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Phase Diagram of the Two-Flavor Schwinger Model at Zero Temperature
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We examine the phase structure of the two-flavor Schwinger model as a function of the 8 angle and the
two masses, m; and m,. In particular, we find interesting effects at = z: along the SU(2)-invariant line
my = my = m, in the regime where m is much smaller than the charge g, the theory undergoes logarithmic
renormalization group flow of the Berezinskii-Kosterlitz-Thouless type. As a result, dimensional

transmutation takes place, leading to a nonperturbatively small mass gap ~e™A9'/m The SU(2)-invariant
line lies within a region of the phase diagram where the charge conjugation symmetry is spontaneously
broken and whose boundaries we determine numerically. Our numerical results are obtained using the
Hamiltonian lattice gauge formulation that includes the mass shift my, = m — g’a/4 dictated by the

discrete chiral symmetry.
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Introduction.—Quantum electrodynamics in 1+ 1
dimensions, also known as the Schwinger model [1], is
a famous model of quantum field theory that has played an
important role for over 60 years [2—4]. It is a useful
theoretical laboratory for various important phenomena,
including quantum field theory anomalies and confinement
of charge. Its lattice Hamiltonian implementations [5,6]
have connections with condensed matter and atomic
physics, and, in recent years, there have been efforts to
construct experimental setups for its quantum simulations
(for a review, see Ref. [7]).

The model with one massless Dirac fermion of charge
g is exactly solvable, reducing to the noninteracting
Schwinger boson of mass Mg = g/+/z; this can be con-
cisely demonstrated via the bosonization of the fermion [4].
The U(1) chiral symmetry of the massless action is broken
by the Schwinger anomaly. The massive model, in addition
to containing the obvious dimensionless parameter m/g,
depends on the € angle related to the introduction of a
background electric field [4]. This parameter, which has
periodicity 2z, is somewhat analogous to the ¢ angle of the
3 + 1 dimensional gauge theory.

Generalizations of the Schwinger model to Ny > 1
flavors of fermions of charge ¢ exhibit a richer set of
phenomena [8]. When the fermions are massless, the
Schwinger model has SU(N ;) x SU(N) chiral symmetry.
Its low-energy limit is described [9,10] by the SU(N/),
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Wess-Zumino-Witten model, which is a conformal field
theory (CFT) of central charge N;—1. The N;> 1
Schwinger model also contains a massive sector that includes
the Schwinger boson. Therefore, it was hoped that the
multiflavor Schwinger models may provide simple realiza-
tions of the “unparticle physics” idea [1 1], and this motivated
the papers [12—-14]. As in these papers, we will focus on
Ny =2, where for m = 0 the IR CFT is described by a
compact scalar at the self-dual radius. While investigations
of this model have a long history, including [8,15-23], we
will present a number of new results: (1) even in the limit of
small masses, we can have spontaneous symmetry breaking
of the charge conjugation symmetry, or critical behavior, or
an IR trivial phase. (2) For @ = 7z and m/g < 1, there is an
effective field theory description in terms of the sine-Gordon
model with # ~ /87 [8,18]. We describe the SU(2)-invariant
renormalization group (RG) trajectory, which flows from
asymptotic freedom in the UV, and in the IR it produces an

exponentially small mass gap ~e A7/ with A ~0.111 as
we show below. Therefore, the Ny = 2 Schwinger model
with @ = 7 has some qualitative similarities with QCD
because it can exhibit dimensional transmutation.

We discuss the zero-temperature phase diagram as a
function of € and the masses m; and m, of the two fermion
flavors, which we can restrict to be positive (some aspects
of the phase structure were discussed in the past [8,14,18]).
Our proposal is that, while for all 8 # z this model has a
nondegenerate vacuum, for & = z the phase diagram is as
in Fig. 1. It contains two critical curves that pass through
the origin, along which the low-energy physics is governed
by the 2D Ising CFT of central charge ¢ = 1/2. In the
shaded region of Fig. 1, the charge conjugation symmetry
C, defined below, is spontaneously broken, leading to
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FIG. 1. The schematic phase diagram for the two-flavor
Schwinger model at € = # (it is similar to the phase diagram
of the two-flavor QCD, exhibited in [26,27]). In the shaded
region, charge conjugation symmetry is broken, and there are
two degenerate vacua. This region is bounded by two critical
curves of Ising CFTs. These two curves meet at the origin, where
the low-energy description is provided by the SU(2), Wess-
Zumino-Witten model. For m; = m, < g, the model exhibits
an exponentially large correlation length due to dimensional
transmutation.

two degenerate vacua. This phenomenon, which was
recently studied in [23], is reminiscent of the spontaneous
breaking of CP symmetry in 4D Yang-Mills theory at
0 = x [18,24-28], and there are analogous phenomena in
2D scalar quantum electrodynamics [29,30]. We present
both analytical and numerical evidence for the phase
diagram in Fig. 1. On the numerical side, our calculations
using the Hamiltonian lattice approach are in excellent
agreement with the continuum analysis. The convergence
of the numerical calculations is significantly improved by
including the mass shift (4) derived in [31].

The setup.—Let us consider the Schwinger model with
Ny fermion flavors of masses m,, with a=1,...,N;.
While the m, are, in general, complex parameters, the
U(1)Nr axial transformations can be used to set all m,, real
with m, > 0. Then, the Lagrangian density is

N
1 0 Zf oy
E:—rngiy—EeﬂyFﬂy_Fa:l \Pa(lp_ma)lpa' (1)

Here, ' =1, p = y#(0, +iA,), and (°,7') = (03.i0,)
obey {y*,y*} =2 = 2diag{1, —1}.

To study this model numerically, we use the Hamiltonian
lattice formulation of [5,6], where the spatial direction is
discretized into N sites, with N even, while the time
direction remains continuous. The two-component Dirac
fermions of each flavor are staggered, with the y° eigen-
states of eigenvalue +1 and —1 being placed on even and
odd sites, respectively. The lattice Hamiltonian is

gza N—1 9 2 Nf N-1
H="D (Ln + 2_) + 3 e y_(=1)"Chacye
=0 4 a=1 n=0

=

. N—1 Ny
i f

_Z Z (Cl,aUnCn_Fl,a_C:;JF]’(IUZCn’a). (2)

n=0 a=1

(=}

Here, a is the lattice spacing, c,, and c,T,,a are the
annihilation and creation operators for a fermion of flavor
aonsite n, and U,, = e/ is a unitary operator living on the
link between sites n and n + 1. The electric field strengths
L,=—i(0/d¢p,) are integer-valued, while 0€|[0,2x)
comes from the @ term in the action, and (6/2x) acts as
a fractional background electric field. The Hamiltonian
should be supplemented by the Gauss law constraint

Ly=L,y =Y (cl.acn,a - #) NG

[¢4

The parameters g and 6 of the lattice model should be
identified with the analogous parameters of the continuum
model (1). As argued in [31], one should take

_Nfgza
g

Mata = My (4)
In [31], it was also shown that when N, is even and
m, = 0, the lattice theory is invariant under translation by
one site, which corresponds to a discrete chiral symmetry in
the continuum. In the leading strong coupling limit, where
the hopping term is ignored, the ground state can be highly
degenerate. For Ny = 2 and m; = m, = 0, we find that the
strong coupling degeneracy is 3" + 1 for @ = 0, while it is
2N for @ = . The latter fact provides a starting point for the
correspondence between the N, =2 Schwinger model at
0 = z and the Heisenberg antiferromagnet [19,20].

The integrated fermion bilinear operator [ dx PV trans-
lates into the lattice operator Y V=] (—1)"62,,,@,’“, which is
odd under the unit shift. The uniqueness of the ground state
away from the strong coupling limit for m, = 0, and the
symmetry under the unit translation, imply that the vacuum
expectation value of the mass operator vanishes on a
periodic lattice with an even number of sites.

When 0 = 0 or z, for any m,, the models (1) and (2) are
invariant under a charge conjugation symmetry C. In the
continuum, C acts as

C:A,—-A, ¥, -y, (5)

where 7° = y%y! = 6, and on the lattice it acts as [20]

U,-U'

0
C: Ln_)_Ln+l_;v n+1°

Cn,a_)c}

n+1l,a° Cj’-a - Cn+1,a' (6)
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It is this symmetry C that is broken whenever there are two
degenerate vacua in the phase diagram in Fig. 1.

For any € and m, = m for all a, the models (1) and (2)
are invariant under an SU(N ) symmetry under which the
fermions transform in the fundamental representation.
When m = 0, in the continuum model (1), this SU(Nf)
symmetry is enhanced to SU(N;) x SU(N/).

Continuum treatment of the two-flavor Schwinger
model.—Let us now take N, =2 and present continuum
field theory arguments in support of the phase diagram of
the two-flavor Schwinger model in Fig. 1.

One very massive fermion: When one of the fermions
is very massive, it can be integrated out, leaving us with
the N F= 1 model. For a fermion mass m, the phase
diagram of the Ny = 1 model exhibits a line of first order
phase transitions at § = z that extends over the interval
(M, 00) [8], with m. ~0.33g. At m = m,,, there is
evidence [32,33] that the second order phase transition is
in the 2D Ising universality class. For m > m,, and 0 = =,
there are two degenerate vacua, each of which breaks C
spontaneously. Everywhere else on the phase diagram there
is a nondegenerate vacuum and a nonzero gap.

Without loss of generality, suppose we take m,/g > 1.
Integrating out ¥, in (1) yields the effective Lagrangian

ﬁNle +%/J2yAﬂ(x)A,,(y)Hg”(x - y) + 0(A4>’ (7)

where 15" = (—0* " + 0*0”)I,(x) is the one-loop vac-
uum polarization. The Fourier transform Il,(g) =
fdzxnz(x)eiq'x is [see (7.90) of [34]] [35]

b (-9 1
Mhig) =~ [t S s ®

at large m,. Thus, TI,(x) ~ —(1/62m3)5?)(x), and the
effective Lagrangian (7) becomes, approximately, that of
the one-flavor model with an effective gauge coupling:

=9 1+ig—2 9)
9eit = 9 6zm3)
Since the one-flavor Schwinger model exhibits an Ising
second order phase transition at mg = 0.33g at 6 = x, it
follows that the two-flavor Schwinger model with m, /g >
1 also exhibits an Ising phase transition at € =z for
my = 0.33¢.4. Expanding this we get

my (o) ~ 0.339[1 _La 0(9—1)} (0)

2
127 m5 my

The phase diagram should of course be invariant under
interchanging m; <> m, so, at @ = x, there should also be
an Ising transition at m, .,(m, ) given by the rhs of (10) with

m, — my. The expression (10) and the one obtained after
interchanging m; <> m, represent the asymptotic behav-
iors of the blue curves in Fig. 1. The large mass analysis
also shows that in the wedge between the two curves we
expect two degenerate ground states, while outside of this
wedge we expect a nondegenerate ground state, just as in
the Ny = 1 model at 6 = x.

This argument also shows that when 6 # z and one of the
fermions is very massive, the ground state is nondegenerate
because this is also the case in the one-flavor model. In fact,
for 8 # 0,z we must have a nondegenerate ground state
because there is no charge conjugation symmetry that can
be spontaneously broken.

Small mass regime: Near m; =m, =0, a useful
equivalent description is obtained using Abelian bosoniza-
tion [8]. (One can also use non-Abelian bosonization, as
in [9].) Following [8], we bosonize the fermions ¥, to
scalar fields ¢;,, and reparametrize them via ¢, =
2712(y + ¢ +%ﬂ_]/29) and p_ =27"2(¢; — ¢).

Let us restrict our attention to m; = m, = m. The
bosonized Lagrangian is

_LFZ _ﬂ
492 124 /_271_

+%ym\/mNﬂ+cos {\/ﬂ(m —g] N,_cos [\/Z_ﬂqﬁ_] ,
(1)

where N ,, means that the expression that follows is normal
ordered by subtracting the two-point functions of a scalar
field of mass M. A convenient choice is y, = p, where u is
defined below, and p_/g — 0.

For m = 0, integrating out the gauge field shows that ¢

1 1
‘Cbos = €/wF/w +§ (aﬂ¢+)2 +§ (aﬂ¢—>2

has mass u = /(2/x)g, while ¢_ remains massless. The

field ¢_ obeys the identification ¢_ ~ ¢p_ + v/2x, which
corresponds to the self-dual radius of the compact scalar.
Thus, for m = 0 we have a massive sector described by ¢,
and a sector consisting of the ¢ = 1 self-dual scalar CFT,
which has SU(2) x SU(2) symmetry. At low energies, the
massive sector can also be integrated out, and we are left
with the self-dual scalar CFT.

After integrating out the gauge field, we can integrate out
¢ order by order in m:

Lo = 5 060 + myi= (0, ()0_(2)
i / (0, ()0, (y))O_(x)O_(y)
+ O(m3), (12)

with O, =N, cos[v2r¢p,. —(0/2)], O_=N,_cos[V2r¢_],
and the expectation values taken in the theory of a
free massive scalar field ¢, of mass u. For 6 # x,
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(O,) = cos(0/2) gives the effective theory

Lios = %(aﬂ(p_)z + my/pu_ e;ycosgN,L cos [V2r¢_]
+ 0(m?). (13)

This is the self-dual scalar CFT deformed by the operator
cos [v/2z¢p_] of dimension 1/2, which triggers a RG flow to
a gapped phase. One can then show using RG scaling
arguments or renormal ordering [8] that the mass gap is of
order ~|mcos(0/2)|*/3g'/3.

When 6 = z, the coefficient of the relevant operator
in (13) vanishes. Nevertheless, the mass deformation is not
exactly marginal, because the only marginal deformation of
the self-dual compact scalar CFT is the change in radius of
the scalar, which breaks the symmetry to U(1) x U(1).
This would be in contradiction with the SU(2) symmetry
of the equal-mass Schwinger model. We can evaluate

the O(m?) term in (12) using the propagator G (x) =
(p(x)p(0)) = (1/27)Koy(MV—x?) of a free scalar field ¢
of mass M, which implies that (O, (x)O,(y)) =
sinh 272G, (x — y)]. We also have

O_(x)O_(y)
e~27G,,_ (x=y)
_ fN”‘ cos {\/2_7r[¢_(x) +¢-(y)]}
276, (x=y)
+leL cos{\/ﬂ[(ﬁ_(x) —-p_(»)]}- (14)

Plugging these results into (12), changing variables to
z = u(y — x), and passing to Euclidean signature, we see
that the integral receives contributions only from small |z|.
Expanding in |z| and evaluating the integral gives

1 , eIm?
Lios :E(au¢-) + 87[2/,42

+ u2N,_cos(V8rg_)) + O(m*), (15)

(272 (9,0p_)?

where I, = 2x [ d& £ sinh K (&) ~ 10.08 (see also [18]).
The Lagrangian (15) is that of the sine-Gordon model, a
two-dimensional boson with interaction term ~ cos(f¢)
with > 0. By rescaling the boson to have canonical
normalization, we have *> < 8z. For m < g, f* — 8z, and
the scaling dimension of the cosine operator approaches 2.
In this limit, the model is closely related to the continuum
description of the Heisenberg antiferromagnet [36].

The RG flow of the sine-Gordon model near > = 8z
was computed in [37,38] and shown to describe the
Berezinskii-Kosterlitz-Thouless  transition. Generically,
both the coefficient of the cosine and radius of the scalar
will flow. Up to first order in the bare parameters a and
8 = (p*/8x) — 1, the sine-Gordon model is defined by [38]

1-6 5 ae¥ )
L=——(0,¢)" +5—uzN, cos(V8rp). (16)
2 32
The one-loop beta functions for the running couplings @
and & are [37,38]

1

Pz =2, 5% (17)

Ps=

The effective theory (15) may be restricted to have the
SU(2) symmetry that arises from the SU(2) symmetry of
the Schwinger model with equal fermion masses. Then, in
the two-dimensional parameter space (@,5), only the SU
(2)-invariant RG trajectory can be accessed. This trajectory
is the line @ = —84 that passes through the origin, as can be
seen from the fact that (15) and (16) imply

8e’ I, m?
@ = 8, (18)

or from analyzing the SU(2)-invariant operators in the
model (16). On this locus with SU(2)symmetry, the sine-
Gordon model (16) is related via bosonization to the SU(2)
Thirring model [38,39], which contains two massless Dirac
fermions w“. Their interaction is ~ > ;_, J'J' where the
SU(Q) currents are J' = Jyc’, y?.

The f function for the running mass parameter 7z can be
inferred from (18) and (17):

dm erl;

=M-— = 73 1
am - a2 (19)

ﬂrh
where M is the RG scale. Thus, the interaction strength in
the effective sine-Gordon model, and equivalently in the
SU(2) Thirring model, is asymptotically free. The inter-
action strength formally diverges far in the IR, at the scale
comparable to the mass gap (this scale is analogous to
Aqcp):
_Aﬁz 2e77

Egpp~e , A=

~0.111. (20)

N

This exponentially small mass gap implies that, for small
m, the correlation length diverges as &~ (1/Eg,)~
eAlg/m?), Similarly, at small m all observables can be
expressed in terms of the energy scale Eg,,. For instance,
since ¥, ¥, flows to an operator of dimension A, = 2 in
the ¢ = 1 theory at m = 0, we must have (¥, ¥,) ~ EgA;p ~
e~2A/m) L ikewise, the operator ¥, ¥, — ¥, ¥, that takes
us away from the m; = m, line in Fig. 1 flows to an
operator of dimension A_ = 1/2. This allows us to
estimate that the width of the symmetry breaking region
is Am ~ Eggy= = e~ (A2 /m?),
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That charge conjugation symmetry is spontaneously
broken for any m > 0 can be seen from (15). Indeed, in
the bosonized description at € = 7, the charge conjugation
symmetry C acts as

A/l_)_Aﬂ’ ¢+_)_¢+? ¢—_)_¢—+\/§' (21>

This is clearly a symmetry of the Lagrangian (11) and also
of the effective Lagrangian (15). However, over the range
of one period ¢_ € [0, v/27], the potential ~ — cos(v/87¢_)
in (15) has two minima, one at ¢_ =0 and one
¢_ = \/(n/2). These minima are exchanged by the sym-
metry C in (21). Semiclassically, we thus have two vacua in
which C is broken spontaneously.

The spontaneous breaking of C in the two-flavor
Schwinger model provides a nice analogy to the breaking
of CP and presence of two degenerate vacua in 4D QCD
with @ = 7 and two light flavors [25]. The height of the
barrier separating the two symmetry breaking vacua is of
order m?, just as in QCD [18,25]. The CP violation [24] can
be seen using the chiral Lagrangian for QCD, and the zero-
temperature phase diagram as a function of light quark
masses m, and m, has a similar structure [26,27] to our
Fig. 1. The boundaries of the region where CP is sponta-
neously broken can be found from the condition that
the mass of the neutral pion vanishes there. The width
of the symmetry broken region is found to behave as
(my, + my)?*/ £, which is parametrically much bigger than
the exponentially small width that we find in the
Schwinger model.

Numerical results—We study the N, =72 Schwinger
model numerically using the lattice Hamiltonian (2) (see
also [23]). While the one-flavor model can be studied
efficiently via exact diagonalization [31,40], with two
flavors the number of states grows so quickly with the
number N of lattice sites that this becomes impractical.
Instead, we employ tensor network methods, using a
matrix product state (MPS) ansatz to approximate the
ground state [23,41]. To optimize the MPS ansatz, we
use ITensors.jl [42,43]. We use open boundary conditions,
since this allows us to study the behavior of much larger
lattices.

The MPS form of the ground state makes it especially
simple to calculate the entanglement entropy for a left-right
bipartition of the open chain. Let S,(N,a) denote the
entanglement entropy for a subsystem of the leftmost xN
sites in a chain of N sites with lattice spacing a. Then, at a
critical point with central charge c, the entropy is expected
to grow like [44]

C

S¢(N,a) = 6

2N
log (— sin sz) + const. (22)
T

At any other point, this logarithmic growth of the entropy
will plateau when N ~ (£/a), where ¢ is the correlation

S1/2
1.8

0.5+

ma/g

Merit -1

0. Merit

0.5 075 L. 08

mi/g

FIG. 2. The heat map depicts the entanglement entropy
Si/2(N =216,a = 0.3) with open boundary conditions as a
function of the fermion masses at & = z. The black points are
estimates of the location of the ¢ :% critical curve in the
continuum limit ¢ — 0. The asymptotic shape of the curves
agrees with (10). For m < g, the two ¢ = %critical curves become

exponentially close to each other.

length. By combining this result with a finite-size scaling
analysis, one can derive very precise estimates for the
locations of critical points in the continuum theory from
values of the entanglement entropy on a finite lattice [45].

In Fig. 2, we show the behavior of the entanglement
entropy for a fixed lattice, along with the precise estimate of
the critical curve obtained via the intersection method
outlined in [45]. The finite-size scaling analysis confirms
that this curve has ¢ = % By fitting the leading large-mass
behavior of this curve, we find

2
my.(my) = 0.335(4) —0.0097(17) <m£> . (23)
1
and the coefficient of g*>/m? is in good agreement with the
value (0.33/127) =~ 0.0088 predicted from (10).

We can also use lattice calculations of the entanglement
entropy to estimate the growth of the correlation length for
small m; = m, = m. For a fixed lattice, we can compare
the dependence of the entanglement entropy on the sub-
system size with (22) to obtain an estimate c.; for the
central charge. Anywhere away from a critical point, this
estimate will tend to zero around N ~ (¢/a). We can thus
take a fiducial cutoff for c.y, and define (£/a) as the lattice
size when c. crosses below this cutoff, where # is an
unknown constant.

Figure 3 shows this estimate of the logarithm of the
correlation length along the SU(2)-invariant line as a
function of m~2. The linear behavior suggests a scaling
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FIG. 3. The estimated correlation length (up to a constant factor
p) for my = m, = m as a function of m~2, showing a scaling of
the form & ~ AT /m*) as inferred from (20). The dashed lines
have slope A ~ 0.111. Extrapolating the slope from the lattice
calculation to a — 0 gives 0.11(1), in agreement with the
theoretical value.

of the form &~ A/ at small m /g, as explained
after (20). Furthermore, extrapolating the slope as m — 0
to the continuum limit ¢ — 0 gives A = 0.11(1), in good
agreement with the theoretical value in (20).

Discussion.—In this Letter, we presented analytical and
numerical evidence for the phase diagram of the Ny = 2
Schwinger model at 8 = z shown in Fig. 1. The behavior
we find is quite different from that at € # z: along the SU
(2)-invariant line the theory contains a nearly marginal
operator that leads to logarithmic RG flow of Berezinskii-
Kosterlitz-Thouless type. As a result, for m < g the mass
gap is exponentially small, ~e ATIm Along this SU(2)-
symmetric line, Georgi [14] calculated the anomalous
dimensions of operators perturbatively in powers of
(m/g)?. The fact that the mass gap is exponentially small
makes the theory for m < g “nearly conformal” in a large
range of energies, so that perturbative anomalous dimen-
sion calculations should be parametrically reliable. We thus
hope that the calculations of [14] can be checked numeri-
cally using the lattice Hamiltonian setup, but we leave this
question for future work.

We find that the Z, charge conjugation symmetry is
spontaneously broken in the entire shaded region of the
phase diagram in Fig. 1. This region becomes exponentially
narrow near m = 0 and is bounded by 2D Ising CFTs. It
is interesting to ask how the addition to the action of
4-fermion operators may change this phase diagram. We
also leave this question for future work.
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