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We examine the phase structure of the two-flavor Schwinger model as a function of the θ angle and the

two masses, m1 and m2. In particular, we find interesting effects at θ ¼ π: along the SU(2)-invariant line

m1 ¼ m2 ¼ m, in the regime wherem is much smaller than the charge g, the theory undergoes logarithmic

renormalization group flow of the Berezinskii-Kosterlitz-Thouless type. As a result, dimensional

transmutation takes place, leading to a nonperturbatively small mass gap ∼e−Ag
2=m2

. The SU(2)-invariant

line lies within a region of the phase diagram where the charge conjugation symmetry is spontaneously

broken and whose boundaries we determine numerically. Our numerical results are obtained using the

Hamiltonian lattice gauge formulation that includes the mass shift mlat ¼ m − g2a=4 dictated by the

discrete chiral symmetry.
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Introduction.—Quantum electrodynamics in 1þ 1

dimensions, also known as the Schwinger model [1], is

a famous model of quantum field theory that has played an

important role for over 60 years [2–4]. It is a useful

theoretical laboratory for various important phenomena,

including quantum field theory anomalies and confinement

of charge. Its lattice Hamiltonian implementations [5,6]

have connections with condensed matter and atomic

physics, and, in recent years, there have been efforts to

construct experimental setups for its quantum simulations

(for a review, see Ref. [7]).

The model with one massless Dirac fermion of charge

g is exactly solvable, reducing to the noninteracting

Schwinger boson of mass MS ¼ g=
ffiffiffi

π
p

; this can be con-

cisely demonstrated via the bosonization of the fermion [4].

The U(1) chiral symmetry of the massless action is broken

by the Schwinger anomaly. The massive model, in addition

to containing the obvious dimensionless parameter m=g,
depends on the θ angle related to the introduction of a

background electric field [4]. This parameter, which has

periodicity 2π, is somewhat analogous to the θ angle of the

3þ 1 dimensional gauge theory.

Generalizations of the Schwinger model to Nf > 1

flavors of fermions of charge g exhibit a richer set of

phenomena [8]. When the fermions are massless, the

Schwinger model has SUðNfÞ × SUðNfÞ chiral symmetry.

Its low-energy limit is described [9,10] by the SUðNfÞ1

Wess-Zumino-Witten model, which is a conformal field

theory (CFT) of central charge Nf − 1. The Nf > 1

Schwingermodel also contains amassive sector that includes

the Schwinger boson. Therefore, it was hoped that the

multiflavor Schwinger models may provide simple realiza-

tions of the “unparticle physics” idea [11], and thismotivated

the papers [12–14]. As in these papers, we will focus on

Nf ¼ 2, where for m ¼ 0 the IR CFT is described by a

compact scalar at the self-dual radius. While investigations

of this model have a long history, including [8,15–23], we

will present a number of new results: (1) even in the limit of

small masses, we can have spontaneous symmetry breaking

of the charge conjugation symmetry, or critical behavior, or

an IR trivial phase. (2) For θ ¼ π and m=g ≪ 1, there is an

effective field theory description in terms of the sine-Gordon

model with β ≈
ffiffiffiffiffiffi

8π
p

[8,18].We describe the SU(2)-invariant

renormalization group (RG) trajectory, which flows from

asymptotic freedom in the UV, and in the IR it produces an

exponentially small mass gap ∼e−Ag
2=m2

, with A ≈ 0.111 as

we show below. Therefore, the Nf ¼ 2 Schwinger model

with θ ¼ π has some qualitative similarities with QCD

because it can exhibit dimensional transmutation.

We discuss the zero-temperature phase diagram as a

function of θ and the masses m1 and m2 of the two fermion

flavors, which we can restrict to be positive (some aspects

of the phase structure were discussed in the past [8,14,18]).

Our proposal is that, while for all θ ≠ π this model has a

nondegenerate vacuum, for θ ¼ π the phase diagram is as

in Fig. 1. It contains two critical curves that pass through

the origin, along which the low-energy physics is governed

by the 2D Ising CFT of central charge c ¼ 1=2. In the

shaded region of Fig. 1, the charge conjugation symmetry

C, defined below, is spontaneously broken, leading to
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two degenerate vacua. This phenomenon, which was

recently studied in [23], is reminiscent of the spontaneous

breaking of CP symmetry in 4D Yang-Mills theory at

θ ¼ π [18,24–28], and there are analogous phenomena in

2D scalar quantum electrodynamics [29,30]. We present

both analytical and numerical evidence for the phase

diagram in Fig. 1. On the numerical side, our calculations

using the Hamiltonian lattice approach are in excellent

agreement with the continuum analysis. The convergence

of the numerical calculations is significantly improved by

including the mass shift (4) derived in [31].

The setup.—Let us consider the Schwinger model with

Nf fermion flavors of masses mα, with α ¼ 1;…; Nf.

While the mα are, in general, complex parameters, the

Uð1ÞNf axial transformations can be used to set all mα real

with mα ≥ 0. Then, the Lagrangian density is

L ¼ −
1

4g2
F2
¿À −

θ

4π
ϵ¿ÀF¿À þ

X

Nf

α¼1

Ψ̄αði=D −mαÞΨα: ð1Þ

Here, ϵ01 ¼ 1, =D ¼ γ¿ð∂¿ þ iA¿Þ, and ðγ0; γ1Þ ¼ ðσ3; iσ2Þ
obey fγ¿; γÀg ¼ 2η¿À ¼ 2diagf1;−1g.
To study this model numerically, we use the Hamiltonian

lattice formulation of [5,6], where the spatial direction is

discretized into N sites, with N even, while the time

direction remains continuous. The two-component Dirac

fermions of each flavor are staggered, with the γ0 eigen-

states of eigenvalue þ1 and −1 being placed on even and

odd sites, respectively. The lattice Hamiltonian is

H ¼ g2a

2

X

N−1

n¼0

�

Ln þ
θ

2π

�

2

þ
X

Nf

α¼1

mlat;α

X

N−1

n¼0

ð−1Þnc†n;αcn;α

−
i

2a

X

N−1

n¼0

X

Nf

α¼1

�

c†n;αUncnþ1;α − c†nþ1;αU
†
ncn;α

�

: ð2Þ

Here, a is the lattice spacing, cn;α and c†n;α are the

annihilation and creation operators for a fermion of flavor

α on site n, andUn ¼ eiϕn is a unitary operator living on the

link between sites n and nþ 1. The electric field strengths

Ln ¼ −ið∂=∂ϕnÞ are integer-valued, while θ∈ ½0; 2πÞ
comes from the θ term in the action, and ðθ=2πÞ acts as

a fractional background electric field. The Hamiltonian

should be supplemented by the Gauss law constraint

Ln − Ln−1 ¼
X

α

�

c†n;αcn;α −
1 − ð−1Þn

2

�

: ð3Þ

The parameters g and θ of the lattice model should be

identified with the analogous parameters of the continuum

model (1). As argued in [31], one should take

mlat;α ¼ mα −
Nfg

2a

8
: ð4Þ

In [31], it was also shown that when Nf is even and

mα ¼ 0, the lattice theory is invariant under translation by

one site, which corresponds to a discrete chiral symmetry in

the continuum. In the leading strong coupling limit, where

the hopping term is ignored, the ground state can be highly

degenerate. For Nf ¼ 2 and m1 ¼ m2 ¼ 0, we find that the

strong coupling degeneracy is 3N þ 1 for θ ¼ 0, while it is

2N for θ ¼ π. The latter fact provides a starting point for the

correspondence between the Nf ¼ 2 Schwinger model at

θ ¼ π and the Heisenberg antiferromagnet [19,20].

The integrated fermion bilinear operator
R

dx Ψ̄Ψ trans-

lates into the lattice operator
P

N−1
n¼0

ð−1Þnc†n;αcn;α, which is

odd under the unit shift. The uniqueness of the ground state

away from the strong coupling limit for mα ¼ 0, and the

symmetry under the unit translation, imply that the vacuum

expectation value of the mass operator vanishes on a

periodic lattice with an even number of sites.

When θ ¼ 0 or π, for any mα, the models (1) and (2) are

invariant under a charge conjugation symmetry C. In the

continuum, C acts as

C∶ A¿→−A¿; Ψα→ γ5Ψ�
α; ð5Þ

where γ5 ¼ γ0γ1 ¼ σ1, and on the lattice it acts as [20]

C∶ Ln→−Lnþ1−
θ

π
; Un→U†

nþ1
;

cn;α→ c†nþ1;α; c†n;α→ cnþ1;α: ð6Þ

FIG. 1. The schematic phase diagram for the two-flavor

Schwinger model at θ ¼ π (it is similar to the phase diagram

of the two-flavor QCD, exhibited in [26,27]). In the shaded

region, charge conjugation symmetry is broken, and there are

two degenerate vacua. This region is bounded by two critical

curves of Ising CFTs. These two curves meet at the origin, where

the low-energy description is provided by the SUð2Þ
1
Wess-

Zumino-Witten model. For m1 ¼ m2 ≪ g, the model exhibits

an exponentially large correlation length due to dimensional

transmutation.
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It is this symmetry C that is broken whenever there are two

degenerate vacua in the phase diagram in Fig. 1.

For any θ and mα ¼ m for all α, the models (1) and (2)

are invariant under an SUðNfÞ symmetry under which the

fermions transform in the fundamental representation.

When m ¼ 0, in the continuum model (1), this SUðNfÞ
symmetry is enhanced to SUðNfÞ × SUðNfÞ.
Continuum treatment of the two-flavor Schwinger

model.—Let us now take Nf ¼ 2 and present continuum

field theory arguments in support of the phase diagram of

the two-flavor Schwinger model in Fig. 1.

One very massive fermion: When one of the fermions

is very massive, it can be integrated out, leaving us with

the Nf ¼ 1 model. For a fermion mass m, the phase

diagram of the Nf ¼ 1 model exhibits a line of first order

phase transitions at θ ¼ π that extends over the interval

ðmcr;∞Þ [8], with mcr ≈ 0.33g. At m ¼ mcr, there is

evidence [32,33] that the second order phase transition is

in the 2D Ising universality class. For m > mcr and θ ¼ π,

there are two degenerate vacua, each of which breaks C
spontaneously. Everywhere else on the phase diagram there

is a nondegenerate vacuum and a nonzero gap.

Without loss of generality, suppose we take m2=g ≫ 1.

Integrating out Ψ2 in (1) yields the effective Lagrangian

LNf¼1 þ 1

2

Z

d2y A¿ðxÞAÀðyÞΠ¿À
2
ðx − yÞ þOðA4Þ; ð7Þ

where Π
¿À
2

¼ ð−∂2η¿À þ ∂
¿
∂
ÀÞΠ2ðxÞ is the one-loop vac-

uum polarization. The Fourier transform Π2ðqÞ ¼
R

d2xΠ2ðxÞeiq·x is [see (7.90) of [34] ] [35]

Π2ðqÞ ¼ −
1

π

Z

1

0

dξ
ξð1 − ξÞ

m2

2
− ξð1 − ξÞq2 ≈ −

1

6πm2

2

ð8Þ

at large m2. Thus, Π2ðxÞ ≈ −ð1=6πm2

2
Þδð2ÞðxÞ, and the

effective Lagrangian (7) becomes, approximately, that of

the one-flavor model with an effective gauge coupling:

g−2eff ¼ g−2
�

1þ 1

6π

g2

m2

2

�

: ð9Þ

Since the one-flavor Schwinger model exhibits an Ising

second order phase transition at mcr ≈ 0.33g at θ ¼ π, it

follows that the two-flavor Schwinger model with m2=g ≫
1 also exhibits an Ising phase transition at θ ¼ π for

mcr ≈ 0.33geff . Expanding this we get

m1;crðm2Þ ≈ 0.33g

�

1 −
1

12π

g2

m2

2

þO

�

g4

m4

2

��

: ð10Þ

The phase diagram should of course be invariant under

interchanging m1 ↔ m2 so, at θ ¼ π, there should also be

an Ising transition atm2;crðm1Þ given by the rhs of (10) with

m2 → m1. The expression (10) and the one obtained after

interchanging m1 ↔ m2 represent the asymptotic behav-

iors of the blue curves in Fig. 1. The large mass analysis

also shows that in the wedge between the two curves we

expect two degenerate ground states, while outside of this

wedge we expect a nondegenerate ground state, just as in

the Nf ¼ 1 model at θ ¼ π.

This argument also shows that when θ ≠ π and one of the

fermions is very massive, the ground state is nondegenerate

because this is also the case in the one-flavor model. In fact,

for θ ≠ 0; π we must have a nondegenerate ground state

because there is no charge conjugation symmetry that can

be spontaneously broken.

Small mass regime: Near m1 ¼ m2 ¼ 0, a useful

equivalent description is obtained using Abelian bosoniza-

tion [8]. (One can also use non-Abelian bosonization, as

in [9].) Following [8], we bosonize the fermions Ψ1;2 to

scalar fields ϕ1;2, and reparametrize them via ϕþ ¼
2−1=2ðϕ1 þ ϕ2 þ 1

2
π−1=2θÞ and ϕ− ¼ 2−1=2ðϕ1 − ϕ2Þ.

Let us restrict our attention to m1 ¼ m2 ¼ m. The

bosonized Lagrangian is

Lbos¼−
1

4g2
F2
¿À−

ϕþ
ffiffiffiffiffiffi

2π
p ϵ¿ÀF¿Àþ

1

2
ð∂¿ϕþÞ2þ

1

2
ð∂¿ϕ−Þ2

þeγ

π
m

ffiffiffiffiffiffiffiffiffiffiffi

¿þ¿−
p

N¿þcos

�

ffiffiffiffiffiffi

2π
p

ϕþ−
θ

2

�

N¿−
cos

	
ffiffiffiffiffiffi

2π
p

ϕ−




;

ð11Þ

where NM means that the expression that follows is normal

ordered by subtracting the two-point functions of a scalar

field of massM. A convenient choice is ¿þ ¼ ¿, where ¿ is

defined below, and ¿−=g→ 0.

For m ¼ 0, integrating out the gauge field shows that ϕþ
has mass ¿ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

ð2=πÞ
p

g, while ϕ− remains massless. The

field ϕ− obeys the identification ϕ− ∼ ϕ− þ
ffiffiffiffiffiffi

2π
p

, which

corresponds to the self-dual radius of the compact scalar.

Thus, form ¼ 0 we have a massive sector described by ϕþ,
and a sector consisting of the c ¼ 1 self-dual scalar CFT,

which has SUð2Þ × SUð2Þ symmetry. At low energies, the

massive sector can also be integrated out, and we are left

with the self-dual scalar CFT.

After integrating out the gauge field, we can integrate out

ϕþ order by order in m:

Lbos ¼
1

2
ð∂¿ϕ−Þ2 þm

ffiffiffiffiffiffiffiffi

¿¿−
p eγ

π
hOþðxÞiO−ðxÞ

þ i
e2γ

2π2
m2¿¿−

Z

d2yhOþðxÞOþðyÞiO−ðxÞO−ðyÞ

þOðm3Þ; ð12Þ

withOþ≡N¿cos½
ffiffiffiffiffiffi

2π
p

ϕþ−ðθ=2Þ�,O−≡N¿−
cos½

ffiffiffiffiffiffi

2π
p

ϕ−�,
and the expectation values taken in the theory of a

free massive scalar field ϕþ of mass ¿. For θ ≠ π,
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hOþi ¼ cosðθ=2Þ gives the effective theory

Lbos ¼
1

2
ð∂¿ϕ−Þ2 þm

ffiffiffiffiffiffiffiffi

¿¿−
p eγ

π
cos

θ

2
N¿−

cos ½
ffiffiffiffiffiffi

2π
p

ϕ−�

þOðm2Þ: ð13Þ

This is the self-dual scalar CFT deformed by the operator

cos ½
ffiffiffiffiffiffi

2π
p

ϕ−� of dimension 1=2, which triggers a RG flow to

a gapped phase. One can then show using RG scaling

arguments or renormal ordering [8] that the mass gap is of

order ∼jm cosðθ=2Þj2=3g1=3.
When θ ¼ π, the coefficient of the relevant operator

in (13) vanishes. Nevertheless, the mass deformation is not

exactly marginal, because the only marginal deformation of

the self-dual compact scalar CFT is the change in radius of

the scalar, which breaks the symmetry to Uð1Þ × Uð1Þ.
This would be in contradiction with the SU(2) symmetry

of the equal-mass Schwinger model. We can evaluate

the Oðm2Þ term in (12) using the propagator GMðxÞ ¼
hϕðxÞϕð0Þi ¼ ð1=2πÞK0ðM

ffiffiffiffiffiffiffiffi

−x2
p

Þ of a free scalar field ϕ

of mass M, which implies that hOþðxÞOþðyÞi ¼
sinh ½2πG¿ðx − yÞ�. We also have

O−ðxÞO−ðyÞ

¼ e−2πG¿−
ðx−yÞ

2
N¿−

cos
�

ffiffiffiffiffiffi

2π
p

½ϕ−ðxÞ þ ϕ−ðyÞ�
�

þ e2πG¿−
ðx−yÞ

2
N¿−

cos
�

ffiffiffiffiffiffi

2π
p

½ϕ−ðxÞ − ϕ−ðyÞ�
�

: ð14Þ

Plugging these results into (12), changing variables to

z ¼ ¿ðy − xÞ, and passing to Euclidean signature, we see

that the integral receives contributions only from small jzj.
Expanding in jzj and evaluating the integral gives

Lbos ¼
1

2
ð∂¿ϕ−Þ2 þ

e3γIsm
2

8π2¿2




2πe−2γð∂¿ϕ−Þ2

þ ¿2−N¿−
cosð

ffiffiffiffiffiffi

8π
p

ϕ−Þ
�

þOðm4Þ; ð15Þ

where Is ¼ 2π
R

∞
0
dξ ξ2 sinhK0ðξÞ ≈ 10.08 (see also [18]).

The Lagrangian (15) is that of the sine-Gordon model, a

two-dimensional boson with interaction term ∼ cosðβϕÞ
with β > 0. By rescaling the boson to have canonical

normalization, we have β2 < 8π. For m ≪ g, β2 → 8π, and

the scaling dimension of the cosine operator approaches 2.

In this limit, the model is closely related to the continuum

description of the Heisenberg antiferromagnet [36].

The RG flow of the sine-Gordon model near β2 ¼ 8π

was computed in [37,38] and shown to describe the

Berezinskii-Kosterlitz-Thouless transition. Generically,

both the coefficient of the cosine and radius of the scalar

will flow. Up to first order in the bare parameters α and

δ ¼ ðβ2=8πÞ − 1, the sine-Gordon model is defined by [38]

L ¼ 1 − δ

2
ð∂¿ϕÞ2 þ

αe2γ

32π
¿2−N¿−

cosð
ffiffiffiffiffiffi

8π
p

ϕÞ: ð16Þ

The one-loop beta functions for the running couplings ᾱ

and δ̄ are [37,38]

βᾱ ¼ 2ᾱ δ̄; βδ̄ ¼
1

32
ᾱ2: ð17Þ

The effective theory (15) may be restricted to have the

SU(2) symmetry that arises from the SU(2) symmetry of

the Schwinger model with equal fermion masses. Then, in

the two-dimensional parameter space ðᾱ; δ̄Þ, only the SU

(2)-invariant RG trajectory can be accessed. This trajectory

is the line ᾱ ¼ −8δ̄ that passes through the origin, as can be

seen from the fact that (15) and (16) imply

α ¼ 8eγIs

4

m2

g2
¼ −8δ; ð18Þ

or from analyzing the SU(2)-invariant operators in the

model (16). On this locus with SU(2)symmetry, the sine-

Gordon model (16) is related via bosonization to the SU(2)

Thirring model [38,39], which contains two massless Dirac

fermions ψa. Their interaction is ∼
P

3

i¼1
JiJi where the

SU(2) currents are Ji ¼ 1

2
ψ̄aσiabψ

b.

The β function for the running mass parameter m̄ can be

inferred from (18) and (17):

βm̄ ¼ M
dm̄

dM
¼ −

eγIs

4g2
m̄3; ð19Þ

where M is the RG scale. Thus, the interaction strength in

the effective sine-Gordon model, and equivalently in the

SU(2) Thirring model, is asymptotically free. The inter-

action strength formally diverges far in the IR, at the scale

comparable to the mass gap (this scale is analogous to

ΛQCD):

Egap∼e
−A

g2

m2 ; A¼ 2e−γ

Is
≈0.111: ð20Þ

This exponentially small mass gap implies that, for small

m, the correlation length diverges as ξ ∼ ð1=EgapÞ∼
eAðg

2=m2Þ. Similarly, at small m all observables can be

expressed in terms of the energy scale Egap. For instance,

since Ψ̄αΨα flows to an operator of dimension Δþ ¼ 2 in

the c ¼ 1 theory at m ¼ 0, we must have hΨ̄αΨαi ∼ E
Δþ
gap ∼

e−2Aðg
2=m2Þ. Likewise, the operator Ψ1Ψ1 −Ψ2Ψ2 that takes

us away from the m1 ¼ m2 line in Fig. 1 flows to an

operator of dimension Δ− ¼ 1=2. This allows us to

estimate that the width of the symmetry breaking region

is Δm ∼ E
2−Δ−
gap ¼ e−ð3A=2Þðg

2=m2Þ.
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That charge conjugation symmetry is spontaneously

broken for any m > 0 can be seen from (15). Indeed, in

the bosonized description at θ ¼ π, the charge conjugation

symmetry C acts as

A¿→−A¿; ϕþ→−ϕþ; ϕ−→−ϕ−þ
ffiffiffi

π

2

r

: ð21Þ

This is clearly a symmetry of the Lagrangian (11) and also

of the effective Lagrangian (15). However, over the range

of one period ϕ− ∈ ½0;
ffiffiffiffiffiffi

2π
p

�, the potential ∼ − cosð
ffiffiffiffiffiffi

8π
p

ϕ−Þ
in (15) has two minima, one at ϕ− ¼ 0 and one

ϕ− ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

ðπ=2Þ
p

. These minima are exchanged by the sym-

metry C in (21). Semiclassically, we thus have two vacua in

which C is broken spontaneously.

The spontaneous breaking of C in the two-flavor

Schwinger model provides a nice analogy to the breaking

of CP and presence of two degenerate vacua in 4D QCD

with θ ¼ π and two light flavors [25]. The height of the

barrier separating the two symmetry breaking vacua is of

orderm2, just as in QCD [18,25]. TheCP violation [24] can

be seen using the chiral Lagrangian for QCD, and the zero-

temperature phase diagram as a function of light quark

masses mu and md has a similar structure [26,27] to our

Fig. 1. The boundaries of the region where CP is sponta-

neously broken can be found from the condition that

the mass of the neutral pion vanishes there. The width

of the symmetry broken region is found to behave as

ðmu þmdÞ2=fπ, which is parametrically much bigger than

the exponentially small width that we find in the

Schwinger model.

Numerical results.—We study the Nf ¼ 2 Schwinger

model numerically using the lattice Hamiltonian (2) (see

also [23]). While the one-flavor model can be studied

efficiently via exact diagonalization [31,40], with two

flavors the number of states grows so quickly with the

number N of lattice sites that this becomes impractical.

Instead, we employ tensor network methods, using a

matrix product state (MPS) ansatz to approximate the

ground state [23,41]. To optimize the MPS ansatz, we

use ITensors.jl [42,43]. We use open boundary conditions,

since this allows us to study the behavior of much larger

lattices.

The MPS form of the ground state makes it especially

simple to calculate the entanglement entropy for a left-right

bipartition of the open chain. Let SxðN; aÞ denote the

entanglement entropy for a subsystem of the leftmost xN
sites in a chain of N sites with lattice spacing a. Then, at a
critical point with central charge c, the entropy is expected

to grow like [44]

SxðN; aÞ ¼ c

6
log

�

2N

π
sin πx

�

þ const: ð22Þ

At any other point, this logarithmic growth of the entropy

will plateau when N ∼ ðξ=aÞ, where ξ is the correlation

length. By combining this result with a finite-size scaling

analysis, one can derive very precise estimates for the

locations of critical points in the continuum theory from

values of the entanglement entropy on a finite lattice [45].

In Fig. 2, we show the behavior of the entanglement

entropy for a fixed lattice, along with the precise estimate of

the critical curve obtained via the intersection method

outlined in [45]. The finite-size scaling analysis confirms

that this curve has c ¼ 1

2
. By fitting the leading large-mass

behavior of this curve, we find

m2;crðm1Þ ¼ 0.335ð4Þ − 0.0097ð17Þ
�

g

m1

�

2

; ð23Þ

and the coefficient of g2=m2

1
is in good agreement with the

value ð0.33=12πÞ ≈ 0.0088 predicted from (10).

We can also use lattice calculations of the entanglement

entropy to estimate the growth of the correlation length for

small m1 ¼ m2 ¼ m. For a fixed lattice, we can compare

the dependence of the entanglement entropy on the sub-

system size with (22) to obtain an estimate cest for the

central charge. Anywhere away from a critical point, this

estimate will tend to zero around N ∼ ðξ=aÞ. We can thus

take a fiducial cutoff for cest, and define ðβξ=aÞ as the lattice
size when cest crosses below this cutoff, where β is an

unknown constant.

Figure 3 shows this estimate of the logarithm of the

correlation length along the SU(2)-invariant line as a

function of m−2. The linear behavior suggests a scaling

FIG. 2. The heat map depicts the entanglement entropy

S1=2ðN ¼ 216; a ¼ 0.3Þ with open boundary conditions as a

function of the fermion masses at θ ¼ π. The black points are

estimates of the location of the c ¼ 1

2
critical curve in the

continuum limit a → 0. The asymptotic shape of the curves

agrees with (10). Form ≪ g, the two c ¼ 1

2
critical curves become

exponentially close to each other.
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of the form ξ ∼ eAðg
2=m2Þ at small m=g, as explained

after (20). Furthermore, extrapolating the slope as m→ 0

to the continuum limit a→ 0 gives A ¼ 0.11ð1Þ, in good

agreement with the theoretical value in (20).

Discussion.—In this Letter, we presented analytical and

numerical evidence for the phase diagram of the Nf ¼ 2

Schwinger model at θ ¼ π shown in Fig. 1. The behavior

we find is quite different from that at θ ≠ π: along the SU

(2)-invariant line the theory contains a nearly marginal

operator that leads to logarithmic RG flow of Berezinskii-

Kosterlitz-Thouless type. As a result, for m ≪ g the mass

gap is exponentially small, ∼e−Ag
2=m2

. Along this SU(2)-

symmetric line, Georgi [14] calculated the anomalous

dimensions of operators perturbatively in powers of

ðm=gÞ2. The fact that the mass gap is exponentially small

makes the theory for m ≪ g “nearly conformal” in a large

range of energies, so that perturbative anomalous dimen-

sion calculations should be parametrically reliable. We thus

hope that the calculations of [14] can be checked numeri-

cally using the lattice Hamiltonian setup, but we leave this

question for future work.

We find that the Z2 charge conjugation symmetry is

spontaneously broken in the entire shaded region of the

phase diagram in Fig. 1. This region becomes exponentially

narrow near m ¼ 0 and is bounded by 2D Ising CFTs. It

is interesting to ask how the addition to the action of

4-fermion operators may change this phase diagram. We

also leave this question for future work.
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