + 1, and x4 + x2 + 1 as a product
of non-constant polynomials in C[x] must contain a factor that does not belong to N0[x]. Hence the
decompositions in (6.1) are actually distinct factorizations of f in N0[x]. Thus, N0[x] is not a UFS.

Recall that a semidomain S is called length-factorial (or an LFS for short) if S∗ is an LFM; that is,
S∗ is atomic and any two distinct factorizations of the same element of S∗ have distinct lengths. It was
proved by Coykendall and Smith [19] that an integral domain is an LFS if and only if it is a UFS. As
a result, the length-factorial property (somehow vacuously) ascends to (Laurent) polynomial domains.
In this section, we prove that the class of semidomains where the length-factorial property ascends to
(Laurent) polynomial semidomains is precisely the class consisting of integral domains.

For the rest of the section, we identify a semidomain S with a subsemiring of the integral domain
G (S) (see Lemma 2.2). Given a semidomain S, let n be the smallest positive integer such that the sum
of n copies of 1 equals 0 in S, and let n be 0 if such a positive integer does not exist. As in the context
of commutative rings with identities, we call n the characteristic of S.

We proceed to show that the irreducible polynomials in Example 6.1 are still irreducible as polyno-
mials in S[x] for any semidomain S that is not an integral domain. Then we will take a look at two
applications of this technical lemma.

Lemma 6.2. Let S be a semidomain that is not an integral domain. Then the polynomials

(6.2) x+ 1, x2 + x+ 1, x3 + 1, and x4 + x2 + 1

are irreducible in S[x].

Proof. Note that if S had finite characteristic, then every element of S would have an additive inverse,
which contradicts the hypothesis that S is not an integral domain. Consequently, S has characteristic 0.
Also, observe that any element of S dividing any of the polynomials in (6.2) must be a unit. Let us
analyze each polynomial p(x) in (6.2) independently.

Case 1: p(x) = x + 1. This case immediately follows from the fact that the polynomial p(x) is
indecomposable in S[x] along with our previous observation that every constant factor of p(x) in S[x]
is a unit.

Case 2: p(x) = x2+x+1. Suppose, towards a contradiction, that the polynomial p(x) is not irreducible
in S[x]. As in Case 1, we see that p(x) is not divisible in S[x] by any nonunit of S. Then we can write
p(x) = (ax+b)(cx+d) for some a, b, c, d ∈ S∗, from which we obtain the identities ad+bc = ac = bd = 1.
Thus,

ab = ab ((ad)(ac) + (bc)(bd)) = abcd(a2 + b2) = a2 + b2.

Therefore b3 = ab2 − a2b in G (S), and we can use this identity to obtain

b3c3 = (ab2 − a2b)c3 = b2c2 − bc = bc(bc− 1) = bc(−ad) = −1.

However, −1 = b3c3 ∈ S implies that S is an integral domain, a contradiction.
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Case 3: p(x) = x3 + 1. Suppose, by way of contradiction, that p(x) reduces in S[x]. Since p(x) is not
divisible in S[x] by any nonunit of S, we can write p(x) = (ax2+ bx+ c)(dx+e) for some a, b, c, d, e ∈ S.
Expanding the product, we obtain the identities ce = ad = 1 and ae+ bd = be+ cd = 0, whence

0 = cd(ae+ bd) = 1 + bcd2.

This implies that −1 = bcd2 ∈ S, which contradicts that S is not an integral domain.

Case 4: p(x) = x4 + x2 + 1. Suppose, by way of contradiction, that p(x) reduces in S[x]. As p(x) is
not divisible in S[x] by any nonunit of S, it follows that p(x) factors in S[x] either as a polynomial of
degree 1 times a polynomial of degree 3, or into two polynomials of degree 2, yielding the following two
subcases.

Case 4.1: p(x) = (ax3+ bx2+ cx+d)(ex+f) for some a, b, c, d, e, f ∈ S. After expanding this product,
we obtain the identities ae = df = 1 and cf + ed = 0. Therefore

0 = af(cf + ed) = acf2 + (ae)(df) = acf2 + 1.

This implies that −1 = acf2 ∈ S, which contradicts that S is not an integral domain.

Case 4.2: p(x) = (ax2 + bx + c)(dx2 + ex + f) for some a, b, c, d, e, f ∈ S. Observe that if b = e = 0,
we can generate a contradiction by reducing this case to Case 2. Thus, we can assume, without loss of
generality, that e ̸= 0. After unfolding the product (ax2+ bx+ c)(dx2+ ex+ f), we obtain the identities
ad = cf = af + be+ cd = 1 and ae+ bd = bf + ce = 0. Since d ̸= 0 and

d(a2e + b) = (ad)(ae) + bd = ae+ bd = 0,

the equality a2e+ b = 0 holds. Similarly, we can obtain the equality c2e + b = 0 (letting f and c2e+ b
playing the roles of d and a2e + b, respectively). As a consequence, the fact that e ̸= 0 ensures that
a2 = c2. Hence either a = c or a = −c in G (S). Let us assume first that a = c. Using this assumption,
we obtain that

1 + be = (ad+ cf − 1) + (1− af − cd) = (a− c)(d− f) = 0.

This implies that −1 = be ∈ S, which contradicts that S is not an integral domain. Assume now that
a = −c. Using this assumption, we obtain that

3 = ad+ cf + (af + be+ cd) = a(d+ f) + c(d+ f) + be = (a+ c)(d+ f) + be = be.

This implies that −1 = 2− be = 2− (1− af − cd) = af + cd+ 1 ∈ S, which once again contradicts the
fact that S is not an integral domain. !

Proposition 6.3. Let S be a semidomain. If S[x] is an LFS, then S is an integral domain.

Proof. This is an immediate consequence of Lemma 6.2. !

Recall that a semidomain S is called a GCD-semidomain if S∗ is a GCD-monoid. It is well known
and not hard to verify that every UFM is a GCD-monoid. Hence every UFS is a GCD-semidomain.
As another application of Lemma 6.2, we will characterize, for a semidomain S, when S[x] is a GCD-
semidomain.

Proposition 6.4. For a semidomain S, the following statements are equivalent.

(a) S is a GCD-domain.

(b) S[x] is a GCD-semidomain.

Proof. (a) ⇒ (b): Assume that S is a GCD-domain. It follows from [24, Theorem 6.4] that S[x] is also
a GCD-domain, and so S[x] is a GCD-semidomain.

(b) ⇒ (a): Assume now that S[x] is a GCD-semidomain. Because S∗ is a divisor-closed submonoid
of S[x]∗, it follows that S∗ is a GCD-monoid.
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We are done once we argue that S is an integral domain. Suppose, by way of contradiction, that this
is not the case. Then it follows from Lemma 6.2 that the polynomial x+ 1 is an irreducible element of
S[x]∗. On the other hand, the equality (x+1)(x4 + x2 +1) = (x2 + x+ 1)(x3 + 1) in (3.1) ensures that
x+1 is not a prime in S[x]∗. Therefore [23, Theorem 6.7(2)] guarantees that S[x]∗ is not a GCD-monoid.
However, this contradicts the fact that S[x] is a GCD-semidomain. Hence S is an integral domain. !

Unlike the property of being an MCD-semidomain, the property of being a GCD-semidomain does
not ascend to polynomial semidomains.

Example 6.5. The monoid N0 is a UFS and, therefore, a GCD-semidomain. However, N0[x] is not
a GCD-semidomain. Indeed, we have seen in the proof of Proposition 6.4 that the polynomial x + 1
is an irreducible element in N0[x] that is not prime, and so the multiplicative monoid N0[x]∗ is not a
GCD-monoid. Alternatively, it is not hard to verify that the polynomials f(x) := (x + 1)(x4 + x2 + 1)
and g(x) = (x+ 1)(x3 + 1) do not have a greatest common divisor in N0[x]: in fact, their only common
divisors are x+ 1 and x3 + 1, but x+ 1 !N0[x] x

3 + 1 and x3 + 1 !N0[x] x+ 1.

Now we are in a position to characterize in several ways when S[x] (or S[x±1]) is length-factorial.

Theorem 6.6. For a semidomain S, the following statements are equivalent.

(a) S is a UFD.

(b) S[x] is a UFS.

(c) S[x±1] is a UFS.

(d) S is an LFD.

(e) S[x] is an LFS.

(f) S[x±1] is an LFS.

Proof. (a) ⇔ (b): The direct implication follows from the well-known fact that the unique factorization
property ascends to polynomial rings. For the reverse implication, suppose that S[x] is a UFS. Then
S[x] is an atomic GCD-semidomain. Thus, S is atomic by Theorem 3.1. In addition, it follows from
Proposition 6.4 that S is a GCD-domain, which concludes our argument given that every atomic GCD-
domain is a UFD (see [32, page 114]).

(a) ⇔ (d): It follows from [19, Corollary 2.11].

(b) ⇔ (c): Consider the multiplicative monoid M = {f ∈ S[x]∗ | ord f = 0}, and observe that S[x]∗

is isomorphic to the product monoid N0 ×M via the map f 2→ (ord f, f/xord f ). It is clear that S[x] is
a UFS if and only if M is a UFM. Now the equivalence follows from the fact that M and S[x±1]∗ have
isomorphic reduced monoids.

(b) ⇔ (e): The direct implication follows from definitions. For the reverse implication, suppose that
S[x] is an LFS. In this case, S must be an integral domain by virtue of Proposition 6.3. Hence S[x] is
an integral domain. Therefore it follows from [19, Corollary 2.11] that S[x] is a UFD.

(e) ⇔ (f): This follows similarly to (b) ⇔ (c), after observing that, under the same notation used to
prove the later, S[x] is an LFS if and only if M is an LFM. !

As we have mentioned before, the multiplicative monoid of an integral domain is a UFM if and only
if it is an LFM (see [19]). However, a similar statement is not settled if we replace the class of integral
domains for the larger class of semidomains. Motivated by this, we pose the following question.

Question 6.7. 2 Is there an LFS that is not a UFS?

2A negative answer to this question has been recently given by Bu, Vulakh, and Zhao in [10].
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Recall that a semidomain S is a half-factorial semidomain (or an HFS for short) provided that S∗

is an HFM; that is, S∗ is atomic and any two factorizations of the same element of S∗ have the same
length. The half-factorial property does not behave well under polynomial extensions even in the context
of integral domains (see [44, Theorem 2.4] and [4, Example 5.4]). On the other hand, a semidomain S[x]
satisfying that (S,+) is reduced is “far” from being half-factorial in a sense that we now explain. One of
the most studied arithmetic statistics related to the sets of lengths of an atomic monoid is the elasticity.
The elasticity, first studied by Steffan [40] and Valenza [41] in the context of algebraic number theory,
measures the deviation of an atomic monoid from being half-factorial. Let M be an atomic monoid.
The elasticity of an element b ∈ M \ U (M), denoted by ρ(b), is defined as

ρ(b) =
sup L(b)

inf L(b)
.

By convention, we set ρ(u) = 1 for every u ∈ U (M). Observe that ρ(b) ∈ Q≥1 ∪ {∞} for all b ∈ M . In
addition, the elasticity of the whole monoid M is defined to be

ρ(M) := sup{ρ(b) | b ∈ M}.

Observe that a monoid M is an HFM if and only if ρ(M) = 1. Thus, we can think of the elasticity as
an arithmetic statistic to measure how far an atomic monoid is from being an HFM, in which case, an
atomic monoid having infinite elasticity is as far from being half-factorial as it can possibly be. On the
other hand, the set of elasticities of M is R(M) := {ρ(b) | b ∈ M}, and M is said to have full elasticity
provided that R(M) = Q ∩ [1, ρ(M)]. As a monoid is half-factorial if and only if its set of elasticities is
a singleton, namely {1}, we observe that for a given monoid having full elasticity provides an indication
that it is as far from being an HFM as it can possibly be.

The following proposition is a generalized version of [12, Theorem 2.3], and here we adapt the proof
given in [12] to fit the more general setting of polynomials over semidomains.

Proposition 6.8. Let S be a semidomain such that S[x] is atomic. Then S[x] has full and infinite
elasticity provided that (S,+) is reduced.

Proof. As we pointed out before, if S has finite characteristic, then (S,+) is not reduced (it is, in fact, a
group). Consequently, S must have characteristic 0. Now let K be a field containing S as a subsemiring.
We first claim that for every n ∈ N≥2, the polynomial (x+ n)n(x2 − x+ 1) is an irreducible element in
S[x]. It follows from [12, Lemma 2.1] that for every m ∈ N0 the polynomial (x+n)m(x2−x+1) belongs
to N0[x] if and only if m ≥ n. This, together with the fact that S is a semidomain whose additive
monoid is reduced, guarantees that (x + n)m(x2 − x + 1) /∈ S[x] when m < n. Therefore the fact that
K[x] is a UFD guarantees that (x+ n)n(x2 − x+ 1) is an irreducible element in S[x].

By Lemma 6.2, the polynomial (x2 − x+ 1)(x+ 1) = x3 + 1 is irreducible in S[x]. Now for n, k ∈ N,
consider the polynomial

f(x) := (x+ n)n(x2 − x+ 1)(x+ 1)k ∈ N0[x] ⊆ S[x].

As every divisor of f(x) in S[x] is a divisor of f(x) in K[x] and K[x] is a UFD, the only two factorizations
of f(x) in S[x] are [(x+ n)n(x2 − x+ 1)] · [x+ 1]k and [x+ n]n · [(x2 − x+ 1)(x+ 1)] · [x+ 1]k−1, which
have lengths k + 1 and k + n, respectively. Since {(k + n)/(k + 1) | k, n ∈ N} = Q≥1, we conclude that
S[x] has full and infinite elasticity. !
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