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ABSTRACT: We study the holographic correlators corresponding to scattering of fluctua-
tions of an open string worldsheet with AdSs geometry. In the out-of-time-order config-
uration, the correlators display a Lyapunov growth that saturates the chaos bound. We
show that in a double-scaling limit interpolating between the Lyapunov regime and the
late time exponential decay, the out-of-time-order correlator (OTOC) can be obtained ex-
actly, and it has the same functional form found in the analogous calculation in JT gravity.
The result can be understood as coming from high energy scattering near the horizon of a
AdSs black hole, and is essentially controlled by the flat space worldsheet S-matrix. While
previous works on the AdSs string employed mainly a static gauge approach, here we focus
on conformal gauge and clarify the role of boundary reparametrizations in the calculation
of the correlators. We find that the reparametrization mode is governed by a non-local
action which is distinct from the Schwarzian action arising in JT gravity, and in particular
leads to SL(2,R) invariant boundary correlators. The OTOC in the double-scaling limit,
however, has the same functional form as that obtained from the Schwarzian, and it can
be computed using the reparametrization action and resumming a subset of diagrams that
are expected to dominate in the limit. One application of our results is to the defect CFT
defined by the half-BPS Wilson loop in N/ = 4 SYM. In this context, we show that the
exact result for the OTOC in the double-scaling limit is in precise agreement with a recent
analytic bootstrap prediction to three-loop order at strong coupling.
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1 Introduction

One way to study low-dimensional holography is to start with a higher dimensional holo-
graphic setting and introduce a defect. A prototypical example of this is the open string
in AdS5 x S® incident on a straight line on the boundary, which is dual to the half-BPS
Wilson line in N/ = 4 super Yang-Mills (SYM) [1, 2]. Classically, the string worldsheet
forms a surface of extremal area in AdSs with AdSs geometry, and transverse fluctua-
tions of the worldsheet can be viewed as fields in AdSs that are governed by a tower of
interactions determined by the Nambu-Goto action [3]. The fluctuations are dual to inser-
tions of local operators along the Wilson operator on the boundary [4, 5], which defines a
one-dimensional defect CFT. In recent years, this AdSs/CFT; set-up has proven to be a
versatile playground for studying AdS/CFT and its interplay with many non-perturbative
techniques in conformal gauge theory, including supersymmetric localization [6-8], inte-
grability [9-14], the numerical/analytic conformal bootstrap [15, 16], and the large charge
limit [17-19]. See also [20, 21].

The AdS,/CFT; correspondence of the open string/Wilson line can be viewed as an
example of “non-gravitational” or “rigid” holography [22]. At zero string coupling and
in the limit of large string tension, the worldsheet decouples from closed string modes in
the bulk and its fluctuations are suppressed. If one works in static gauge, the worldsheet
theory does not contain a dynamical metric and shares many similarities with QFTs in non-
dynamical AdSs [23-31] and conformal line defects in higher dimensional CFTs [32, 33]. For
instance, boundary correlators respect unitarity and the global conformal symmetry group
SL(2,R) (i.e., SO(2, 1), the isometry group of AdSs) and boundary operators can be divided
into primaries and descendents that satisfy the OPE, but the theory lacks a boundary stress
tensor. The absence of a graviton on the worldsheet and a stress tensor on the boundary
is somewhat trivial in 2d/1d, but is also a feature of the worldvolume theories of higher
dimensional branes (and of higher dimensional QFTs in non-dynamical AdS and conformal
defects). It should be noted that the SL(2,R) symmetry of the AdSy/CFT; correspondence
of the string/Wilson line distinguishes it from examples of topological AdSs/topological
CFT; with full Diff(S?) symmetry (see e.g., [34-36]), and also from the nearly-AdSs /nearly-
CFT; (NAdSy/NCFT;) of Jackiw-Teitelboim (JT) gravity [37-40]. In JT gravity, the
boundary conformal symmetry is broken by the introduction of a scale quantifying the
divergence of the dilaton at the boundary to U(1), and SL(2, R) symmetry is restored only
in the ultraviolet.

On the other hand, the string worldsheet can also be viewed as defining a toy model
of quantum gravity. One justification for this interpretation comes from the form of the



scattering interaction on the worldsheet of the infinitely long non-interacting string in flat
space [41]:

S =l (1.1)

where /4 is the string length. This describes the phase shift picked up by left and right
moving quanta with lightcone momenta p“ and p* interacting on the worldsheet. The
scattering matrix in (1.1) gives the worldsheet theory a number of properties that are
reminiscent of more realistic theories of gravity, including an absence of off-shell observables,
a minimal length, a Hagedorn temperature, and integrable versions of black holes [41].
Furthermore, (1.1) is precisely the form of the Dray-t Hooft scattering matrix [42, 43]
that describes shock-wave scattering between high energy gravitating particles in 1 + 1
dimensions. In JT gravity, the same shockwave S-matrix is responsible for the form of the
out-of-time-ordered correlator (OTOC) [38, 44], which, like in higher dimensional theories
of gravity [45, 46], saturates the chaos bound [47] in the Lyapunov regime. This feature of
JT gravity is one of the simplest illustrations of its usefulness as a model of low-dimensional
quantum gravity (see [48] for a recent review).

By adapting the methods of [45, 46] to the worldsheet, the OTOC on the AdSs string
can also be interpreted in terms of high-energy scattering of particles that are created
and absorbed by operators on the boundary. At high enough energies (corresponding to
long enough time separations between the operators on the boundary), the interaction
between the bulk excitations is localized to a small region on the AdSy worldsheet, and
the scattering matrix is well-approximated by the flat space answer in (1.1). It therefore
follows that the OTOC on the AdSs string in the Lyapunov regime takes the same form
as in JT gravity [49-51]:

<VW(t)VW(t)> . AvAW f? %
Vv wwy 1 e2°

(1.2)

Here, ¢ is the AdS radius. The scrambling time is t; ~ (3 log é and the Lyapunov exponent
is AoTtoc = %’T, which saturates the chaos bound. The above result can be checked using
more standard AdS/CFT methods by computing the leading contact Witten diagram con-
tributing to the euclidean four-point function and analytically continuing to the OTOC
configuration [52]. The fact that the string OTOC saturates the chaos bound is quite
natural when one views the AdS, string worldsheet theory as a toy model of gravity, but
somewhat surprising when one views it as an example of rigid holography.

In this work, we extend the previous studies of chaos on the AdSs string worldsheet.
The expression for the OTOC in (1.2) is valid in the Lyapunov regime where the string
length /5 is small compared to the AdS radius £ and ¢ is much less than the scrambling time
ts. More generally, one can study the OTOC in the double scaling limit ¢ — oo, £5 — 0
with k = %e% held fixed. In the first part of this paper, we will argue that because (1.1)
is the exact scattering matrix on the flat space string worldsheet, the scattering analysis
in [49] can be extended to all orders in x, with the result:

VW (VW (t 1 _ 162 2me
< (Vé))(WW(')» = Ay UQ2Ay,1+2Ay — 20y, k7 1), R= 1626 g, (1.3)




where U (a, b, x) is the confluent hypergeometric function. As a non-trivial check of eq. (1.3),
we show that it agrees up to order x* with the analytic continuation to the OTOC configu-
ration of the scalar four-point function in the Wilson line defect CFT that was recently com-
puted to three loops by Ferrero and Meneghelli via the analytic conformal bootstrap [16].

Eq. (1.3) is also precisely the form of the OTOC in JT gravity in the late-time weak-
coupling double scaling limit [38, 44]. This equivalence of the OTOCs for both the AdSs
string and JT gravity, both in the Lyapunov regime and in the double scaling limit, is
interesting and warrants further investigation. One simple explanation of the equivalence
is that it is a consequence of the local scattering interaction and the background geometry
being the same for both the AdSs string and JT gravity. However, it is tempting to think
that the equivalence of the OTOCs is evidence of a further, deeper connection between the
string worldsheet theory and JT gravity. In particular, the dynamics of JT gravity cou-
pled to matter is completely determined (at leading order in the genus expansion) by the
Schwarzian boundary mode. Recall that JT gravity has a dynamical boundary curve that
cuts out a patch of AdS, and regularizes the divergence of the dilaton. The boundary curve
is governed by an effective Lagrangian given by the Schwarzian derivative, whose form is
fixed by the pattern of spontaneous and explicit breaking of the Diff(S') symmetry group of
reparametrizations of the boundary [37-40]. The Schwarzian theory is exactly solvable [53—
62], and in particular provides a rigorous method of deriving the OTOC in (1.3) [44] that
complements the scattering argument based on the shockwave interaction in (1.1). Further-
more, the Schwarzian mode appears in other contexts characterized by the same symmetry
breaking pattern, like the SYK model [63-66] and 2d CFTs with large central charge [67],
where it similarly determines the behavior of various observables including the OTOC.
Given these observations, it is tempting to conjecture that the AdSs string also has an
effective Schwarzian mode that dominates in a certain regime and in particular determines
the OTOC in the double scaling limit. Indeed, this possibility has been explored in [68-71].
However, the boundary correlators on the AdS» string are expected to be symmetric under
the global conformal group SL(2,R), as required by their defect CFT interpretation, while
the Schwarzian breaks even scale invariance and is symmetric only under the U(1) group of
translations along the boundary. Therefore, symmetry considerations alone seem to rule out
the existence of a Schwarzian mode for the AdSs string, at least in the setting we consider.

Nonetheless, the possibility of understanding the double scaled OTOC on the string
worldsheet in terms of a boundary mode is worth exploring, and we do so in the second
half of this paper. In the computation of the string sigma model path integral, the integral
over metrics after fixing the conformal gauge gives rise to bc ghosts and an integral over
reparametrizations of the boundary of the worldsheet. The appearance of the integral over
boundary reparametrizations has been understood for a long time for the case of strings
with boundary in flat space [72-76], but it has also more recently been studied in the
context of the string in AdS [77-80]. Building on those works, we study the AdSs string in
conformal gauge and derive an effective action for the boundary reparametrizations. If a(7)
is a reparametrization of the boundary of the hyperbolic disk, so that a(7+427) = a(7)+2m,
then at least for large tension its effective action can be written in terms of the extremization
of a classical action for the two coordinates on AdSs, with boundary conditions set by the



reparametrization a:

2 8 8
Sla(1)] = extremize M/da‘dT 9579 7'"—}—28598 b_ - 22 . (1.4)
r(o,r)8(07) | 2 sinh” r sinh® o
r(0,7)=0
0(0,7)=a(1)

This is an implicit representation of the action. The expansion of the action to quadratic
order about the saddle point «(7) = 7 + €(7) can be determined explicitly:

2 E(1) — ()2 = (e(7) — e(7))2
Slr+e(1)] = J;Sﬁ/der’ o) E2 ),) (T(T/()])Q T L o). (1.5)
sin ( 75

Related expressions for the reparametrization action of the string in AdS appeared in [77—

80], and were used to study certain properties of the string partition function.

The reparametrization action in (1.4) breaks the reparametrization symmetry Diff(S1)
to an SL(2,R) subgroup that is gauged (which is the familiar SL(2,R) group of worldsheet
transformations that preserve the conformal form of the metric). As discussed in [38] in the
context of JT gravity, this symmetry breaking pattern together with an assumption of local-
ity uniquely determines the effective action to be the Schwarzian. The reparametrization ac-
tion for the string evades this argument because it is non-local. Furthermore, in accordance
with our comments above and in contrast to the Schwarzian, the string reparametrization
action has a physical SL(2,R) symmetry in addition to the SL(2,R) gauge symmetry.

Using the reparametrization action in (1.5), we can derive the tree-level four-point
functions and find agreement with the static gauge results in [3]. The computation is
completely analogous to the perturbative computations in the Schwarzian theory in [38].
Technically, one finds that the contribution of the 4-point 4-derivative interaction that ap-
pears in static gauge is reproduced in conformal gauge by the reparametrization “dressing”
of free boundary-to-boundary propagators. Furthermore, with some plausible assumptions
— i.e., that the OTOC in the double scaling limit is determined by the reparametrization
action to quadratic order and does not receive corrections from the fluctuations of the
matter or ghost fields in the string path integral — we can also use the reparametrization
action to reproduce the all-orders result in (1.3).

Outline of the paper. The rest of this paper is organized as follows. Section 2 summa-
rizes the definition of the boundary correlators and OTOC on the AdS, string, and reviews
the static gauge computation of the OTOC in the Lyapunov regime given in eq. (1.2).
Section 3 derives the all orders double-scaled OTOC given in eq. (3) using the scattering
argument on the worldsheet. The analysis is a straightforward extension of the one in [49],
and is essentially equivalent to the scattering analysis in JT gravity [38, 44]. Section 4
presents two checks of the all orders double-scaled OTOC using results for the unit charge
scalar four-point function derived in [16], and the large charge four-point functions derived
in [19]. Section 5 presents the conformal gauge analysis of the classical string and expresses
the classical action in terms of a dynamical reparametrization mode on the string boundary.
Section 6 introduces the path integral over reparametrizations and uses it to compute the
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Figure 1. Outline of the paper. The OTOC on the AdS; string in the Lyapunov regime was
studied in [49-52]. The present study of the OTOC in the double scaling limit draws on a number
of previous works, including on interpreting OTOCs as holographic scattering [45, 46], scattering
on the string in flat space [41], four-point functions on the half-BPS Wilson loop [16], and the
reparametrization mode of the AdS, string [77-80]. In addition, the parallel story of the OTOC in
JT gravity — and the discussions in [38, 44] in particular — served as a useful guide.

tree-level four-point functions and the double scaled OTOC on the AdS, string. Section 7
summarizes the similarities and differences of the reparametrization mode on the AdSs
string and the Schwarzian. Finally, section 8 concludes with a discussion of future direc-
tions. Several appendices are included to flesh out comments made in the body of the paper
and to explain technical details. The outline of the paper is also summarized in figure 1.

2 Preliminaries and warm-up

In this section, we review the basic concepts needed in the analysis of chaos on the AdSs
string. These include the definition of the boundary correlators on the string and the out-
of-time-order-correlator as a diagnostic of chaos in a thermal quantum system. Then, as
a warm-up to the scattering analysis and conformal gauge analysis in later sections, we
review how to compute the simplest four-point function on the AdSs string at tree level —
as well as the OTOC in the Lyapunov regime — in static gauge.

2.1 Boundary correlators on the AdS; string

Consider an open string in AdSs x S° that is incident on a curve v on the AdS boundary.
The dynamics of the open string is summarized by its partition function. In full generality,



this is the partition function of string theory summing over all asymptotically AdSs x S°
states that include an open string incident on v on the boundary of AdS. At zero string
coupling, g = 0, the open string decouples from the closed strings in the bulk, and the
partition function is given by the sigma model path integral for a superstring in AdSs x S°,
subject to the Dirichlet boundary conditions specified by the curve . To state this more
precisely, let (z,z") be Poincaré coordinates on AdSs; with bulk coordinate z € [0, 00),
boundary coordinates z# € R, p = 0,...,3, and metric ds* = z72(dz? + da#dz,,). (We
work in euclidean signature here). Furthermore, let 4™ be coordinates on S° with y™ € R,
m = 1,...,5 with metric ds?> = gy (y)dy™dy™. In these coordinates, the open string can
be represented by a map

Y (s,t) = (2(s,t),2F(s,t),y" (s, 1)), (2.1)

where s € [0,00) and t € R are coordinates on the worldsheet. We choose the worldsheet
coordinates so that the boundary is located at s = 0. Similarly, the curve on R* x S° that
the open string is incident on can be represented by a map,

v am (@3(a), 5" (o) (2.2)

where « is the parameter along the curve. Then, we write the partition function schemat-
ically as:

Z[ip7gm] — / DhDZDny@iS[haﬁ%,x}ﬁym}7 (23)
zh|g=2H
Yy o=g™
z|lp=0
where we integrate over the coordinates of the string in AdSs x S® and the auxiliary metric
hap. (We have suppressed the fermionic coordinates for simplicity). The (bosonic part of
the) superstring action is:
T

m oB [0az08z + OqxtOgx ma n
Slhas, = o,y = / 2o ﬁ{ P T | ()0 0" - (24)

Here, Ty = 1/¢2 is the string tension and ¢ = (s,t) are the worldsheet coordinates.

If we additionally restrict to the regime in which the string tension is much larger than
the AdS curvature, then the path integral in (2.3) is dominated by the classical solution,
and the partition function can be approximated as

Z[E", §™] ~ e~ Slhap:z,2ty™] (2.5)

Here, Slhag, z, 2", y™] is the action of the classical string, whose worldsheet forms a surface
of extremal area incident on <. The leading quantum corrections, in 1/7s, come from
fluctuations about the classical solution. The simplest (i.e., maximally symmetric) choice
for +, and the one we will consider, is a straight line in R* and a point in S°. The
classical string incident on this contour carves out an AdSs subspace in AdS5. The line on
the boundary and the AdSs subspace in the bulk preserve half of the supersymmetries of



AdS; x S? (i.e., the subgroup OSp(4*[4) C PSU(2,2[4)), including the subgroup SO(2, 1) x
SO(3) € SO(5,1) of isometries of AdSs (where SO(2,1) are isometries of AdSs and SO(3)
are rotations around AdSs) as well as the subgroup SO(5) C SO(6) of isometries of S°.
Although we can work with any parametrization of -, it is convenient to label the points
by the euclidean coordinate along the line. To be concrete, we let the contour lie along
the 20 = z axis in R*, and parametrize it as v : x — (z,2% = 0,3™ = 0) (where a = 1,2,3
labels the three directions in R* orthogonal to z°). More generally, we consider the “wavy
line” consisting of small perturbations around the straight line, which we represent as

viw e (2,2 (2), g (2), (2.6)

where % and ¢ are small. Given this choice of representation of the wavy line, we
denote the partition function by Z[Z%, §™] (instead of the curve reparametrization invariant
expression in (2.3)) and define the boundary correlators of the AdSs string by taking
derivatives of the partition function in the directions orthogonal to the line:

o 0

(@ @a)y™ (@2) - Jaass = 27 s s

VAR . (2.7)
Fo=gm=0

These are the correlators we will analytically continue to the out-of-time-order configuration

to study chaos on the open string.

2.2 Defect correlators on the Wilson line

One can also study the boundary correlators on the AdSs string in terms of its dual CFT
description. The open string incident on the general curve v : o — (Z#(a), 9™ () on the
AdS boundary is dual to the Wilson loop operator in N'= 4 SYM that couples to both the
gauge field A,, along the path z#(«) in the spacetime R* and to the scalars ®/, I =1,...,6
along the path §™(a) in S° [1, 2]. Explicitly, the Wilson operator is:

Wi, §™] = Tr Pel (1A +210"®!)da (2.8)

Here, 0!(a) are embedding coordinates on S° (satisfying /0! = 1) that can be expressed
in terms of the y™ coordinates — for concreteness, we can take y" to be stereographic

. 1—142 .
coordinates so that 0™ = 14?7%72’ 66 = 1+352, and the metric becomes ds? = df'df! =
4 4

(14 iy2)_2dymdym. The precise statement of duality is that the open string partition

m

function is equal to the Wilson operator expectation value:
ZE", g = WIEH, 7" =4 sym. (2.9)

Note that the classical regime in AdSs x S° (gs = 0 and T, > 1) — which is the regime
in which the approximation in (2.5) is valid — corresponds to the planar limit (N — oo

with A = g2, fixed) at strong coupling (A > 1) in /' = 4 SYM. In particular, the string
V)
27 °

In the specific case of the AdSs string incident on the straight line on the boundary of

tension and ’t Hooft coupling are related by Ts =

AdSs, its dual is the Wilson operator that couples to a single component of the gauge field



and a single scalar: W = Tr Pe/ ((40+2%)dz  Thjs Jikewise preserves the OSp(4*|4) subgroup
of the PSU(2,2|4) superconformal group of N' =4 SYM and is called the half-BPS Wilson
line. Given the statement of duality in (2.9) (and the representation of the wavy line
n (2.6)), the CFT dual of the boundary correlators on the AdSs string in (2.7) is the
half-BPS Wilson line with elementary operators in N' = 4 SYM inserted along the contour:

(" (x1)y™ (x2) . . .)Ads, = (D (x1)P™ (z2) .. .)), (2.10)

Here, D* = iF + D%®5 are the three displacement operators, ®” are the five scalars
orthogonal to ®%, and the “double bracket” denotes correlators on the Wilson line, which
are defined by:

(Tr P [01(951)02(902) . ef(iAoJr(Iﬁ)dx}

) A'—4 SYM
(Tr Pel ((A0+®0)dzy ) oy .

<<01($1)02(x2) .. >> = (2.11)
The path ordering symbol puts the operators in order on the line and connects them with
the intermediate sections of the Wilson operator to make a gauge invariant object. D® and
®™ are the “elementary operators” on the Wilson line, but one can more generally study
correlators of more general adjoint operators O;(x;) (e.g., composites of D* and ®™).

The operators on the Wilson line are classified by their representations under
OSp(4*|4). In particular, each operator has a conformal dimension A specifying its be-
havior under the SL(2,R) group of conformal transformations in N' = 4 SYM moving
around the points on the line (which correspond to the isometries of AdSs) . Thus, the
half-BPS Wilson line defines a 1d defect CE'T whose local correlators are given by (2.10).
As a special case, as in higher dimensions, the 1d conformal symmetry fixes the two-point
function of a primary V' (with dimension Ay) to be of the form:

V@)V () = L (2.12)

T12
where x;; = x; — x;. The three point function is also fixed up to the OPE coefficient, and
the four-point function of two copies of V' with two copies of W (with dimension Ayy) takes
the form:

(V(1)V (20) W (3)W (24)))
{(V(z1)V (@2))) (W (23)W (24)))

= G(x), (2.13)

where G(x) is a general function of the conformally invariant cross-ratio,

_ T12%34 (2.14)

T13T24

This is the unique independent cross-ratio in 1d, since 1 — xy = %.

So far we have discussed the 1d CFT on the line. It is often convenient (for instance,
to study thermal correlators) to study the 1d CFT on the circle instead, which is related
to the line by a conformal transformation. We can label the points on the circle by an

angle . Mapping points x; on the line to points 6; on the circle by = = tang interchanges



euclidean distances z;; and chordal distances 2sin % in the correlators. In particular, the
two-pt function of V' becomes

My
= 2.1
(V(01)V(62))) 2sin ]2y (2.15)
Furthermore, the four-pt function of two copies of V' at 61, 62 and two copies of W at 03,
64, normalized by the two point functions, is again equal to G(x) as in (2.13), with the
cross-ratio given by
i 012 o5 O34
sin 712 gin 734
X = ———. (2.16)

i 013 qip O24
sin 7% sin 2

Restricting to AdS; x S'. Going forward, to more cleanly separate the key concepts
from technical details, we will mainly focus on an AdSs x S' subsector of AdSs x S°.
This means considering fluctuations of the classical AdSs along only one direction in S°
in (2.7), or insertions of only one scalar along the Wilson line in (2.10). We will mostly
work with Poincaré coordinates z € [0,00), z € R on AdSs and a polar angle y € [—m, )
on S', with the metric ds? = W + dy?. Then, we represent the string worldsheet and
boundary curve as:

X (s,t) = (2(s,1),2(s,), y(s, 1)), 7w (@, 9(w)), (2.17)
and write the partition function as
Zly) = / DthD:L‘Dye_S[haﬁ’z’x’y] ~ e_S[hﬂﬁ’z’“’y], (2.18)
Slo=y

with the action given by

T 0q 20 O0q20
Slhag, 2,2, y] = 2/d2a\/ﬁh°‘5 [ & Bz; TosT —l—@ayagy] . (2.19)
The four point function that we will study explicitly is:

P
(y(x1)y(z2)y(23)y(r4)) Ads, = ;5?;(3:1)5@(;%[;%:63)@(%4)

(2.20)

§=0
2.3 Static vs. conformal gauge

The expression for the partition function in (2.18) (or more generally in (2.3) and (2.5)) is
schematic. It contains a lot of redundancy due to the reparametrization symmetry of the
string worldsheet, which needs to be gauge fixed in some way. Furthermore, we have not
made precise the meaning of the boundary condition that + imposes on X. We address
both of these points now.

One simple way to fix the gauge symmetry is to work in the static gauge, in which the
worldsheet coordinates are identified with the AdS, coordinates: z(s,t) = s and z(s,t) = t.
The longitudinal coordinates z and z are then no longer dynamical in the path integral



in (2.18). Integrating out the auxiliary metric yields the Nambu-Goto form of the action,
which is now a function of only the transverse mode, y:

Sly] = TS/dQU\/det [9ap + 0ayOpy]. (2.21)

Here, gopg = %25&5 is the AdS, metric. The statement that the string X is incident on the
curve v in static gauge becomes simply:

y(s = 0,t) = §(t). (2.22)

The main advantage of the static gauge is that it is conceptually simple, since it gets rid of
the longitudinal modes and fully fixes the reparametrization gauge symmetry. The result
is an effective theory for a massless scalar in AdS, governed by the Nambu-Goto action
(which when expanded in powers of y yields a tower of derivative interactions suppressed
by powers of Ts) that can be studied perturbatively using Witten diagrams, as done in [3].

An alternative way to fix the gauge symmetry is to work in the conformal gauge, in
which the worldsheet coordinates are chosen so that the auxiliary metric is conformally
equivalent to the AdSy metric: hog = e2wga5. In this case, z, x and y are all dynamical,
and the string action becomes

T /d2a {Oazﬁ z2 + 0qr0%x + B0y (2.23)

S[Z7 xz, y] = ? 52
(The worldsheet indices in the above expression are contracted using d,5.) The action
is supplemented by the Virasoro constraint coming from the equation of motion of the
auxiliary metric. Furthermore, in the conformal gauge, the condition that the string ¥ is

incident on the curve v can be expressed as:
z(s=0,t) =0, z(s =0,t) = a(t), y(s =0,t) = g(alt)), (2.24)

where a(t) is some reparametrization on R.

The conformal gauge has the advantage of making the transverse mode y free, but it
does so at the cost of introducing new dynamical objects: the longitudinal modes x and z
(which are governed by a non-linear action) and the reparametrization mode . (One can of
course write the boundary condition in (2.24) without « as y(0,t) = g(z(0,t)), but we will
see that it is useful to treat «v as a separate dynamical object). Furthermore, the conformal
gauge does not fully fix the reparametrization symmetries on the worldsheet, since it leaves
behind the usual residual SL(2,R) group of global coordinate transformations that preserve
the metric up to Weyl rescaling. Nonetheless, one of the main lessons of this work is that the
conformal gauge, with the boundary reparametrization mode playing the lead role, provides
an interesting approach to studying the correlators and the OTOC on the AdSs string.

Although we will focus for simplicity on the motion of the string in AdS, x S*, many
of the arguments and results that follow are more general. Both the static gauge analysis
reviewed in section 2.5 (and treated more comprehensively in [3]) and the scattering analysis
in section 3 can handle arbitrary transverse fluctuations in AdSs and S°. Furthermore, the
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conformal gauge analysis in section 5 can be straightforwardly extended to AdSs x S°, with
the only difference being that there are more transverse modes and they interact due to the
curvature of S°. In appendix D, we show that the leading connected four-point function of
S® fluctuations, computed in [3] using the static gauge, can be reproduced in the conformal
gauge once the reparametrization mode is taken into account. By contrast, the extension
to the string in AdS44 for d > 2, which would involve massive transverse modes that are
mixed together with the longitudinal modes, is less straightforward. It would be interesting
to understand this case better, perhaps by harnessing the formalism developed in [81].

Finally, most of our discussion applies equally well to open strings in more general
AdSg41 x X space-times with an AdSy x S subsector, including the AdS, x CP? background
dual to the ABJM theory.

24 OTOC in a 1d CFT

Now we briefly review the out-of-time-order correlator (OTOC) as a diagnostic of chaos
in thermal quantum systems [46, 47, 82]. The OTOC defines the quantum analog
of the Lyapunov exponent of a classical chaotic system. In a classical system with
Hamiltonian H at inverse temperature (3, the Lyapunov exponent A is defined by

2
Z71 [ dgdpe=PHPa) (gg—(%D ~ €** and measures the exponential rate of divergence of
nearby classical trajectories. In a quantum system, one promotes the Poisson bracket
{q(t),p(0)} = gg—((é)) to a commutator, generalizes ¢ and p to arbitrary Hermitian operators

V and W, and studies the observable
Z7 1T (e PH [V (0), W(0)]T [V(0), W(2)]). (2.25)

Here, W (t) = eHtWe™Ht V(t) = Ve ! and Z = Tr e PH.

In weakly coupled systems, there is typically an interval, between the “dissipation” time
tq ~ B (i.e., the characteristic decay time of two-point functions) and a “scrambling” time
ts > B, in which the squared commutator grows exponentially like ~ e*0T0o¢t The rate of
exponential growth, Aoroc, is identified as the quantum Lyapunov exponent. Expanding
the squared commutator in (2.25) yields four four-point functions, two in time order and
two out of time order. The time-ordered correlators factorize into the products of two
point functions within the dissipation time, which means the exponential growth is driven
by the out-of-time correlators. It is therefore standard to identify the following observable
as a simple probe of quantum chaos:

(ViW3VaWy) = Z7 1 Te(e PHV (1) W (t3)V (t2) W (t4)), (2.26)

where V; = V(t;), W; = W (t;). This OTOC slightly generalizes the one appearing in (2.25)
since the times t; are allowed to take complex values; in particular, in order to regularize
divergences arising from coincident insertions, it is useful to separate the operators in
imaginary time.

The analyticity and boundedness properties of the OTOC imply that the quantum
Lyapunov exponent satisfies the “chaos bound,” Aoroc < %’r [47]. This bound is saturated
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———" W,

Figure 2. The configuration of the operators in the OTOC on the thermal cylinder. Lorentzian
time is positive to the right. Euclidean time is positive down and is periodic with period g = 2.

by Einstein gravity, and makes precise the statement that black holes are the “fastest
scramblers in nature” [83].

In our case, we are studying the 1d CFT on the boundary of the AdSs string, so we
can compute the OTOC by first computing the euclidean four-point function on the circle
— or on the line and then mapping to the circle — and then analytically continuing to
real time. Going forward, we work in units where the inverse temperature is § = 27, so
the euclidean time is the angle . We put the two copies of V at 6; and 62 and two copies
of W at 03 and 64 such that —w < 04 < 02 < 03 < 07 < 7w, and then analytically continue
#1 and 65 backwards in real time and 63 and 64 forwards in real time. For concreteness,
we work with the configuration in which the four operators are spaced equally around the
euclidean circle (see figure 2):

3 it 2 ot 3m it
0 =———= O = —— — — =—+ = Oy =—— + —. 2.27
L= Ty 2 13 3=t 4 ) (2.27)
From (2.16), it follows the conformally invariant cross ratio as a function of ¢ is
)= (2.28)
= T isinht '

When we do the analytic continuation along this path, we should start with the expression
for G(x) that is valid on the interval x > 1 (for which the operator order is VWVW).
This is different from taking y — 07 starting with the expression for G(x) valid on the
interval 0 < x < 1 (for which the operator order is VVW W), which corresponds instead
to the OPE limit.

2.5 Warm-up: AdS: string at tree-level in static gauge

Now we will compute the four-point function in (2.20) to leading order in 1/Ty in the
static gauge, and then extract the OTOC in the Lyapunov regime. At leading order, it
is sufficient to approximate the partition function by the action of the classical string, as
in (2.18), because quantum corrections are suppressed by higher powers of 1/7s. Thus,
our task is to find the solution y extremizing the action in (2.21) subject to the boundary
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condition in (2.22). Moreover, to compute the four-point function, it is sufficient to know
the action only to fourth order in §(t), so the problem becomes a simple exercise in first
order perturbation theory [3].

We begin by expanding the action in (2.21) in powers of y:

Sly] = T / d?0\/gLan(00y). (2.29)
The three lowest order Lagrangian densities are:
1 1
Lo =1, Ly = igaﬁaayaﬁ% Ly= —g(ga’gaayaﬁy)Q- (2.30)

L gives rise to a divergent contribution to the area of the minimal surface that we drop;
Lo tells us that y is a massless scalar in AdSs; L4 contains the lowest order interactions.
(When we keep track of all 3 + 5 transverse directions in AdSs x S%, we find that the
five transverse modes in S° are massless, the three transverse modes in AdSs have mass
m? = 2, and all the transverse modes interact at fourth order [3].)

The equation of motion for y following from (2.29) is:

Oy = —nzzjgaa (vo ;?f;j;)) = j; (2.31)

where [0 = ﬁ@a(ﬂgaﬁﬁﬁ) = 82(5—;+(%22). To proceed, we can expand y as y = y1+y2+. . .

such that y, is of order O(7?" 1

) and expand j as j = jo + j3+ ... such that j, is of order
O(§?"~1) and is composed of the y,, with m < n. The nth order equation of motion
following from (2.31) is Oy, = j,. Furthermore, the boundary condition in (2.22) becomes
y1(0,t) = y(t) and y,(0,t) = 0 for n > 2. Thus, we can solve recursively for y, for any n
using boundary-to-bulk and bulk-to-bulk propagators, and the resulting Witten diagrams
are all tree level. This lets us determine the classical action in principle to any order in §.

At lowest order, the equation of motion for y; is Cy; = 0. Given the boundary

condition y1(0,t) = ¢(t), the solution is:

y1(s,t) :/dt’K(s,t,t’)g(t), (2.32)

where K (s,t,t') is the boundary-to-bulk propagator for a massless field in AdS,,

1 S

N
K(S,t,t) = ;m

(2.33)

In fact, to compute the four-point function, it suffices to determine y; only. This is
because the classical action to order O(j?) is given by:

Sald] =T, / 20/G [L2(an) + La(@an)) + O(7°). (2.34)

Note that the quadratic Lagrangian is La(0ay) = La(0ay1) + 9%’ Oay105y2 + O(§°), but the
integral of the term involving y; and ys is zero (as follows from integration by parts, the
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equation of motion for y;, and the fact that yo = 0 on the boundary). Substituting (2.33)
into (2.34) and using (2.30) yields the following expression for the classical action to fourth
order in §:
salil = —5= [[andn I [t e 005000500 Fit1, b2, 13,0) + OG)
T (t1 —t2)? 8

(2.35)
The quadratic piece comes from integrating [ \/gL2(0ay1) by parts and using 9K (0,¢,t) =
7 1(t — )72, We have expressed the quartic piece in terms of the function F, which we
define by:

F(ty,to,ts,t4) = /dQJ\/ﬁ[gaﬂaaK(s, t,t1)03K (s,t, tg)][gw&yK(s, t,t3)0s K (s,t,t4)].
(2.36)
This correponds to a four-point contact Witten diagram with a four derivative interaction.
It can be evaluated in the terms of the so-called D functions [84], which in AdSs reduce to
expressions involving logs and rational functions (see e.g. section 4 of [3]). The result is:

1

F(ty,to, t3,t4) = WF(X), (2.37)
12134

where y = 82834 and F is the conformally invariant part of F:
t13t24

Fx)= —5——5| -4 +12x* = 16x + 8 + (2" — 7x* + 9x* — 4x + 2) log(x’®)

+ (=2 + 73 =9 + 5x — D log((1 — x)?)|. (2.38)
Finally, given the expression for the classical action in (2.35), we take the necessary
variational derivatives of the partition function Z[§] ~ e~ to get the two-point function:

(iVe) = ELQ (2.39)

and the four-point function:

T2 1 1 1
(ViVaVaVa) = 5 {
w2 1‘%25”%4 1’%35”%4 x%ﬂ%s
+ T, [F(z1, 2, x3, 24) + F(x1, 23, T2, 24) + F (21, T4, T2, 23)] (2.40)
T52 1 { 2 X2 7 27 —1 XQF(l -X) -
== T4+ S+ (PP + 2 Yy By
" 0%, G T WO T T E)

The final result for the four-point function normalized by the two-point functions is:

(ViVaVsVy)

1
(ViVa)(V3Va) 27T,

(;Uee(Xj, (2.41)
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where the free and tree-level contributions are explicitly:

2
Gree(X) =1+ X2 + (1 icx)w (2.42)
22 —x+1)? | 24 x+x* —2*
Giree(X) = == 1 =172 o log (1 - x)°)
2 2 3 4
X°(2 —4x +9x° — Tx° +2x7) 2
1 . 2.4
+ 2 1) 0g(x”) (2.43)

This reproduces the result in [3] for the four-point function of four identical scalars.!
Meanwhile, quantum fluctuations about the classical solution in the path integral would
correspond to Witten diagrams with loops; these give rise to corrections to (2.39) starting
at order T? and to (2.41) starting at order 1/T72.

Given the four-point function in (2.41), it is straightforward to analytically continue it
to the OTOC configuration along the path in (2.28). In particular, the late time behaviors
of x, log x? and log((x — 1)?) along the path in (2.28) are given by:

M) = 4ie~ +0(e™2), log(x(H)?) = —2t+0(t%), log((x(t)—1)%) = 2mi+O(e™"). (2.44)
Thus, the exponentially growing piece at order 7 ! in (2.41) comes from the x ! log(1—x)?
term, and we find:

(ViVaVsVa) 1
(ViVa)(VaVy) AT

b (2.45)

This matches (1.2) for the case Ay = Ay = 1 (and working in units where ¢ = 1 and
B =2m).

The maximal chaos of the string worldsheet was demonstrated in this way, using the
static gauge results for the correlators of the AdSs string, in [52]. It had also been demon-
strated before that in [49, 50] using a scattering analysis and in [51] by computing geodesic
distances on the string worldsheet with shocks. To determine the OTOC beyond the Lya-
punov regime using the static gauge approach, one would in principle need to compute
more complicated Witten diagrams that also include loops. This seems difficult, although
it is possible that the OTOC in the double scaled limit can be evaluated using some sort
of eikonal approximation in which only a subset of simple diagrams survive. By contrast,
it is straightforward to extend the scattering analysis used in [49, 50] to compute the full
double scaled OTOC, as we show in the next section.

3 OTOC from scattering on the AdS, string

In this section, we derive the double-scaled OTOC in (1.3) by interpreting it as a 2 — 2
worldsheet scattering amplitude of particles that are emitted and absorbed by V and W
on the boundary of the string (see figure 3). This is a straightforward extension of [49]

IRef. [3] used stereographic coordinates on S5 while we use polar coordinates on S'. The boundary
correlators are independent of the choice of coordinates.
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Figure 3. The OTOC as a high energy scattering process on the string worldsheet.

(and appendix C of [50]), which adapted the ideas of [46] to the worldsheet. The only
extra input we need is the exact result for the scattering matrix on the free string in flat
space that was derived in [41]. As we will see, the scattering process takes place in the
same background (i.e., the AdSy “black hole”) and is governed by the same local scattering
interaction (i.e., the “shockwave” scattering matrix in two dimensions) as in JT gravity,
so the analysis and final result are essentially the same as in [38, 44]. Nonetheless, for
completeness we provide a self-contained presentation of the scattering analysis.

Our starting point is the thermal AdSs string. One simple way to turn on a temperature
is to work in AdS-Rindler coordinates covering a wedge of AdSgy1 (see, e.g., [85-88]):

0 = () e (3.1)
Ade+1 - /62 ﬁ _ 1 r d—1- .
62

Here, ¢ is the radius of AdSgy1, r € [(,00), t € R, and Hy_; is the (d — 1)-dimensional
hyperbolic space with unit radius. (In this section only, we work in Lorentzian signature.)
This metric has a horizon at r = ¢, which can be thought of as the Rindler horizon of
an accelerating observer in AdSgy; whose trajectory starts and ends at t = oo on the
boundary at r = co. By the standard argument continuing (3.1) to euclidean time, the
horizon has temperature T' = 2%6. The string we are interested in is extended in the ¢ and
r directions and sits at a point in Hy_1, with the following induced worldsheet metric:

52

2 d 2
ds® = — (T - 1) di* + . (3.2)
02 1

These coordinates cover a wedge of AdSo, which we can think of as the exterior of an AdS»
“black hole.”

Gravity in the bulk Rindler wedge in (3.1) is dual to gauge theory on R x ¢H; 1
at the fixed temperature T = 2%4. (Note that at large r, the metric approaches
Z—i(—dﬁ + (2dH3? |).) Thus, the string whose metric is given in (3.2) is dual to a sta-
tionary quark in hyperbolic space at a special value of temperature set by the hyperbolic
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radius.? Alternatively, because R x ¢Hy_; is conformally equivalent to a Rindler wedge in
Minkowski space, gravity in the bulk Rindler wedge in (3.1) is also dual to gauge theory
in an accelerated frame, and the AdSs string is dual to a uniformly accelerating quark in

the Minkowski vacuum.?

The Schwarzschild coordinates in (3.2) are adapted to the observer on the boundary,
who has a horizon and measures the time ¢t. To describe events near the horizon, it is useful
to instead use Kruskal coordinates. Specifically, on the AdSs wedge, let u = —¢ ;—jrﬁe*t/ ¢

v="~ :—:jet/ ¢, which produces the metric:

4dudv

ds? = ————
(1+%)

(3.3)

The Kruskal coordinates span v € R, v € R subject to uv > —¢2, and cover both sides
of the black hole patch of AdS,. The two AdSs boundaries are at uv = —¢2, the future
and past horizons of the boundary observer are at u = 0 and v = 0, and the wedge r > £
accessible to the boundary observer corresponds to v < 0, v > 0. The Kruskal and Penrose
diagrams for the AdSs black hole are given in figure 4. We also note that, at the boundary,
the Kruskal coordinates are related to the boundary time by v = —fe~t/¢ and v = fet/*.
For the remainder of this section, we will work in units where £ = 1 and 8 = 2.

Finally, we are ready to compute the OTOC measured by the observer in R x Hy 4
on the boundary of the AdS;y; wedge. We apply the general definition of the OTOC
in (2.26). The state in this case is the thermal bath at inverse temperature f = 27
plus the stationary quark; the operators V; and W; are general adjoint operators inserted
along the Wilson line of the quark (e.g., they can be the displacement operators that
generate transverse fluctuations of the string); and the times ¢; refer to the boundary or
Schwarzschild time, which we will take to be ¢; = —if; with 6; given concretely in (2.27).
To make the scattering interpretation more manifest, it is convenient to write the OTOC
in terms of the purification of the thermal state, which is a state living in two copies of

2See [89] for a discussion about studying thermal OTOCSs in R x Hy_; using vacuum correlators in flat
space.

3A more direct way to see this is as follows. Let X,Y,Z be Poincaré coordinates on a euclidean AdSs
submanifold of euclidean AdSs41 with metric ds? = €2Z72(dX2 +dY? + dZQ). The AdS: string incident
on the circle of radius £ is the hemisphere X2 4+ Y? 4 Z% = £2, Z > 0. We analytically continue the string
to Lorentzian signature by setting Y = T, which yields the hemi-hyperboloid X2 + Z? — T2 = ¢, Z > 0,
in the Poincaré wedge of AdS3 with metric ds® = £2Z7%(—dT? 4+ dX? + dZ?). The string is incident on the
hyperbola X? — T2 = ¢2 on the boundary at Z = 0, whose two branches define the trajectories of a quark
and anti-quark that experience uniform acceleration a = ££7! in the X direction and measure an Unruh
ﬁ in the Minkowski vacuum. If we parametrize the region of the hyperboloid that is
accessible to the accelerating quark as X = E(l — f—Z)l/Q cosh(t/0), T = ﬁ(l — f—Z)l/Q sinh(t/¢), Z = 02 /r,
the induced metric on the worldsheet is precisely (3.2), with ¢ being the proper time of the quark.

temperature T =

The accelerating quark-antiquark pair in A/ = 4 SYM connected by the AdSs string in the bulk is
sometimes called the holographic EPR pair (see, e.g., [90-92]), and was the version of the thermal AdS;
string used to study chaos in [51]. Yet another way to make the AdS; string thermal is to dangle it from
the boundary into the horizon of a BTZ black hole, as in [49].
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a. AdSy Kruskal diagram. b. AdSs Penrose diagram.

Figure 4. The Kruskal and Penrose diagrams for the AdSs worldsheet. The Kruskal coordinates
in eq. (3.3) cover both sides of the AdSy black hole, while the Rindler coordinates in eq. (3.2) cover
only the right wedge.

R x Hy_1. Namely, we write (2.26) as
(ViW3VaW,) = (TFD|V;W3VyW4|TFD) = (out|in), (3.4)
where
lin) = VaWy|TFD), lout) = W, V| TFD). (3.5)

Here, |TFD) denotes the thermofield double state (including the Wilson lines of the quark
and its copy), which has the property that tracing over one (e.g., the left) copy of R x Hy_4
produces the thermal state in the other (e.g., the right) copy. In the bulk, |TFD) is just
the vacuum state of AdSg41 (plus the AdS, string), which appears thermal to a Rindler
observer who only has access to a wedge of AdSy11. We take the four operators V;, Vo and
W3, Wy in (3.4) to act on only one (e.g., the right) copy of the CFT, so tracing out the
left CFT reproduces (2.26).

The overlap (out|in) in (3.4) can be interpreted as a scattering amplitude on the
worldsheet of the AdS; string. As the names imply, we can interpret |in) as an “in” state
and |out) as an “out” state. This is depicted in figure 5 and can be understood heuristically
as follows [46]. To create the state VoWW4|TFD), we start with the vacuum, evolve it forward
to time % and create a W particle near the boundary in the upper right of the Penrose
diagram, then evolve it backward to time —% (during which the W particle propagates
backwards freely in the bulk and until it reaches the lower left of the Penrose diagram) and
create a V particle near the boundary in the bottom right of the Penrose diagram. The end
result is a state with a right-moving W particle in the bottom left of the Kruskal diagram
and a left-moving V particle in the bottom right of the Kruskal diagram. By analogous
reasoning, Wg VlT\TFD> is interpreted as setting up a state with a left-moving V particle
in the top left of the Kruskal diagram and a right-moving W particle in the top right of
the Kruskal diagram.

The states in (3.5) can be expressed in terms of in and out states in the Kruskal mo-
mentum basis, in which the scattering interaction is simple. Since V acts on the boundary
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lin) = V,W, | TFD) lout) = W V| TFD)

Figure 5. In and out scattering states.

at early times, it creates a particle that travels along the w horizon with positive momen-
tum p%; since W acts at late times, it creates a particle that travels along the v direction
with positive momentum p¥. Thus, following [44, 46, 49], we write

jin) = / Apdpi U a, (9, £2)® ., (P £2) 0% L) (3.6)
jout) = / AptdpTa, (P )@ Ay (051 £5)10Y: D bout. (3.7)

(Note that VlT = V(t}) and Wg = W(t5) assuming V and W are Hermitian). Here,
YA, (p*) is the wavefunction specifying the state in which V' creates the particle moving
along the v = 0 horizon. Likewise, ®, (p¥) is the wavefunction specifying the state in
which W creates the particle moving along the v = 0 horizon. We take the normalization
of the Kruskal momentum eigenstates to be

in<p|q>in = out<p|Q>0ut = pé(p - Q)' (3'8)

It follows from (3.6) and (3.7) that the scattering representation of the OTOC in the
Kruskal momentum basis is [44, 46, 49]:

<V1W3V2W4> - /I;Idpiqlﬁv (pqllv tD*(I)AW (pg, t;)*out <p7f7p§’p12l7pz>in\pAv (pg, tQ)CI)AW (pzvt4)'

(3.9)

Thus, the two ingredients we need to evaluate the above expression are the explicit forms
of the wavefunctions W and ®a and the scattering matrix out (P}, p4|0Y, PY)in-

First, in the approximation where the particles propagate freely in AdSs until they

interact near u = v = 0, the wavefunctions are given by suitable Fourier transforms of the

boundary-to-bulk propagators [46]. In Kruskal coordinates on AdSs, for a scalar field of

2

conformal dimension A and mass m® = A(A — 1), the boundary-to-bulk propagator from

the point (u;,v;) = (—e~%, ') on the boundary to the point (u,v) in the bulk is given by
1+uv )A ox (—1)2T(A)
(1 4+ wv;) (1 + vuy) A /T (24A)

Then, to get the wavefunction for the particle created by V(¢;) at an early time ¢;, we take

Ka(u,0,t) = ca ( (3.10)

the Fourier transform of the boundary-to-bulk propagator connecting t; on the boundary to
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the u = 0 horizon in the bulk. Likewise, to get the wavefunction for the particle created by
W (t;) at a late time ¢;, we take the Fourier transform of the boundary-to-bulk propagator
connecting t; on the boundary to the v = 0 horizon in the bulk. This means:

WA (ph 1) = / e A0, 0,1), DA ) = / Qe K A (0, 0,4). (3.11)

We evaluate the integrals and arrive at the following expressions for the momentum wave-
functions:*
A (2ip¥u)>

['(2A)pY

(2ip"v;

S ) 2iptg d v t; — O(p¥
A @Al ) = 00

Ualp®,ti) = 0(p") P (3.12)

One can check that the momentum space wavefunctions satisfy the identity:”

* U v, U U * U 1
/dp“p”\l’a(p“,h) WA (p", t2) —/dp P'OAP” 1) PA(P t2) = ——5x- (3.14)
[2sin(%2)]

We chose the specific normalization ca in (3.10) to make the r.h.s. of (3.14) simple.
The identity in (3.14), together with our choice of normalization for the momentum
eigenstates in (3.8), ensures that when we represent the single particle states created
by Vi and Vo as V) = [dp"Wa, (% 6)lp") and Vo) = [dp"Ws, (p",ta)p"), and
the single particle states created by Wg and W, as ]Wg ) = [dp'®a,, (p¥,t5)|p") and
\Wi) = [dp"®a,, (p”,ta)[p¥), then the overlaps of the single-particle states reduce to
unit-normalized conformal two-point functions:

1
[2sin (%2 )]28v

1
[2sin (a)]28w

(ViVa) = (V] |Va) = (WsWa) = (Wi |Wy) = (3.15)

Next, we turn to the scattering matrix in (3.9). We take the scattering of excitations
on the string worldsheet to be governed by:

P2 ,U U
p"p")out = €SP |p*, p¥)in. (3.16)

Namely, the Kruskal momentum of the two particles are individually conserved and the

i6(s)

in and out states are related by a phase €°'®) where the phase shift is proportional to

the center-of-mass energy of the particles measured by an inertial observer at v = v = 0:
§(s) = 10%s = £2pp®. We expect (3.16) to correctly capture the scattering of the two
particles on the string worldsheet created by V and W in the limit we are considering

because, when V acts at early times and W acts at late times, they generate particles

4If we want to keep track of the convergence of momentum integrals, it is convenient to assume that the
imaginary parts of the four times satisfy —m < Im(¢1) < Im(¢3) < 0 < Im(¢2) < Im(¢4) < 7 (as is the case
in (2.27) with ¢; = —i6;) and then analytically continue the final answer to more general values of the times.
®In terms of the boundary-to-bulk propagator, (3.14) is

1

[2sin (&2)J2a” (3.13)

%/duKA(u,O,tl)auKA(u,O,tQ) = % /dUKA(O,v,h)&,KA(O,v,tz) =
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that are localized near the v = 0 and u = 0 horizon and effectively interact only in a
small region around u = v = 0. The worldsheet and AdS;,1 are approximately flat in this
region and we can therefore invoke the exact result for the scattering matrix of excitations
of the infinitely long free string in flat space, which we stated in (1.1) and which was
derived in [41]. As explained in section 2 of that paper, the exact scattering matrix can be
extracted from the spectrum of excitations on the free critical string in Minkowski space
with one coordinate compactified to a circle, after taking the radius to infinity to allow for
asymptotic scattering states.%
It follows from (3.8) and (3.16) that

P2 U U
out (P%, P4 [P p5)in = €“PIPS pipo (pt — py)3(pf — pf).- (3.17)
Therefore, substituting (3.12) and (3.17) into (3.9), we find:

<V1 W3V2W4> = (4’[)1’1)2)AV (4U3U4)AW

oy PV T T ) o ) ity
dp®dp? ip* (va—v1) ,2ip? (ua—u3z)  ilip™p . 1
></0 PP T oAy) T (2Aw) ¢ ‘ (3.18)

Changing variables to p = 2ip"(v; —v2) and ¢ = 2ip”(ug —u4) and rotating the contours
to lie along the positive real p and ¢ axes, the integral becomes

(v1v2)2Y (ugug) W /OO pPAv_igPhw=l
ViW3VoW,) = dpd p=q—rpq
WSV Wa) = G = o) AV (s — w2 o PUT AT A ’
(3.19)
where we have introduced
[2 'EQ (t3+t4—t1—t2)/2 62 t
K= s = ' -Se 112\ o t3a - = ) (3'20)
4(v1 —v2)(uz —ug)  16sinh (42)sinh (32) 16
In the last step, we put the times t; = —i6; in the symmetric configuration specified

by (2.27).

We identify the combination (viv2)2V (i(vi —v2)) 22V in (3.19) as the two-point func-
tion (V1V5), and the combination (ugus)™W (i(uz — ug))~22W as the two-point function
(W3Wy). Meanwhile, the double integral can be evaluated by first integrating over ¢ and
then putting the integral over p in the integral representation of the confluent hypergeo-
metric function.” The final result for the OTOC is:

(ViWsVaWy)

S0 2 kT AV(2Ay, 14 2Ay — 2Aw, k). 3.21

This is what was claimed in (1.3). When expanded to leading order in &, it also repro-
duces (1.2).

Let us also briefly review how the time-ordered correlators are computed in the scat-
tering picture. For instance, we can write (W3ViVaWy) = (VITWB]: |[VaWy). (The discussion

5The scattering matrix on the string worldsheet was also derived using conformal gauge in [93]. It would
be interesting to make contact with that analysis, especially using the conformal gauge analysis in sections 5
and 6.

"Namely, U(a, b, z) =T'(a)™" [;7 dte™ "t (1 + )"
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of (ViW3sW,Vs) is similar). From the order of the operators, it follows that ]VlTWg ) =
VfWg |TFD) is an in state. It can be expressed in the momentum basis using the r.h.s.
of (3.7) except with [p}, p§)out changed to |p}, p4)in. In this case, in contrast to (3.9) for the
out-of-time-order correlator, it follows that the time-ordered correlator can be represented:

(WsViVaWs) = /Eldpi‘I’AV (1, 11)" Pay, (3, 13)"in (PY, P3PS, PL)in YAy (P35 12) Py, (P4 La).-

(3.22)
Given the normalization of the states in (3.8) and the wavefunction identity in (3.14), this
becomes

(WsViVaWy) = (ViVa) (WsWy). (3.23)

Thus, the functional difference between the time-order and out-of-time-order correlators in
the scattering picture is the absence or presence of the extra phase picked up by the scatter-
ing interaction. Without it, the two particles pass through each other without interacting.

Some additional comments are in order. Firstly, our presentation of the scattering anal-
ysis on the string worldsheet is essentially equivalent to the one in [49], which also arrived
at (3.19). The only difference is that, because we use the exact scattering matrix on the
worldsheet derived in [41], we believe (3.19) is reliable in the double-scaled limit, not just
to leading order in £2. Secondly, our presentation is also essentially equivalent to the ones
in [38, 44], which studied (among other things) the double scaled OTOC in JT gravity using
the scattering analysis. The analysis is the same in both contexts because the two inputs
in the scattering analysis — the particle wavefunctions and the scattering matrix near the
horizon — are the same. The wavefunctions are the same because both the string world-
sheet and the geometry of the bulk in JT gravity is AdSs. Furthermore, the high energy
scattering interaction in JT gravity is also given by (3.16) (with ¢2 replaced by 167Gy /®
where ® is a scale set by the divergence of the dilaton; see section 7.1) [44]. In gravity, this
scattering matrix has a very natural interpretation in terms of the shockwave interaction
between the high energy particles moving along the horizon of the black hole [42, 43, 45, 46].
In the frame of the first particle moving along u, the second particle moving along v moves
near the speed of light and generates a gravitational shockwave that, according to (3.17),
shifts the position of the first particle by v — v+ ¢2p®. Likewise, in the frame of the second
particle, the first particle generates a gravitational shockwave that shifts the second parti-
cle by u — u+¢2pv. It is interesting that, as shown in [41], this same shockwave interaction
appears to describe the scattering of particles on the string worldsheet, which gives the
string worldsheet a “gravitational flavor” despite it not having a dynamical metric.

We can also comment on the sensitivity of the final result in (3.21) on the details of
the scattering process. Most of the details are washed out when we take the high energy
limit. Consider the general integrable 2 — 2 scattering matrix that is analytic, unitary
and crossing symmetric [94]:

Sts) =11 Z?ief”s). (3.24)
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Here p1; are the masses of the resonances and P(s) is a scattering phase in the UV, which
in our case is given by iﬂgs. In the scattering process above, the OTOC depends only
on the s — oo behavior of the scattering matrix, and is therefore not sensitive to the
wi. More generally, S-matrices of asymptotically free quantum field theory approach 1 in
s — oo and lead to the same OTOC after the gravitional dressing by P(s) = 1¢2s. On
the other hand, if there were ¢2 corrections to P(s) that are, for instance, of the form
P(s) = %Egs + 0853 4 ..., then these would survive in the double scaling limit. The result
would differ from (3.21) starting at order x* in the small x expansion. Such corrections
could arise from higher-charge analogs of the TT deformation as discussed by Smirnov and
Zamolodchikov [95] and is expected to drastically change the UV behavior of the theory. It

would be interesting to find a set up in top-down holography that gives these corrections.

4 Two checks of the all-orders result for the double scaled OTOC

In this section, we perform two checks of the result for the OTOC given in (3.21), using
results for certain four-point functions on the Wilson line computed previously in the
literature. First, the four-point function of unit charge scalars on the Wilson line was
computed to fourth order in the strong coupling expansion in [16]. Second, the four point
function of two unit charge scalars and two charge J scalars was computed in the double
scaling limit J — oo, v/A — oo with J/v/X fixed in [19]. We can continue both of these
four point functions to the OTOC configuration, and check that they agree with (3.21) in
the appropriate regime.

4.1 Four-point function of unit scalars at three loops

The strong coupling expansion of the four-point function of four unit scalars on the Wilson

line takes the form:

(@ (1) P(29)P(23)P(24))

_ 1 -
(B(w1)0(w2)) (@ (g D(ag)) ~ Crreel) F A7 Gtree(X) + A7 Cr1oop () (4.1)

+ )\_%GQ—loop(X) + )‘_2G3—loop(X) + O(A_%)

Here, ® denotes one of the orthogonal scalars on the Wilson line (e.g., ® = ®!), which has
scaling dimension Ag = 1 on the defect. This four-point function was computed to three-
loops in [16] by combining input from the AdSs string and the analytic bootstrap in the
Wilson line defect CFT. To summarize, Ferrero and Meneghelli started with the free and
tree-level results for the four-point function computed in the static gauge on the AdSs string
(i.e., essentially the expressions in (2.42)—(2.43)). Then, by choosing an appropriate basis
of functions (consisting of rational functions, logs and polylogs), imposing the bootstrap
crossing equation, and carefully disentangling the contributions of degenerate operators
to the conformal blocks, they were able to completely fix Gi_100p(X); G2-10op(X), and
G3_100p(X). For instance, the 1-loop contribution takes the form:

G1-100p(X) = 11(x) log(x — 1)% + r2(x) log(x — 1) log(x) + r3(x) log(x)* (4.2)
+r4(x) log(x — 1)* + r5(x) log(x) + 76(X),
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where 7;(x), ¢ = 1,...,6 are known rational functions of x. Similarly, Ga_jo0p(X) and
G3-100p(X) involve various combinations of rational functions, log(x), log(x — 1) and also
the trilogarithms Lig(1/x) and Liz(1/(1 — x)). The explicit expressions can be found in
the supplementary Mathematica notebook provided with [16].%

When we analytically continue the explicit expression for (4.1) along the path in (2.28),
using (2.44) as well as Lig(1/x(t)) = —£t3 + O(¢?) and Liz(1/(1 — x(t))) = ¢(3) + O(e™?),
we find that the contributions that survive in the double scaling limit ¢ — co, A — oo with
A~2¢t fixed come from the terms with the highest powers of log(x — 1) at each order. More
precisely, the terms relevant in the double scaling limit are:

9
Gly)=1+...+\72 [_zx—llog(x— 1)+...} + 27! {2

+A73/2 {—12)(3 log(x — 1) + .. } + A2 {725)(4 log(x — D)* +.. } +O0(\7%/?),

X 2log(x — 1) + .. } (4.4)

and the OTOC in the double scaling limit becomes
(@1890000) g g 9Ty BTy TOT o

SNV W -5 5t

This matches the expansion of (3.21) to fourth order in x after we set Ay = Ay = Ag =1,

K= ﬁ €' (in accordance with (3.20)), and remember that the AdS/CFT dictionary identifies
82 27

VA
As an aside, we also note the first subleading terms in the large ¢ expansion at each

order in the large A expansion:

(O1P3P2Py) ot 1{ T 4 0] _ {9772 it o
(P1P2)(P3P4) =140l +a 2° O+ 32¢ T4° +0(e)
3m° 5 9mit
ot [ o
7574 973t
e[ 2t o] o »

Interestingly, the first subleading terms at order A~ )\7%, and A\~2 appear to be consistent
with the Lyapunov exponent receiving a 1/ VA correction:

dotoc =1 — —=+0\1h). (4.7)

It is unclear how to interpret this observation. When one considers stringy corrections
to the Lyapunov exponent for the OTOC in the AdSs x S° bulk, the four-point function

8More precisely, [16] provides the result for the four-point function of four general scalars, which depends
on the conformally invariant cross-ratio x and also on two SO(5) invariant cross-ratios of the scalar polar-
izations, which are parametrized in the Mathematica notebook by the variables (1 and (2. For simplicity
one can restrict to the case of four identical scalars by setting (1 = (5 1 — ¢, but the conclusions for
the more general OTOC are the same. One should also note that the expressions in [16] are given for the
interval 0 < x < 1. To get the expressions for x > 1, one should use the relation G(x) = x*G(x™!), or, for
the case of general scalars, G(x, ¢1,(2) = Cliz (x7h NG,
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takes the general form 1— %exp (%’T(l - %)t + .. ) +.... Thus, there are two independent

parameters, N~! and )\_%, controlling the scrambling time and the corrections to the
Lyapunov exponent. By contrast, the two expansions are both controlled by A7 in (4.6).
And indeed, higher order terms (e.g., the t2e! term at order A% and the t2¢2 term at
order A~2) are not consistent with (4.7).

4.2 Four-point function of two heavy and two light scalars

The scattering result for the OTOC in (3.21) simplifies when one of the operators has a
large conformal dimension. In particular, in the further double scaling limit x — 0 and
Ay — oo with Ayx held fixed, (3.21) becomes’

(ViWsVaWa) 1 48)
(ViVa) (W3 Wy) (1 N %Avfget)mw

This provides an opportunity for another check of the scattering result. In the Wilson
line CF'T, a simple way to get operators with arbitrarily large conformal dimensions is
to take composites of the scalar fields. One can define ®/ = (e - ®)”, where ¢ € C® is a
null polarization vector (¢2 = 0) and .J is a positive integer. This is a chiral primary that
transforms in the rank J symmetric traceless representation of SO(5)r and its conformal
dimension is protected and equal to its R charge, A = Qr = J.

The four-point functions of two unit scalars and two charge J scalars in the double
scaling limit A\ — oo, J — oo with J/v/A fixed were computed in [19]. They can be
determined from the Green’s functions for transverse fluctuations of the worldsheet of an
open string incident on the straight line on the boundary of AdSs and rotating with large
angular momentum in S°. We can analytically continue the four-point functions to the
OTOC configuration, and take t — oo and J/ VvV = 0 with %et fixed. The details are

given in appendix E, and the result is:

(D(01)27 (05)P(02)27 (04)) 1 (4.9)
(B(61)®(62)) (27 (63)27 (64)) (1—1—%%@)2 '

Comparing (4.9) with (4.8), we see that the large charge OTOC on the Wilson line matches
the scattering picture OTOC in the light-light-heavy-heavy regime once we set Ay = Ag =
land Ay = Ags = J, and 2 = % This is a check of the scattering result for the OTOC
assuming that the two ways of taking A, J and ¢ to infinity'® commute.

9Eq. (4.8) follows from the saddle point expansion applied to the integral representation in footnote 7. Tt
can alternatively be derived by interpreting the OTOC as a V' two-point function in the state W|TFD). In
this limit, the OTOC is approximately (VWVW)/(VV)/(WW) ~ e~* where £ is the renormalized length
of the geodesic connecting the two insertions of V on opposite boundaries of the AdS> geometry with a
shockwave, where the shockwave arises due to the back-reaction to W. See section 3.5 of [45] and also [51].

107 ., we first take \,t — oo and then J — oo, et/ﬁ — 0 to get (4.8), and first take J, A — oo and then
t — o0, J/VA — 0 to get (4.9).
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5 The reparametrization mode on the AdS, string

In the remainder of this work, we study the open string in AdS, x S! in the conformal gauge.
Unlike the static gauge discussed in section 2.5, the conformal gauge features an intrinsic
worldsheet metric, which might shed some light on the “gravitational flavor” of the string
worldsheet that is hinted at by the maximal growth of the OTOC and by the discussions
in [41]. In this section, we will see that the conformal gauge analysis leads naturally to a
dynamical reparametrization mode on the string boundary, which we will use in section 6 to
compute the boundary correlators of the string to leading order as well as the OTOC in the
double scaling limit. In this sense, the boundary reparametrization mode of the AdSs string
is analogous to the Schwarzian mode in JT gravity, as we discuss in more detail in section 7.

There is a long history of integrals over boundary reparametrizations appearing in the
study of open strings with fixed boundaries, going back to Douglas’ solution to the Plateau
problem [96]. Douglas showed that the area of the minimal surface in R? incident on a
closed curve v : o — #(«) is given by the following bilocal integral:

= imimive | L [ ar [ e (D) — # )]’
A—mlmamlze 47r/0 dT/O dr 2sin (T_TT/)]Q . (5.1)

Here, a(7) is a reparametrization of v and is minimized over. Similar expressions appear in
the amplitudes of open strings propagating in flat space between fixed spacetime contours,
except the reparametrizations of the boundary curve are integrated over. The integral over
boundary reparametrizations is a remnant of the path integral over the worldsheet metric
after gauge fixing. See [72-76] for some older references and [97-102] for some more recent
related work.

Boundary reparametrizations have also featured in a few studies of the open string in
AdS [77-81]. In particular, the area of the classical AdS string can also be represented
as a non-local effective action minimized over the boundary reparametrizations, but an
important difference compared to the string in flat space is that a general closed-form
expression for the effective action that is analogous to eq. (5.1) is not easily obtained by
elementary methods.!! Nonetheless, one can identify a Douglas-type integral that is valid
perturbatively and use it to study certain aspects of the dynamics of the AdS string (e.g.,
whether the AdS string satisfies the loop equations of planar Yang-Mills theory [77, 78],
and the one-loop corrections to the partition function [79, 80]).

Our discussion of the AdS string reparametrization mode in the present section pro-
ceeds in a similar spirit to [77-80], and our use of the reparametrization mode to compute
the boundary correlators and the OTOC on the string in section 6 is guided by the example
of the Schwarzian theory in [38].

1The AdS, sigma model is integrable, so one expects that it should be possible in principle to write
down the general solution to the equation of motion using integrability techniques, such as the Pohlmeyer
reduction (see for instance [103] for related calculations). We leave this to future work.
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5.1 Conformal gauge

We start with the Polyakov action for the string in AdSs x S!, which is given in (2.19).
We fix the conformal gauge by using a worldsheet coordinate transformation and Weyl
rescaling to set the auxiliary metric equal to the AdSy metric: hog = s%éaﬁ- The action
then takes the form in (2.23). It will be convenient to split it into three terms:

Slx, z,y] = Splz, 2] + S7ly] + TsAws. (5.2)

The first and second terms are the actions of the longitudinal modes x, z and the transverse
mode y, which are:

T, 0%x0,x + 0%2042 2
Suleya] =5 [ do | TR = (5.3)
T, X
Srly] = / Po0y0,y. (5.4)

The third term in (5.2) is the (regularized) area of the worldsheet measured using the AdSs
metric:

Aws = / d?oVh. (5.5)

Note that vh = s~2. We have separated out the area term from the longitudinal action
in (5.3) to make the latter well behaved near the boundary, as we discuss later.

The open string is incident on a curve v on the boundary of AdS, x S! that can be
represented by a map v : a + (Z(a),j(a)) from R to R x S'. The general form of the
boundary condition for the string is therefore:

z(0,t) =0, 2(0,1) = z(a(t)), y(0,1) = g(a(t)). (5.6)

Here, a(t) is a reparametrization of the boundary curve that appears because the parameter
« along the curve -y is not the same as the worldsheet coordinate ¢ along the boundary of
the string. It is not possible to choose a parametrization of v for which ¢t and « can be
identified, because putting the auxiliary metric in the conformal gauge in general requires
a coordinate transformation (which is different for different auxiliary metrics) that changes
t at the boundary (see, e.g., the discussion in [76]).

In the following, it will be more convenient in our study of boundary correlators to use
the boundary condition

2(0,8) =0, 2(0,1) = a(t), (5.7)
for the longitudinal modes and
y(0,1) = g(a(t)) (5-8)

for the transverse mode. As we saw in (2.24), this is the boundary condition if the points
on the boundary curve are labelled using the AdSs boundary coordinate: i.e., v : o —
(o, §(a)). Tt is also equivalent to (5.6) after renaming o — o and jo & — 4.
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We will first study the classical string, and postpone the discussion of quantum cor-
rections to section 6. The equations of motion for the longitudinal modes follow from the
action in (5.3):

0=20 <228ax> , 0=0 (228@23> + ;(8 £0qx + 0%2042), (5.9)
The equation of motion for the transverse mode follows from (5.4):
0 = 0%Oy. (5.10)

These are supplemented by the Virasoro constraint (i.e., the equation of motion of hqg
following from the action in (2.19)), which sets the stress tensor on the worldsheet equal
to zero:

0="Ts+Tos (5.11)
We have separated the contributions to the stress tensor from the longitudinal and trans-

verse modes:

O0a0px + 00208z 1 Vx0yx 4+ 072042

Tos = — 50ap

, (5.12)

22 22

1
Tap = 0aydsy — 50050 yy. (5.13)

Thus, the action of the classical string can be found by first solving (5.9)—(5.11) subject
to the boundary conditions in (5.7)—(5.8) to get the classical solutions for z(s, t), z(s,t), and
y(s,t), and then evaluating the action in (5.2). However, it is more enlightening to order
this procedure differently. Because the longitudinal and transverse actions are decoupled,
we can solve the equations of motion independently for y(s,t) in terms of g(a(t)) and
z(s,t) and x(s,t) in terms of «a(t). The only way the longitudinal and transverse modes
are coupled is through their boundary conditions (which both depend on «a(t)) and the
Virasoro constraint. Imposing the Virasoro constraint then fixes a(t) (as we will see, up to
an SL(2,R) transformation) and thus determines the classical solutions and classical action
uniquely in terms of §j. We can summarize this logic as:

Sd[g]] =T, Aws + SL[Oé] + ST[Q o oz] (5.14)

Virasoro

=TsAws + Sp[a] + Sr[y o o] s.t. Tojfﬂ[oz] + Tgﬁ[gj oal =0. (5.15)

Let’s explain the notation in these two equations. First, Scj[g] denotes the action of
the classical string, which is uniquely determined by the curve 7 (i.e., by the function g
given our parametrization of the curve). Second, Si[a] = Si[z, 2] and TO{JB [a] = Tofﬁ [z, 2]
where z(s,t) and z(s,t) are the unique solutions to the equations of motion in (5.9) with
the boundary conditions in (5.7). Likewise, Sp[g o o] = Srly] and Tgﬁ [Joal = Tgﬁ [y]
where y(s,t) is the unique solution to the equation of motion in (5.10) with the boundary
condition in (5.8). In other words, St [z, 2], St[y], T, Cfﬁ [z, 2], Tgﬁ [y] are the off-shell actions
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and stress tensors while Sz [a], St[goa], TCfﬁ [a], T slyoa] are “almost on-shell,” except that
they equal the longitudinal and transverse actions and stress tensors of the classical string
only if we also fix () by imposing the Virasoro constraint. To avoid cumbersome notation,
we distinguish the off-shell and on-shell quantities only by their arguments; hopefully which
we mean will also be clear from context.

Our goal in the remainder of this section is to implement (5.14). We first study the
transverse and longitudinal modes separately and impose the Virasoro constraint only
at the end. A crucial point in the analysis is that imposing the Virasoro constraint is
equivalent to minimizing over the boundary reparametrizations, which means the classical
action can also be written:

Salg] = TsAws + extremize [SLla) + Srlyoall. (5.16)

See, e.g., [72, 76, 79]. This point is also illustrated by the Douglas integral in (5.1). The con-
nection between the Virasoro constraint and extremization over boundary reparametriza-
tions is rather natural given that the auxiliary metric for a string with boundary
can be put in conformal gauge only if the coordinate transformations are allowed to
reparametrize the boundary, which means that varying the auxiliary metric varies the
boundary reparametrization. We will also explicitly demonstrate the equivalence for the
case of the string in AdSe x S!. The main advantage of (5.16) over (5.14) is that pro-
moting the extremization to an integral over reparametrizations is a simple way to include
quantum corrections to the classical result, which is the approach we will take in section 6.

Complex notation. Before proceeding, we note that the longitudinal and transverse
equations of motion, stress tensors and actions can be expressed neatly using complex
notation. Let w =t +is,w =t — is be complex coordinates on the upper half plane, and
let 0 = (0 — i0,) and 0 = £ (9, + i0,) be holomorphic and antiholomorphic derivatives.
Furthermore, define the complex longitudinal and transverse stress tensors,

Tt =1k —iTL,  TF =Tk +4iTk

st

T _ T T
T =Ty —iTy,

17 =T +4TL.  (5.17)

Finally, combine the two longitudinal modes = and z into a single complex longitudinal
mode:

X =x+iz, X =x—iz. (5.18)
Then, the longitudinal and transverse stress tensors can be written as

80X0X - 80X0X _ -
Th=— """ ph__ 0 7T —99ydy,  TT =20ydy, 5.19
X x) X x) YOy ydy,  (5.19)
and the equations of motion for X, and y simplify to

00X = M, 00X = ?Xa;;, 0 = ddy. (5.20)
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The equations of motion imply that the longitudinal and transverse stress tensors are
conserved, which in this notation means they are holomorphic or antiholomorphic:

0=01" =01 = 01" = OT". (5.21)
Finally, the transverse and longitudinal actions in complex notation are:

OXOX +0XOX 1
(X —X)? (w—w)?

Sp[X]=—2T; / dwdw[ ] Srlv] ="Ts / dwdwdydy. (5.22)

5.2 Transverse mode

We now analyze the transverse mode. Because the action in (5.4) and equation of motion
in (5.10) for y are those of a free massless scalar on AdSy, we can immediately write down
the on-shell transverse mode and the transverse action in terms of g(«(t)). Indeed, these
are the zeroth order results for the transverse mode in static gauge in section 2.5, except
that the boundary condition now depends on the reparametrization a(t) and the transverse

mode is exactly free in the conformal gauge. Thus, y(s,t) is simply
y(s1) = / K (5,1, 1) 5(a(t')), (5.23)

where K (s,t,t') = % . Furthermore, the action is:

s
s2+(t—t")2
~ ~ /

Sr[joal = —;j/dtdt’zw. (5.24)

The bilocal integral in (5.24) is technically infinite because of the divergence when ¢ and
t" are coincident. It is customary to think of the action as being implicitly regularized. For
instance, we can replace (t —t')? — (t—#')2+s% and take s — O or (¢t —¢/)? — (t —#')?" and
analytically continue 7 — 1. For the purpose of taking variational derivatives of the trans-
verse action (for instance, to compute correlation functions), this is perfectly satisfactory
and the result is independent of the regularization scheme. However, for a massless scalar
in AdSs, the action is finite without need for regularization,'? and can be expressed as:

7(a — g(a(t'))]?
rpoel = [ o) et o

This form of the action is manifestly finite.

It is instructive to explicitly show the steps needed to get (5.25). This is a good
warm-up for when we study the longitudinal modes in the next section, where we will be
interested in the value of the longitudinal action rather than its variational derivatives. We
first integrate (5.4) by parts and express it as a boundary term:

Sr[joal = —j;s/dty(t,())ﬁsy(t, 0) = —% ll_I)I(l) dtdt'j(a(t))g(a(t)0s K (s, t,t"). (5.26)

12This is not true for massive scalars, which diverge near the AdS boundary.
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The second equality follows from (5.23). Moving the limit inside the integral and using
0sK(0,t,t") = %ﬁ formally leads to (5.24). However, the result is divergent and we
can be more careful about interchanging the limit and integral. Instead, we move Js out-
side the integral, and use the fact that [dtK(s,¢,t') = 1 to replace g(a(t))g(a(t)) —
—2(5(a(t)) — G(a(t')))* without changing the value of the action. This replacement im-
proves the convergence of the integral and makes it legitimate to now take the derivative
and limit inside the integral. The final result is (5.25).

As an aside, we note that if the string is in R? instead of AdSy x S, then the two
longitudinal modes x and z are also decoupled and their on-shell actions are both also given
by (5.25), with the boundary value modified appropriately. The resulting expression for
the action of the classical string is precisely the Douglas integral in (5.1), after changing the
integration variable along the curve using ¢ = tan 5 and invoking the fact that minimizing

over the boundary reparametrization imposes the Virasoro constraint.

5.3 Longitudinal modes

It is more difficult to analyze the longitudinal modes than the transverse modes because
the equations of motion in (5.9) are non-linear, and their solution given the boundary
condition in (5.7) with a general a(t) is not known. Therefore, we proceed in two ways.
First, we will say as much as we can about the general properties of the longitudinal action
without solving for it explicitly. Second, we will study the longitudinal action to leading
order in perturbation theory, treating a(t) as a small fluctuation about the saddle point
a(t) = t. This approximation will be sufficient to evaluate the classical action to fourth
order in perturbations of the boundary curve, the four-point functions to leading order in
the inverse string tension, and the OTOC in the double scaled limit.

There are three important properties of the longitudinal action that we can study with-
out solving the equations of motion: (i) the physical and gauge SL(2,R) symmetries, (ii) the
behavior near the boundary, and (iii) the equivalence of extremizing over the reparametriza-
tion mode «(t) and imposing the Virasoro constraint. In addition, we can completely solve
for the longitudinal modes and action when the transverse modes are turned off (i.e., when
TT = T* = 0), which is the zeroth order step in the perturbative analysis.

5.3.1 Two SL(2,R) symmetries

The string in AdSs x S! has two SL(2, R) symmetries. The first moves the string around
in the target space and is physical, while the second one corresponds to transformations
of the worldsheet coordinates and is gauged. The physical SL(2,R) symmetries are simply
the isometries of the target space AdSs. The gauge SL(2,R) symmetries are the usual
residual worldsheet coordinate transformations that leave the AdSs metric invariant up to
a Weyl rescaling and that are therefore not fixed by the conformal gauge. See table 1 for
a summary of the actions of the two SL(2,R) symmetries.

We can study the two SL(2,R) symmetries at three levels. In addition to considering
transformations of the entire string that leave the string action S[z,y, z] and the Virasoro
constraint invariant, we can consider transformations acting on the longitudinal modes
that leave the off-shell longitudinal action Sy [z, z] invariant, or transformations that act
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Target space coords. x, z
Worldsheet coords. t, s

Target space metric 27 2(da? + d2?).
Worldsheet metric s72(dt? + ds?)
SL(2,R) transformation f(z) = Z;Ig
Physical SL(2,R) x+iz— flr+iz)
Gauge SL(2,R) t+is — f(t+1is)

Table 1. Coordinates used to analyze the string in AdSs x S! in conformal gauge and two SL(2, R)
symmetries.

on the boundary reparametrization «(t) that leave the on-shell longitudinal action Sy [«]
invariant. Studying the symmetries at the level of the string helps us interpret the two
symmetries, but our primary goal is to understand the symmetries of the on-shell longitudi-
nal action, which will become the effective action appearing in the reparametrization path
integral that we will use to compute correlators in section 6. In that context, the physical
SL(2,R) symmetries give rise to Ward identities for the correlators while the gauge SL(2, R)
symmetries need to be gauge fixed in the path integral.
We can represent a general SL(2,R) transformation by the function

ar +b

fl@) = (5.27)

where a,b,c,d € R, ad — bc = 1. This is an SL(2,R) transformation on the line if x is real
and on the half-plane if x is complex with positive imaginary component.

First, we consider the physical SL(2,R) symmetry. It acts as an AdSs isometry on the
longitudinal modes and trivially on the transverse mode:

Z(s,t) +iz(s,t) = f(z(s,t) +iz(s,t)) (5.28)
(s,t) = y(s,t). (5.29)

<

Consistency with the boundary conditions in (5.7)—(5.8) means it also acts on the boundary
reparametrization and the boundary curve as:

alt) = a(t) = fla(t) (5.30)
§a) = @) =5(f (). (5.31)

This ensures that Z(0,t) = a(t) and §(0,t) = g(a(t)) if z(0,t) = a(t) and y(0,t) = §(a(t)).
Because the transformation is an isometry of the target space AdSo, it leaves the

<

longitudinal action invariant in (5.3): i.e., Sp[z, 2] = Si[x, 2] off-shell and Sy [a] = SL[a] on-
shell. Similarly, the longitudinal stress tensor in (5.12) satisfies T*[z, 2] = T*[x, 2] off-shell
and T*[a] = T"[a] on shell. Because the transformation does nothing to y(s, t), it trivially
leaves the transverse action and stress tensor invariant. The total action and the total stress
tensor are therefore also both invariant. Finally, we see that this SL(2,R) transformation
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is physical because it actually moves the string in the target space AdSs x S! and the
curve on the boundary R x St — namely, (2(s,t), z(s,t),y(s,t)) and (z(s,t), Z(s,t),y(s,t))
represent different strings and («, §j(«)) and (c, §(«)) represent different boundary curves.
This is illustrated in the left half of figure 6.

Next, we consider the gauge SL(2,R) symmetry. It acts on the longitudinal and trans-
verse modes through the worldsheet coordinates as:

z(s,t) +iz(s,t) — Z(s,t) +1iz(s,t) = z(8,t) +i2(5, 1), 5.32)
y(s,t) — y(s,t) = y(5,1), 5.33)

where
t+is5 = f(t+1is). (5.34)

Consistency with (5.7) means it also transforms the boundary reparametrization but not
the boundary curve:

a(t) = a(f(t)) (5.35)

.
S () = gla). (5.36)

To see how this transformation changes the actions and stress tensors, we note that

the Jacobian for the worldsheet change of coordinates in (5.34):

(5.37)

[0 one 1 (d+ ct)? — s2c®  —2cs(d + ct)
9P ((d+ ct)? + ?s?)? '

a 2cs(d+ct)  (d+ ct)? — s2c?

. 5 958 5 5o 958 5 5 _
It satisfies 575%% = g—gléaﬁ and 5a5%% = ‘%M’ﬁ where |g—g] = (s> +(d+ct)?) 72
We note also that s=2 = §(s)‘2]%| because vh = s~2 is a tensor density.

It follows that, under the transformation in (5.32), the longitudinal action satisfies
T
Splz, 2] = ;/d%

Likewise, under the transformation in (5.33), the transverse action satisfies Sp[y] = Sr[y].

da
Oo

{8,13}(0')60‘1)(0') + 0az(0)0%2(0) 2
z(0)? 52

] = Silz, 2]. (5.38)

These also imply Sp[a] = Sp[a] and Sp[j o @] = Sr[g o «]. Thus, both the longitudinal
and transverse Lagrangians transform as worldsheet tensor densities and the actions are
invariant both off-shell and on-shell. Meanwhile, the stress tensors transform as worldsheet
tensors:

957 da°

057 95°
= 902 9P 75[9] )

(o)

(5.39)

This is why it is necessary to transform both the longitudinal and transverse modes simul-
taneously in (5.32)—(5.33) (in contrast with (5.28)—(5.29)) because the Virasoro constraint
is otherwise not preserved. Finally, we see that this SL(2,R) transformation is gauge be-
cause it simply relabels the worldsheet coordinates without actually moving the string in
target space or the curve on the boundary. This is illustrated in the right half of figure 6.
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Physical SL(2,R) Gauge SL(2,R)

x+iz > f(x+i2) t+is - f(t +is)

Figure 6. An example of physical and gauge SL(2,R) transformations acting on an open string
in AdSy x S! incident on the boundary. The physical SL(2,R) transformation moves the string in
AdS, x S!, whereas the gauge SL(2,R) transformation merely relabels the worldsheet coordinates
(which is represented by the rescaling of the mesh lines on the string).

5.3.2 Behavior near the boundary

The divergence of the AdS metric at the boundary may lead us to ask whether (5.3) is well
defined. We now show that the longitudinal action is finite if x and z satisfy the equations
of motion.

Since the divergence of the AdSsy string comes from the region near the boundary, we
want to study the general behavior of z and z at small s. Following [77, 78], we expand
x(s,t) and z(s,t) as

x(s,t) = a(t) + Z an(t)s"”, z(s,t) = Z bn(t)s™. (5.40)
n=1 n=1

We used the boundary conditions in (5.7) to fix the zeroth order coefficients. We can fix
the higher order coefficients by substituting these series expansions into the two equations
of motion in (5.9) and setting the coefficients of each power of s in each equation to
zero. The first and second order terms imply a1 = 0, by = & and by = 0, as = —%d.
The next order terms identically vanish, which means that the equations of motion near
s = 0 do not constrain az(t) and bs(t). For convenience, we can rewrite ag(t) = $g(t) and

bs(t) = % [h(t) —1 ‘o'z'(t)}, where ¢(t) and h(t) are as yet undetermined arbitrary functions.

Thus, to order s3, the longitudinal modes are given by:

x(s,t) = aft) — d;t)SQ + gét)si)’ +... (5.41)
2(s,t) = a(t)s + [hgf) - O‘G(t)} 84 .. (5.42)

Up to relabelling, this is equivalent to eq. (4.3) of [78]. It is easy to check that all higher
order coefficients, a,, and b, for n > 4, are fixed in terms of «, g and h. For our purposes
knowing the terms in (5.41)—(5.42) will be sufficient.

Although the expansion of the equations of motion near the boundary does not con-
strain ¢(t) and h(t), we expect based on uniqueness that they should be determined by
a(t). As pointed out in [78], this can in principle be done by requiring z(s,t) and z(s,t) to
be well behaved as s — oo, but is not easy to implement because the series converge only
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when s is sufficiently small. Thus, while the series expansions are useful for understanding
the behavior of the longitudinal modes near the boundary, they do not provide a viable
method to solve the longitudinal action exactly.

Given the series expansions in (5.41)—(5.42) and the longitudinal action in (5.3), we
find that the longitudinal Lagrangian near s = 0 takes the form:

O0px0%x + 0,20%% 2

2 52

. O(s). (5.43)

This means the on-shell longitudinal action is finite, as desired.

Finally, although it affects neither the longitudinal nor the transverse modes, we should
also comment on the area contribution to the string action in (5.2). The area of AdS; is infi-
nite and requires some sort of regularization. One method of regularization is to introduce
a cut-off curve near the boundary of the worldsheet, remove the divergent contribution
that is proportional to its length (which can be interpreted as a renormalization of the
mass of the dual particle propagating on the boundary) and then send the cut-off to the
boundary [1, 2].13 The regularization does not depend on the specific way in which the
cut-off curve is sent to the boundary, and yields the following well-known result for the
regularized area of the hyperbolic plane:

Ays = 0. (5.44)

We illustrate this procedure for both the hyperbolic plane and the hyperbolic disk in
appendix B. An interesting feature of this analysis is that it leads to a Schwarzian term
in the expression for the area — but, importantly, the Schwarzian term decouples as the
curve is sent to the boundary of AdS. We discuss this also in section 7.

5.3.3 Extremizing over reparametrizations and the Virasoro constraint

Next, we demonstrate the equivalence of the Virasoro constraint and the extremization over
boundary reparametrizations for the string in AdSs x S!, which is summarized by (5.14)
and (5.16), without explicitly solving for the longitudinal modes. The equivalence follows
from two facts: (i) extremizing over reparametrizations «(t) sets one component of the sum
of the longitudinal and stress tensors to be zero on the boundary of the worldsheet, and (ii)
the on-shell longitudinal and transverse stress tensors are holomorphic on the worldsheet.

First, we write the variations of the on-shell transverse and longitudinal actions as
boundary terms. For the transverse action in (5.3), we have:

58S = Ts/d2a [0,,(0"ydy) + (y e.om.)dy] = —Ts/dt[y’(O,t)éy(O,t)]. (5.45)
For the longitudinal action in (5.4), we have:
u p
05, = TS/dQO' [({% (8:5;5:5) + 0, (8;;52) + (z e.om.)dx + (z e.om.)dz

s,t)0x(s,t) z’(s,t)(?z(s,t)]
2(s,t)2 2(s,t)? s—sy

/
— T, lim [ dt V( (5.46)

so—0

13 Alternatively, one can add a boundary term to the string action that implements the Legendre transform
with respect to the AdS bulk coordinate [104]. The resulting action is finite and also yields (5.44) for the
hyperbolic plane.
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Here, ' = 9,f and f = 8,f denote partial derivatives of functions on the worldsheet. In
the second line, we introduced a cut-off at s = sg that we send to zero at the end. The
cut-off is not strictly necessary, because eq. (5.43) showed that the on-shell longitudinal
action is finite near the boundary, but it is a convenient way to handle different terms in
the action that may individually be singular.'*

To extremize the total action in (5.2) over the space of boundary reparametrization, we
consider the variation of the action under «(t) — a(t) + da(t), which induces a variation
in the on-shell transverse and longitudinal modes through the boundary conditions. In
particular, given that y(0,t) = g(«(t)), the variation induced in the transverse mode on
the boundary is:

da(t)
alt)

0y(0,t) = y(a(t))da(t) = 5(0,t) (5.47)

Furthermore, from (5.41) and (5.42), the variation induced in the longitudinal modes near
the boundary is

Sx(s,t) = da(t) + O(s?), 62(s,t) = dc(t)s + O(s?) (5.48)

Now we can rewrite the variations of the transverse and longitudinal actions in terms
of da(t) and the stress tensors. First, given (5.47), we can rewrite the variation in the
transverse action in (5.45) as:

oa(t) daft
e

65T = —Ts/dty(o,t)y'(o,t)d(t) = —Ts/dtTtZ(o,t)m). (5.49)

To get the second equality, we used the expression for the stress tensor in (5.13) evaluated
at s =0.

Second, using the leading behavior of the longitudinal modes near the boundary, given
in (5.41)—(5.42), and of their variation, given in (5.48), we can rewrite the variation in the
longitudinal action in (5.46) as

(=é(t)s + g(t)s® + O(s?)) (da(t) + O(s?))
s2a(t)? + O(s%)

55, = —T, lim dt[

so—0

| (80 + O(2))(s4(1) + 0(33))]
s2a(t)? + O(s*) s—so
T lim 17 a) N 1 s g9(t) N
= T, Jim, dt[so< St + 50 (t)) + 20 (t)]. (5.50)

The first term in the second line integrates to zero because it is a total derivative. Mean-
while, the remaining term can be written in terms of the longitudinal stress tensor. To
see this, we substitute (5.41) and (5.42) into (5.12) and find that both components of the
on-shell longitudinal stress tensor are finite at the boundary and are given by:

h(t) 9(t)

T3 (0,t) = a0’ T45(0,1) = o) (5.51)

MFor instance, introducing the cut-off at s = so lets us drop the total ¢ derivatives when going from the
first line to the second line in (5.46) without worrying about their behavior at s = 0.
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Thus,

da(t)
(t)

6Sp = —Ts / dtTE(0,1) : (5.52)
Combining (5.49) and (5.52), it follows that the change in the total action under a
variation in the boundary reparametrization is:

dalt
S =68y + 65, = —T, /dt (T5(0,) + TE(0,1)] O‘é)) (5.53)
&
Therefore, extremizing over the reparametrizations fixes the ts component of the total
stress tensor to be zero on the boundary of the worldsheet:

Ty (0,) + Ty(0,8) = 0. (5.54)

This is actually equivalent to imposing the full Virasoro constraint on the entire worldsheet,
because the on-shell longitudinal and transverse stress tensors are holomorphic (see (5.21)).
A result from complex analysis states that if either the real or imaginary components of
two holomorphic functions on the upper half of the complex plane that vanish everywhere
at infinity are equal, then the two functions are equal everywhere in the upper half plane.
We can also make this concrete by writing the full stress tensor T,5(s, t) on the worldsheet
explicitly in terms of T (0,t) on the boundary:

t—t

stt(O,t’). (5.55)

1 s 1
Tst(s,t):/dt,MTst(O,t/), 'I%t(s,t):ﬂ_/dt/

T t

Thus, Ts(0,t) = 0 implies T (s,t) = Ty(s,t) = 0.

5.3.4 Longitudinal modes without transverse modes

When the transverse mode is turned off, we can completely solve the longitudinal dynamics.
This will be the starting point of the perturbative analysis that we turn to next. The
transverse mode being turned off means the curve on the boundary is fixed at a point
in S': e.g., §(a) = 0. The solution to the transverse equations of motion is then simply
y(s,t) = 0 and the transverse stress-tensor and action are zero: 77 = Sy = 0. To study the
longitudinal modes, it is convenient in this case to impose the Virasoro constraint before
the equations of motion. It follows that 7% = 0 and therefore, from (5.19), that X = 0
or 0X = 0. In other words, X = z + iz is either a holomorphic or an antiholomorphic
function of t + is. It is clear from (5.20) that in both cases the longitudinal equations of
motion are automatically satisfied.

Because z(s,t) > 0 with 2(0,t) = 0, it follows that ¢ 4+ is — x + iz is a holomorphic
map of the upper half of the complex plane into itself. Furthermore, we require that this
map be a bijection, so that s and ¢ are good coordinates on the string worldsheet. This
allows us to invoke the result from complex analysis that the (anti)holomorphic bijections
on the upper half of the complex plane are the SL(2, R) transformations. Thus, the general
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form of x(s,t) and z(s,t) consistent with the Virasoro constraint (and also automatically
consistent with the equations of motion) is:

a(t £is)+0b

x(S,t) + ZZ(S,t) = im

(5.56)
where a,d,b,c € R and ad—bc = 1. The choice of sign (with the + sign for the holomorphic
solutions and the — sign for the antiholomorphic solutions) corresponds to a choice of orien-
tation. Restricting (5.56) to the real axis determines the boundary reparametrization «(t):

at+b
ct+d’

alt) ==+ (5.57)

We will focus on the holomorphic solution, in which case & > 0.

The longitudinal action in (5.3) evaluated on the solution in (5.56) is S, = 0, and
the total action in (5.2) reduces to the (regularized) area of the AdSy worldsheet. This
simple case also concretely illustrates how imposing the Virasoro constraint picks out an
SL(2,R) subset of reparametrizations from the space of all possible reparametrizations.
This is the smallest subset consistent with the gauge SL(2,R) symmetry of the string. We
might summarize this effect by saying that the imposing the Virasoro constraint in the
conformal gauge breaks the reparametrization symmetry of the string from Diff(S!) to
SL(2,R). The reparametrization mode should behave analogously when the transverse

modes are turned on.'?

5.3.5 Perturbative analysis of the longitudinal modes

Finally, we turn to the classical AdS string in the conformal gauge in the case where
the transverse modes are turned on. We will work perturbatively, treating the transverse
fluctuations as being small. This is the regime where we can most easily make progress
and that is relevant for the computation of the boundary correlators.

When the transverse modes are turned off, we saw that the boundary mode, «(t), takes
the form in (5.57) and the longitudinal modes, z(s,t) and z(s,t), take the form in (5.56).
We will expand perturbatively around the “simplest” solution, «(t) = ¢, z(s,t) = ¢t and
z(s,t) = s, which is a convenient choice of SL(2,R) gauge. We write

alt) = t+et),  als,t)=t+E(s,1), 2(s,8) = s+ ((s,1), (5.58)
and treat €, £ and ¢ as small perturbations. The boundary conditions for ¢ and ¢ are:
£(0,1) = €(t), ¢(0,t) = 0. (5.59)

We will assume that the perturbation of the boundary curve is localized: i.e., () — 0 as
t — +o0, which implies that £ and ¢ are localized on the worldsheet: £(s,t),((s,t) — 0 as
t — +oo or s = o0.

15The boundary reparametrizations of the AdSs string for the case without transverse modes was studied
recently in [71]. That analysis finds more non-trivial behavior for the reparametrizations than what is given
in (5.57). We believe the different conclusion in [71] is a result of allowing ¢ + is — x + iz to be any
holomorphic function on the upper half plane. We believe one should restrict to biholomorphic bijections.
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Recall that to compute the boundary four-point function in (2.20) in the classical
regime, it is sufficient to compute the classical action to quartic order in §. It is clear
from (5.23) and (5.13) that T7 is quadratic in §. Meanwhile, if we substitute (5.58)
into (5.12) and expand in ¢ and ¢, we see that T is linear in ¢ and ¢. The Virasoro con-
straint therefore implies that £ and { are quadratic in 4. This means we only need to study
the longitudinal action to quadratic order in ¢ and {, which is a convenient simplification.

We can use the linear order equations of motion for the longitudinal modes to write
the quadratic order longitudinal action as a boundary term. First, substituting (5.58)
into (5.9) and expanding, we find that the linear order equations of motion for £ and ( are:

0=s(l+¢") —2(¢ +0), 0=s(C+¢")+2(6~¢). (5.60)

Second, substituting (5.58) into (5.3) and expanding, we find that the longitudinal action
to quadratic order in £ and ( is:

. / / 2 : fel «
s, o §+ oK _KC K KE et ]

S S _Sey
s?2 sz g3 s3 s4 s3 252

:ag/fah<§>+@(;>—@<§>—@(;>+%(&mzyﬂ%>+”l

We used (5.60) to get to the second line.
All of the terms in the second line in (5.61) are total derivatives. Now, as in (5.46),

(5.61)

it is convenient to introduce a cut-off at s = sy, write the action as an integral over the
boundary at s = sg, and take sg — 0 at the end. If we apply the small s expansion of £ and
¢, which are essentially given by (5.41)—(5.42), we see that all the terms that are singular
at s = 0 cancel, and the finite contribution to the action is:

su=- [ .90 =~ [ arc0.0¢"0.1), (5:62)

In the second equality we used £ (0,t) = 2¢g(t), which follows from (5.41). This action has
corrections that are of third order in £ and (.

If we can solve the equations of motion in (5.60) for £ and ¢ in terms of €, then (5.62)
gives us the on-shell longitudinal action to quadratic order in €. Because the equations of
motion are linear, the solutions can be written in terms of boundary-to-bulk integrals:

guwszm@m%w, q@w:/wm@m%m. (5.63)
It turns out that the two boundary-to-bulk propagators K, and K, are given explicitly by

45°(s* = (t—t)%) 8 sit—t)

N —
T (82+ (t—t/)2)3 ) KZ(87t7t) - T

Kx(s,t,t,) = T (s2+ (t— t/)2)3'

(5.64)
It is easy to check that K, (s,t,t') and K,(s,t,t') solve (5.60), become sharply peaked at

t =t as s — 0 and satisfy [dt'K,(s,t,t’) =1 and [dt'K,(s,t,t') = 0 for any s. These
properties together with (5.63) mean that £(s,t) — €(t) and ((s,t) — 0 as s — 0, as desired.
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Combining (5.62) with (5.63)—(5.64) yields the following expression for the on-shell
longitudinal action to quadratic order in e:

Sult+ e(t)] = —% lim [ dtdt 93K (s, b, ¢)e(t)e(t). (5.65)

s—0

If we substitute the explicit expression for 92K, and treat s as a short distance regulator,
the resulting quadratic action appears similar to the one in eq. (15) in [80]. We prefer to
put the action in a manifestly finite form that does not involve s. If we naively take the
limit inside the integral in (5.65), the resulting integral is divergent. Instead, we follow a
sequence of steps analogous to the ones we took to get from (5.26) to (5.25) when studying
the transverse action. We start by introducing the function

4 3(t —t')? 14(t — t')* 12(t — t')S
P P R T PR g P R pe ey r P v

which has three useful properties: (1) 92K, (s,t,t') = 00y Ju(s, t,t'), (ii) [dt'Ju(s,t,t') =

0, and (iii) lims—o [ dtdt'J.(s,t,')(f(t) — f(¢'))? is finite as ¢ — ¢ and evaluates to
% [ dtdt’ % for any function f(¢) that is smooth and decays sufficiently quickly
at t — foo. Thus, writing 02K, as 9,0y J, in (5.65), we can integrate by parts to transfer
the derivatives to €(t) and €(t'), then replace é(t)é(t') — —3(é(t) — é(t'))? without changing
the value of the integral, and finally safely take the s — 0 limit. The final expression for

Jo(s,t, 1)) =

(5.66)

the on-shell longitudinal action to quadratic order in € is:

T ((t) — é(t)?
Splt+e(t)] = = [ dtdt'—————". 5.67
e+ ) = 52 [ aar SO (567
This, together with (5.77), is the main result of this section.

We can also get from (5.65) to (5.67) more formally by noting that 92K, (0,t,t') =

24 1

= (=)t and taking the limit in (5.65) inside the integral to get the expression

Sult+ €(t)] = 6:5 / dtdt’m (5.68)

This yields a second representation of the quadratic action that is sometimes be useful
but also only formal because it is divergent. We can think of it as being defined by
letting (¢t — t')* — (¢ — #')* in the denominator and then analytically continuing from
n < 1/4 to n — 1. Then, writing ﬁ = atat/%ﬁ, transferring the derivatives to
€(t) and €(t') and invoking the identity [ dt = t,)Q = 0 in analytic regularization to replace
E(L)E(t) — —3(é(t) — €(t))?, we again arrive at (5.67).
We can also express the quadratic longitudinal action in Fourier space. Writing €(t) as
its Fourier integral, e(t) = d‘”e Wie(w) with e(w)* = €(—w), we find that the longitudinal

action is!'6

Sult + e(t)] = ;T / due(w)e(—w)|w]?. (5.69)

This form of the longitudinal action appeared in [79].

161t is convenient when computing the Fourier representation of the action to replace (t—t')? — (t—t')*+s2
n (5.67) and take s — 0 at the end.
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5.3.6 Hyperbolic disk coordinates

We can also perform the conformal gauge analysis of the string in AdS, x S' in hyperbolic
disk coordinates instead of hyperbolic half-plane coordinates. One reason to do so is that
many questions are better posed on the hyperbolic disk because the boundary coordinate
is compact. We summarize the set-up and the results needed for section 6 here, and supply
the details in appendix A.

We start with the following metric on AdSy x S':

o d6® + dr?

ds —
sinh” r

+ dy?, (5.70)
where 6 € [0,27] is the boundary angular coordinate on AdSs, r € [0,00) is the bulk
coordinate (with » = 0 labelling the boundary of AdSs), and y is an angular coordinate
on S'. Now the boundary is S' x S! and the curve that the string is incident on can be
represented as 7y : « — (o, §(a)). Furthermore, the string can be represented as ¥ : (o, 7) —
(r(o,7),0(0,7),y(0,7)) where o € [0,00) and 7 € [0, 27| are worldsheet coordinates (with
o = 0 labelling the boundary of the worldsheet).

In analogy with (5.2)—(5.5), the string action in conformal gauge can be split into three
terms,

S[0,r,y] = Sr[0,7] + St(y] + Ts Aws, (5.71)

where the first term is the longitudinal action,

T. 0“00,0 + 0“rdyr 2
Splo,r] == [ d? { = S , 5.72
£[6:7] 2 / o sinh? r sinh? o ( )

the second term is the transverse action again given by (5.4), and the third term is the
regularized area of the worldsheet. This is Ays = f d*ovh = —2m, as is reviewed in
appendix B.

The boundary condition of the string in the disk coordinates is:

r(0,7) =0, 0(0,7) = a(r), y(0,7) = g(a(T)), (5.73)

where «(7) is a reparametrization of the boundary. Since 7 is an angular coordinate, r and
y are periodic in 7 (i.e., (7 + 27) = r(7), etc.) and @ is periodic in 7 up to a shift by 27
(i.e., O(o, 7+ 27) =27 4+ 0(0,7) and (7T + 27) = 27 + a(71)).

As in the analysis in the hyperbolic plane coordinates, the classical string action as
a function of § can be expressed as the sum of the on-shell longitudinal and transverse
actions, St [a] and S7[y o al, subject to the Virasoro constraint or extremization over the
boundary reparametrization:

Salyl = —27Ts + Si[a] + Sty o a] (5.74)

Virasoro

= 27T + extr%mize{SL la] + S7[g o al}. (5.75)
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The on-shell transverse action as a functional of §(a(7)) is:

(5.76)

L [ arar| [#(a(r)) — gla()]’]

Sr[goal = In [2sin (I52)]°

This follows from (5.25) if we change the integration variable over the boundary using

T—T/)

2
Meanwhile, the general solution of the on-shell longitudinal action as a functional of

t = tan 7, which replaces the euclidean distance ¢ — ¢’ by the chordal distance 2 sin(

a(7) is not known. But if a(7) = 7 + €(7) where € is small, then the on-shell longitudinal
action to quadratic order is:

(1) — (7'))2 = (e(1) — e(7))?
Splr+¢€(r)] = QT;/deT’( () EQS)il (éﬂ(); ()" (5.77)

The steps needed to derive (5.74)—(5.77) are essentially the same as in the analysis in
hyperbolic plane coordinates; see appendix A.

The longitudinal action on the circle given in (5.77) is sometimes nicer to work with
than the longitudinal action on the line given in (5.67) because the periodicity of the
boundary allows us to write the bounday reparametrization as a Fourier series instead of
a Fourier integral. In particular, the perturbation e(7) about the saddle point a(7) = 7 is
periodic in 7 and can be expressed as:

e(r) = Z €ne™, (5.78)

nel

where €7 = e_,. We can then evaluate the action in terms of the modes Fourier ¢, using
the following orthogonality relation:

= 1|6, —m- (5.79)

/27r dr d+' (einr _ einT’)(eimT _ eimT’)
o 2m27 [2sin (757) )?

The different modes decouple when we substitute (5.78) into (5.77), and the action becomes:

Sp[r + e(1)] = 4nTs i In|(n? — 1)epe_p. (5.80)

n=2

The |n|(n? —1) dispersion relation on the circle is the discrete version of the |w|? dispersion
relation in (5.69) on the line. Note that €y, €; and e_; are zero modes of the action; they
correspond to the three generators of the SL(2,R) gauge symmetry of the string.

Finally, to close this section, we return to the introductory remarks we made at its
beginning. Adopting the language of [80], one can view (5.77) together with (5.76) (or,
equivalently, (5.67) together with (5.25)) as defining a perturbative “Douglas integral” for
the classical string in AdSs x S!. Namely, the analysis in this section has shown that
the regularized area of a minimal surface in AdSs x S' incident on the boundary curve
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v:a— (a,7(a)), to fourth order in g, is given by:

A= 21+ extg(eglize Lll?T /027r dr /027r dT/<2(é(T) = é(r'))* = 2Aelr) — ()" (5.81)

This is less elegant than the Douglas integral for the minimal surface in R? because it is only
perturbative. For a more direct comparison, we should choose the boundary curve in R? to
be a nearly circular curve (e.g., in (5.1) let Z(a) = (cos a,sin o, §(a)), set a(r) = 7 + €(7)
and expand in €), which is the flat space analog of a nearly circular curve on the boundary
of AdSs x S*.

The equivalence the classical string action in conformal gauge given in (5.81) and in
static gauge given in (2.35) is demonstrated explicitly (to fourth order in §) in appendix C.

6 The string reparametrization integral: correlators and OTOC

The upshot of the previous section is that the partition function of the open string in
AdSs x S' in the classical approximation can be written as:

(] ~ e~Sali) — extr%mize{Q—TsAws—sL[a}—sT[Qoa} } (6.1)

Going forward, we drop the constant TsAys term. We now explore some of the implications
of promoting the extremization in (6.1) to a path integral over the boundary reparametriza-
tions:

Z[5) = / Doy ¢~ Selel=5rlieal, (6.2)
Mg

Such a reparametrization path integral appeared in [79, 80] in the context of the string in
AdS and in, e.g., [72-76] in the context of the string in flat space. As discussed in those
references, the integral over reparametrizations is what remains of the path integral over
the worldsheet metric hop in eq. (2.18) in the string sigma model after the conformal gauge
is fixed.

In the limit of large string tension, eq. (6.2) is dominated by its saddle point and
reduces to (6.1). When the string tension is finite, (6.2) includes some but not all of the
quantum corrections to the classical result in (6.1). This is because it does not include the
path integral over the matter fields (which include the longitudinal modes z and z, the
transverse mode y, as well as the other bosonic and fermionic fields that we have suppressed
in (2.18) by focusing on the motion of the string in an AdSs x S! subspace of AdSs x S°) or
the path integral over the bc ghosts that arise when fixing the conformal gauge. Nonetheless,
one might hope that the reparametrization path integral in eq. (6.2) captures at least an
interesting subset of the quantum corrections to at least some interesting observables on
the string. This is the attitude that we take in this section.
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Furthermore, we will be somewhat heuristic about the meaning of the reparametriza-
tion path integral in (6.2). In particular, to compute the four-point function to leading
order in 1/T; and the OTOC in the double scaling limit, it will be sufficient to expand
around the saddle point and approximate the path integral as a Gaussian whose action
is the longitudinal action at quadratic order in the perturbation e that is given in (5.77).
The only ingredient needed for these computations is the propagator for e, which can be
determined using only some general properties of the integral in (6.2). The following anal-
ysis will therefore involve some educated guesswork that is guided by the properties of the
string action in conformal gauge that were discussed in section 5, as well as by the example
of the Schwarzian path integral in, e.g., [38, 55, 56].

In section 5, we found explicit expressions for the transverse action St[goa] in (5.76)
and the longitudinal action Sy [a] (perturbatively) in (5.77). The two components of (6.2)
that we have not made precise — and will not need to make too precise — are the domain
of integration Mp and the measure Da. Let’s first consider the domain of integration.
We will work with the string in hyperbolic disk coordinates, so that «(7) in the string
boundary condition in (5.73) is a reparametrization of a circle. A first guess, therefore, is
that the domain of integration in (6.2) should include all reparametrizations of the circle,
Diff(S!). However, we recall from section 5.3.1 that the string in AdSy x S! has two
SL(2,R) symmetries, one physical and one gauge. The action of these symmetries on the
boundary reparametrization a(7) are given in (A.10) and (A.14) for the case of the circle
(and in (5.30) and (5.35) for the case of the line). Another common way to represent an
SL(2,R) transformation on a circle with angular coordinate ¢ is

f(9) B atan% +b
2 ctan%—kal7

f:o— f(o), tan (6.3)
where a,b,c,d € R and ad — bc = 1. Then, the physical transformation SL(2,R) trans-
formation sends a(7) — f(a(7)) (i.e., it acts on the “left” or, equivalently, on the target
space boundary coordinate) while the gauge transformation sends a(7) — a(f(7)) (i-e., it
acts on the “right” or, equivalently, on the worldsheet boundary coordinate). Therefore, an
updated guess is that the domain of integration in (6.2) should include all diffeomorphisms
of the circle modulo the gauge SL(2,R) transformations, which we can write as:

Mp = Diff(S')/SL(2, R) . (6.4)

The subscript R indicates that we identify two reparametrizations if they are related by
an SL(2,R) transformation acting on the right: i.e., a ~ a o f.

Eq. (6.4) is also the domain of integration that appears in the Schwarzian the-
ory [38, 55, 56|, which also has a gauge SL(2,R) symmetry. Consequently, we will have to
gauge fix the SL(2,R) modes in the same way when computing correlators. Furthermore,
as discussed in [55], Diff(S')/SL(2,R) is a symplectic manifold with a natural measure,
which therefore provides a precise definition of D« in (6.2). However, for the purpose of
computing correlators perturbatively, it will be sufficient — and equivalent to working with
the Schwarzian measure — to use a naive form for the measure.
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6.1 Correlators in the reparametrization path integral

From (6.2), we can derive the representation of the string boundary correlators in the
reparametrization path integral. Recall from section 2 that the correlators on the string
are defined by taking orthogonal variational derivatives of the string partition function
with respect to the boundary curve. In particular, we need to take derivatives of (6.2)
with respect to ¢, and label the positions of the operators by their angular coordinates, 0,
on the AdS, boundary. For instance, the two and four-point functions are:

1 827y 1 5 Z[g]
WS = g ) NS G S )550)00(8:)50(0n)

(6.5)

In (6.2), § appears only in the transverse action. To take variational derivatives, it is useful
to rewrite the transverse action in (5.76) by changing the integration variable from 7 to
0 = a(7). This gives:

O O )12 (. M
Srljoal M/wwpm@h@_dmmmw>yw». (6.6)

In the above expression, 7(+) denotes the inverse of «(-). Taking two variational derivatives
of (6.6) yields

7 8%8rljoal _ 7(01)7(02)
T 65(61)05(62) |2 sin(3[7(61) — 7'(92)])}2'

B, (61,02) = (6.7)

We have introduced the notation B (61, 62) for this bilocal object, which looks like a con-
formal two-point function of unit scaling dimension “dressed” by the reparametrization .
This object is familiar from the study of correlators in the Schwarzian theory in JT gravity.
We will typically drop the explicit dependence of B, on 7.

The fact that the inverse 7(-) appears in (6.7) instead of a(-) suggests that it is the
more natural way of representing the reparametrization in the path integral. This is related
to the fact that «(-) maps the worldsheet boundary coordinate 7 to the AdSy boundary
coordinate # while 7(-) maps € to 7, and the locations of the insertions in the boundary
correlators should be labelled by 6 instead of 7.!7 We therefore rewrite (6.2) as

Zlg) = / Dr ¢~ Sulrl=Srlger™"], (6.8)
My

Here, we have introduced the effective action for the reparametrizations,
Sglr] = SLlel, (6.9)

where «(-) is the inverse of 7(-). It is a happy accident that the subcripts R and L in (6.9)
stand equally well for “reparametrization” and “longitudinal” or “right” and “left.” This
encapsulates the two observations that the effective action governing the reparametrization

17Similar comments were made in the analysis of the scattering matrix on the long bosonic string in
conformal gauge in section 6 of [93].
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path integral in (6.8) ultimately derives from the action for the longitudinal modes in (5.72)
in the conformal gauge analysis, and that Sg and Sy, in (6.9) are mirror images of the same
object. Indeed, because 7(-) and «a(-) are inverses and because the physical and gauge
SL(2,R) transformations act on the left and right, respectively, of «, it follows that the
physical and gauge transformations act on the right and left, respectively, of 7. Namely,
the physical transformation sends 7(6) — 7(f(0))) and the gauge transformations sends
7(0) — f(7(6)). Thus, instead of (6.4), the domain of integration in (6.8) should be

My, = Diff(S')/SL(2,R), (6.10)

which is the space of all diffeomorphisms of the circle modulo gauge SL(2,R) transforma-
tions acting on the left (i.e., we identify 7 ~ for if f is an SL(2,R) transformation on the
circle).

Finally, when we take variational derivatives of (6.8) with respect to g, we again simply
pull down insertions of the bilocal object defined in (6.7). Thus, in our final formulation
of correlators in the reparametrization path integral, the two-point and four-point string
correlators are

(0(61)(02)) s, = (B (61,62) (6.11)

(y(01)y(02)y(03)y(04)) ads, = §[<BT(91792)BT(93794)> + (Br(6h,03)Br(02,04)) (6.12)

4 <BT(917 94)37(92, ‘93)>] :

On the right hand side, the angle brackets indicate expectation values in the reparametriza-
tion path integral:

()= ZIR/DTe—SRH(...), (6.13)
My,

where the integral is normalized by the partition function Zg so that (1) = 1.
For greater generality, we can instead study the following two-point and four-point
functions between “operators” V and W with conformal dimension Ay and Ay :

(ViVa) = (V(01)V (62)) ads, = (B-(61,62)2") (6.14)
(ViVaWsWy) = (V(01)V (02) W (03)W (04)) ads, = (Br(01,02)2V B, (05,04)2").  (6.15)

Before we study (6.14) and (6.15) perturbatively, we make some additional com-
ments about the manifestation of the physical and gauge SL(2,R) symmetries in the
reparametrization path integral. First, the gauge symmetry sends 7 +— f o 7 where f
is given in (6.3). This leaves both the reparametrization action in (6.8) and the bilo-
cal operator in (6.7) invariant under left transformations (i.e., Sr[f o 7| = Sg[7] and
Byor(0;,05) = B-(6;,0;)). This means that the integrands in (6.11)—(6.15) are indeed in-
dependent of the choice of representative for each gauge orbit in M. It also means that
we will need to gauge fix the three SL(2,R) modes when computing the e propagator.
Second, the physical SL(2,R) transformation sends 7 — 7 o f, which leaves the action
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invariant (i.e., Sg[r o f| = Sg[r]) but transforms the bilocal operator as Brof(61,62) =
f(01)f(02)B-(f(01), f(62)). These properties, and also assuming the right invariance of
the measure, imply Ward identities for the correlators. For example, for the two-point

function in (6.14), for any f that is an SL(2,R) transformation on the circle, we have

(V(01)V (02)) = f(01)2Y F(02) 2V (V(f(61))V (£(62)))- (6.16)

This generalizes to n-point functions of the bilocal operators. These Ward identities
in particular fix the two-point and three-point functions up to normalization and the
four-point functions up to a function of the SL(2,R) invariant cross-ratio, x.

6.2 The propagator and perturbation theory

We will now compute the four-point function to first order in 1/7%, and then the OTOC in
the double scaling limit, from the reparametrization path integral. For these observables,
it is sufficient to expand around the saddle point of the reparametrization action by writing
7(0) = 6 + €(#) and working to quadratic order in e.

We can compute the correlators perturbatively to the desired order using the propaga-
tor for €(#), which is simplest to derive in Fourier space. Thus, we write €(0) = 3, €,¢™?,
and the quadratic reparametrization action as:

o0
Sr[0 + €(0)] = 4nTy Z In|(n? — 1)ene_pn + O(€3) (6.17)
n=2
We used the fact that the inverse of 7(0) = 6 + €(0) is a(7) = 7 — €(7) to leading order in
€. This means that at quadratic order the reparametrization action Sg is the same as the
longitudinal action Sp,, which is given in (5.77) in € space and in (5.80) in Fourier space.
Because the action is multiplied by the string tension, expanding in powers of 1/T
means expanding in powers of €. And at the order that we are working, we will assume
that the integration measure D7 = De is given in Fourier space by:

o
De = Ndeodede_y || dende_p, (6.18)
n=2
Here, N is a normalization constant that does not affect the correlators. Eq. (6.18) is also
the form of the measure in the Schwarzian theory, which to leading order about the saddle
point 7 = 6 is De « degderde_1 [[22 5 n(n? — 1)de,de_,, [55]. Factoring out the infinite
constant N = [[3%,n(n? — 1) leads to (6.18).

There are three zero modes of the quadratic action in (6.17): €, €1, and e_1, which
correspond to €(f) = 1, €(f) = €, and €(f) = e . These are the three infinitesimal
SL(2,R) gauge transformations that we need to mod out in the reparametrization integral.
The simplest way to gauge fix these modes is to set ¢¢ = e1x; = 0. Namely, we write
€(0) = X041 ene™ and do not include €, €41 in the measure in (6.18).

The two-point function of the Fourier modes follows from (6.17):

 ArTin|(n2 —1) "™

(€n€m) n,m # 0, +1. (6.19)

47 —



The € propagator is therefore

1 ein@ 1

T noto 1 In|(n?2 —1)  4nT,

(e(0)e(0) = 1 cost+ 2sin? O 1og (4sin2 9)} |

2

(6.20)
If we choose instead a more general gauge fixing condition that preserves translation in-
variance,'® the propagator becomes

1 1 0 0
(e(0)e(0)) = T [a + bcosf + Py sin? B log (4 sin? 2)] . (6.21)
The coefficients of the first two terms are gauge dependent.

To compute the four-point function in (6.15) using the e propagator, we write the
bilocal operator in (6.7) in terms of ¢ and expand to linear order. It is convenient to
introduce the bilocal operator B which is normalized by the conformal two-point function:

1

[2 sin %]2

B(6;,0;) = B(6;,0;). (6.22)

Then, we have:

02 9ij
Sin D)

(0:,6;) sin? (%[Gij—i-eij])

(1+éi)(1+€'j) =1+é&+¢€5 — € COt%—l—O(Gz). (623)

where we use the shorthand €;; = €(0;) — €(0;) and é; = é(6;).
The leading contribution to the four-point function normalized by the two-point func-
tions is:

(ViVoW3Wy) (B(61,02)2V B(63,04)°7)

(ViVa)(WsWa)  (B(01,02)2v ) (B(03,04)>W)
=1+ Ay Ay (B(61,02)B(03,04))conn + O(1/T2) (6.24)

where the connected component of the correlator of two bilocal operators is:

(B(01,02)B(03,04))conn = (€1 + €2)(é3 + €4)) — cot %((53 + €1)e12)

0 0 0
— cot %((6& + éa)€sq) + cot % cot %<612634> +0(€). (6.25)

We use the propagator in (6.21) to evaluate the various terms above. The final result
simplifies to:
(V1VaW3Wy) _ AvAw

B 4+
(ViVa) (WsWy) ArT,

27 X (1= )| + 001/72). (6.26)

This computation is represented graphically in figure 7.
A few comments about (6.26): firstly, it is independent of the coefficients a and b of
the zero mode contributions to the propagator in (6.21), which reflects the gauge SL(2,R)

180ne way to get (6.21) is to add the gauge fixing term Set = Ts [isﬁ + %61 671] to the quadratic action
in (6.17) and absorb the first two terms in (6.20) into a and b.
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a. Four-point function. b. Double scaled OTOC.

Figure 7. Representation of the a. four-point function at leading order and b. OTOC in the
double scaling limit, as computed in the reparametrization path integral. The curved black lines
represent the dressed two-point functions defined in (6.23). The wavy blue lines represent con-
tractions between the €’s appearing in the expansion of the dressed two-point functions using the
propagator in (6.21). In the double scaled OTOC, the e propagators connect the two dressed two-
point functions directly, in analogy with the eikonal approximation in high energy gravitational
scattering. There are no interactions between the €’s because we keep only the quadratic part of
the reparametrization action in section 6.3. These diagrams are only meant to be schematic and
do not correspond precisely to any Feynman rules.

symmetry of the string boundary correlators. Secondly, the normalized four-point function
depends on the positions of the operator insertions only through the conformal cross-ratio,
X, which reflects the physical SL(2,R) symmetry of the boundary correlators. Thirdly,
the four-point function of four identical operators in (6.12) follows from (6.26) if we set
Ay = Aw = 1 and sum over the three distinct pairings of the four operators. Namely,

2

(Y1y2y3Y4) 5 X 1 { 2—x , % 14x ,
T sy, TTXT - 4+ log((1—x)")+ (4—!— log(x )
(Y192)(y3y4) (1—x)2 4nT; X (( )°) (1—x)2 1—y (x)

+x2 <4+(2x— 1)log (%?2) ) } +0(1/T?), (6.27)

which precisely matches (2.41). It is worth noting that doing the € contractions in (6.25)
seems technically easier than computing D-functions in static gauge (e.g., in going
from (2.36) (2.37)). Finally, analytically continuing (6.26) to the OTOC configuration
using (2.28) and (2.44) yields:

(V1VaWsWy) _AvAw

WZl IT, e+ ... (6.28)

Thus, the maximal chaos of the AdSs string can be derived from the reparametrization
mode in conformal gauge.

On the line. We can also study the perturbative correlators on the line instead of the
circle. The analysis is slightly more tricky because the diffeomorphisms on the line are not
as well-behaved as on the circle. A concrete manifestation of this is that the three infinites-
imal SL(2,R) gauge transformations, 1, ¢, and ¢, are not normalizable.'® Nonetheless, by

9Note also that the action in (5.67) is indeed zero for e(t) = 1 and e(t) = ¢, but infinite for e(t) = t*.
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using a slightly more heuristic approach, we can still deduce the e propagator and compute
the four-point function.

We write the perturbation about the saddle point, t(z) = z+€(x), as a Fourier integral:

=[5 dw e=iwre (). The action in Fourier space was evaluated in (5.69). It follows that

the two- pomt functlon of the Fourier modes is:

1
(e(w)e(v)) = %5@ + V)W. (6.29)
Naively, the € propagator is therefore
e = g [ (6.30)
e(x)e = T, w ER .

but this integral is divergent at w = 0. We can regularize it by integrating over the interval
R\ (—6,0) and taking 6 — 0. The result is:

e T 1 3 1 1
21 2 2 - 21 2 2 . 31
/ dw e 52—1— 2+7E+20g6]x + 52" log + 0(67) (6.31)
R\(~4,0)

The terms in the above expression that diverge as § — 0 are either constant in x or multiply
x2. Since 1 and 2 are two of the infinitesimal gauge SL(2, R) modes, their coefficients in
the propagator are gauge dependent and do not affect any of the observables. We therefore
use the gauge freedom to absorb all the constants, and arrive at the following expression
for the propagator:

1 1
(e(2)€(0)) = — |a + ba® + —z?log(x?)] . (6.32)
T, 8w

This agrees with what we get if we replace the chordal distance 2sin% in (6.21) by the
euclidean distance x.

In analogy with (6.7) and (6.22), or by taking two variational derivatives of the trans-
verse action in (5.25), we introduce the bilocal operator on the line:
i(xl)f(xg) 1

@) — )P o ™) (6.33)

B(xl, 332)

where B is again the bilocal operator normalized by the conformal two point function. For

small e,
1
Blay, ) = LEEENA @) e 902 4 2y (6.34)
[1+£2)° 12
The four-point function on the line is then
(ViVaW3Wy) 2
o+ = 1+ Ay Aw(B(z1, 22)B(z3, £4))conn + O(1/Ts), 6.35
ABIGALD VAW (B(x1, 29)B(x3,24)) (1/T5) (6.35)
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where

(B(x1, x2)B(x3,74))conn = ((é1 + €2)(é3 + €4)) — 1'212<(é3 + €é4)€12) (6.36)

- i<(é1 + é2)esa) + (e12€31) + O(€%).

T34 L1234

When we evaluate the above correlators using the propagator in (6.32), the result repro-
duces (6.26).

6.3 Double-scaled OTOC

Finally, we will use the reparametrization path integral to derive the OTOC in the double

scaling limit Ty — oo and t — oo with kK =

T
that only the quadratic part of the reparametrization action is relevant when computing
the OTOC. This is a simplifying assumption made out of necessity (because we do not
know the higher order corrections to the reparametrization action), but it has a plausible
interpretation in terms of the eikonal approximation used in high energy gravitational
scattering. Moreover, it reproduces the scattering result for the OTOC that was derived
in section 3 and checked to fourth order in section 4.

We take advantage of the conformal symmetry of the boundary correlators to work
with the reparametrization integral on the line rather than on the circle. The numerators
and the denominators of the bilocal operator in (6.34) can be written as exponentials using
differentiation and Schwinger parameters:

o\ :
(1+¢)% = (au-) ecill+é)

Note that the exponents are linear in ¢, which would not be true if we worked with the

1 _ 1 X aa—1 P43
vy (TF S8~ F(ZA)/O dpp™= e 7. (6.37)

reparametrization path integral on the circle because of the denominator in the bilocal
operator in (6.23). Using (6.37), the four-point function in the reparametrization path
integral can be written as:

<V1V2W3W4> < ($1,$2)AVB(x3,x4)AW>
(ViVa)(WalWa) — (B(wr, 22)5V) (B(ws, 24) W)

i) (aigaiyw[@) oo B

X /dprAVlep/dqq2Awleq<exp< _peﬁ — 634 —i—Zazel) >}
Y =

To get the second line, we kept only the zeroth order terms in the two-point functions,
(B(x,2;)”) =1+ O(1/Ts). When we truncate the action to quadratic order, the €’s obey
Wick’s theorem and therefore the exponent in the expectation value in (6.38) being linear

in € implies:

Z12

€ €
(o s+ Foa)) e
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where

. 4 2
X:<2<—p612—q634+2aié¢> > (6.40)
i=1

Z12 T34

Making this approximation is equivalent to summing up only those contributions to the
four-point function in the reparametrization path integral where the €’s in the bilocal
operators are contracted directly, without any interactions between the €’s from the
higher orders terms in the reparametrization action. Such contractions are represented
schematically in figure 7.

The fully expanded expression for X involves many Wick contractions and is rather
unwieldy.?? Moreover, it is invariant under neither the gauge SL(2,R) transformations
(i.e., X depends non-trivially on the gauge-dependent coefficients a and b) nor the physical
SL(2,R) transformations (i.e., the various z;-dependent terms in X cannot be recombined
into a function only the conformal cross-ratio x in (2.19)). This is a consequence of trying
to include 1/Ty corrections to the four-point function while keeping only the quadratic
part of the reparametrization action, and is in contrast with the computation of the lead-
ing correction to the four-point function in (6.35)-(6.36). However, we are interested in
the OTOC in the double scaling limit, in which case only the terms in (6.40) that grow
exponentially in ¢ survive; other terms, including the gauge dependent terms, drop out.

To be concrete, we put the four operators in the configuration specified in (2.27) and
map the points from the euclidean circle to the line using x; = tan %. We then take
Ts,t — oo with kK = ﬁ held fixed. In this limit 212,231 x e %2 become exponentially
small in ¢, while all the other distances remain finite.?! In this case, the only term that
contributes to (6.40) is

1 pq { L /o 2 2 2 2 2 2 2
= — — 1 1 — 1 — 1
C1oT34 (€12€34) T, T1o734 | 87 ( 13log(213) + 254 log(x3y) — 214 log(z1y) — 33 0%@23))
+0 (93%3 + x5y —aly — 57533)}7
Pq -1 2

=— 1 1— e 6.41

Sor (=) -] (6.41)
where the “...” in the second line denotes terms that are subleading in the double scaling

limit. Analytically continuing the cross-ratio x according to (2.14) in the second line
in (6.41) (or, equivalently, continuing the individual points x; in the first line in (6.41))

*Some terms involve self-contractions of the €’s, which are given by (€(0)®) = a, (e(0)é(0)) = 0,
(¢(0)?) = — 47r1T§ log 62, where we introduce & as a short-distance regulator into which a constant and a

gauge-dependent piece have been absorbed. These self-contractions also appear in the leading correction to
the two-point function, and the logarithmic divergences indicate that the external operators have anoma-
lous dimensions of order 1/7s. The self-contractions are not relevant in the present analysis, since they are
subleading in the double scaling limit.

21Speciﬁcally, the distances between the four points at late times obey x13, x14, T23, T24 — —2i, T12, T34 ~
de~Te 5. Furthermore, the analytic continuation of the logs to late times gives log 2?5, log 234, log x3, —

2log 2 — i, log £33 — 2log 2 + im, log 225, log #2, ~ —t + 4log 2 — %
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leads to

X =

<€12€34> + ... — —Kpgq, (6.42)
L1234

where kK = ﬁ. After substituting this into (6.38), the derivatives with respect to the «;
are trivial and the integrals reduce to:

<V1V2W3W4> _ / dp pZAvfl _p/dq q2AW71 J—
(ViVa)(W3Wy) I'(2Ay) I'(2Aw)

, (6.43)

which precisely matches (3.19) and reproduces (3.21).

This derivation of the double scaled OTOC on the AdSs string from the reparametriza-
tion integral relies on two important assumptions. Firstly, we assumed that for the purpose
of computing the OTOC, it is valid to approximate the string partition function by the
reparametrization integral in (6.8) (or, equivalently, in (6.2)) without worrying about the
fluctuations of the matter fields and ghosts in the string sigma model. Secondly, we as-
sumed that it is valid to keep only the quadratic part of the reparametrization action. Both
of these assumptions have a natural interpretation in terms of the eikonal approximation in
high energy scattering between gravitating particles, where one resums the contributions of
only graviton exchanges (see, e.g., [105-109]). Integrating over only the reparametrizations
is analogous to including only virtual gravitons, and keeping only the quadratic contri-
bution to the reparametrization action is analogous to including only processes in which
the gravitons are exchanged directly between the external particles without interacting
among themselves. However, this interpretation is only heuristic because there are no
gravitons on the worldsheet. Finally, it was also important in getting to (6.43) that we
simultaneously sent the V' operators to the past and the W operators to the future: i.e., in
accordance with (2.27), we send the Lorentzian times Im(6;),Im(f2) — —oo at the same
time that we send Im(63), Im(64) — oo, but the relative rate at which they are sent to £oo
is unimportant.

The discussion in this section — the honest derivation of the OTOC in the Lyapunov
regime in (6.28) and the more heuristic derivation of the OTOC in the double scaling
limit in (6.43) — demonstrates that maximal chaos can arise from other reparametrization
actions besides the Schwarzian. However, in our derivation of the OTOC above, it is not
very transparent what common property of the Schwarzian and the AdSs reparametrization
actions makes the OTOC maximally chaotic. Although we will not explore this point much
further, the key ingredient should be the SL(2,R) gauge symmetry that is common to both
JT gravity and the AdS, string.?? In particular, in [38] (see also section 3.1 of [110]),
the OTOC in the double scaling limit was computed starting from the path integral over
reparametrizations of the AdSs; boundary in JT gravity by identifying a set of nearly-zero
modes that dominate the path integral. These nearly-zero modes consist of turning on and
turning off SL(2,R) gauge transformations that are exponentially growing in time along
sections of the integration contour between the operators V and W, and their existence
and role in determining the double scaled OTOC follows entirely from the SL(2,R) gauge

22We thank Mérk Mezei and Juan Maldacena for discussions on this point.
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symmetry of the Schwarzian theory. In particular, the exponentially growing modes e®*

are the Wick rotations of the SL(2,R) zero modes e*® on the circle (see the paragraph
after eq. (6.18)). Essentially the same analysis should therefore be applicable in the case
of the reparametrization mode of the AdSs string, and should provide an alternative way
to derive (6.43).

7 The string reparametrization mode and the Schwarzian

In the first half of this paper, we saw that the OTOCs on the AdSs string and in JT gravity
are the same both in the Lyapunov regime and in the double scaled limit. In the second
half, we studied the reparametrization mode that emerges in the conformal gauge analysis
of the AdSs string and used it to rederive both the leading order four-point function and
the double scaled OTOC. We noted that the role of the reparametrization mode in those
computations is analogous to the role of the Schwarzian in JT gravity. In this section we
compare the string reparametrization mode and the Schwarzian mode in more detail.

7.1 Review: the Schwarzian mode in JT gravity

We begin by reviewing how the Schwarzian mode arises in JT gravity, following the dis-
cussion in [38] (see also [39, 40] and [48] for a recent review). JT gravity is a toy model of
gravity in two dimensions consisting of the dilaton ®, metric h, and matter fields [111, 112].
We consider the simplest case where there is one matter field, ¥, minimally coupled to the
metric. The action is:

SJTeratter[(I)y h7 y] = SJT[(I), h] + Smatter[ya h], (71)

where

1
SJT [(I)y h] - Stopological -

167Gy

Vh o
Smatter[yah]:/ d2U 9 (h ﬁaayaﬁy+m2y2)~ (7'3)
M

[/ d%\/ﬁcp(R+2)+2/d0\/T%q>(K—1) . (7.2)
M B

In (7.2), 0“ = (o, 7) are spacetime coordinates on M and 6 is a coordinate along the
boundary B = OM. The R in the bulk term in (7.2) denotes the Ricci curvature. The K

“—1” is a counterterm to

in the boundary term denotes the extrinsic curvature (and the
make the action finite). Finally, the topological term in (7.2) is proportional to the Euler
characteristic and does not affect the dynamics other than to pick out the disk topology
as the leading contribution in the genus expansion.

The dilaton equation of motion is R = —2. Thus, the spacetime M is a patch of hy-
perbolic space. Meanwhile, the metric equation of motion implies that the dilaton diverges
at the boundary, so it is necessary to regularize the theory by cutting off the boundary
along a curve. In hyperbolic disk coordinates with metric ds? = sinh~2 o(do? + dr?), the
cut-off curve can be parametrized as 0 — (o(6),7(0)), where 6 € [0, 27] is a rescaled proper
length coordinate satisfying:

(N2 1 ()2
hop = o('Q) 2+ 7(6) _ % (7.4)
sinh*(o(6)) €
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Here, € is the cut-off parameter, and - denotes differentiation with respect to 6. The length
of the curve is 27 /€ and sending € — 0 sends the curve to the boundary of hyperbolic space.
The boundary curve is specified by 7(#) alone since eq. (7.4) fixes o(#) in terms of 7(#). In
particular, to leading order in €, o(f) = e760). 7(6) can be viewed as a reparametrization
of the boundary of the hyperbolic disk.

The boundary conditions for the dilaton and the scalar specify their renormalized

values ®(0) and g(0) along the boundary curve:

®(a(6),7(0)) = : y(o(0),7(0)) = == (7.5)

(The scalar scaling dimension A is related to the mass by the relation m? = A(A—1).) The
simplest case is if the dilaton is constant on the boundary: @(9) = &. With these boundary
conditions, in the limit ¢ — 0, one can write both the JT and matter actions in (7.1) as
boundary actions in terms of @, §(#) and 7(#). Consider first the JT action in (7.2). The
bulk term vanishes due to the dilaton equation of motion, and the boundary term becomes

Syo[®, 7] = —S:éN / d@é(K _1). (7.6)

The explicit expression for the extrinsic curvature of the cut-off curve in these coordinates is:

cosh o(62 + 72) + sinh o (76 — 67)

K = y , (7.7)
(6+17)2
which, since o = €7 + O(€?), to subleading order in ¢ is:
K =1+ ¢*{tan 3,9} +0(eY) =14 €2 ({7,9} + ;7"2> + O(eh). (7.8)
Here, {, } denotes the Schwarzian derivative:
Yy 3 o)
(f.0} = f()_Qf.( L. (7.9)
f0)  2f(0)

Thus, the dynamical part of the JT action in the e — 0 limit is governed by the Schwarzian:

Ssemmarsian] = —C / d0ftan 7 0} = ~C / a6 <{T, 0} + ;+(9)2) . (110)
where C = ﬁ. As explained in [38], the boundary representation of the JT action
follows entirely from symmetry considerations. The JT action in (7.2) is invariant under
the SL(2,R) isometries moving the boundary curve around in hyperbolic space. And in
the derivative expansion of a local boundary Lagrangian, the leading term that is invariant
under SL(2,R) transformations acting on 7 is the Schwarzian derivative.

Meanwhile, the matter action in (7.3) is that of a free scalar in hyperbolic space, and
its effective action is simply given by the conformal two-point function weighted by the
value of the matter field along the boundary. Because the boundary condition in (7.5) is
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specified along the cut-off curve instead of along ¢ = 0, the conformal two-point function
is dressed by 7(0). The result is:

4 A ph\A
Smatter[g,'r] - —— d9d9’ T(H) 7-(0)

> PRNETET A (7.11)

Here, D is an unimportant normalization.

Therefore, what remains of the JT gravity partition function after the dilaton, metric
and matter fields are integrated out is a path integral over the boundary reparametrizations
7(0) weighted by the actions in (7.10) and (7.11):

ZJT—&-matter[@] — / D@thye_SJT[cbyh]_smatter[yyh} — /DT(Q)e_SSchwarzian[T]_Smatter[gyﬂ.

<I>‘3 ML
ylo

< B0

(7.12)
The reparametrization path integral integrates over all diffeomorphisms of the circle modulo
SL(2,R) transformations in order to include the contributions from all distinct geometries
that can be cut out of hyperbolic space. (Two bulk geometries in AdSy cut out by two
closed curves that are related by an isometry are considered identical). Thus, the domain
of integration, M, is again given by (6.10).

7.2 Comparing the string reparametrization mode and the Schwarzian

We now discuss the parallels between the Schwarzian reparametrization integral deter-
mining the JT gravity partition function in (7.12) and the AdSs string reparametrization
integral contributing to the string partition function in (6.8).

First, both the Schwarzian and string reparametrization path integrals involve inte-
grating over reparametrizations of the circle modulo the gauge SL(2,R) symmetries that
characterize both JT gravity and the string worldsheet. It seems plausible that the mea-
sure in both path integrals should be the same, although we have not made (and, for the
purposes of computing the perturbative correlators and OTOC, did not need to make)
precise the definition of the measure in the string reparametrization path integral.

An important difference between the Schwarzian and our treatment of the string
reparametrization path integral is that the former is an exact representation of (the disk
contribution to) the JT gravity partition function. This is because the matter action
in (7.12) is quadratic, the dilaton acts as a Lagrange multiplier, and the integral over
metrics reduces to an integral over possible boundary curves. By contrast, the string
reparametrization path integral in (6.8) is an approximation since it captures only a part
of the string path integral. In particular, it does not include certain contributions due to
matter fields (such as the transverse modes in AdS that couple to longitudinal modes) or
to bc ghosts that come from fixing the conformal gauge. Nevertheless, as we have seen,
the approximation (6.2) correctly captures the four-point functions at leading order and
the OTOC in the double scaled limit.

Second, the transverse mode in the analysis of the string in AdS, x S' plays an anal-
ogous role to that of the matter field in JT gravity. Indeed, the effective action for the
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transverse mode in (6.6) takes the same form as the matter field in (7.11) (when m = 0
or A = 1), and taking variational derivatives with respect to the boundary values of the
matter fields pulls down the same bilocal operators that are defined in (6.7):
1 Smatter 7T oSt
PO O) = D 55606006 |y~ T 5000056 719

Third, the AdSs string reparametrization action in (6.9) is analogous to the Schwarzian
action in (7.10). The reparametrization action in the AdSs string originates from the dy-
namics of the longitudinal modes, while the Schwarzian action in JT gravity originates
from the dynamics of the dilaton and metric. However, the two reparametrization actions
are not the same, and differ in a number of important ways. Firstly, the Schwarzian ac-
tion is local while the AdSs reparametrization action is non-local. Secondly, although both
reparametrization actions are invariant under the gauge SL(2, R) symmetry that sends 7(0)
to f(7(0)) — for the AdSy string, this corresponds to worldsheet coordinate transforma-
tions that leave the worldsheet metric invariant up to Weyl rescaling; for JT gravity, this
corresponds to an isometry that maps one boundary curve to another that cuts out an
equivalent patch of hyperbolic space — the AdSs reparametrization action is also invariant
under the physical SL(2,R) transformation that sends 7(60) to 7(f(6)) while the Schwarzian
action is not.?> Thirdly, the origins of the reparametrization mode in the two systems are
different. In JT gravity, a cut-off curve near the boundary is introduced in order to regular-
ize the divergence of the dilaton. By contrast, as we saw in section 5, the reparametrization
mode of the AdSs string appears as a consequence of fixing the conformal gauge, not due
to regularizing a divergent action. Although it is true that the area of the AdSo string
also diverges near the AdS boundary, the divergence does not lead to a boundary mode,
at least in our setup where the boundary of the worldsheet is sent to the boundary of the
AdS target space. We demonstrate this explicitly in appendix B, where we compute the
regularized area of the AdSs string by introducing a cut-off curve and following steps that
are similar to the steps between (7.2) and (7.10) in the derivation of the Schwarzian action
from the JT action. As a consequence of symmetry, the Schwarzian again appears in the
derivative expansion of the regularized area, except that in this case it is irrelevant as the
cut-off curve is sent to the boundary. In particular, compare (7.10) and (B.4).

Some works [68-71, 113] have identified Schwarzian effective actions that appear in the
dynamics of strings in AdS and have suggested that they may explain the maximal chaos
of the AdS string that was noted in [49-51]. As far as we can tell, the Schwarzian effective
actions thus identified share the feature of the Schwarzian appearing in the derivative
expansion of the area of AdSs discussed in appendix B that the action is multiplied by a
cut-off parameter and is irrelevant if the cut-off is removed. There may be set-ups in which
there is a natural finite cut-off for the string in the bulk (e.g., one might introduce a brane
near the boundary that the string ends on), in which case the Schwarzian might indeed

23Recall that the Schwarzian derivative satisfies the composition rule {fog,z} = {f, 9(z)}g'(z)* + {g, =}
and is zero for SL(2,R) transformations: {f,z} = 0if f(z) = (az +b)/(cz + d) with ad — be = 1. It follows
that {f o g,z} = {g,#} and {go f,2} = {g, f(z)}f'()? if f € SL(2,R). In other words, the Schwarzian
derivative is left-invariant but not right-invariant under SL(2,R) transformations.
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affect the dynamics of the string. Such a modification to the string worldsheet theory
would have to break the physical SL(2,R) symmetry, because the Schwarzian does too.

It is instructive to compare in detail the perturbative computations of the four-point
functions in JT gravity and on the AdS, string. The computation on the AdSs string in
section 6.2 was guided by the similar computation in JT gravity that was presented in [38]
and which we now review. We first expand the Schwarzian action in (7.10) about the
saddle point by letting 7(6) = 6 + €(f) and taking € to be small. To quadratic order in e,

SSChWarZian[9 + 6(9)] = g/da (6(0)2 — 6(9)2> . (714)

If we write () = 3, €,e"?, the action in Fourier space is
SSchwarzian[e + 6 =2nC Z TL — 1 €n€— (715)

Note that the Schwarzian dispersion relation has an extra factor of n (and no absolute
values, because the action is local) compared to the dispersion relation for the AdSs
reparametrization mode in (6.17). When the SL(2,RR) zero modes (corresponding to o,
€41) are properly gauge fixed, the propagator for € is found to be [38, 65]

(e(6)€(0) v L rbeoso— Y= g1y sinol
27rC o n2(n?2—-1) 27C 2

(7.16)
Here, a =1+ ’%f and b = %, but more generally these coefficients are gauge dependent.
The four-point function in the Schwarzian theory to leading order in 1/C is again
given by eq. (6.24) and (6.25), just as in the AdSy string reparametrization path integral.
The difference is that the correlators in (6.25) are to be evaluated using the Schwarzian
€ propagator in (7.16) instead of the AdSs string propagator in (6.21). The cases where
Vi, Vo and W3, Wy are in order or alternating on the circle should be handled separately.
When they are in order (i.e., 61 < 02 < 63 < 04) the four-point function is [38]:

Vi VoW W, Ay A 0 0
(ViVaWsWa) . Av W<_2+ 12912>(—2+ o )+O(1/02) (7.17)

2

(Vo) (WsWy) 27C

tan tan =24

When they are alternating (i.e., 61 < 03 < 02 < 64), the four-point function is:

(Vi VaW3Wy) Ay Aw ( 019 )( Oa, >
Walg) — © 24+ —5- ) -2 7.18
(V1 V2)(W3Wy) T om0 T tan 02 * fan s (7.18)

91—92+93—94 )
2

— sin(ut02=0a=01) 905

in 012 qin 034
sin 72 sin =3

sin(

+ 27 5 5
tan % tan %

We can compare the Schwarzian four-point function in egs. (7.17) and (7.18) to the
AdSs four-point function in (6.26). Asin the AdS; four-point function, the Schwarzian four-
point function is independent of the coefficients a and b of the gauge dependent terms in
the € propagator in (7.16), which reflects the SL(2,R) gauge symmetry of the Schwarzian
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theory at the level of the perturbative correlator. However, unlike the AdSsy four-point
function, the Schwarzian four-point function is not simply a function of the conformal
cross ratio but rather depends on the four insertions 6;, ¢« = 1,...,4 individually. This
reflects the fact that the Schwarzian, unlike the AdSs string, does not have a physical
SL(2,R) symmetry. Nonetheless, when (7.18) is continued to the OTOC configuration
in (2.27), the result matches (6.28):

(ViVoW3Wy) AyAw

i) (Walhy) — 1— e e+ ... (7.19)

For the sake of comparing with the string boundary correlators computed from the
reparametrization integral in section 6, we have reviewed only the perturbative computation
of the Schwarzian correlators. However, as is well known, the Schwarzian theory has
been very successfully studied in recent years and one can go far beyond the perturbative
analysis [53-62]. Indeed, the Schwarzian theory is one-loop exact [55] and its correlators
can be computed exactly [56], which also means that the double scaled OTOC can be
computed rigorously [44]. By contrast, as we saw in section 5, it already takes some effort to
determine the reparametrization/longitudinal action on the AdSs string to quadratic order
about the saddle point — compare the derivation of (A.30) in appendix A (or of (5.67)
in section 5.3.5) with the effortlessness getting from (7.10) to (7.14). A non-perturbative
explicit expression for the string reparametrization action is not currently known.

Finally, we close this section by noting a few contexts in which non-local reparametriza-
tion actions have appeared. First, [114, 115] recently studied a non-local reparametrization
action that describes a free massive scalar in JT gravity with a specified constant value
along the cut-off curve, and competes with the Schwarzian in determining the low-energy
dynamics of two SYK models coupled by a particular interaction.?* Like the Schwarzian
and unlike the string reparametrization action, the non-local action has an SL(2,R) gauge
symmetry but no physical SL(2,R) symmetry (except in the massless limit where the ac-
tion becomes Diff(S!) invariant). Second, a different non-local reparametrization action
with both physical and gauge SL(2, R) symmetry, and which to quadratic order is the same
as our action (6.17), was discussed in appendix H of [65], which also noted that the non-
local action should describe an AdS; holographic defect. Finally, [116] studied a non-local
conformal variant of the SYK model in which the dynamical fields are majorana fermions
rather than a reparametrization mode. It would be interesting if there were a connection
between these non-local actions and the reparametrization action of the AdSs string.

8 Discussion

In this work, we studied the OTOC on the AdS, string in the double scaling limit. We
first computed it to all orders as an amplitude for high energy 2 — 2 scattering on the
worldsheet, and checked it to fourth order using results from the analytic bootstrap for
four-point functions in the Wilson line defect CFT. The result also matches with the OTOC
of large charge correlators computed in [18, 19], in their overlapping regime of validity. We

24This action was also discussed in appendix D of [38].
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then showed how the conformal gauge analysis of the AdS, string gives rise to an effective
action for the reparametrizations of the string boundary, which we used to compute the
leading correction to the four-point function on the string (in particular proving agreement
between conformal gauge and previously known static gauge results [3]), and the OTOC
in the Lyapunov regime. We also presented a derivation of the OTOC in the double
scaling limit using the reparametrization action that agrees with the all orders result from
the scattering analysis. An important takeaway from these investigations is that the string
reparametrization action shares some similarities with, but is distinct from, the Schwarzian
reparametrization action in JT gravity.

The analysis of the reparametrization mode of the AdS, string presented in sections 5
and 6 represents only the tip of the iceberg, and there are a number of open questions
that would be natural to investigate in future work. It would be good to better under-
stand: (i) the precise definition of the reparametrization path integral, (ii) how exactly
the reparametrization path integral arises from the string sigma model path integral, (iii)
the regime of validity of including only fluctuations of the reparametrization mode without
also including fluctuations of the matter fields and ghosts, and (iv) what other observables
beyond the four-point function at leading order and the OTOC in the double scaling limit
can be analyzed using the reparametrization path integral.

One direct extension of the present work would be to find an explicit exact expression
for the reparametrization action, which would go beyond the implicit expression in (1.4)
and the explicit expression for the action to quadratic order about the saddle point in (1.5).
It may be possible to make progress in this direction using Pohlmeyer reduction [117] or by
finding a connection between the string reparametrization action and the non-local actions
discussed in [38, 65, 114-116]. Given an exact expression for the reparametrization action,
it should be possible to make the derivation of the double scaled OTOC in section 6.3
more rigorous, and to also compute tree-level higher-point correlators. It may be simpler
to compute the higher-point correlators from the reparametrization path integral than by
computing contact and exchange Witten diagrams in the static gauge (see [118] for a recent
discussion of higher point contact Witten diagrams in AdS;). It would be interesting to
check whether the higher-point correlators at strong coupling in the Wilson line defect
CFT satisfy the generalized Ward identity conjectured in [20, 21] based on results for
higher-point functions at weak coupling.

We studied the string restricted to an AdSs x S* subspace of AdS5 x S® (or any other
product of anti-de Sitter and an internal manifold, such as AdS, x CP3, as is relevant in
the analysis of ABJM [119]) and studied the fluctuations of the AdSs string only along the
S1 direction. This allowed us to get rid of self-interactions of the transverse coordinate
in conformal gauge. A natural generalization would be to allow the string to fluctuate
in the other transverse directions. The generalization to the string in AdS; x S° (or
AdSy x M with some internal manifold M) is relatively straightforward. The tree level
four-point amplitudes for the AdSy x S° case, and their agreement with the known static
gauge results, are summarized in appendix D. It would also be interesting to study the
fluctuations of the string along the transverse directions in AdS. As a minimal set-up, one
could consider the AdSs string in AdS3 in conformal gauge and study the reparametrization
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action. The extension of the analysis of the string in AdS, x S' in section 5 to AdS3 is not
trivial because the transverse modes would be massive and would mix together with the
longitudinal modes.?> Perhaps one could try to extract the reparametrization action from
the formalism developed in [81] for studying the classical string in AdSs.

Another generalization would be to study a string in AdSs x S° incident on a general
curve on the boundary of AdS (i.e., not a straight line or circle), whose classical worldsheet
geometry is therefore not AdSs;. The mixing of the longitudinal and transverse modes and
the non-trivial worldsheet geometry makes the analysis of this general case more difficult.
Nonetheless, it seems that, at least in principle, one should be able to write the leading
order boundary correlators and the double scaled OTOC (suitably defined) in terms of
a path integral over reparametrizations governed by a bilocal effective action, except the
reparametrization action will now break the physical SL(2,R) symmetry. (The SL(2,R)
gauge symmetry on the worldsheet would, of course, remain unbroken).

One possible extension of the scattering analysis in section 3 would be to study the
OTOC on a string in a general AdS-Schwarzschild black hole background:

2 2

il T d?"

e (1 = gz) " PR s o
rd—2 7

Here, 1 > 0 determines the mass of the black hole and dQ?lfl is the metric on S91.
The string extended in the ¢ and r directions and sitting at a point in S9! is now dual
to a stationary quark in the gauge theory on R x S%! at a finite temperature. One
can also study the string in the hyperbolic AdS black hole (which generalizes (3.1) by
replacing —1 + Z—z —- -1+ rdL—l + Z—; [85]; for p # 0 this describes the exterior of a true
black hole with non-zero mass and a singularity at » = 0), which is dual to a stationary
quark in R x H?! at finite temperature. Unlike in (3.1), the temperature can now be
made arbitrary by tuning p # 0. In the case of the string in the spherical/hyperbolic
AdS black hole background, the worldsheet is no longer AdSs and the correlators (both
euclidean and OTOC) are more complicated. In particular, in the scattering analysis, we
expect that the scattering interaction relevant for the OTOC at late times is still given
by (3.16), but the boundary-to-bulk propagator would be more complicated than the AdSs
propagator in (3.10). Nonetheless, one expects the OTOC at leading order in £2 to still
take the Lyapunov form and saturate the chaos bound (see appendix C of [50]). It would
be interesting to see whether the double-scaled OTOC continues to take a relatively simple
form in a more general black hole background.

Another interesting direction is to study the OTOC on the field theory side, see if
a similar double scaling limit exists at weak coupling, and identify the reparametrization
mode. The Lyapunov exponent in a weakly-coupled field theory was computed in [120]
by resumming a class of ladder diagrams, and it might be possible to generalize some of
the analyses there to the half-BPS Wilson line in N' = 4 SYM. A related question is to
understand better the physical meaning of the OTOC on the Wilson loop. Since the time

Z5By contrast, the scattering analysis of the OTOC and the computation of the boundary correlators in
the static gauge can handle transverse fluctuations in AdS® and S° equally well.
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ordering corresponds to the path ordering of the Wilson loop, a natural guess is that the
OTOC is a correlation function on the Wilson loop in the presence of ‘zig-zags’, i.e. back-
tracking segments of the Wilson loop. Undestanding the precise relationship between the
OTOC and zig-zags may help clarify the roles of zig-zags for the worldsheet black hole [41].

Finally, it would be interesting to generalize our analysis of the double-scaled OTOC
for the large-charge operators to other weakly-coupled field theories. This may provide
a useful alternative to [120] since the correlators at large charge can be studied using
semiclassics [121-123], which automatically includes the effect of resumming a subclass of
diagrams [124].
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A String in conformal gauge in hyperbolic disk coordinates

This appendix presents the details of the conformal gauge analysis of the classical string in
AdSs x St using hyperbolic disk coordinates on AdSs. Concretely, the goal is to derive (5.76)
and (5.77).

We start with the string action in conformal gauge in (5.71), and the boundary condi-
tions for the longitudinal and transverse modes in (5.73). The equations of motion for the
longitudinal modes follow from (5.72):

1 1 cosh r
0:80‘(80), 0280‘(8 >+8O‘8 + 0%00,9). Al

sinhZr sinh? r ol sinh3r( el 2 ( )
The equations of motion for the transverse modes are given by (5.10). These are supple-
mented by the Virasoro constraint,

0= To%ﬁ [7’, 9} + TaTB [y]7 (A2)

where the contribution to the stress tensor from the transverse modes is again given
by (5.13), and the contribution from the longitudinal modes is now

_ DarOsr + 020050 1. O'rdyr+9700,0.

T 50as

af

sinh?r sinh?r (A-3)

In analogy with (5.14) and (5.16), the classical string action can be expressed as a sum
of the on-shell longitudinal and transverse actions that depend on the boundary mode «(7),
which needs to be fixed either by imposing the Virasoro constraint or by extremization.
This is what is expressed by (5.74)—(5.75). Thus, if we impose the Virasoro constraint or
extremize over the boundary mode only at the last step, we can study the transverse and

longitudinal modes separately.
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Transverse modes. Consider first the transverse modes. The general solution for y can
be expressed using the massless scalar bulk-to-boundary propagator on the disk, which in

o, T coordinates is given by

1 inh
K(o,7,7) SR g

(A.4)

~ 27 cosho — cos(t —7')°

This satisfies (92 + 92)K = 0 and K — §(7 — 7') as 0 — 0. Thus, y(o,7) is given by:

2
y(o,T) —/0 dr' K (o, 7, 7")j(a(r)). (A.5)

The transverse action can be evaluated explicitly and written as a bilocal boundary integral:

Srlgoal == [ drly(0.10:4(0. 7).

. E . !~ ~ / /
=5 ;13}) drdr'g(a(7))y(a(7) 0 K (o, 7, 7")

- ~ Y12
T, /deT, [5(a(m) = gla(=))]” (A.6)

4w [2sin (757))?

This is (5.76), as desired.

Longitudinal modes. Now consider the longitudinal modes. First, we again make some
general comments about the properties of the longitudinal modes before studying them
perturbatively.

Symmetries. The longitudinal action is invariant under both a physical and a gauge
SL(2,R) symmetry. We can represent a generic SL(2,R) transformation as

Tr—a

flx) = e (A7)

1—za’
where A € R and |a| < 1. This is an SL(2,R) transformation on the circle if |z| = 1 and
on the unit disk if x is complex with |z| < 1.

The physical SL(2,R) symmetry acts as an AdSs isometry on the longitudinal modes
and trivially on the transverse mode:

e*T(O’,T)#’iQ(O’,T) N e*f(O’,T)ﬁ*ié(U,T) f(efr(a,‘r)JriG(a,T))’ (AS)

y(o,7) — y(o,7) =y(o,7). (A.9)

Consistency with the boundary condition in (5.73) means the transformation acts on the
boundary reparametrization and the boundary curve as

i0(T) 0(r)

e

— € (), (A.10)
gla) = y(a)

y(a), (A.11)

where e’® = f(e'®). The longitudinal and transverse actions and stress tensors are invariant

I
~

under this transformation, both off-shell and on-shell. This SL(2,R) transformation actu-
ally moves the string in AdSs x S' and the curve on the boundary, and is therefore physical.
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Meanwhile, the gauge SL(2,R) symmetry acts on the longitudinal modes as

r(o,7) —ib(o,7) — (o,7)—ib(o,7) =r(5,7) —i0(5,7T), (A.12)
y(o,7) — y(o,7) =y(o,T), (A.13)

where ¢~?(@7)+i7(07) — f(e=+T)  Consistency with the boundary condition in (5.73)

means it also transforms the boundary reparametrization but not the boundary curve:

(1) = a(7), (A.14)

a(T) a
J(a) = g(a), (A.15)

%
gla) —
where ¢/ = f(e'™). The longitudinal and transverse actions and stress tensors are invariant
under this transformation, both off-shell and on-shell. This SL(2,R) tranformation simply
relabels the worldsheet coordinates without actually moving the string in target space or
the curve on the boundary, and is therefore gauge.

Behavior near the boundary. Next, we show that the longitudinal action is well behaved at
the boundary. It is again useful to study the general form of the solutions to the equations
of motion in (A.1) using series expansions near the boundary. In this case, we expand

0(o,7) and r(o,7) in powers of o:
0(c,7) =a(7) + Y an(r)o", r(o,7) =Y ba(r)o™ (A.16)
n=1 n=1

We can solve for a,, and b, recursively by substituting the above expansions into (A.1) and
setting the coefficient of each power o™ to zero. The expansion to order o3 is given by

0(0,7) = a(r) — %dma? + %9(7)03 +o (A.17)
r(o,7) = (7)o + ;[h(f) _ % 'a'(T)} ... (A.18)

Higher terms in (A.16), an(7) and by (7) for n > 3, are fixed in terms of a(7), g(7) and
h(7). In principle, g(7) and h(7) are also fixed in terms of a(7) by requiring that 6(c, 7)
and r(o,7) be regular in the middle of the hyperbolic disk at ¢ = oo, but this is hard to
implement because the series do not converge there. Note that (A.17) and (A.18) take the
same form as the expansions in (5.42) and (5.41) for x and z on the hyperbolic half-plane.
This is only true for the lowest order terms, however, and the series on the disk and on the
half-plane differ starting at O(c®).

The series in (A.17) and (A.18) allow us to check explicitly that the longitudinal
action in (5.72) is well behaved near the boundary and finite. The steps are essentially
identical to the ones leading to (5.43) because sinh™27 = =2 4 O(r?). Furthermore,
we could repeat the argument we used in the hyperbolic half-plane coordinates to show
that extremizing over the reparametrization «(7) is indeed equivalent to the Virasoro
constraint, as claimed in (5.74)-(5.75).
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Longitudinal modes without transverse modes. The analysis of the longitudinal modes is
again very simple when the transverse modes are turned off. In this case, we take § = 0,
which implies y = T7 = Sr = 0. If we impose the Virasoro constraint before solving
the longitudinal equations of motion, it implies 7% = 0 and therefore, from (A.3) that
i’ + 600" = 0 and 72 — 1'* 4+ 62 — §> = 0. These have two sets of solutions: 7 = +6'
and r’ = F6', which also automatically satisfy the equations of motion in (A.1). The two
solutions correspond to —r+16 being a holomorphic or antiholomorphic function of —o+i7

(up to a branch cut because § and 7 are angular coordinates) or, equivalently, to e~"+%

being a holomorphic or antiholomorphic function of e~ %", Now we can again invoke
the result from complex analysis that the biholomorphic bijections of the unit disk in the
complex plane are the SL(2,R) transformations. This means that the general solutions
for 6(o,7) and r(o, 7) that is consistent with the Virasoro constraint and the equations of
motion is:

—otiT

6—r(0,7)+i6)(0,7’) — eikﬁ’ (A]_g)

where A € R and a € C with |a] < 1. Restricted to the unit circle, this means that the
general form of the boundary parametrization «(7) is given by:

o ei:i:T —a

(A.20)

Perturbative analysis of the longitudinal modes. Finally, we again study the longitudinal
action to first non-trivial order in perturbation theory, treating the transverse fluctuations
as being small. We want to compute the on-shell longitudinal action to quadratic order in
small fluctuations on the boundary about the solutions given in (A.19)—(A.20).

In particular, we expand around the solution given by 0(o,7) = 7, r(0,7) = o and
a(7) = 7. This is a convenient choice of SL(2,R) gauge. Thus, we expand
a(r) =7 +€(7), 0(o,7) =7 +n(0,7), r(o,7) =0+ plo,7), (A.21)
and treat €, 7 and p as small perturbations. The boundary conditions for 1 and p are:
1(0,7) = €(7), p(0,7) =0. (A.22)
The fluctuation fields are periodic in 7: €(7 + 27) = e(7), n(o, 7 + 27) = n(o, 1), plo, 7 +
21) = p(o, 7).
Substituting (A.21) into (A.1) and expanding, we find the linear order equations of

motion are:

0=sinho(ij+n") —2cosho(p+1n'), 0=sinho(p+p”)+2cosha(n—p). (A.23)
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Substituting (A.21) into (5.72), we find that the longitudinal action expanded to quadratic
order is:

dod
SL:TS/ ‘027 {77+p’—2pcotho—2pp'cotha—|—p2 <2—|—
sinh® o

72)
sinh? &

1
— 2pncotho + 5(8ap(9°‘p + 8@78%7)} +...

2
n P p- cosho
=T [ dodt|0; Oy — Oy | ———— A.24
/ o 7{ <sinh20> * <sinh20> ( sinh® o ) ( )
o, () (0]

sinh® o 2sinh? o

We used (A.23) to get to the second line.

All the terms in (A.24) are total derivatives, but we again need to be careful about
their behavior near 0 = 0. Given the expansions of # and r, and therefore of 1 and p,
in (A.17)-(A.18), we see that all the singular terms near o = 0 cancel, and the only finite
contribution to the action is:

su=—5 [ .19 = =3 [ dro. 7" (0.7). (4.25)

This action has corrections that are of third order in 7 and p.

Once we solve (A.23) for n(o,7) to linear order in €, we can determine the on-shell
longitudinal action to quadratic order in €. The general solution to the linear equations of
motion can be written as boundary-to-bulk integrals:

n(o,7) = /dT’Kg(U, 7, 7)e(T), plo,7) = /dT’KT(U, 7,7 Ve(T), (A.26)
where the two boundary-to-bulk propagators Ky and K, are given explicitly by:
1 (cos(T —7")cosho —1)sinh® o 1 sin(r—7')sinh*c
K, == K ) J—— .
o(o,77) 7 (cosho—cos(t—7))3 r(on7) 7 (cosho —cos(T—7'))3
(A.27)

It is easy to check that Ky(o,7,7") and K, (o, 7,7") solve (A.23), become sharply peaked at
T =1"as o — 0 and satisty [ dr'Ky(o,7,7') =1 and [ dr'K,(o,7,7") = 0 for any 0. These
properties and (A.26) imply that n(o,t) — €(7) and p(o,7) — 0 as 0 — 0, as desired.

Combining (A.25) with (A.26), we arrive at the following expression for the longitudinal
action to quadratic order in e:

Spir+e(r) = —% lim dT/dT’@iKg(U, 7,7 Ve(T)e(7). (A.28)

o—0

To put this into a manifestly finite form, we use the following slightly formal argument.

First, we note that 93Ky(0,7,7') = —2[2sin T_TT,]*‘L and take the limit in (A.28) inside

the integral to get

&:6/mm’¢%W). (A.29)

T [2sin 7574
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We can make sense of this expression using analytic regularization. Then, noting that

sin~4 %Tl = % [1— 0,;0./]sin"2 TET/, using integration by parts to transfer the derivatives
to €(r) and €(7') and invoking the identity [ drsin—? %Tl = 0 to replace €(7)e(7") —
—2(e(1) — e(7))? and é()é(7') — —3(&(7) — €(77))?, we arrive at the following manifestly

finite expression for the longitudinal action to quadratic order:

(1) — (7'))2 = (e(1) — e(7))?
Silr+e(m)] = Z;/d’rd’f/( () [(2 ).) (T(T/(>])2 ) : (A.30)
sin (75

This is (5.77), as desired.

B Regularized area of hyperbolic space with a cut-off

This appendix reviews the computation of the regularized area of the AdSs string with
a cut-off. It is similar to the derivation of the Schwarzian action from the JT action in
section 7.1, except the absence of a dilaton means the Schwarzian is irrelevant and the
regularized area is cut-off independent.

The area of the AdSs string can be regularized by cutting off the worldsheet along a
curve B near the boundary and subtracting its length:[1, 2, 104]

Awsz/Mde/ﬁ—/Bde\/iT%. (B.1)

Here, 0 = (0, 7) and hqp are the coordinates and metric on the worldsheet, 6 and hgy are
the coordinate and induced metric on the boundary. Subtracting the length of the curve
can be interpreted as a renormalization of the mass of the boundary particle that the string
is dual to.

The Gauss-Bonnet theorem relates the Euler characteristic to the bulk and boundary
integrals of the Ricci and extrinsic curvatures:

1
2TXE = 2/ dQU\/ER—I-/ df\/hgg K. (B.2)
M B

Thus, since R = —2 in AdS,, the regularized area in (B.1) can be written as:?0
Aws = —27YE +/ d0/hgg(K — 1), (B.3)
B

The second term above is the same as the boundary term in the JT action in (7.2) without
the dilaton. If we use the same coordinates as in (7.1), parametrize the curve as (c(0),7(0)),
and let 6 be the renormalized length coordinate, then we can use (7.4) and (7.8) and the
fact that yg = 1 for a disk to write the regularized area as

Ays = —27r—|—e/dc9{ tan;,ﬂ} +O(63). (B.4)

26Sce e.g. the discussions in [60, 61, 125].
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If we push the cut-off curve to the boundary by sending € — 0, the Schwarzian vanishes and
the regularized area is simply Ay = —2m. This is to be contrasted with (7.6), where the
divergence of the dilaton at the boundary keeps the Schwarzian term relevant in JT gravity.
The supergravity result for the circular Wilson loop is therefore (W) = e~ Ts4ws = e‘r’\,
which matches the result from supersymmetric localization [126-128].

The analysis can also be repeated on the hyperbolic plane. The regularized area is
again given by (B.3). Working with Poincaré coordinates c® = (s,t) on the half-plane,
parametrizing the cut-off curve as (s(x),t(x)) where § — z is the renormalized length
coordinate such that h,, = E%, and setting the effective Euler characteristic of the plane
to be xg = 0, one finds

Agws = 6/00 dz{t,z} + O(e). (B.5)

Taking € — 0 yields Ays = 0, as claimed in (5.44). The supergravity result for the Wilson
line is therefore (W) = e~ Ts4ws = 1, which is the exact result from localization.

C Equivalence of the classical string in static and conformal gauge

In section 5, we used the conformal gauge to study the classical string action and found
that it can be expressed as the sum of the longitudinal and transverse actions subject to
either the Virasoro constraint as in (5.14) or, equivalently, extremization over the boundary
reparametrizations as in (5.16). In this appendix, we show how imposing the Virasoro
constraint fixes the boundary reparametrization and determines the classical action in
closed form to fourth order in the perturbation of the boundary curve about the straight
line. We show that the result agrees with the static gauge analysis in section 2.5.
The explicit expression for the classical string action computed in the static gauge is
given in (2.35). Another way to write it is:
(G(t1) —g(t2))* T

Sali] = 1 [ andts PUIR—2 [ 02T P+ T (1)) +0(). (C.1)

Here, T and T} are the leading order on-shell transverse stress tensors (i.e., they are
quadratic in §). Eq. (C.1) follows from (2.34) and (2.30) combined with the definition of
the stress tensor in (5.17). Another way to write the quartic term is T2 + T2 = TTTT,
where T7 and T are the holomorphic and antiholomorphic stress tensors defined in (5.13).

We will now rederive (C.1) starting from the conformal gauge result (5.16) and the
expressions for the longitudinal and transverse actions in (5.67) and (5.25). We write
a(t) = t+€(t) and work perturbatively to quadratic order in € (i.e., to quartic order in ¢).
To this order, the longitudinal and transverse actions are given by

SL[t+e]:2T;/dtdt’W, (C.2)
~ TN Y ~ (! < € e e(t
ST[t—I—E]:ﬁ/dtdt’W—i-;?/dtdt' (5() y(t))((?(z,g) yO) (o3
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We want to derive and solve the Euler-Lagrange equation for e. If e(t) — €(t) + de(t)
n (C.2), the variation of the longitudinal action is:

551, = T [y E= 4O — 00 )

T (t —t)2

To isolate de(t), it is convenient to introduce a regulator by letting (t — ¢/)? + s? and take
s — 0 at the end. Integrating by parts leads to

65 = s /dt5e(t> [jt/dt ())i)} T 6e(t)/dt (()_E(t')

s—0 T (t t2 s—0 T t t’)—+-527

:—2:8 dtde(t) ][ d W (C.5)

The second line is expressed using the slash notation for the Cauchy principal value. Sim-

ilarly, the variation of the transverse action is given by:

T, . i) — gt
557 = / dtse()ii(?) ][ dt’w. (C.6)
Setting 0 = 65, + 657 leads to the Euler-Lagrange equation for e:
_ [ [E) —E)  yt) gt) — gt
- fdt [ A el ()

From (5.52) and (5.49), we know the variations of the actions are related to the stress
tensors on the boundary. Egs. (C.5) and (C.6) determine the longitudinal and transverse
stress tensors at leading order to be:

TEO,t) = - 7[ dt’ ((t)__ ;’515’)’ TL(0,t) = —gg) ][ dt/g((tt)_—t%(;’). (C.8)

Thus, (C.7) is equivalent to 0 = T%(0,t) + TL(0,t), in accordance with section 5.3.3.
Before attempting to solve for €(t), we note that the action in (C.2)—(C.3) can also be
rewritten in terms of the Cauchy principal values:

sult )=~ [ty far®O=HO) ©9)
T AANY . ~ Y
St +e(t)] = Z—; /dtdt’w + Z}/dte(t)yf(t) ][dt’w. (C.10)

This, combined with the sum of the stress tensors in (C.8) being zero when e satisfies
its equation of motion, means that the longitudinal action and the second term in the
transverse action are the same up to a factor of —%. Thus, the classical action becomes

~ (42
Salgl = ﬁ/dtdt/w ;/dte( t)T5(0,1), (C.11)

where €(t) is given in terms of gy by (C.7).
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We will now solve for € in terms of T}, and show that (C.11) is equivalent to (C.1).
First, we rewrite (C.11) as

][dt’w = —thZ(O,t)- (C.12)

This non-local equation can be solved in Fourier space. Taking the Fourier transform yields

1
ew)lwl® = 5T (w), (C.13)
where we write €(t) = [ %e~%!e(w) and TL(0,t) = [ %e T (w). Thus, if we write the
second term in (C.11) in Fourier space, the action becomes
—9(t)? T / T (W) T (—w)
dtdt dw—"——2—". C.14
/ t —v2 s ) T e (C.14)

The above expression derived from the conformal gauge results is equivalent to the
static gauge result in (C.1). This is easiest to see if (C.1) is expressed in Fourier space.
First, because the transverse stress tensor is holomorphic, T/L(s,t) and T} (s, t) in the bulk
are determined by T/L(0,¢) on the boundary. The explicit relation is given in (5.55). Thus,
the quartic term in (C.1) is

st + 82t —t)(t —t")

M G PP - P

S(

cl

dsdt

T (0, )T (0,¢").  (C.15)

ﬂ-2

It is tempting to interchange the two integrals over the boundary with the integral over the
bulk, and express the quartic contribution to the action as a term bilocal in the transverse
stress tensor. However, the integral over s and ¢ does not converge. Instead, we write
Tst(0,¢") and T (0,t”) in their Fourier representation, and evaluate the integrals over ¢ and
t’ instead. The result is?’

~ Ts dw dv —|w|s—|v|s—iwt—iv
] = _2/%%/dsdt82(1—sgn(wu))e wls—lv|s—iwt (W) TE(v).  (C.16)

Evaluating the t, v and s integrals (in that order), yields

——/ T (@) (= T )T (zw) (C.17)

jwl?

Thus the static gauge expression for the classical string action in (C.1) matches the con-
formal gauge expression in (C.14).

For completeness, we also write down the real space representation of the relation
between the reparametrization € and the transverse stress tensor 7. in (C.13), and of the
action in (C.14). These involve the Fourier transform of 1/|w|3, which we encountered in
the computation of the e propagator on the line in (6.30). The Fourier transform needs
to be defined with a regularization, and the result is given in (6.31). We again ignore

2"We used fdtﬁefm ~lwls and [dt i b e = _imsgn(w)e” w5
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the constant and quadratic terms in (6.31) to write [ 2e~®!/|w3 ~ L#21og(t?)?® and
therefore find that €(t) in terms of T/ (0,¢) is:

1

(1) = o / 4t (t — )2 log(t — )T (0, 1'). (C.18)

Likewise, the action in (C.14) in real space becomes

/dtdt o~ g0 s (0, )T (0,8)(t — t')log|(t — t')?]
(t —t)2 167r ts '

(C.19)

D Tree level 4-point function of S° fluctuations in conformal and static
gauge

In this appendix, we compute the leading connected four-point functions of S® fluctuations
using the conformal gauge and reproduce the result computed in [3] using the static gauge.
Let us first review the difference between the conformal gauge and the static gauge
actions for the S® fluctuations. In the conformal gauge, it reads
m Ao, , M
Sconformal = % / d’o m
1Y°)

(D.1)
1 1
= Ts/d20 {2(%1/”‘0%’” — Z(y"y")(aaymaaym) +0(y)

Here, y™, m = 1,...,5, are stereographic coordinates on S°, 0® = (s,t) are worldsheet

coordinates, and the worldsheet indices are contracted with . On the other hand, the
action in the static gauge expanded up to quartic order is

Sstatic:Ts/d20’\/§[L2+L4+O(?/6)} 5

1
Ly= §ga68aym85ym, (D.2)
Li=—7(y"y (9P Dy 3ﬁym)+§(9‘”ﬂ@ay Dy )Q—Z(QQﬂaaymaﬁy”)(g”‘s@vy dsy™).

Here, gog = 5%6&,3 is the AdSs metric on the worldsheet. As shown above, the quartic
interaction in the conformal gauge contains only two derivatives while the quartic interac-
tion in the static gauge includes both the two-derivative interaction and the four-derivative
interactions. Thus, to show the equivalence of the two, all we need to do is to check that
the reparametrization mode in the conformal gauge reproduces the contribution from the

four-derivative interactions.

?We can ignore the constant and quadratic terms in (6.31) when computing the e propagator in (6.30)
because they are gauge dependent. We can ignore those terms in (C.18) and (C.19) if the stress tensor
satisfies fdtTg;(O,t)t" = 0 for n = 0,1,2. In Fourier space, this is equivalent to %Tst (w=0) =0 for
n =0, 1,2, which is necessary for ¢(w) to be well behaved according to (C.13).
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Thanks to the SO(5) symmetry, the connected four-point function takes the following

general form:%’

<ym1 (:Cl )ym2 (x2)ym3 (5U3)ym4 (x4)>c0nn
— % [5m1m25m3m4G1 + 6m1m36m2m4G2 + 5m1m45m2m3G3] .

Since all the three terms on the right hand side are related by the permutation of indices,
we focus on G in what follows. The result for (G; was computed in the static gauge in
(4.11) of [3] and is given by
Gi = 2D1111 — 223, D1122 — 2235 Doony
+ D111y — 2233 D2121 — 223, Do112 — 2233 D1901 — 2234 D1212 + 235, D112z + 2275 Doo1y
+ d(af523y + wTywhy — wi573,) Daggo (D.3)
where the first line denotes the contribution from the two derivative term while the second

and the third lines are contributions from the four derivative terms, and Da,a,A5, is the
D-function given by the following contact Witten diagram,

Dasasasy = [ g Ka,(sstio) Rau(s,tion) Koy (sstim) R (sstim), (D)
with f((s, t;t') = m For integer A’s, the D-functions can be evaluated explicitly3?
in terms of polylogarithms (see e.g. appendix A of [118]). As a result, we obtain

o= z% (Fy+ Fy) (D.6)
Fy= —473],5 {4 42 ; X log ((1- XV)} . (D.8)

Here we factored out the result for the disconnected diagram T72/(m?z3,23%,) on the right
hand side of (D.6), and Fy and Fj are contributions from the two derivative and the four
derivative interactions respectively.

As we can see, the result for Fj coincides with the s-channel disconnected diagram
dressed by the reparametrization mode in the conformal gauge, (6.26), upon setting Ay =
Aw = 1. This confirms the equivalence of the two formulations at this order. At higher

29Note that Ts = g

39For readers’ convenience, here we display two D-functions needed for evaluating the contribution from
the two derivative interaction:

poo_m 1 {log x| log|1 — x|
1111 = 55 - )
2afgwsy [ x—1 X (D.5)
Dagry — B34 |_mx+2)log |1 — x| m mlog|x|
13734 8x? 8x*(1-x)  8(x—1)?

D1122 can be obtained from D211 by the permutation of indices 1 <+ 3 and 2 <> 4.
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orders in perturbation theory in the conformal gauge, one would also need to dress the
connected diagrams by the reparametrization mode in order to reproduce the results in
the static gauge. For example, at the next order, one needs to include the two-derivative
contact Witten diagram dressed by the reparametrization mode.

E Large charge OTOC

In this appendix, we derive the result for the large charge OTOCs on the Wilson line that
was stated without proof in (4.9). Our starting point is some results from [19] for the
following four-point functions on the Wilson line introduced in section 2.2:

(D(21)®(w2) 27 (23) 27 (24)) (D(1)D(w2) 27 (23) 27 (24))
(P(21) @ (w2))(Z7 (23) 27 (24)) (D(21)D(w2))(Z7 (23) 27 (24))

Here, ® = &', Z = d*+i®° and Z = &*—i®°, where ®!, &* and ®° are three of the scalars
orthogonal to the scalar ®5 that is coupled to Wilson line; Z7, Z” are chiral primaries of

= G1(x),

= Ga(x). (E.1)

rank J; D = ID; is one of the three displacement operators; and x is the conformal cross-
ratio defined in (2.14). In eq. (4.9), we were schematic by writing ®/ for Z7 and Z7,
and also only listed the four-point function with light scalars although the analysis of the
four-point function with displacement operators is essentially identical.

In [19], we computed the correlators in (E.1) in the double scaling limit J, A — oo with
J = % held fixed®' by studying the classical string with angular momentum .J in S that

is dual to the Wilson line with Z” and Z” inserted [4, 17, 18, 129]. In particular, the four-
point functions can be viewed as two-point functions of ® and D in the large charge back-
ground created by Z7 and Z”7. Via AdS/CFT, they are equal to the boundary-to-boundary
propagators for the fluctuations on the classical string in the transverse directions in S°
and AdSs. The induced geometry on the classical string is non-trivial and depends on J.

We need the following integral representations for the four-point functions in (E.1) [19]:

X kvl —c?+ k2exp (—iklog(x — 1))
(huy_x—lfmdk 2VT+ R sinh (7 [ p(0)de) (£2)
Xt V1 +k2V1 — 2 + k2exp (—iklog(x — 1))
Gl = (1—x)? /_oo " 12sinh (7 [y A(€)dt) - (B3

Here, the parameter ¢ € [0, 1) is related to J € [0,00) by 7J = K — E, where K = K(c?)
and E = E(c?) are the complete elliptic integrals of the first and second kind. J is a
monotonically increasing function of ¢, such that ¢ = 0 when J = 0 and ¢ — 1 as
J — oo. Furthermore, p(¢) contains information about the density of excitation energies
on the string and is given by:

2 Kk? +E
VI F RV - &+ R

The expressions in (E.2) and (E.3) are valid for y > 1.

(k)

(E.4)

#IThis definition of 7 differs from the one in [19] by a factor of .
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To compute the OTOCs from (E.2) and (E.3), we analytically continue along the path
n (2.28). If we keep c fixed and finite as we vary ¢, then at early times the OTOC does
not have a period of exponential decay (because there is no small parameter) while at late
times OTOC exhibits the standard behavior G ~ #e 2" and G4 ~ #e * as t — oo.
The more interesting case is to take ¢ to be small, which sets up a parametric separation
between the dissipation time t4 ~ 8 ~ 1 and the scrambling time t; ~ —GInc ~ —Inc and
gives rise to a period of exponential decay. More precisely, we will evaluate (E.2) and (E.3)
in the standard OTOC configuration in the double scaling limit ¢ — oo and ¢ — 0 with

2et fixed. This is equivalent to taking t — oo and J — 0 with Je! held fixed.

At late times, —ilog(x(t) — 1) = m — 4e~! + O(e~3!), which means the numerators in
the integrands in (E.2) and (E.3) grow exponentially as functions of k only slightly slower
than e™. Meanwhile, at large k, the energy density in (E.4) asymptotically approaches
p(k) ~ 2 and therefore fok pl)dl ~ Zf. At small 2, K = T + %02 + O(c*), so the
denominators in the integrands in (E.2) and (E.3) grow exponentially as functions of k
only slightly faster than e™ at large k. These observations imply that, at large ¢ and small
¢, the integrands in (E.2) and (E.3) decay exponentially at large values of k but do so
only slowly and therefore develop long tails extending towards infinity that dominate the
integrals. Thus, only the large k& behavior of the integrand is relevant, and the OTOC in
the limit is given by

i (482 o0 exp((w—éle_t—i—...)k)_ 1
Gix(0) = fim (17" [k kTS S e B9

In agreement with (4.9). Likewise,

3 —14 )k 1
Ga(x(t)) = lim (4e™") / dk — 7 exp((m :62 o )k) = 1 (E.6)
tc_—’?(? 6 exp((m+ 75 +...)k)  (1+75¢)

Given that ¢> =47 +...as J — 0, (E.5) leads to (4.9), as we wanted to show. It therefore
agrees with (4.8) for the case Ay = Azs = J and Ay = Ag = 1. Similarly, (E.6) agrees
with (4.8) for the case Ay = Ap = 2.
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