PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: June 22, 2023
REVISED: July 29, 2023
ACCEPTED: August 8, 2023
PUBLISHED: August 31, 2023

Line defects in fermionic CFTs

Simone Giombi,” Elizabeth Helfenberger® and Himanshu Khanchandani’
@ Department of Physics, Princeton University,
Princeton, NJ 08544, U.S.A.

bCenter for Cosmology and Particle Physics, New York University,
New York, NY 10003, U.S.A.

E-mail: sgiombi@princeton.edu, eh13@princeton.edu, hk38660nyu.edu

ABSTRACT: We study line defects in the fermionic CFTs in the Gross-Neveu-Yukawa uni-
versality class in dimensions 2 < d < 4. These CFTs may be described as the IR fixed
points of the Gross-Neveu-Yukawa (GNY) model in d = 4 — ¢, or as the UV fixed points
of the Gross-Neveu (GN) model, which can be studied using the large N expansion in
2 < d < 4. These models admit natural line defects obtained by integrating over a line
either the scalar field in the GNY description, or the fermion bilinear operator in the GN
description. We compute the beta function for the defect RG flow using both the epsilon
expansion and the large NV approach, and find IR stable fixed points for the defect coupling,
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defect is consistent with the g-theorem for the defect RG flow.
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1 Introduction and summary

The Gross-Neveu (GN) model is a theory of interacting fermions described by the following
action [1]

S = —/ddaz (xyw v+ (\I/\Il)2> (1.1)

where the index ¢ runs from one to N, the number of fermion flavors, so we have N; Dirac
fermions. It was originally introduced as a toy model for asymptotic freedom. In d = 2 +¢,
the beta function for the coupling ¢ in (1.1) has a UV fixed point where g is of order e. As we
shall review below, the Gross-Neveu model admits a “UV completion” in terms of a Gross-
Neveu-Yukawa theory [2, 3], which includes Ny fermions and one real scalar field. Its upper
critical dimension is d = 4, and the model has IR stable fixed points in d = 4 — €. Thus,
one expects a family of fermionic CFTs in the range 2 < d < 4, which we may call Gross-
Neveu-Yukawa or Gross-Neveu CFTs. In particular, one expects interacting CF'Ts in this
universality class in the physical dimension d = 3. This model has been extensively studied
using traditional methods (see [4-7] and references therein), and also modern conformal
bootstrap methods [8-10]. A version of the Gross-Neveu-Yukawa model has also been
proposed to describe the semi-metal to insulator transition in the Hubbard model [11, 12].
More recently, there have been studies of the Gross-Neveu/Gross-Neveu-Yukawa CFTs in
the presence of a boundary [13-15]. In this paper, we introduce and study line defects in
these fermionic CF'Ts and provide evidence for the existence of a conformal line defect.



An equivalent description of the GN model (1.1) may be written in terms of a Hubbard-
Stratonovich field o
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where we defined N = Nycy with ¢4 being the number of components of a Dirac fermion in d
dimensions. Integrating out the auxiliary field o, one obtains the original Lagrangian (1.1).
However, the Hubbard-Stratonovich description is particularly useful to develop the 1/N
perturbation theory of the critical theory in any dimension (see [4, 16] for a review).
One may obtain an induced ¢ two-point function by integrating out the fermions. At the
critical point (i.e., in the UV limit if we use the GN description), one may drop the o2/2gN
term, and one then finds that the o field has a conformal two-point function, with scaling
dimension (see e.g. [6])
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One can see that f1(d) is negative in the range 2 < d < 4 (it goes to zero at the upper and
lower critical dimensions d = 4 and d = 2 respectively). For instance, in d = 3 one has
fi(d=3) = -32/(37%).

Therefore, it is natural to introduce a line defect by integrating o along a line as (we
work in flat Euclidean spacetime and the coordinates are parametrized as x = (7,x)):

—/ddx (lllify SOV 4 \;NU\IJi\IJi) + h/dTU(T, 0). (1.4)
Since at large N the (bulk) dimension of ¢ is slightly below 1, the defect coupling constant
h is weakly relevant, and there is a possibility for a non-trivial IR fixed point of the defect
RG flow. We will compute the beta function of h in the 1/N expansion, and show that
indeed there is an IR fixed point where h is of order one at large N. This provides evidence
that the system (1.4) flows to a non-trivial IR DCFT.

Note that the defect breaks the parity symmetry of the original theory, which acts by
sending ¥; ¢ — —¥,; ¥’ and 0 — —o. Also note that, since ¢ plays the role of the fermion
bilinear via the Hubbard-Stratonovich transformation (1.2), in the original Gross-Neveu
description (1.1) the defect (1.4) corresponds to integrating ¥; ¥* over the line.

As mentioned above, a UV completion of the Gross-Neveu model is provided by the
Gross-Neveu-Yukawa (GNY) model [2, 3]

2 -_— . -_— .
S = /ddx (wgs) — (\Iw SOU' + gls\IJilIl’) gi#) . (1.5)

The beta functions of g; and g may be computed using standard epsilon expansion meth-
ods, and one finds that the model has a perturbative IR fixed point in d = 4 — ¢, for



general Ny. This fixed point is in the same universality class as the one obtained from the
Gross-Neveu model, and one may check that the CFT data computed using the epsilon
expansion in (1.5) and large N expansion in (1.2) agree in the overlapping regime of va-
lidity (see e.g. [6] for a review and collection of known results). The local field s in the
GNY description plays the same role as ¢ in the large N description, however we use a
different symbol because their normalizations are a priori different. At the Wilson-Fisher
fixed point of (1.5), one finds in particular the scaling dimension

Ag=1-— + O(€%). (1.6)

Note that at large N this agrees with (1.3) expanded near d = 4. Analogously to (1.4), the
defect in this GNY setup is introduced by integrating the field s along a line. Since the
(bulk) dimension of the s field is slightly below 1, as in the large N description one obtains
a weakly relevant flow, now for small € but general N. The defect in the GNY description
is similar to the type of line defect that occurs in the presence of a localized magnetic
field in scalar O(N) model, studied in [17, 18] (see also [19]).! Below we will compute the
beta function of the defect coupling using the e expansion setup, again finding evidence
for a non-trivial IR DCFT. We also show that various DCF'T observables computed in
the € expansion in d = 4 — € and large N expansions in 2 < d < 4 agree with each
other in the overlapping regime of validity. To summarize our results, we present the
operator dimensions of the defect operators we studied in table 1. In addition to the
scaling dimensions of the defect local operators, an interesting observable for conformal
line defects is the g-function, defined as the normalized expectation value of the circular
defect [18, 21] (see also [22, 23] for earlier work). As was proved in [21], RG flows localized
on a line defect in a CFT, obey a g-theorem:? the value of log(g) in the UV is larger than
the one at the IR fixed point. Moreover, [21] also defined a defect entropy function (which
reduces to log(g) at fixed points) which decreases monotonically under the defect RG flow.
We calculate the value of the g-function in our IR DCF'T in the e-expansion and find that
it is consistent with the g-theorem.

The rest of this paper is organized as follows: in section 2, we define and study the line
defect in the GNY model in d = 4 — ¢, and compute the defect beta function using pertur-
bation theory in e. We also compute several pieces of DCFT data and in particular use bulk
equations of motions to calculate the anomalous dimensions of a tower of defect operators.
In section 3, we study the same defect in the large IV expansion in 2 < d < 4. We conclude
with some future directions in section 4. The appendices contain some technical details and
comments on the description of the line defect in d = 2+¢ dimensions using the action (1.1).

2 Line defect in the Gross-Neveu-Yukawa description

Let us start by discussing the line defect in the Gross-Neveu-Yukawa model

e : .
S = /dd ( s)” — (Wiy - 00" + g1 o500 ) + 92240 4>+ho/dT$ 7,0).  (21)

' A similar line defect in tensor models was studied recently in [20].
2This generalizes the previously known g-theorem for line defects in 2d CFT [24-26].



GNY d=4—¢ Large N
. 6 24+2(d—1)sin(Z2)1(452)
Leading defect scalar I+ wrey€ — Nd(d_2)7r3/2?(g_12)
Transverse spin [ defect scalars 1+1+ (Nﬁ(f})%e 1+1+ O(%)
U(N) fundamental defect fermions 3+1+0(e) L1+ 0(F)

Table 1. The dimensions of the defect operators induced by the bulk fundamental fields in GNY
and large N models. [ represents the quantum number under SO(d — 1) which is the group of
rotations around the defect. The scalars are in symmetric traceless representations of SO(d — 1)
while fermions are in spin [+ 1/2 spinor representation of Spin(d —1). We are only considering here
lowest twist operators for each spin. All these receive corrections from higher orders in perturbation
theory in € or 1/N.

The bulk bare couplings may be expressed in terms of a renormalized coupling [6, 27]

(N +6)g}
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+...>, g2,0:M6(92+...). (2.2)

In d = 4 — € there is a fixed point in the bulk at the following values of the couplings
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Similarly for the defect coupling, we may express the bare coupling in terms of the renor-
malized coupling as

ho_Mé(thMJr...). (2.4)
€

Following [17, 18] we will fix Jh by requiring that the counterterms cancel the divergences
appearing in the one-point function (s(z)). Note that the defect coupling is not taken to
be small, so we need to include diagrams to all orders in h. However, it is easy to see that
at each order in the bulk coupling constants, the expansion in powers of i truncates to a
finite order, similarly to the analogous calculation in [17, 18] for the line defect in the O(N)
model. Note that diagrams with higher powers of A would involve decoupled integrals of

the “defect-to-defect” propagators % over the whole straight line, which are trivial

(7

due to translational invariance, and can be regularized to zero in analytic regularization.
Alternatively, one can say that all the extra diagrams with several defect-to-defect prop-
agators are cancelled by normalizing (s(x)) by the expectation value of the line defect.

But that expectation value is naturally set to 1 for an infinite straight line in a conformal



theory. Thus, at leading order in the bulk couplings, we only have the following diagrams:
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The bare bulk field may be expressed in terms of the renormalized one as

2
(so(z)) = Zs(s(x)) = (1 — é\;i]rl;; + .. ) (s(x)), (2.9)

where the Z, factor above is fixed by the renormalization of the bulk 2-point function in
the absence of the defect (Zs determines the anomalous dimension of the bulk operator
s(z), which is independent of the defect). Then, we see that to cancel the divergences and
get a finite renormalized one-point function, we need the defect coupling renormalization
to be given by

goh? g hN
19272 + 3272

Sh = (2.10)



The beta function of the coupling h may then be computed by requiring that the bare
coupling hg is independent of the scale M

dhg € oh 0 oh 0 oh 0 oh
M0 _o— ()15 2 (he 2 I (g 2 I (2 <o
dM O:>2<+6>+’8h0h(+6>+ﬁglag1<+e>+ﬁmagz<+6) 0

(2.11)
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€ goh®  gihN
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So there are two fixed points at h = 0 and h = h, given by
z _ 108 Large N § 475 (213)

6 — N + N2+ 132N + 36 2 N

Since the operator s is relevant when h = 0, the theory with h = 0 is the UV DCFT, while
the theory with A = h, is the IR DCFT. Note that the fixed point value of the defect
coupling h, is of order 1, not a power of e.

We may now calculate the normalized one-point function of s. We will normalize it by
the two-point function in the usual bulk theory without a defect, which in our conventions is

r(¢d—1
(s(x1)s(xe)) = Ns N, = <2>(1 + O(e)). (2.14)

T 4mrd/?

The normalized one-point function coefficient as; may then be defined by

VN 27 r 3 45
(s(@)) = Y52, al= tage N, 2 20 (2.5)
x| 6 — N+ N2+ 132N + 36 8 4N

To the order we are working at, we can only get the leading € piece for the one-point
function. The order € piece requires knowing the coupling h to order €, which requires us
to go to higher loops in the calculation of beta function.

2.1 DCFT data

2.1.1 Defect operator dimensions: mapping to H? x S92

We now study the spectrum of defect primaries induced by the bulk scalar and fermions.
The operators induced by the bulk fermions are in the fundamental representation of U(NV)
while the operators induced by the scalar s are U(IV) singlets. There is a tower of scalars
and fermions on the defect, and it is easiest to see this by performing a Weyl transfor-
mation to H? x S92, Such an approach to obtain DCFT data has been used before
in [13, 14, 18, 28-32].

Recall that the metric of flat space is related to the metric of H? x S92 by a Weyl

transformation

dp® + dr?
d82 = p2 <pp2 + d82d2> = p2d5%{2><5d72. (216)



In this picture, the defect is located at the boundary of H2. The action of the GNY model
on this space is

(Vus)?  (d=2)(d—4) ,
< > 24

S = /ddx\/§ 3 57— (\T/W VAT gl,os\TIi\Ili) + 220 s4>
(2.17)

+h0/d7’8(7’, 0).

We then perform a KK reduction on S%2 to obtain a theory on H?. To do that, we split
the gamma matrices into blocks as [33-35]

V=cl®l, =020l A=l (2.18)

where I is the cq_o-dimensional identity, I are gamma matrices in d — 2 dimensions and
o' are Pauli matrices. The scalar Laplacian and Dirac operator split as

(V) g2xgi-2 = Vi + Vi, (V) jpongiz =V ®I+0° @ Vgaa.  (2.19)

We then expand the scalar and the fermion into the eigenfunctions of the Laplacian and
the Dirac operator on S%2

§ = Ztlm(pa T)iflma (V2>Sd*2 Yim = _l(l +d— 3)}/lm
lym

(2.20)
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lym

The sum over [ runs from 0 to infinity, while the sum over m runs over the degeneracy of
eigenfunctions of the Laplacian and Dirac operator, respectively. With this reduction, we
obtain an effective action on H?. The quadratic terms of this effective action are as follows

drdp Vull W Vim 1 (d—2)(d—4)\ ..
5’2:/ p2 Z[ K +2(l(l+d—3)+4> ZL/ljmtl,m
Ilm

2
J (2.21)
S (Gt 2 (145 - 1) )i, )
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We are assuming the following normalizations for the eigenfunctions
* _ + +
/5'2 }/l,mY}/7m’ - 51[’6mm/a /S2 X mXym = 6ll’5mm" (222)

In the action above, we have fermions with chiral mass but we can perform a rotation
P — eio“’gw. This leaves the kinetic term invariant for all a, while for a = 7/4, the mass
term transforms as —itpo®y — 91). So we have a tower of scalars and fermions on H?,
which give rise to a tower of scalar and fermion operators on the defect. The dimensions
of these defect operators are given by the usual mass dimension relations familiar in the

AdS/CFT context:
- d pod—1
Ap=g -1+l A{:TH (2.23)

for scalars and fermions respectively.



We may also calculate the corrections to the dimensions of these defect operators. For
that purpose, we will use the bulk equations of motion as we now explain (for previous
works on using bulk equations of motion to obtain CFT data, see [14, 36-39]).

Recall that the two-point function of the bulk scalar with the transverse spin [ primary
on the defect takes the form [40]

(s, ) = e 24

x[Ae A2 4 (7 — 7)2) A

where w is a null auxiliary vector living in the embedding space. We normalize the defect

operator such that the coefficient above is one. Acting on the above equation with the bulk
Laplacian gives

V2s(@)a(r,w)  [2Ar @A, —d+2) (D= Af+1)(d-3+1-A,+47)

5(7,
(s(z)5(7,w)) x2 4+ (1 —1/)2 x2

(2.25)
We then use the fact that the bulk scalar satisfies an equation of motion, which implies
the following equation for this two-point function, to leading order in €

VQ(S(II?)@(T',W)):%2<82(96)><3(9€)§l(7'7W)>—9%/ddfﬂ1<@i‘1’i($)‘i’j@j(x1)><8(9€1)§l(7'7W)>-

(2.26)
Since there are explicit factors of the coupling constant on the R.H.S., we may plug in the
correlators in the free theory on R.H.S. and we will get the L.H.S. correct to order e. This
tells us that the anomalous dimension of the defect operators must satisfy

(x-w)' 295(2+20) (3 =) (1+21>}
(24 (T — 7)) |24 (1 —7/)2 %2
2
_ goh? (x-w)! B giNT (%) /ddﬂsl (x-w)! i
3272 (XQ)(X2—|— (7-_7-/)2)1+l Ard ((x_wl)Q)dfl (X%—i- (7_1 _7_/)2)5—14-1
h? x-w)! IN(1+1 x-w)!
= g;ﬂ (X2)(x2(+(7271)2)1+l = 8;2—‘_ ) (x2 +((T_7.)/)2)2+l (2.27)

where we used that w? = 0. This reproduces the correct anomalous dimension of the bulk
scalar v; = Ng?/(3272) (see [6], and also the Z, factor in (2.9)), and tells us that the defect
operator of spin [ has dimensions

9¢
(N +6)(1+20)

A 9e 6(1—1)
s A= A4 — 141 .
e R ) s TR B O o T

(2.28)
where we used the known results for the fixed point value of the bulk coupling constants [6].

L8

Y= s T

In the limit I — oo, the anomalous dimension of the defect primaries is the same as the
anomalous dimension of bulk operator, which is consistent with the results of [41]. Thel =1
operator should be identified with the displacement and should have protected dimension
equal to 2 to all orders in perturbation theory. This follows from the equation that defines
the displacement

9, T" (z) = D'(1)84 (%) (2.29)

where 7 here represents transverse directions.



This technique of using bulk equations of motion to obtain the anomalous dimensions
of defect primaries can also be used in the O(/N) model with a localized magnetic field
line defect. We perform this calculation in appendix C and show its consistency with the
computation in [18] of the scaling dimensions of [ = 0 and [ = 1 defect primaries.

For the leading [ = 0 operator (let us denote it by §), there is another way to calculate
its scaling dimensions by adapting to the case of a line defect the standard argument
that relates the scaling dimension of the perturbing operator to the derivative of the beta
function (see for instance [42]). To obtain such a relation, note that away from the fixed
point, there is a defect “stress-tensor” Tp localized on the defect [21], which in this case is
proportional to the beta function of the coupling h

Tp(T) = Brs(7). (2.30)

This defect stress-tensor must have fixed dimension equal to one, hence when we differen-
tiate the above equation with respect to the renormalization scale M, we get

96n
oh
In the UV DCEFT, i.e. h = 0, the defect is trivial, so A; is the same as the dimension Ay of

the bulk operator s (note that this also implies that in the beta function, the term linear
in A must be equal to A(s) — 1, which is true). In the IR DCFT, we have

As=1+ (2.31)

By, B Ge
A; _1+6h 1+N+6'

(2.32)

Note that this agrees with the result (2.28) obtained above from the equation of motion
method, for [ = 0. One can see that the operator § is irrelevant in the IR DCFT. Since
there is no other candidate for a relevant operator on the defect, this implies that the IR
DCEFT is stable.

Next, we make a comment on the anomalous dimension of the defect fermions. We
could proceed as we did above for the scalar. However, this involves working out the tensor
structures involved in bulk-defect two point function of a fermion. We leave this for a
future work, and here just point out how this may be done by the usual Feynman diagram
approach. We need to compute the two-point function of the fermion localized on the
defect. To leading order in perturbation theory, we get

r 3
d) 0 d
(U(11) W (r3)) = o] i, (2) 7 () — rort (2) /ddasz R s VR i )
"1o2rE|mgd 8(d— 2)# |z — 1|9z — ||z — 7|42
[+ (d
_ 5] T (i) '70(7-12) hglF /dd x — 7-1)7 . (a’: — 7-2)
' 27r%\7'12\d 1677 s |z — 71|z — 7| (XQ)d23
s T (2)2°(r2) hgi(4—d)r (d-3)T (23¢) -
Yl oomtlmalt 27dndl(d—3)0 (3 - 4) ()" ’




To go from the second line to the third line, we first did the integral over z° by introducing a
Feynman parameter, then performed the integral over x by introducing another Feynman
parameter, and finally performed the integral over the two Feynman parameters. Note
that to obtain the correct spinor structure, we need to project this two-point function onto
the defect fermion representation. But it is already clear that the order g; term actually
vanishes in d = 4 and does not contribute to the anomalous dimension of defect fermions.
So the anomalous dimension must start at order g?. The fact that this diagram should not
contribute to anomalous dimensions is also clear from a symmetry argument: there is a
parity symmetry in the original theory which is broken by the defect. It may be restored
if we demand that h — —h under the symmetry. So the anomalous dimensions must be
even functions of h.

2.1.2 g-function

In this subsection, we calculate the defect g-function defined as the normalized partition
function in the presence of a circular defect of radius R

logg — lOg (Zbulk + defect/Zbulk) ' (234)

It was shown in [21] that the defect entropy defined by

0
=(1-R—=)1 2.35
s ( 3 R) 0gyg (2.35)
decreases monotonically along the defect RG flows. Using the fact the log g satisfies the
Callan-Symanzik equation

0 0

we see that at the fixed point, log g and s must be equal.

For the trivial defect, log g = 0 and since h generates an RG flow, we know that there
must be a non-trivial IR DCFT with logg < 0. In what follows, we will calculate this
quantity at the IR fixed point. Let’s place the defect on a unit circle around the origin
parametrized by 7, #(7) = (cos T,sin 7,0, ... ). There are three diagrams that we need, to
calculate this to leading order in €

logg= 1 o+ + 7 .

P T3

~10 -



The diagrams (a) and (b) were already calculated in [18]. In d = 4 — ¢, their results are
_ hf(Q) dr d+! / / _ _th 9] 2
= T Tz<3($(71))3(95(72))> = o +0(€),

4
_mmo/w </m— xm):$ﬁ§+mq

Here we calculate the last one involving a fermion loop

(2.38)

4
) hgg%,ONfcd(d - 2)°T (% - 1) ddxldd$2d7{dT£
€)= a/2\4 / a a
2 @) (@) —20?) " ((@(ry) = 22)?)

_ higt oNT (% - 1>2 / drdr’
(¢

1287T (d - 3)(4 — d) x(T) o .%'(T/))Q)dig
_ h3gt oL gg ) (%i) . (2.39)
2 (-3l (- d)
In d =4 — ¢, this is
2 2
(c) = h%gig\f +0(e). (2.40)

Combining all three terms and plugging in the bare couplings in terms of renormalized
ones, we get

€ hgs h2¢?N
logg = —-h? L 2, 91). 2.41
0gg ] + 7687T2 + 12871'2 + 0(92791) ( )

It may be checked that its derivative with respect to h is equal to [5,/2. The fact that
0log g/0h x By, is expected on general grounds (see for instance [18, 22| for related discus-
sions).
At the fixed point, we finally find
8le

log g =— . (2.42)
n=h. 2N +6) (6 N+ N+ 132N +36)

This is negative, consistent with the g-theorem.

3 Line defect at large N

In this section, we study the line defect in the large N description given by the action
n (1.4). Asis well known, the 1/N perturbation theory in this model may be developed
by using the usual propagator for ¥ and the following resummed propagator for o (see for
instance [7])

dgin (24 a1
{(o0(2)a0(0)) = ‘ﬁgia’ No = - m(r (> F(1)2 ) (3.1)
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where we introduced a regulator § which we will set to zero at the end. This makes the
dimension of the bare field 1 4+ /2 at large N, so the bare coupling hy also acquires a
dimension —¢§/2. We also need to introduce a coupling § in the bulk with dimension —d/2

S = /ddx (\TJW SOV 4 j%aoi!i\lfi> + ho/dTO’o(T, 0). (3.2)

Note that this coupling g is really just a rescaling of the ¢ field and in particular, the
[B-function of g must vanish at 6 =0

N 5
go=M""5  p;=23. (3.3)

We will set the renormalized § = 1 at the end. As before, we express the defect bare
coupling in terms of the renormalized coupling as

hon“S/z(thél(;lJr...). (3.4)

Following the same procedure as in the GNY case, we calculate the one-point function of o

and hence calculate the counterterm d1h. The one-point function gets contributions from
the following diagrams

\ xT X X
| ! !
! !
: | |
| |
: 1T T
|
|
|
|
| xTo T4
{o0(2)) = | + +
| T2 Ty
|
! T3 /I I3 \\
!
|
|
|
®

|

\]\

\‘\
i
0!
et

(a) (b) (¢)
(3.5)
The first diagram is just the tree level piece

(a) = —ho / d7' (o0()oo(+, 0)) = —NeT

|

(3.6)

For the other two loop-diagrams, we will only extract the 1/d poles. The divergent piece
of the second diagram has the structure

_ hogtb

(b) = Nix|§"

(3.7)

Notice that this diagram is similar to the one used to calculate the O(1/N) contribution
to the ¢ anomalous dimension in the usual theory without defect, except that one of its
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points is integrated over a line. So we should be able to relate the coefficient b to the bulk
anomalous dimension of ¢. To do that, note that if we were to calculate the anomalous
dimension of the field ¢ by calculating the divergent piece of the two-point function, we
would instead get

4
Z2{0(2)(0)) = /X‘; - N%;”Q& (3.8)

Thus Z, = 1— Wﬁ and v, = B5(0Z,/0g). So we can write b in terms of the anomalous
dimension of o
d—
24+1(d — 1) sin (%) (Tl)

b=—-N1NoYs, o= 3
Nd(d—2)r2

(3.9)

where we used 7, from [6].
Finally, the last diagram involves the following integral

B _ 4
= B i Y
= - 7 I NG Y 47T 9.5
16N 7w2d ( )|2+6 |x—x4’2+5 (3'10)

" (14 - x12) (223 - T34) — (214 - ng)(mu - x34) + (214 - T34) (T23 - T12)
|z12||223]?|234] 4| 14| ’

This integral looks very hard to calculate, but we know that the result is supposed to take
the form

~473 —45
GohyC(0)M h gy [ ¢
(c) =22 O‘X’1+45 ](;(|O N3 + finite terms as § — 0 (3.11)

We are only interested in the constant ¢ for the purposes of calculating the S-function. We
calculate this constant in appendix B and here we just report the result

AT (%) [l -9 (v (3 - 1) - via-3) -]

‘ 12(d — 3)0(d - 2) sin (4 (312
To cancel the 1/6 divergences, the bare coupling should then be
ho = M~9/2 <h + 2;5;3\[0 + ;;ij\cfa +.. > : (3.13)
Setting g = 1, this gives the g-function for h and the fixed point at leading order in N
By = _Nhl/)\/ B 3h3c
7N, NuN,
pe - NoorNo 24+573(0-3) (4 — 3)(d — 2) (1 — cos(nd)) [(%1)T(d) (3.14)
3c r(4- 1)31“(%>3d((d—3)H%72+(3—d)Hd_4— 1)

where H, is the harmonic number and b and c are given by egs. (3.9) and (3.12), respectively.
This immediately gives us the scaling dimension of the defect operator & as

29+2(d — 1) sin (”d) r (%)
h=h. T Nd(d — 2)7r2I‘ (7 - 1)

(3.15)
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In d =4 — ¢, this is
6
A(6) =1+ — 4+ O(1/N?). (3.16)
d=4—e N
This is consistent with what we found above using e expansion techniques for the lowest
dimension scalar on the defect, (2.32). We may also calculate the regularized one-point

function of ¢ at leading order in N
oWo h* o d - - ]-
VWG hNem (d-3)(d-1) |
(d—2)d ((d~ 8)Hy o+ (3~ d)Hyy 1)
(3.17)
To compare with GNY results, the o operator in the large N formalism must be identified

with s in the GNY formalism, up to normalization. In d = 4 — ¢, the above result for the
normalized one-point function of o is equal to 3/8 4+ O(e), which is consistent with (2.15).

Let us now discuss the spectrum of defect operators at large N. By the same arguments
we gave above in 2.1.1, the spectrum of defect fermions at leading order in large N is still
the same as described by (2.23). However, the o operator is no longer a free field even at
infinite N, so the spectrum of defect scalars differs from (2.23). To obtain this spectrum,
note that at leading order in large N, the two-point function of ¢ is given by
CRAZe N,

(o(z1)o(22)) = Py e T (3.18)

To obtain the leading large N defect spectrum, we should decompose the above two-
point function into defect channel conformal blocks ([40, 43]). The first term above is the
contribution of the identity operator on the defect, while the second term comes from an
infinite tower of defect operators with transverse spin [ and dimensions 1 + [ + 2m, as was
shown in [43]
1 1
P T TR
riy  [xalx2l

Z Z b?n,lfl+l+2m,l (3.19)

m=0[=0
where f1+l+2m7l is the defect channel conformal block for the scalar two-point function. We
are suppressing the dependence of the conformal block on the cross-ratios. The coefficient

b%u was computed in [43] and is given by

bgnl:r(z—g+m)r(1+l+2m)r(l+d;1)F(§+l+m)' 520
’ mlUT (2= )0 (14451 +m) T (3 +1+2m)

In d = 4, the above coefficient is only non-zero for m = 0, so only a single operator
of dimension 1 + [ for each transverse spin [ survives, which is consistent with what we
obtained in (2.28).

4 Conclusions

In this paper, we defined and studied a line defect in the Gross-Neveu-Yukawa universality
class using e-expansion and large N techniques. We provided evidence that there is a non-
trivial IR DCFT that this line defect flows to. It should of course be possible to obtain
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more precise estimates of the DCFT data by going to higher orders in e expansion in
d = 4 — € dimensions. Another immediate future direction is to develop an e-expansion in
d = 2+ € dimensions using the action in (1.1). In that case, the line defect must be defined
by integrating the fermion bilinear along the line. We make some remarks on this below in
appendix A. It would be interesting to develop this expansion for arbitrary N and compare
with our large N results.

Symmetry breaking defects, such as the one we considered in this paper, have recently
proved useful in Monte-Carlo simulations near the critical point [12, 44]. Typically, near
the phase transition, the value of the order parameter is rather small, and therefore in the
usual approach of working with the two-point function of the order parameter, one has to
deal with a quantity that is quadratically small. However, in the presence of symmetry
breaking defects, the one-point function is also non-zero and hence may be used to infer
bulk critical exponents. In [44], this approach was also used to determine scaling dimensions
of the defect operators for the pinning field defect in the Ising CFT in d = 3. It would be
very interesting to do such a study for the line defect we studied in the Gross-Neveu CFT
and verify our predictions using Monte-Carlo.
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A Line defect in free fermion theory
In this appendix we discuss the line defect in the free fermion theory defined by
S = /dda:xiw OV + hg / drv¥(r). (A1)

Let’s calculate the one-point function of (¥'¥). Already at this order, we need to sum up
infinite number of diagrams. The first few of them look like

T T T

h01F<g)2F(d—% _h31“(d)4 </d ) (x—7])-(x—T4)T] 375

(|Jz— 7'1||9U 7'2H7'13||7'32|)

6
5 d
e (s) ( [ i) (=)= rishyisthy A2)
I1( fo); .

G4m3d 2o |z =il|=75][713] 7341745 ||752])¢
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So there are diagrams with increasing powers of h and number of propagators. It is easy
to organize them as a geometric progression if we go to momentum space on the line defect
(as was done for instance in [45])

D(3)10me _ [ akin T (%5¢) e
ot Im2l? ) 21 gd-1%E |gps—d

(A.3)

We may then resum the propagator localized on the defect as follows

n+1
S ey (F(g)d'yo) (f[ dn’) (ra = ) — ).

d
i=1 (|7'2—7'{H7'1 — T3 -~|7'n 1 ||71 - ’|) (A4)

ja s () )
S 2, i n2r (254 )2> (4m) 5 14

(am) 5 (22 + ML

The expression for one-point function is then

2
L hoNT (4) T (d—3 h3NI‘ —d Az—
(W0 (z)) =— - <2> ( 2)3 + 2d oy 1 2 /dﬁdTg zon)- (@ Tz)d
An=3T(d—1)(x2)(4-3) 2 (Jlz—7]|z—72)
dk —1kT12
o ‘ e (A.5)
(02 BELEL )
In d = 2, this simplifies to
(B () = - (A.6)
47 |x| (1 + T)
In the interacting GN model, the line defect can be described as
_ . _ N2 -
- / i (xpm LOW + % (w.w) ) + ho / dr¥, 0 (7). (A7)

At the fixed point in d = 2+¢, this must flow to the same IR DCFT as the one we studied in
the paper. This is because the operator ¥; ¥ is identified with the operator o in the large
N formulation (1.4), and with the operator s in the GNY description (1.5). As the free
theory calculation discussed above shows, the calculation should involve summing up an
infinite set of diagrams with increasing powers of h, and hence appears to be non-trivial.
We leave the calculation of the properties of this defect in d = 2 4+ ¢ dimensions as an
interesting future direction.
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B Integral for the large N beta function

In this appendix, we evaluate the integral for diagram (c) relevant for calculating the beta
function of the defect coupling at large N. The integral in (3.10) is

B _ 4
© GERENAM T () ﬁdd o 1 /dd 1
c) = — TidT; 575 4T 555
16N 72 b |z — ()P0 Yo - g

y (x14 - x12) (223 - w34) — (14 - T23) (w12 - T34) + (T14 - T34) (223 - T12)
|212||203] @ |234] 4|2 14]¢

In momentum space, the integral is

C)=—

4
géh%j\f;‘M*“w?dF (%) f[ dTi’ddki e—tkix(r]) eilk1tkatks)w
9—4d+8+45 NT (1 i %)4 (2m) (k47270 ) |ky + ko +kg|d7270

=1
/ dk ([k-(k‘1—k‘)][(k‘—|—k2)'(k—l—k‘2+k3)}—[(k—l—kz)'(k1—kr)][k:-(/€—|—k‘2+k3)]
(2m)¢ (Kl |1 — K|k + Ko ||+ Kz + ks |)?
[k'(k+k2)][(k?1—k)'(k+k2+k3)])
(|| |k1 — k|[k+ k| |k + Ko+ k3|)® /)

(B.2)

The integral over 7/ may be performed, and it sets the 7 component of the momentum k;
to 0. As we mentioned in the main text, the result is expected to take the form

() = GorgC ()M higs
B |x|1+49 Y

(]\?5 + finite terms as 0 — O> . (B.3)

We are only interested in the constant ¢ for the purposes of calculating the 5 function. To
do that, we may perform a Fourier transform to momentum space and then multiply it by
a power of momentum and take the limit of 6 — 0 followed by the limit of zero momentum

473 —45
@ = ‘k’d—2—6/dd—lxgohoc(5)M pikx

’X|1+46 k—0
d ] oy (B.4)
~ 20251 (2 _ 1> ?\?g + finite terms as § — 0.

Since the 1/ piece is independent of k, when we do these operations to the integral above,
we may first take the zero momentum limit, and then take § — 0 at the end. This gives
A3 A 46 2] (d=2-5)*
¢) =—
9—4d+9+46 NT (1 + %)4 (2m) @~ (2m) 47 (1K [ ko [y + ko|)4 270

Ak (k2 — k2 — (k + k»)?)
/ (2m)? k2(k — k1)2(k + ka)?

(B.5)

= (&)1 + ()2 + ()s-

with the understanding that k:? = 0. In the second line, we split the three terms in the
numerator, and we will deal with them separately. The result of the first integral over k
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can be represented in terms of a Mellin-Barnes contour integral [46]

4
. GOMNGM—03/2D (13=0) e, / Ak, d? ko 1
c)h1=— - - o
2t NT (14:4) T(a—3) 7 G O (ko) ol 40
/ /m dsdt T(=s)0(=O (§=2-5)0(§=2-) D (1+5+6)0 (3—§+5+t) -
2mi)2 k1|25 |ko| 2 [ky + ko|25T20+6—d : :
The integral over k; and ko may then be performed easily and it gives
473074 _S41od—67 (d—2)*
JohgNsm2 12070 (452
00N ( 2 ) (B.7)

3N6T (%) T'(d—3)

oo dedt T(=s)D(=0)T (54 3) D (¢4+3) T (52— s )T (83— §+s+1)
/ / 27TZ % S

géh%x\f;‘wgﬂzd—f”r(%f oo g D(=0)0 (t+3)
BNGD (431 1 (d—3) [wfm (4-1+1)

x/m d—s’.r(—s)r(s+1)r(3—g+s+t) (d25—3—t)(

ico 271 2

I'(1+5+t) _T(2—%+8)
['(2+s+t) F<37%+5) '

In the third and fourth line, we write it in a form so that we can directly do the s integral
by applying Barnes’ second Lemma to both the terms above. But we also need to add
the contribution of the pole at s = d/2 — 2, which is not included by the result of Barnes’
Lemma. Adding all the pieces, this gives

2

GRREN A e H29d-6] (@)4
BNOT (451) T(d - 3)(2ri)

h3/\/4772+52d T (dT)g /ioo csc(mt) cse (77 (% —t)) sec (%)
; )

(o ()@ et (1) o
We can then sum up all the poles at t = m and at d/2 — 2 + m to get
(@)1 = 3h3N4ﬂ2+42d T (d2)3 cse(rd) (¥ (§ —1) —v(d-3)) , (B.9)
3NOT (434) T (%%) T(d = 3)



Next, we look at the second term, which is easier
4
géth;;M%sﬂzdr (d—%—é)
7]
_ é
9—4d-+9+48 N T (1 + 5)
/ ddilkl ddilkl d°k 1 (BlO)
(2m) 4t (2m) 4t (2m)% (|ky || ko1 + ko) 270 (k — k1)2(K + k2)?
4
GehgNAm 229D (422) 1 (2 - 4)
a 3(d—3)T(d—2)Né
Lastly, the third piece also gives the same result
4
GehgNAm 2205 (422) (2 -
3(d—3)'(d—2)Nd

C)o =

[NJisH

(@) =—

) . (B.11)

Combining all the pieces, we get

NATiT (%)2 [(@=3) (v (4-1) —v(d-3)) - 1]
12(d — 3)1(d — 2)sin (%) '

c=— (B.12)

C Equations of motion method for line defect in O(IN) model

Similar to what we did for GNY in the main text, we can also use the bulk equations of
motion to determine the anomalous dimensions of spinning defect operators in the Wilson-
Fisher O(NN) model with a localized magnetic field, which was studied in [18]. The action

for that model is
5= [[ate (500" + 56162 ) +1 [ droi(r.0). ()

where I = 1,..., N. The bulk theory has a fixed point in d =4 — € at A\, = 3(]371);6. The
two-point function of the bulk scalar with the transverse spin [ primary on the defect takes
essentially the same form as (2.24):

51‘]()( . w)l
xR e 4 (= )R

As before, acting on the above equation with the bulk Laplacian gives (2.25)
G w287 (28% —d+2) (A% AP +1) (d-3+1- A%+ A7)
(oW )

W) x2 + (1 — 7/)2 x2

(@' (2)d] (', w)) = (C.2)

V(¢! ()
(¢! ()9

(C.3)
On the other hand, the fact that the bulk scalars satisfy an equation of motion implies

that, to leading order in ¢, we have
~ A N
V! (2)d] (7' w)) = g<¢I¢K¢K(9«")¢i}(T' w)) (C.4)

+0O(e).
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where Ay is the coefficient of the one-point function of ¢? in the presence of the defect.
This quantity was computed in [18], as well as the defect coupling at the fixed point
h? = N + 8+ O(¢). Noting that 7% = O(€?), we set (C.4) equal to (C.3) and obtain

oy (1+267)e

W =S +0(&2). (C.5)

Thus the scaling dimensions of the defect operators are

3 _ 1-1 —
1 = . I - .
Ad)‘i‘l“‘mdzz_el"—l—mﬁ J—2,,N

Note that the scaling dimensions for Af:lo, Af:ll, A?:JO, and Afz‘fl are consistent with the
respective scaling dimensions of A(¢1), A(Vér1), A(da), and A(V,) obtained in [18], as
expected. But this method gives us results for all [.
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