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1 Introduction and summary

The study of boundaries and defects in quantum field theory is interesting for a variety
of reasons. From a theoretical point of view, extended objects offer a way to probe QFT
dynamics which is complementary to that provided by local operators. From a more
practical perspective, defects can be used to describe physical impurities or extended
structures in quantum systems that can be realized in experiments. Recently, there has
been growing interest in studying the physics of boundary and defects in conformal field
theory (CFT). In this context, of particular relevance are defects that preserve a subgroup
of the conformal symmetry of the “bulk” theory. A p-dimensional conformal defect preserves
a SO(p + 1, 1) × SO(d − p) subgroup of the conformal group SO(d + 1, 1), and the bulk
CFT coupled to the defect is referred to as a defect conformal field theory (DCFT), whose
correlation functions have a rich structure constrained by the residual SO(p+1, 1)×SO(d−p)
symmetry. In the context of the conformal bootstrap program, for instance, this setup
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provides new bootstrap equations that are complementary to the usual ones without the
defect (see e.g. [1, 2]). Defects in QFT also lead to new constraints on renormalization
group flow, see for instance [3–8].

In this paper, we study a simple example of surface defect in the O(N) vector model in
d dimensions. The defect is defined by adding a mass-like O(N) invariant term on a 2d
subspace, which we take to be the x1, x2 plane (with other coordinates set to zero). The
total action is (below ϕa, a = 1, . . . , N is a N -component real scalar field)

S =
∫
ddx

[1
2 (∂ϕa)2 +

λ

4!
(
ϕ2a

)2]
+ h

∫
dx1dx2 ϕ

2
a(x⃗, 0) . (1.1)

We tune the bulk coupling constant λ to criticality, and study the defect RG flow triggered
by the defect coupling h. It is well-known that at the critical point of the O(N) model,
the operator ϕ2a has ∆ < 2, and hence h is a relevant coupling. Its beta function can be
computed perturbatively in d = 4−ϵ using the standard epsilon expansion techniques. Below
we will perform this calculation to the leading non-trivial order in ϵ, finding as expected a
non-trivial O(N) invariant IR fixed point of the defect RG flow. Hence, the surface defect
is conformal at long distances, and the model (1.1) flows to a non-trivial DCFT with O(N)
symmetry. We determine the simplest scaling dimensions of local operators inserted on the
defect, namely those of ϕ̂a and ϕ̂2a operators.1 We also study the same system using the
large N expansion in general d, as well as the epsilon expansion in the cubic theory [9] near
d = 6, finding agreement between these different descriptions in their overlapping regime of
validity. In d = 4− ϵ, we also compute perturbatively the free energy of the model for the
case where the defect is supported on a two-sphere, and find a result consistent with the
so-called b-theorem [6] for 2d defect RG flow.

The planar defect (1.1) was previously mentioned in [10] in the context of the critical
behavior of spin systems, but it was not studied in detail there. More recently, it was studied
in [11] for d = 3. In this case, the defect becomes an interface and the problem is closely
related to that of the O(N) model in the presence of a boundary. This problem has recently
received renewed attention, in particular in connection to the so-called “extraordinary-log”
phase proposed in [12], see also [10, 13]. Other recent related work includes applications to
quantum Hall bilayers [14] and weak measurement systems [15].

While the analysis of [11] focuses on d = 3 where the defect is an interface, here we will
keep the dimension of the “bulk” CFT to be general d, and the defect to be always two-
dimensional. Interestingly, we find that the results of the perturbative large N expansion
in general d cannot be directly continued to d = 3, as they naively diverge in the d → 3
limit. This suggests a qualitatively different behavior of the large N theory in d = 3 and
3 < d < 4, which we discuss in more detail in section 4.2 below.

In this paper we focus mostly on the O(N) invariant fixed point of (1.1), but the theory
is also expected to admit a phase where the O(N) symmetry is broken, analogously to
the case of the O(N) model in the presence of a boundary (see [16] for a review). In this
phase, the bulk operator ϕa acquires a non-trivial one-point function growing towards the

1In this paper, we will follow the common convention of denoting local operators on the defect with a
hat, in order to distinguish them from the bulk operators, which have different scaling dimensions.
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defect. We briefly discuss such O(N) breaking phase in section 3.2 below, both using the
equations of motion in flat space, and by mapping the theory to H3 × Sd−3. Here H3 is
the three-dimensional hyperbolic space, with the surface defect being at its boundary. In
this case, the O(N) breaking phase can be understood as a critical point of the classical
potential in hyperbolic space, similar to the BCFT setup discussed in [17].

The rest of this paper is organized as follows: as a simple example, in section 2 we first
study the model (1.1) in the case where we tune the bulk coupling to the free UV fixed
point (λ = 0), so that we have a planar defect in the theory of N free massless scalar fields.2

We show that the beta function for h, as well as the scaling dimensions of defect operators,
can be computed exactly in this case. We also discuss the mapping to H3 × Sd−3 and point
out a close relation to the problem of double-trace deformations in AdS/CFT [19–21]. Then
in section 3 we use the epsilon expansion to study the planar defect in the interacting O(N)
model in d = 4− ϵ, and in section 4 we study the system using the large N expansion in
generic d. As a further cross-check of the large N results, in section 5 we study the planar
defect in the cubic scalar theory in 6− ϵ expansion. Finally in section 6 we compute the
free energy for the spherical defect first in the case of the free theory (exactly) and then for
the interacting theory in d = 4− ϵ (perturbatively in ϵ), finding results in agreement with
the defect b-theorem [6].

Note added. While writing up this paper, we became aware of [22] and [23], which
present results that overlap with parts of this work. We thank Avia Raviv-Moshe and
Siwei Zhong for informing us of their work [22] and for sharing a preliminary draft prior
to submission.

2 Free theory

Let us first discuss the surface defect in the case of the free scalar field theory. We consider
N free scalar fields in d dimension, ϕa, a = 1, 2, · · · , N , and insert a O(N) invariant surface
defect onto the x1, x2 plane. The action is

S =
∫
ddx

1
2 (∂ϕa)2 + h0

∫
dx1dx2 ϕ

2
a (2.1)

Of course, since the theory is free, the N dependence is trivial and one might as well restrict
to a single scalar. However, since we later generalize to the case of the interacting O(N)
model, we will work with N scalars in this section. Recall that the free scalar propagator
in d dimensions is given by

G(x− y) =
∫

ddp

(2π)d

eip(x−y)

p2
= Cϕ

|x− y|d−2 , Cϕ ≡
Γ
(

d−2
2

)
4π

d
2

(2.2)

The operator ϕ2a inserted on the 2d defect is a relevant deformation in d < 4, and it
is expected to trigger a defect RG flow. The usual perturbative renormalization can be
developed in d = 4 − ϵ, where the beta function of the defect coupling can be obtained

2This example was also recently discussed in [18].
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by familiar techniques. Explicitly, to renormalize the defect coupling h0, we require the
one-point function ⟨ϕ2a(0, x)⟩ at a distance |x| from the defect to be finite as ϵ → 0. The
diagrams contributing to ⟨ϕ2a(0, x)⟩ form an infinite series that we may depict as follows

(A0) (A1) (A2)

· · ·

where all the defect vertices form an infinite chain.
It will be more convenient to implement the renormalization in the momentum space

representation. We may write

⟨ϕ2a(0, x)⟩ =
∫

dd−2m

(2π)d−2

∫
dd−2n

(2π)d−2

∫
d2k

(2π)2 e
−i(m+n)x⟨ϕa(k,m)ϕa(−k, n)⟩ . (2.3)

Here we denote the fields in momentum space by ϕa(k,m), where k is a two-dimensional
momentum along the defect (which is conserved), and m is (d − 2)-dimensional momen-
tum. To renormalize the bulk one-point function, we may then equivalently require that
⟨ϕa(k,m)ϕa(−k, n)⟩ is finite as ϵ→ 0.

The leading contribution to ⟨ϕa(k,m)ϕa(−k, n)⟩ is given by

A0 = −2h0
N

(k2 +m2)(k2 + n2) (2.4)

Since the 2-dimensional defect momentum k is conserved, insertion of a new defect vertex
gives a factor of

t(k) = −2h0
∫

dd−2p

(2π)d−2
1

k2 + p2
= −h023−dπ1−

d
2 kd−4Γ

(
2− d

2

)
(2.5)

Insertion of more vertices gives a power of t(k). In total,

An = tn(k)A0 (2.6)

⟨ϕa(k,m)ϕa(−k, n)⟩ =
∞∑

n=0
An = A0

1− t(k) =
−2h0 N

(k2+m2)(k2+n2)

1 + h023−dπ1−
d
2 kd−4Γ

(
2− d

2

) (2.7)

At d = 4− ϵ, t(k) = −h0
πϵ +O

(
ϵ0
)
. So if we define

M ϵ

h0
= 1
h
− 1
πϵ
, h0 =M ϵ h

1− h/(πϵ) (2.8)

where M is a renormalization scale, then

⟨ϕa(k,m)ϕa(−k, n)⟩ =
−2hM ϵ

(k2 +m2)(k2 + n2)
N

1− h
πϵ + hM ϵ23−dπ1−

d
2 kd−4Γ

(
2− d

2

)
= −2hM ϵ

(k2 +m2)(k2 + n2)
N

1 + h
2π

(
log

(
4πM2

k2

)
− γ +O (ϵ1)

) (2.9)

is finite.
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Taking the derivative of eq. (2.8) w.r.t. M and requiring the derivative of the bare
coupling h0 vanishes (∂h0/∂M = 0), we arrive at the beta function

βh = −ϵh+ h2

π
(2.10)

Note that this beta function is exact, since the definition of renormalized coupling obtained
above cancel divergences to all orders in h. Then we find an exact IR fixed point at

h∗ = πϵ = π(4− d) (2.11)

Conformal perturbation theory approach. The beta function obtained above by
renormalizing the bulk one-point function ⟨ϕ2a⟩ can also be recovered by using the standard
conformal perturbation theory approach, adapted to the 2-dimensional defect. In general, if
we consider a CFT perturbed by a weakly relevant operator Ô on a 2d defect, with scaling
dimension ∆ = 2− ε,

S = SCFT + h0

∫
d2x

√
gÔ(x) (2.12)

then the beta function for the dimensionless renormalized coupling h is [24] (this is a
straightforward adaptation of the general conformal perturbation theory result in a CFT
perturbed by a weakly relevant operator, see e.g. [25–27])

βh = −εh+ π
C3
C2
h2 +O

(
h3
)

(2.13)

where C3 = ⟨ÔÔÔ⟩0 and C2 = ⟨ÔÔ⟩0 are the 3-point and 2-point function normalizations
(omitting the standard position dependent factors) in the unperturbed CFT. Applied to
our model in eq. (2.1), Ô = ϕ̂2a and ε = ϵ, so we have

C3
C2

=
8NC3

ϕ

2NC2
ϕ

= 4Cϕ (2.14)

Therefore

βh = −ϵh+ 4πCϕh
2 +O(h3) (2.15)

Note that in d = 4− ϵ to leading order in ϵ, we have 4πCϕ = 1/π. So this beta function
is consistent as expected with eq. (2.10) computed in the minimal subtraction scheme.3

However, from the conformal perturbation theory approach it is not obvious that the beta
function is in fact exact, as we have shown explicitly above by renormalizing the bulk
one-point function and summing up all diagrams.

3In general, the beta function in minimal subtraction and that obtained in conformal perturbation theory
can be thought of as corresponding to two different schemes. Observables at the fixed point, such as scaling
dimensions, are of course independent of the renormalization scheme.
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2.1 Scaling dimensions on the defect

We now calculate the scaling dimensions of the operators ϕ̂a and ϕ̂2 inserted on the defect.
For the operator ϕ̂i, let us consider the 2-point function ⟨ϕ̂1(y1)ϕ̂1(y2)⟩d where y1, y2

are coordinates on the two-dimensional defect plane. If we do a two-dimensional Fourier
transform along the defect plane (here p1, p2 are two-dimensional defect momentum), we have

⟨ϕ̂i(p1)ϕ̂j(p2)⟩ =
∫
d2y1

∫
d2y2 e

i(p1y1+p2y2) Cϕ

|y1 − y2|d−2 δij

=
∫
d2y1

∫
d2∆y ei(p1y1+p2(∆y+y1)) Cϕ

|∆y|d−2 δij

= (2π)2δ(2)(p1 + p2)
22−dπ1−

d
2 Γ
(
2− d

2

)
|p2|4−d

δij

= (2π)2δ(2)(p1 + p2)
t(p2)
−2h0

δij .

(2.16)

The defect action in momentum space is simply

S = h0

∫
d2k

(2π)2 .ϕ̂i(k)ϕ̂i(−k) (2.17)

Because the defect action is quadratic, every diagram in ⟨ϕ̂i(p1)ϕ̂j(p2)⟩D is a chain on
the defect:

· · · (2.18)

Momentum is conserved and the diagrams form a power series:

⟨ϕ̂i(p1)ϕ̂j(p2)⟩D =
∞∑

n=0
(2π)2δ(2)(p1 + p2)δij

t(p2)
−2h0

tn(p2) (2.19)

Because t(p) = −h023−dπ1−
d
2 pd−4Γ

(
2− d

2

)
is divergent as ϵ→ 0, the leading order diagram

is divergent. To avoid this issue, it is more convenient to perform the renormalization in
terms of the coordinate space representation. We can write

⟨ϕ̂1(y1)ϕ̂1(y2)⟩D =
∞∑

n=0
Cn (2.20)

where, computing the Fourier transform of tn+1(p2)
−2h0

by using eq. (A.1), we get

Cn =−
2(d−4)n+d−5|y1−y2|−d(n+1)+4n+2Γ

(
1
2(d+(d−4)n−2)

)(
−23−dπ1−

d
2h0Γ

(
2− d

2

))n+1

πh0Γ
(
−1

2(d−4)(n+1)
)

(2.21)
We can define the renormalized operator as usual by

ϕ̂i(y) = Zϕ̂

[
ϕ̂i

]
(y) (2.22)
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where [ϕ̂i] denotes the renormalized operator on the defect. Then we substitute this and
eq. (2.8) into the expression for Cn, and require that it is finite. This gives

Zϕ̂ = 1− h

πϵ
(2.23)

The anomalous dimension of ϕ̂i is then

γϕ̂ =
∂ logZϕ̂

∂ logM = βh

∂ logZϕ̂

∂h
= −1
πϵZϕ̂

(
−ϵh+ h2

π

)
= h

π
(2.24)

At the fixed point h∗ = πϵ, this gives

∆ϕ̂ = d− 2
2 + γϕ̂

∣∣∣
h=h∗

= 1 + ϵ

2 = 3− d

2 (2.25)

where in the last step we expressed the scaling dimension in terms of d, because the result
is exact in ϵ.

As the defect action is h0
∫
dx1dx2 ϕ

2
a, the scaling dimension of the operator ϕ̂2a inserted

on the defect can be calculated directly from the derivative of the beta function at the fixed
point. Using the beta function and fixed point in eq. (2.10) and (2.11), we find

∆ϕ̂2 = 2 + ∂βh

∂h

∣∣∣∣
h=πϵ

= 2 + ϵ = 6− d . (2.26)

Note that this satisfies ∆ϕ̂2 = 2∆ϕ̂. This is expected since, even though we have a non-trivial
defect fixed point, the theory is Gaussian.

Note that in the special case d = 3, we have ∆ϕ̂ = 3
2 . This is the dimension of the

boundary scalar operator in the 3d free scalar theory with Dirichlet boundary conditions
on a 2d boundary. This is as expected, since for d = 3 our defect becomes an interface, and
the IR fixed point should correspond to two copies of the Dirichlet free scalar BCFT. This
can also be confirmed by computing the defect free energy (and related defect anomaly
coefficient), as we discuss in section 6 below.

In general d, a simple way to understand the result (2.25) is by performing a Weyl
transformation to the space H3×Sd−3, where H3 is the three-dimensional hyperbolic space.
The flat space metric can be written as

ds2 = dx21 + dx22 + dr2 + r2dΩ2
d−3

= r2
[
dx21 + dx22 + dr2

r2
+ dΩ2

d−3

]
= r2ds2H3×Sd−3

(2.27)

By making a Weyl rescaling to get rid of the overall conformal factor, we can then map the
DCFT on flat space to H3 × Sd−3, where the 2d defect now sits at the boundary of H3.
Including the conformal coupling term, the bulk action becomes (see for instance [17])

S =
∫
ddx

√
g

[1
2 (∂ϕa)2 +

(d− 2)(d− 6)
8 ϕ2a

]
(2.28)

If we perform a Kaluza-Klein reduction on Sd−3, we obtain a tower of states with masses
m2

ℓ = 1
4(d− 2)(d− 6) + ℓ(ℓ+ d− 4), where ℓ = 0, 1, 2, . . . and we used the standard result
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for the eigenvalues of the Laplacian on the sphere Sd−3. For the lowest lying mode, we
have m2

0 = 1
4(d− 2)(d− 6), which according to the mass/dimension relation on H3 given

by ∆(∆− 2) = m2
0, gives the two possible operator dimensions at the boundary of H3:

∆− = d

2 − 1 ∆+ = 3− d

2 (2.29)

We see that these are indeed respectively the dimensions of the defect operator ϕ̂a at the
trivial fixed point (h = 0) and at the IR fixed point (h = h∗). From this point of view,
we can think of the surface defect flow in the theory (2.1) as an analog of the familiar
double-trace flow in the AdS/CFT context [19–21]. Here, the analog of the double-trace
deformation is the operator ϕ̂2a inserted at the boundary of H3.

3 Interacting O(N) model in d = 4 − ϵ

We now consider the massless O(N) symmetric Wilson-Fisher model in d = 4− ϵ dimension
with the same surface defect inserted on the x1, x2 plane:

S =
∫
ddx

[1
2 (∂ϕa)2 +

λ0
4!
(
ϕ2a

)2]
+ h0

∫
dx1dx2 ϕ

2
a (3.1)

Since in the free theory the fixed point of the defect coupling is at h∗ = πϵ, it is natural
to expect that at the interacting bulk fixed point, h∗ = O(ϵ) as well. Then both λ∗ and h∗
are of order O(ϵ), and there are three diagrams to two-loop order of h0 and λ0:

(A0) (A1) (B0)

In position space, these diagrams can be computed as

A0 = −2h0N
∫
d2y

C2
ϕ

(x2 + y2)(d−2) =
π1−dh0Nx

6−2dΓ
(

d
2 − 1

)2
24− 8d eq. (A.3) (3.2)

A1 = 4h20N
∫
d2y

∫
d2z

C3
ϕ

(x2 + y2)(d−2)/2(x2 + z2)(d−2)/2|y − z|(d−2)

= −
π3−

3d
2 h20Nx

10−3d csc
(

πd
2

)
Γ(d− 3)2Γ

(
3d
2 − 5

)
16Γ(2d− 6) eq. (A.4) (3.3)

B0 =
(N + 2)λ0h0N

3

∫
d2y

∫
ddz

C4
ϕ

|z − y|2(d−2)|z − x|2(d−2)

=
π3−

3d
2 h0λ0N(N + 2)x10−3d csc2

(
πd
2

)
Γ
(

d
2 − 1

)2
Γ
(
3d
2 − 5

)
768Γ(4− d)Γ(d− 2)2 (3.4)
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The wavefunction renormalization factor is the same as the one in the bulk theory
without defect (see for instance [28] for a collection of CFT data of the O(N) model in
d = 4− ϵ):

ϕ2a(x) = Zϕ2

[
ϕ2a

]
(x), Zϕ2 = 1− λ(N + 2)

48π2ϵ +O
(

λ2

(4π)4

)
(3.5)

The renormalized one-point function ⟨[ϕ2a](x)⟩ is

⟨[ϕ2a](x)⟩ =
1
Zϕ2

(A0 +A1 +B0) . (3.6)

If we now substitute in the renormalized couplings

λ0 =M ϵ
(
λ+O(λ2)

)
(3.7)

h0 =M ϵ

(
h+ h2

πϵ
+ λ

a11
ϵ
h

)
(3.8)

and require the renormalized one-point function ⟨[ϕ2a](x)⟩ to be finite, we find

h0 =M ϵ

(
h+ h2

πϵ
+ λ

N + 2
48π2ϵ h

)
. (3.9)

Imposing ∂h0
∂ log(M) = 0, we arrive at the beta function

βh = −hϵ+ h2

π
+ λh(N + 2)

48π2 (3.10)

This corresponds to a fixed point at

h∗ = πϵ− (N + 2)λ
48π (3.11)

Plugging in the explicit value of the bulk fixed point coupling

λ∗
(4π)2 = 3ϵ

N + 8 + 9(3N + 14)ϵ2

(N + 8)3 +O
(
ϵ3
)
, (3.12)

the defect coupling fixed point is

h∗ =
6π

N + 8ϵ+O
(
ϵ2
)

(3.13)

This confirms our assumption that h∗ = O(ϵ) and shows that our calculation is self-
consistent.

At this fixed point, the one-point function of the bulk quadratic operator is

⟨[ϕ2a](x)⟩ = − 3ϵN
4π2(N + 8)x2 +O

(
ϵ2
)

(3.14)

To compare with the results of large N expansion in section 4.2, it will be useful to normalize
the one-point function by the square root of the two-point function coefficient. Since〈[

ϕ2a

]
(x)

[
ϕ2b

]
(0)
〉
=

N 2
ϕ2

|x|2(d−2+γϕ2) (3.15)
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where (see e.g. [29])

N 2
ϕ2 = 2N

(d− 2)2Ω2
d−1

[
1− ϵ

(N + 2) (γE + 1 + log π)
N + 8 +O

(
ϵ2
)]

, (3.16)

the normalized one-point function is

⟨[ϕ2a](x)⟩D

Nϕ2
= − 3ϵ

√
N√

2(N + 8)x2
+O

(
ϵ2
)

(3.17)

Conformal perturbation theory approach. Now we use conformal perturbation
theory as in section 2 as an alternative way to obtain the beta function. The interacting
CFT in the bulk has the renormalized coupling λ∗ given by eq. (3.12). We perturb it
by the defect term h0

∫
dx1dx2ϕ

2
a. The three-point and two-point function coefficients C3

and C2 in the unperturbed interacting CFT are the same as in free theory (eq. (2.14)) to
leading order. But now the scaling dimension of ϕ2a in the CFT at h = 0 is given by the
well-known result [28]

∆ϕ2 = 2− ϵ+ γϕ2 = 2− 6ϵ
N + 8 +O(ϵ2) . (3.18)

Therefore, the dimension of the perturbing defect operator is 2− ε with ε = 2−∆ϕ2 = 6ϵ
N+8 ,

and the beta function is given by

βh = − 6ϵ
N + 8h+ 4πCϕh

2 +O(h3) (3.19)

= − 6ϵ
N + 8h+ h2

π
+O(h3) (3.20)

where in the last line we have replaced 4πCϕ by its leading order value near d = 4. This
indeed agrees with eq. (3.10) when λ = λ∗ is at the critical point.

3.1 Scaling dimensions on the defect

Similar to the calculation for free scalar fields, we consider ⟨ϕ̂1(y1)ϕ̂1(y2)⟩D where y1, y2
are coordinates on the two-dimensional defect plane. To the linear order in ϵ, the relevant
diagrams are the same as in the free theory, namely we just need the diagram linear in h in
the “chain” eq. (2.18). There are no diagrams involving the bulk coupling to this order,
since these first appear at order λ2 and hλ. Hence, to the leading non-trivial order, the Z
factor and anomalous dimension as functions of the renormalized coupling h are the same
as in the free theory

Zϕ̂ = 1− h

πϵ
+ hλ(N + 2)

96π3
(
− 1
ϵ2

+ 1
ϵ

)
,

γϕ̂ = h

π
+O(hλ, λ2)

(3.21)

At the fixed point h∗ = 6π
N+8ϵ, this gives the scaling dimension

∆ϕ̂ = d− 2
2 + γϕ̂

∣∣∣
h=h∗,λ=λ∗

= 1− ϵ

2 + 6ϵ
N + 8 +O(ϵ2) . (3.22)
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For the dimension of the ϕ̂2 defect operator, we can again simply use the general
formula relating it to the derivative of the beta function at the fixed point. This gives

∆ϕ̂2 = 2 + ∂βh

∂h

∣∣∣∣
h=h∗,λ=λ∗

= 2 + 6ϵ
N + 8 . (3.23)

We will see below that these results are consistent with the predictions of the large N

expansion. Note that in d < 4 the operator ϕ̂2 is irrelevant at the fixed point, as expected
for a IR stable fixed point.

3.2 O(N) symmetry breaking phase

In the above calculation of the beta function, we found a O(N) invariant DCFT where
the fixed point coupling h∗ is positive and the flow is perturbative for small ϵ. By analogy
with the similar problem of the “extraordinary” and “normal” transitions in the O(N)
model in the presence of a boundary (see for instance [1, 17], and [16] for a review), it is
natural to also look for a phase of the surface defect theory where the O(N) symmetry is
broken to O(N − 1).4 As in the boundary case, one can describe this phase by finding a
classical solution to the equations of motion where one of the scalars, say ϕN , has a non-zero
classical profile, growing towards the location of the defect. One way to reach this phase
is by adding an explicit O(N) breaking relevant perturbation on the defect, proportional
to ϕN . This is the analog of the so-called “normal” transition in the O(N) model with
a boundary. It is natural to expect that an O(N) breaking phase can also be reached
by starting with the defect action (3.1) and taking the coupling h to be negative (this is
the analog of the “extraordinary” transition in the boundary problem, corresponding to
spontaneous breaking). Here we will not discuss in detail the difference between these two
setups (see [11, 12, 30]), and for simplicity in the discussion below we will have in mind the
analog of the “normal” transition.

Let us place the defect on the x1, x2 plane as before, and use the coordinates

ds2 = dx21 + dx22 + dy21 + . . .+ dy2d−2 . (3.24)

Then the one point function of a bulk scalar operator in the presence of the surface defect
must take the form

⟨O⟩ = c

r∆
(3.25)

where r =
√
y21 + y22 + . . .+ y2d−2 is the transverse distance from the defect and ∆ is the

dimension of the bulk operator. For d = 4− ϵ, we can solve for the equation of motion (as
in the boundary case [1])

∇2ϕi =
∂2ϕi

∂r2
+ d− 3

r

∂ϕi

∂r
= λ∗

6 ϕ
2
aϕi (3.26)

4More general pattern of symmetry breaking should also be possible, but here we focus on the simplest
breaking to O(N − 1).
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where the bulk fixed point coupling is given by eq. (3.12). Considering the ansatz ⟨ϕa(x)⟩ =
c/r dictated by conformal symmetry, this admits a solution

⟨ϕa(x)⟩ =


√

6
λ∗

1
r , a = N

0, a = 1, 2, · · · , N − 1
(3.27)

This is the phase where the O(N) symmetry is broken to O(N − 1).
The above analysis can be also carried out in an equivalent way by making a conformal

transformation to H3 × Sd−3, as discussed above in the free theory context, see eq. (2.27).
After a Weyl rescaling the bulk action becomes

S =
∫
ddx

√
g

[1
2 (∂ϕa)2 +

(d− 2)(d− 6)
8 ϕ2a + λ∗

4!
(
ϕ2a

)2]
(3.28)

The one point function of a scalar operator is a constant ⟨ϕN ⟩ = c in H3 × Sd−3 (the Weyl
factor cancels the r-dependent factor in (3.25)). Then the O(N) breaking configuration can
be simply found by extremizing the potential

V (ϕ) = (d− 2)(d− 6)
8 ϕ2a + λ∗

4!
(
ϕ2a

)2
. (3.29)

This gives

ϕ2a = 3(6− d)(d− 2)
2λ∗

=⇒ ⟨ϕa(x)⟩ =


√

3(6−d)(d−2)
2λ∗

, a = N

0, a = {1, 2, · · · , N − 1}
(3.30)

Transforming back to flat space, we find

⟨ϕN (x)⟩flat =
√

3(6− d)(d− 2)
2λ∗

1
r
=
√

6
λ∗

1
r

(3.31)

to leading order at d = 4 − ϵ, in agreement with the equation of motion calculation in
flat space.

Expanding the action (3.28) around this minimum using ϕi, i = 1, 2, · · · , N − 1 and
ϕN =

√
3(6−d)(d−2)

2λ∗
+ χ, we find

S =
∫
ddx

√
g

[
1
2 (∂ϕi)2 +

1
2 (∂χ)2 − 3(d− 6)2(d− 2)2

32λ − 1
4(d− 6)(d− 2)χ2

+
√
λ

2

√
(6− d)(d− 2)

6
(
χ3 + χϕ2

)
+ 1

24λ
(
χ2 + ϕ2

)2 (3.32)

Therefore, we have N − 1 massless scalar fields ϕi and a massive scalar field χ with mass
m2

χ = 1
2(6− d)(d− 2).

According to the familiar mass/dimension relation on H3, ∆(∆− 2) = m2, the N − 1
massless scalars correspond to N − 1 operators on the defect with ∆ = 2. These are
sometimes referred to as “tilt” operators: their presence follow from the broken O(N)
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symmetry and they should have protected dimension. These massless operators correspond
to the bottom component in the Kaluza-Klein tower arising from reduction on Sd−3. The
higher states will have m2 = ℓ(ℓ+ d− 4) which leads to ∆ϕ̂i

ℓ = 1+
√
1 + ℓ2 to leading order

in d = 4− ϵ.
From the field χ, we find a tower of states with m2

χ = 2 + ℓ2 (working to leading order,
i.e. setting d = 4), which gives ∆χ̂

ℓ = 1 +
√
3 + ℓ2. The ℓ = 1 state has ∆χ̂

1 = 3, and should
correspond to the displacement operator with protected scaling dimension.

From here one may proceed to further analyze the O(N) breaking phase of the planar
defect in the O(N) model, but we leave further studies to future work (see [11] for a recent
discussion of the d = 3 case).

4 Large N

In this section we study the planar defect in the interacting O(N) model at large N , keeping
d arbitrary. We start with a brief review of the large N treatment of the O(N) model and
a few relevant results for the “bulk” scaling dimensions, and then we move on to study the
planar defect.

4.1 Review of large N results

The large N expansion can be developed by introducing the Hubbard-Stratonovich auxiliary
field σ as

S =
∫
ddx

(
1
2(∂ϕa)2 +

1√
N
σϕ2a − 6σ2

Nλ0

)
(4.1)

Integrating out σ gives back the original Lagrangian. At the IR fixed point of the O(N)
model, the ∼ σ2/λ0 term can be dropped, and we are left with

S =
∫
ddx

(1
2(∂ϕa)2 +

1√
N
σϕ2a

)
(4.2)

This action can be used for the 1/N expansion of the theory. The free propagator for ϕa is
the same as in eq. (2.2) while the “free” propagator for σ (obtained from integrating out ϕ
at one-loop) is

⟨σ(x)σ(y)⟩ = Cσ

|x− y|4−δ
, Cσ =

2dΓ
(

d−1
2

)
sin
(

πd
2

)
π

3
2Γ
(

d
2 − 2

) (4.3)

Here we have introduced a small shift δ to the σ propagator to regulate the infinities in
the divergent conformal graphs (see e.g. [31]). At the end of the calculations, we will take
δ → 0 and extract the finite part. The scaling dimensions of ϕa and σ are well-known and
given by

∆ϕ = d

2 − 1 + η1
N

+O
(
N−2

)
, η1 =

2d−3(d− 4)Γ
(

d−1
2

)
sin
(

πd
2

)
π

3
2Γ
(

d
2 + 1

) (4.4)
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∆σ = 2 + t

N
+O

( 1
N2

)
(4.5)

where

t = 4(d− 1)(d− 2)
d− 4 η1 =

2d(d− 2) sin
(

πd
2

)
Γ
(

d+1
2

)
π3/2Γ

(
d
2 + 1

) (4.6)

4.2 Defect

As σ essentially represents the operator ϕ2a at the IR fixed point, it is natural to define the
defect action by

Sd = h0

∫
d2xσ(x⃗, 0) . (4.7)

Here we use the same notation h0 for the defect coupling constant, but a priori this coupling
is not directly the same as the one used in the 4− ϵ expansion, because the operators σ
and ϕ2a have different normalizations.

In the O(N) invariant DCFT fixed point in d = 4 − ϵ, we found that the one-point
function of ϕ2 has the behavior ⟨ϕ2⟩ ∼ ϵN0 at large N , see eq. (3.14). Note that the σ
equation of motion from the action (4.1) is σ =

√
Nλ
12 ϕ2. Since at large N we have λ∗ ∼ 1/N ,

we expect that at the O(N) invariant DCFT fixed point we should have ⟨σ⟩ ∼ 1/
√
N in

the large N approach. This one-point function is not “classical” from the point of view
of the large N expansion (in the normalizations of eq. (4.1), a classical solution of the σ
effective action behaves as σ ∼

√
N), therefore we expect that to match the O(N) invariant

fixed point seen in d = 4− ϵ, we can simply do 1/N perturbation theory around the trivial
saddle point ϕa = σ = 0.5 On the other hand, the O(N) breaking fixed point discussed
in section 3.2 has ⟨ϕ2a⟩ ∼ 1/λ∗ ∼ N (see eq. (3.27)), which translates to ⟨σ⟩ ∼

√
N , and

therefore should correspond to a non-trivial classical saddle point at large N . In this
paper we will focus on the O(N) invariant phase at large N for generic d, and hence we
will simply do perturbation theory around the trivial configuration. Let us note that the
case d = 3 requires special treatment, as we shall see below, since in that case we expect
⟨σ⟩ ∼

√
N even in the O(N) invariant phase, see [11] and also [17] for the large N treatment

of the closely related boundary problem (recall that in d = 3, the planar defect becomes
an interface).

To determine the beta function of the defect coupling, we can now follow a similar
procedure as above and calculate the one-point function ⟨σ(0, x)⟩D, where x ∈ Rd−2 are the
coordinates perpendicular to the defect plane. The leading order diagram is a σ propagator
integrated on the defect plane (diagram P0), while at the next order in 1/N we have the

5This is a saddle point because ∂F
∂σ

|σ=0 vanishes, since this is proportional to the one-point function of
ϕ2 in the σ = 0 free theory.
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diagram P1 of order O
(

h2
0

N1/2

)
, and the diagrams P2, P3, P4 of order O

(
h0
N

)
:

P0 P1 P2 P3 P4

(4.8)
where we have used dashed line for σ propagator, thin solid line for ϕa propagator, and
thick solid line for the defect plane. The calculation of P0 is straightforward:

P0 = −h0
∫
d2y

Cσ

(x2 + y2)2 = −h0Cσ
π

x2
eq. (A.3) (4.9)

The diagrams P2, P3, and P4 are essentially those that give the anomalous dimension of
the bulk operator σ to order 1/N , eq. (4.5). We don’t need to compute them explicitly, as
their effect on the beta function of the defect coupling constant is simply to fix the linear
term in h in βh in terms of the bulk anomalous dimension γσ = t

N given in eq. (4.5). This
is because the defect action h0

∫
d2xσ(x⃗, 0) implies that

∂βh

∂h

∣∣∣∣
h=0

= γσ, βh = γσh+O(h2) . (4.10)

Therefore in the following we focus on the diagram P1, which determines the term in βh of
order h2/

√
N . To calculate P1, we use the three-point function of σ

⟨σ (x1)σ (x2)σ (x3)⟩ =
gσ3

(|x12| |x23| |x13|)2−δ
(4.11)

where [31]

gσ3 = − 1√
N

8d−1 sin3
(

πd
2

)
Γ
(
3− d

2

)
Γ
(

d−1
2

)3
π9/2Γ(d− 3)

(4.12)

The double integral on the defect plane can be calculated by eq. (A.4):

∫
d2x2

∫
d2x3

1
(|x12| |x23| |x13|)∆σ

=
π2Γ

(
1− ∆σ

2

)
Γ(∆σ − 1)2Γ

(
3∆σ
2 − 2

) (
x21
) 2− 3∆σ

2

Γ(2(∆σ − 1))Γ
(
∆σ
2

)2
(4.13)

So in total we have (the second term in the first line that we don’t write explicitly is
due to the diagrams P2, P3, and P4)

⟨σ(0,x)⟩D =−h0Cσ
π

x2 +O
(

h0

N

)
− h2

0
2

1√
N

8d−1 sin3 (πd
2

)
Γ
(
3− d

2

)
Γ
(

d−1
2

)3

π9/2Γ(d−3)
π2Γ

(
1− ∆σ

2

)
Γ(∆σ−1)2Γ

( 3∆σ
2 −2

)(
x2)2− 3∆σ

2

Γ(2(∆σ−1))Γ
(∆σ

2

)2 .

(4.14)
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To determine the renormalized coupling h, one substitutes

σ = Z[σ], h0 =M2−∆σ

(
h+ a11h

2

δ
√
N

+ . . .

)
, ∆σ = 2− δ (4.15)

expands in 1√
N

and h, and requires the renormalized one-point function ⟨[σ](x)⟩D to be
finite as δ → 0. This fixes

a11 =
2d(d− 3) sin2

(
πd
2

)
Γ
(
2− d

2

)
Γ
(

d−1
2

)
π3/2 (4.16)

Requiring ∂h0
∂ log(M) = 0 in eq. (4.15) gives the O(h2/

√
N) term of βh (where we now take

the regulator δ → 0), and including also the linear term proportional to γσ as explained
above, we obtain:

βh = t

N
h+

2d(d− 3)h2 sin2
(

πd
2

)
Γ
(
2− d

2

)
Γ
(

d−1
2

)
π3/2

√
N

. (4.17)

As discussed in previous sections, an alternative way to obtain the beta function is to
use the conformal perturbation theory approach. Now the perturbation operator on the
defect is Ô = σ̂. Let ε = 2−∆σ = −t/N (eq. (4.5)). The three-point coefficient gσ3 is given
by eq. (4.12) and the two-point function coefficient is Cσ in eq. (4.3). Then we get

βh = −εh+ π
gσ3

Cσ
h2 +O

(
h3
)

= t

N
h+

2d(d− 3) sin2
(

πd
2

)
Γ
(
2− d

2

)
Γ
(

d−1
2

)
π3/2

√
N

h2 +O(h3),
(4.18)

which is indeed the same as eq. (4.17).
From the beta function we find the fixed point

h∗ =
2(d− 1)

π(d− 3)d
√
N

+O(N−3/2) (4.19)

As mentioned above, we see that the d = 3 case requires special care. In this case formally
h∗ → ∞ because P1 vanishes, but this just means that the large N and d → 3 limits do
not commute. One may of course set d = 3 from the start and then develop the 1/N
expansion. In this case, since the defect becomes an interface, the O(N) invariant defect
fixed point is expected to be equivalent to two copies of the so-called ordinary transition in
the corresponding boundary problem, as explained in [11]. Note that the one-point function
of σ at the fixed point (4.19) to leading order is

⟨σ(0, x)⟩D = −h∗Cσπ

x2
= −

2d+2 sin
(

πd
2

)
Γ
(

d+1
2

)
π3/2(d− 3)d

√
Nx2Γ

(
d
2 − 2

) (4.20)

The fact that this diverges for d = 3 should be related to the fact that the N dependence
at large N is enhanced in 3d. Indeed, working directly in d = 3 one has ⟨σ⟩D ∼

√
N for
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the closely related ordinary transition of the BCFT problem. Note that when N = ∞ and
d = 3, there is a line of defect fixed points [11, 32–34] (the 1/N corrections lift this line
of fixed points and lead to a RG flow from the h = 0 fixed point to the IR fixed point
described by two copies of the Dirichlet boundary conditions). For d ̸= 3, considering the
beta function β(h̃) for the rescaled coupling h̃ = h/

√
N , one can see from eq. (4.17) that

β(h̃) is already nonzero at N → ∞, so there is no line of fixed points for d ̸= 3.
To compare the above large N calculations to the result obtained in the ϵ expansion,

we can consider the normalized one-point function

⟨σ(0, x)⟩D√
Cσ

= −
4Γ
(

d+1
2

)√2d sin(πd
2 )Γ( d−1

2 )
Γ( d−4

2 )

π3/4(d− 3)d
√
Nx2Γ

(
d−1
2

) = − 3ϵ√
2
√
Nx2

+O(ϵ2) (4.21)

where in the second equality we have put in d = 4− ϵ and expanded in ϵ. Since σ stands
for the composite field ϕ2a in the O(N) model with quartic interaction at the IR fixed point,
the normalized one-point function of σ should be the same as the normalized one-point
function of [ϕ2a]. Indeed, we see that it matches eq. (3.17) at the leading order of ϵ and
1
N expansions.

4.3 Scaling dimensions

The scaling dimension of ϕ̂a inserted on the defect can be calculated by considering the
two-point function ⟨ϕ̂1(y1)ϕ̂1(y2)⟩d where y1, y2 ∈ R2 are coordinates on the two-dimensional
defect plane. The leading corrections to the free propagator are

(4.22)

Repeatedly applying eq. (A.3) and (A.5), the first diagram is

2h0√
N

∫
dd−2z1

∫
d2z2

∫
d2z3

C2
ϕCσ

((z2−z3)2+z21)2−δ((z2−x)2+z21)
d−2

2 ((z2−y)2+z21)
d−2

2

= 2h0√
N

∫
dd−2z1

∫
d2z2

C2
ϕCσ

((z2−x)2+z21)
d−2

2 ((z2−y)2+z21)
d−2

2

π
(
z21
)

δ−1

1−δ

= 2h0√
N

∫
dd−2z1

∫ 1

0
dsC2

ϕCσ
π
(
z21
)

δ−1

1−δ
π(1−s)

d−2
2 −1s

d−2
2 −1Γ(d−3)

(
(1−s)sy2+z21

)3−d

Γ
(

d−2
2

)2
= 2h0√

N

∫ 1

0
dsC2

ϕCσ
π

1−δ
π(1−s)

d−2
2 −1s

d−2
2 −1Γ(d−3)

Γ
(

d−2
2

)2
×
π

d−2
2 Γ

(
d
2+δ−2

)
Γ
(
1
2(d−2(δ+1))

)(
−
(
(s−1)sy2

))− d
2+δ+1

Γ
(

d
2−1

)
Γ(d−3)

=−
π−d/2h02d−2(δ+1) sin

(
πd
2

)
Γ
(

d−1
2

)
Γ(δ−1)Γ

(
d
2+δ−2

)
Γ
(
1
2(d−2(δ+1))

)(
y2
)− d

2+δ+1

√
NΓ

(
d
2−1

)
Γ
(

d−4
2

)
Γ
(
δ+ 1

2

)
(4.23)

– 17 –



J
H
E
P
1
2
(
2
0
2
3
)
0
0
4

where y = y1 − y2. Since the anomalous dimension γϕ̂ will manifest as a correction in the
exponent of the free propagator

Cϕ

(y2)
d−2

2 +γϕ̂

= Cϕ

(
y2
)1− d

2 − γϕ̂Cϕ

(
y2
)1− d

2 log(y2) +O
(
γ2

ϕ̂

)
(4.24)

we can expand eq. (4.23) in δ and extract the coefficient of −Cϕ

(
y2
)1− d

2 log(y2), which
gives us

γϕ̂|diag. 1 = −
2dπ

1
2 (−d−1)+ d

2h0 sin
(

πd
2

)
Γ
(

d−1
2

)
√
NΓ

(
d−2
2

) (4.25)

The second diagram is exactly the leading correction to the free propagator in the bulk
theory (without defect), so its contribution is γϕ̂|diag. 2 = η1

N as in eq. (4.4). In total, after
replacing h0 by h which is consistent to this order, we have

γϕ̂ = −
2d sin

(
πd
2

)
Γ
(

d−1
2

)
√
Nπ

1
2Γ
(

d−2
2

) h+
2d−3(d− 4)Γ

(
d−1
2

)
sin
(

πd
2

)
Nπ

3
2Γ
(

d
2 + 1

) (4.26)

At the fixed point h = h∗ in (4.15), we then have

∆ϕ̂ = d

2 − 1 +
sin
(

πd
2

)(√
π(d−4)Γ(d+1)

d−1 − 2d+4Γ( d+1
2 )

(d−3)dΓ( d
2−1)

)
4Nπ3/2 +O(1/N2) . (4.27)

Setting d = 4− ϵ and expanding in small ϵ, this gives

∆ϕ̂ = 1− ϵ

2 + 6ϵ
N

+O(1/N2) . (4.28)

This matches eq. (3.22) to order 1/N , which provides a non-trivial consistency check.
The dimension of σ̂ inserted on the defect can be computed from the derivative of the

beta function:
∆σ̂ = 2 + ∂βh

∂h

∣∣∣∣
h=h∗

= 2− t

N
(4.29)

In the large N theory, σ represents ϕ2a at the IR fixed point so ∆σ̂ should match ∆ϕ̂2

(eq. (3.23)) computed in d = 4− ϵ. Indeed, setting d = 4− ϵ and expanding in ϵ we get

∆σ̂ = 2 + 6ϵ
N

− 13ϵ2

2N + . . . (4.30)

This indeed matches eq. (3.23) to O
(

ϵ
N

)
. Interestingly, ϕ̂ and σ̂ have the same anomalous

dimension to O
(

ϵ
N

)
.

5 Cubic model in d = 6 − ϵ

Consider the following Euclidean action:

S =
∫
ddx

[1
2 (∂µϕa)2 +

1
2 (∂µσ)2 +

g1
2 σϕ

2
a + g2

6 σ
3
]

(5.1)
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This model has an IR fixed point in d = 6 − ϵ which is the same as the UV fixed point
of the quartic theory in d > 4 [9]. This fixed point is unstable nonperturbatively due to
instanton corrections [35], but here our main interest is to use the cubic model description
within perturbation theory as a further consistency check of the large N results.

The surface defect action in this theory has the same form as in large N theory

SD = h0

∫
d2xσ(x, 0) . (5.2)

This kind of surface defect in the cubic scalar field theory was also previously studied
in [36–38], in a certain semiclassical double-scaling limit.

Consider ⟨σ(0, x)⟩D where x ∈ Rd−2 are the coordinates perpendicular to the defect.
We assume the fixed point renormalized coupling h∗ is the same order as g∗1, g∗2, which
we will confirm later. Using the same notation as in eq. (4.8), the leading diagrams in
⟨σ(0, x)⟩D are:

Q0 Q1 Q2 Q3

(5.3)

To proceed, it is easiest to perform the calculation in momentum space. We consider
⟨σ(0, p)⟩D where p ∈ Rd−2 is the momentum perpendicular to the defect plane. Q1 +Q2
can be calculated by eq. (A.2)

−h0(g
2
2 +Ng21)
2

∫
ddq

(2π)d

1
p4q2(p− q)2 = h0(g22 +Ng21)

2
23−2dπ

3−d
2 pd−8 csc

(
πd
2

)
Γ
(

d−1
2

) (5.4)

while Q3 is

−h
2
0g2
2

∫
dd−2q

(2π)d−2
1

p2q2(p− q)2 = −h20g2
43−dπ

5−d
2 pd−8 csc

(
πd
2

)
Γ
(

d−3
2

) (5.5)

In total,

⟨σ(0, p)⟩D = −h0
p2

− h20g2
43−dπ

5−d
2 pd−8 csc

(
πd
2

)
Γ
(

d−3
2

) + h0
(4π)3

Ng21 + g22
12

Γ(3− d/2)
(p2)4−d/2 (5.6)

The Z factor for the bulk operator σ can be calculated by renormalizing the 2-point function
(in the absence of the defect). This has been calculated in [9]:

⟨σ(p)σ(−p)⟩ = 1
p2

− g22 +Ng21
2

23−2dπ
3−d

2 pd−8 csc
(

πd
2

)
Γ
(

d−1
2

) (5.7)
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Let σ(p) = Z × [σ](p), and require the renormalized field’s propagator ⟨[σ](p)[σ](−p)⟩ to be
finite as ϵ→ 0, we get

Z = 1− 1
(4π)3

Ng21 + g22
12ϵ (5.8)

Substitute in
h0 =M

ϵ
2

(
h+ a1

h2g2
ϵ

+ a2
hNg21
ϵ

+ a3
hg22
ϵ

)
(5.9)

and require ⟨[σ](0, p)⟩D to be finite as ϵ→ 0, we arrive at:

h0 =M
ϵ
2

(
h− 1

16π2
h2g2
ϵ

+ 1
768π3

hNg21
ϵ

+ 1
768π3

hg22
ϵ

)
(5.10)

Now we require the bare coupling h0 to be independent of energy scale M and use β1 = − ϵ
2g1,

β2 = − ϵ
2g2 to this order. We then find the beta function

βh = −hϵ2 − g2h
2

16π2 + g21hN

768π3 + g22h

768π3 (5.11)

At large N the fixed point is:

h∗ =
(g∗1)2N + (g∗2)2 − 384π3ϵ

48πg∗2
=

20
√

2π
3
√
ϵ

3
√
N

(5.12)

where we have put in the fixed point couplings g∗1 =
√

6ϵ(4π)3

N (1 + 22/N + . . .), g∗2 =

6
√

6ϵ(4π)3

N (1 + 162/N + . . .) [9]. At this fixed point, we have

⟨[σ](0, p)⟩D = −
20
√

2π
3
√
ϵ

3
√
Np2

(5.13)

Fourier transforming this to position space using eq. (A.1) gives us:

⟨[σ](0, x)⟩D = −
5
√

2
3
√
ϵ

3π3/2
√
Nx2

. (5.14)

Since to leading order
⟨[σ](x)[σ](y)⟩ = 1

4π3|x− y|4
(5.15)

The normalized one-point function is

⟨[σ](0, x)⟩D√
1/(4π3)

= −
10
√

2
3
√
ϵ

3
√
Nx2

(5.16)

This agrees with the large N calculation in eq. (4.21) expanded in d = 6− ϵ:

⟨σ(x)⟩D√
⟨σσ⟩

= −
4Γ
(

d+1
2

)√2d sin(πd
2 )Γ( d−1

2 )
Γ( d−4

2 )

π3/4(d− 3)d
√
Nx2Γ

(
d−1
2

) = −
10
√

2
3
√
ϵ

3
√
Nx2

. (5.17)
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Conformal perturbation theory approach. As in previous sections, as a further check
let us also use conformal perturbation theory to calculate the beta function. The scaling
dimension of σ at h = 0 is

∆σ = 2− ϵ

2 + 1
(4π)3

N (g∗1)
2 + (g∗2)

2

12 (5.18)

So ε = 2−∆σ = ϵ
2−

1
(4π)3

N(g∗
1)

2+(g∗
2)

2

12 . The three-point function coefficient can be calculated
by (see eq. (A.6))

⟨σ(x1)σ(x2)σ(x3)⟩ = −g2
∫
d6x

C3
ϕ

|x− x1|4|x− x2|4|x− x3|4

=
−g2C3

ϕπ
3

|x− x1|2|x− x2|2|x− x3|2

(5.19)

Therefore, when the bulk theory is critical,

βh = −δh+ π
−g2C3

ϕπ
3

Cϕ
h2 +O

(
h3
)

= − ϵ2h+ 1
(4π)3

N (g∗1)
2 + (g∗2)

2

12 h− g∗2
16π2h

2 +O(h3)
(5.20)

where Cϕ = 1
4π

−d/2Γ
(

d−2
2

)
= 1

4π3 is evaluated at d = 6. This agrees with eq. (5.11).

5.1 Scaling dimensions on the defect

The scaling dimension of σ̂ on the defect at the fixed point is

∆σ̂ = 2 + ∂βh

∂h
|h=h∗,g2=g∗

2 ,g1=g∗
1

(5.21)

If we plug in the explicit fixed point couplings and expand at large N , we obtain ∆σ̂ = 2− 40ϵ
N .

It is straightforward to check that this matches the large N result (4.29), (4.6) expanded
in d = 6− ϵ.

To determine the dimension of ϕ̂a on the defect, let us consider as before ⟨ϕ̂1(y1)ϕ̂1(y2)⟩D

where y1, y2 ∈ R2 are coordinates on the two-dimensional defect plane. The two leading
order diagrams are the same as in large N theory (eq. (4.22)):

(5.22)

Define y = y1 − y2. The first diagram is

g1h0

∫
dd−2z1

∫
d2z2

∫
d2z3

C3
ϕ

((z2−z3)2+z21)
d−2

2 ((z2−y)2+z21)
d−2

2 (z22+z21)
d−2

2
eq. (A.3)

= g1h0

∫
dd−2z1

∫
d2z2

C3
ϕ

((z2−y)2+z21)
d−2

2 (z22+z21)
d−2

2

2πz4−d
1

d−4 eq. (A.5)
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= g1h0

∫
dd−2z1C

3
ϕ

2πz4−d
1

d−4

∫ 1

0
ds
π(−((s−1)s))

d−4
2 Γ(d−3)

(
z21−(s−1)sy2

)3−d

Γ
(

d−2
2

)2 eq. (A.3)

= g1h0C
3
ϕ

2π
d−4

∫ 1

0
ds
π(−((s−1)s))

d−4
2 Γ(d−3)

Γ
(

d−2
2

)2 π
d−2

2 (s−1)4s4y8
(
−
(
(s−1)sy2

))−d

(d−4)Γ
(

d
2−1

)

= g1h0
π1−dy8

(
y2
)−dΓ

(
3− d

2

)2
Γ(d−3)

32(d−4)2Γ(6−d) (5.23)

The second diagram has been calculated in momentum space in [9]:

− p2

(4π)3p4
g21
6
Γ(3− d/2)
(p2)3−d/2 (5.24)

It is Fourier transformed as (eq. (A.1)):

− 1
(4π)3

g21
6
Γ(3− d/2)

4π3y4 (5.25)

So in total,

⟨ϕ̂1(0)ϕ̂1(y)⟩D = Cϕ

yd−2 + g1h0
π1−dy8

(
y2
)−d Γ

(
3− d

2

)2
Γ(d− 3)

32(d− 4)2Γ(6− d) − 1
(4π)3

g21
6
Γ(3− d/2)

4π3y4
(5.26)

Now defining

ϕ̂(y) = Z[ϕ̂](y), Z = 1 + a
g1h

ϵ
+ b

g21
ϵ

(5.27)

and requiring ⟨[ϕ̂]1(0)[ϕ̂]1(y)⟩D to be finite as ϵ→ 0, we get

Z = 1 + 1
8π2

g1h

ϵ
− 1

384π3
g21
ϵ

(5.28)

Therefore the anomalous dimension is

γϕ̂ = ∂ log(Z)
∂ log(M) = βh

∂ log(Z)
∂h

+ βg1
∂ log(Z)
∂g1

= g21
384π3 − g1h

8π2 (5.29)

At the fixed point (5.12), and keeping the leading order at large N , this gives

γϕ̂ = −37ϵ
3N + . . . (5.30)

This agrees with eq. (4.26) obtained from the large N expansion.
It is also straightforward to construct the phase of the model that breaks the O(N)

symmetry, following the same steps as in section 3.2 (either solving the equations of motion
in flat space, or mapping the problem to H3 × Sd−3). We will omit the details of the
calculation here, but let us mention that, similarly to the boundary case discussed in [17],
the corresponding phase appears to be non-unitary (the classical value of ϕN turns out to
be complex).
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6 Defect free energy

In this section we study the defect free energy in the case where the defect is a two-
dimensional sphere. The defect free energy is defined by

F = − log ZD
ZCFT

(6.1)

where ZD is the partition function of the CFT in the presence of a spherical defect, and
ZCFT is the partition function of the CFT without the defect. On general grounds, for a
sphere of radius R, the defect free energy takes the form

F = a1 + a2(MR)2 − b

3 log(MR) (6.2)

where M is a renormalization scale. The coefficients a1 and a2 are non-universal (scheme
dependent), while b is a defect Weyl anomaly coefficient which is scheme independent. It is
a direct analog of the central charge c in a 2d CFT. It was proved in [6] (see also [18] for
an alternative proof) that the b coefficient decreases under defect RG flow

bUV > bIR . (6.3)

Below we will compute the exact b coefficient at the IR fixed point of the defect RG
flow in the free theory discussed in section 2, and then compute b perturbatively in the
case of the interacting O(N) model in d = 4− ϵ. In both cases the results are consistent
with (6.3), as expected.

6.1 Free theory

Let us start with a perturbative computation of the defect free energy in the free theory.
We can take the spherical defect to be the surface of a ball in R3 with radius R, sitting at
the origin of Rd−3, where the total geometry is Rd = R3 ×Rd−3.6 Up to order h3, there are
two diagrams that contribute

F = −F0 − F1 +O(h40) (6.4)

F0 F1

where we have used a big thick circle to represent the spherical defect and the thin lines are
6An equivalent setup is to conformally map Rd to H3 × Sd−3, and take the hyperbolic ball metric on H3,

whose conformal boundary is a sphere.
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free propagators of ϕa. The first diagram is given by

F0 =
∫

D
d2x

∫
D
d2y h20

NC2
ϕ

|x− y|2(d−2)

= 4πh20R4
∫ π

0
dθ sin(θ)

∫ 2π

0
dϕ

NC2
ϕ

|2R sin( θ
2)|2(d−2) (6.5)

= −
24−2dπ2−dh20NR

8−2dΓ
(

d−2
2

)2
d− 3

where the integral has been evaluated by analytic continuation in d. Note that this is finite
when d = 4. Using the integral [39]

∫
ddxddyddz

√
gx
√
gy
√
gz

1
[s(x, y)s(y, z)s(z, x)]∆ = R3(d−∆)

8π
3(1+d)

2 Γ
(
d− 3∆

2

)
Γ(d)Γ

(
1+d−∆

2

)3 (6.6)

the diagram F1 can be calculated as

F1 =
∫

D
d2x

∫
D
d2y

∫
D
d2z (−h30)

8
3!

NC3
ϕ

|x− y|d−2|z − y|d−2|x− z|d−2

= −1
32

11−3dπ3−
3d
2 h30NR

−3(d−4) cos3
(
πd

2

)
Γ
(
5− 3d

2

)
Γ(d− 3)3 .

(6.7)

Putting these two contributions together, replacing the bare coupling h0 by the renormalized
one h0 = M ϵh/(1 − h/(πϵ)), expanding in ϵ to the relevant order, and focusing on the
log(MR) dependent term, we find

F = N

(
ϵh2

8π2 − h3

12π3

)
log(MR) + . . . (6.8)

From this and eq. (6.2), we can read off the b coefficient at the IR fixed point

bIR = N

(
−3ϵh2∗

8π2 + h3∗
4π3

)
= −Nϵ

3

8 . (6.9)

The perturbative evaluation of bIR in the free theory was also recently given in [18].
Even though it is not obvious from the above perturbative calculation, the result (6.9)

is in fact exact (similarly to the way in which the beta function (2.10) is exact). This
can be seen by computing the exact free energy using functional determinant techniques,
and exploiting the analogy of this defect RG flow to the general problem of double-trace
deformations in CFT. To compute the exact free energy, it is convenient to first rephrase
the theory (2.1) as a non-local 2d theory, by integrating out the bulk degrees of freedom. It
is convenient to dimensionally continue the defect from 2 to p dimensions, so that p = 2− ε

can serve as a regulator, and we keep the bulk dimension d arbitrary. Let us first work out
the 2d action in the case of flat space. The momentum space propagator, restricted to the
p-dimensional subspace, is given by

⟨ϕa(−k)ϕb(k)⟩ = δab

∫
dd−pq

(2π)d−p

1
k2 + q2

= δab

2p−dπ
p−d

2 Γ
(
1
2(−d+ p+ 2)

)
k2+p−d

. (6.10)
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Then we can write the action on the planar p-dimensional defect as

S = S0 + Sh (6.11)

with
Sh = h0

∫
dpxϕaϕa , (6.12)

and
S0 =

∫
dpk

(2π)p
ϕa(−k)

1
2

k2+p−d

2p−dπ
p−d

2 Γ
(
1
2(−d+ p+ 2)

)ϕa(k)

=
∫
dpx

∫
dpyϕa(x)

1
2
[
2C|x− y|d−2p−2

]
ϕa(y) ,

(6.13)

where we defined

C = (d− p− 2)π
1
2 (d−2(p+1)) sin

(1
2π(d− p)

)
Γ
(
−d2 + p+ 1

)
. (6.14)

Now mapping this to the sphere, we have Sh = Rp
∫
dpx

√
gxh0ϕaϕa and

S0 = Rd−2
∫
dpx

√
gx

∫
dpy

√
gyϕa(x)

1
2
[
2Cs(x, y)d−2p−2

]
ϕa(y) (6.15)

where the chordal distance and metric on the unit sphere are

s(x, y) = 2|x− y|
(1 + x2)1/2 (1 + y2)1/2 , gµν = 4

(1 + x2)2
δµν . (6.16)

The calculation of the defect free energy then boils down to computing the determinant of
the non-local operator

Rd−p−2
∫
dpy

√
gy

2C
s(x, y)2p+2−d

ϕ(y) + 2h0ϕ(x) = λϕ(x) (6.17)

Using the following decomposition in spherical harmonics (see e.g. [35])

1
s (x, y)2α =

∞∑
n,m⃗

kn(α)Y ∗
n,m⃗ (x)Yn,m⃗ (y) , kn(α) = π

p
2 2p−2αΓ

(p
2 − α

)
Γ(n+ α)

Γ(α)Γ(p+ n− α) (6.18)

the eigenvalues of the non-local operator are given by

λn = 2CRd−p−2kn

(
p+ 1− d

2

)
+ 2h0 (6.19)

Let Dp
n = (2n+p−1)Γ(n+p−1)

n!Γ(p) the degeneracy factor for the spherical harmonics. Then the
exact defect free energy is given by

F = − log
Z(DCFT)

[
Sd
]

Z(CFT) [Sd]

= N

2
∑

n

Dp
n log λh0

n

λh0=0
n

= N

2
∑

n

Dp
n log

(
1 + h0R

p+2−d

Ckn

)

= N

2
∑

n

Dp
n log

1 + 2−d+p+1π
1
2 (−d+p+2)Γ

(
d
2 + n− 1

)
csc

(
1
2π(d− p)

)
Γ
(

d−p
2

)
Γ
(
−d

2 + n+ p+ 1
) h0R

p+2−d

 .

(6.20)
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In the IR limit, the second term inside the logarithm dominates. Using also the fact that in
dimensional continuation one has the identity

∑∞
n=0D

p
n = 0 [21], we can simplify the free

energy in the IR limit to

FIR = N

2

∞∑
n=0

Dp
n log

 Γ
(

d
2 + n− 1

)
Γ
(
−d

2 + n+ p+ 1
)
 . (6.21)

This sum has exactly the same form as the one corresponding to the change of free energy
in a CFTd perturbed by a double trace operator of dimension 2∆, which was computed
in [21]

δF = 1
2

∞∑
n=0

Dd
n log

( Γ (n+∆)
Γ (n+ d−∆)

)

= − 1
sin(πd

2 )Γ(d+ 1)

∫ ∆− d
2

0
duu sin(πu)Γ

(
d

2 + u

)
Γ
(
d

2 − u

)
.

(6.22)

Identifying ∆ = d
2 − 1 and p = d, we then have for our defect free energy

FIR = − N

sin(πp
2 )Γ(p+ 1)

∫ d
2−1− p

2

0
duu sin(πu)Γ

(
p

2 + u

)
Γ
(
p

2 − u

)
. (6.23)

In the limit p→ 2, this has a pole as expected, reflecting the Weyl anomaly. A convenient way
to extract the coefficient of the pole is to follow [24] and define the quantity D̃p = − sin(πp

2 )F .
In the p→ 2 limit, this is proportional to the b-anomaly coefficient, D̃p=2 = π

6 b. Then we
finally find

bIR = 3N
∫ d

2 −2

0
duu2 = −N

(
2− d

2

)3
. (6.24)

This is the exact result for the b coefficient at the IR fixed point of the defect RG flow in
the free theory. Note that it agrees with (6.9) if we let d = 4− ϵ. We see that bIR < 0 in
d < 4, consistent with the b-theorem and the fact that the RG flow connects the trivial
defect (bUV = 0) to the fixed point h = h∗ in the IR. In d = 3, (6.24) gives bIR = −N

8 ,
which is twice the b-anomaly coefficient of N scalars with Dirichlet boundary conditions [6],
as expected. For d = 2, the defect action becomes simply a mass term over the whole space,
and so the RG flow should connect N free scalars in the UV to the empty theory in the IR.
This is consistent with (6.24), which gives bIR = −N for d = 2.

6.2 Interacting theory in d = 4 − ϵ

We now compute the defect free energy in the case of the interacting O(N) model, eq. (3.1).
Working up to order ϵ3, in addition to the diagrams F0, F1 computed above in the free
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theory case, there is now an additional diagram of order h2λ

F2

This can be evaluated as

F2=
∫

D
d2x

∫
D
d2y

∫
ddz (−λ0h20)

N2+2N
6

C4
ϕ

((z∥−x)2+z2⊥)d−2((z∥−y)2+z2⊥)d−2 eq. (A.2)

=−λ0h20
N2+2N

6

∫
D
d2x

∫
D
d2y C4

ϕ

πd/2Γ
(
2− d

2

)2
Γ
(
3d
2 −4

)
|x−y|8−3d

Γ(4−d)Γ(d−2)2

=−λ0h20
N2+2N

6 4πR4C4
ϕ

∫ π

0
dθ sin(θ)

∫ 2π

0
dϕ
πd/2Γ

(
2− d

2

)2
Γ
(
3d
2 −4

)
|2R sin( θ

2)|
8−3d

Γ(4−d)Γ(d−2)2

=
28−5d(d−4)π5−

3d
2 h20λ0N(N+2)R−3(d−4) csc2

(
πd
2

)
Γ
(
3(d−4)

2

)
Γ(4−d)Γ

(
d−1
2

)2
(6.25)

The defect free energy to this order is then

F = −F0 − F1 − F2 + . . . (6.26)

with F0 and F1 given in (6.5), (6.7). Substituting the bare couplings with the renormalized
ones as in (3.7) and (3.9), expanding to the relevant order in ϵ, and focusing on the log(MR)
dependence, we now find

F =
(
Nϵh2

8π2 − Nh3

12π3 − N(N + 2)h2λ
384π4

)
log(MR) + . . . (6.27)

At the IR fixed point, we then have

bIR = −3Nϵh2∗
8π2 + Nh3∗

4π3 + N(N + 2)h2∗λ∗
128π4 = − 27Nϵ3

(N + 8)3 +O(ϵ4) . (6.28)

This is negative, again consistently with the b-theorem (6.3) for the defect RG flow.
The result (6.28) can also be checked by comparing with a general formula derived

in [24] using the conformal perturbation theory approach (this is essentially the same as the
standard conformal perturbation theory in a CFT perturbed by a weakly relevant operator,
see e.g. [27]). For a 2-dimensional defect with a perturbing operator of dimension ∆ = 2− ε,
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the beta function in conformal perturbation theory is β = −εh+ πC3
C2
h2 +O(h3), with C3

and C2 being the 3-point and 2-point function normalizations (see the discussion in the
preceding sections). The change in D̃ is found to be [24, 27]

D̃IR − D̃UV = −π6
C3
2

C2
3
ε3 , (6.29)

where D̃IR = D̃h=h∗ and D̃UV = D̃h=0 (note that the labels ‘IR’ and ‘UV’ here assume that
h is a relevant coupling, so that the non-trivial fixed point is in the IR. This is appropriate
in d < 4). To apply this formula to the quartic theory in d = 4 − ϵ, we note that the
perturbing operator ϕ2a has ∆ = 2 − 6ϵ

N+8 + O(ϵ2) at the interacting bulk fixed point λ∗
and at h = 0 (the UV fixed point of the defect flow). Hence, we identify ε = 6ϵ

N+8 . The
normalization constants are C2 = 2NC2

ϕ, C3 = 8NC3
ϕ. Then, accounting for the fact that

D̃UV = 0 and D̃IR = π
6 bIR, we see that (6.29) indeed reproduces (6.28).

Note that the conformal perturbation theory formula (6.29) can be also applied directly
to the case of the large N expansion in general d (for the case of perturbation theory
around the trivial saddle point, as discussed in section 4.2). In this case, identifying
ε = 2−∆σ = −t/N , one finds

bLarge N
IR = 6

π
D̃Large N

IR = C3
σ

(gσ3)2
t3

N3 . (6.30)

Using eqs. (4.3), (4.6) and (4.12), this gives

bLarge N
IR = −(4− d)(d− 1)

d(d− 3)2N2

2d(d− 2) sin
(

πd
2

)
Γ
(

d+1
2

)
π3/2Γ

(
d
2 + 1

)
2

. (6.31)

In d = 4 − ϵ and to leading order in ϵ, this agrees with (6.28). We can also apply (6.29)
to the defect RG flow in the cubic theory in d = 6 − ϵ (but note that in this case the
non-trivial fixed point h = h∗ sits in the UV because h is a relevant coupling). Using

ε = 2 − ∆σ = ϵ
2 − 1

(4π)3
N(g∗

1)
2+(g∗

2)
2

12 , as well as C2 = Cϕ, C3 = −g∗2π3C3
ϕ, one finds to

leading order in small ϵ and large N

bd=6−ϵ
h=h∗ =

(
− ϵ

2 + N(g∗
1)2+(g∗

2)2

768π3

)3
π6(g∗2)2C3

ϕ

= 8000ϵ2

27N2 + . . . (6.32)

This can be see to agree with the large N result (6.31) expanded in d = 6− ϵ (keep in mind
that the label ‘IR’ should be switched to ‘UV’ in this case since it is the trivial defect that
sits in the IR).

Let us also briefly comment on the renormalized defect entropy function recently
proposed in [18] as a monotonically decreasing function along the flow. This is defined
as [18]

S = 1
2
(
R2∂2R −R∂R

)
F . (6.33)

– 28 –



J
H
E
P
1
2
(
2
0
2
3
)
0
0
4

The differential operator acting on F is such that at the fixed points, the entropy function
S is proportional to the b anomaly coefficient, namely S = b/3, see eq. (6.2). From the
above perturbative evaluation of F in the interacting theory in d = 4− ϵ, we find

S = −Nϵh
2

8π2 + Nh3

12π3 + N(N + 2)h2λ∗
384π4 = − 3Nϵh2

4(N + 8)π2 + h3N

12π3 (6.34)

where we have plugged in the fixed point value of the bulk coupling, but kept h general as
the entropy function can be defined along the defect RG flow. It is straightforward to check
that ∂S/∂h < 0 along the flow from h = 0 to h = h∗ = 6πϵ/(N + 8). We also observe that
∂S/∂h is simply proportional to the beta function (3.10).7 The entropy function can be
similarly computed for the defect RG flow in the free theory, which gives S = −Nϵh2

8π2 + Nh3

12π3 ,
and ∂S/∂h = Nβh/(4π2) is negative along the flow.

7 Conclusions

We studied the critical behavior of a surface defect in the O(N) model, using both epsilon
and large N expansions, finding evidence that the system flows to a non-trivial DCFT at
low energies. We also computed the spherical defect free energy and related Weyl anomaly
b-coefficient, and checked consistency with the b-theorem.

For future work, one obvious direction is to extend our calculations to higher orders in
ϵ and 1/N , and perhaps make contact with the numerical conformal bootstrap or Monte
Carlo simulations. In this note we focused on the scaling dimensions of the simplest defect
operators, but it would be interesting to study the DCFT data in more detail. For example,
it would be useful to analyze in depth the 2-point function of bulk scalars in the presence
of the defect (for instance using the equations of motion method as in [17, 40]), and extract
the relevant OPE data.

In our analysis of the large N expansion in section 4, we focused on perturbation theory
around the trivial saddle point with σ = 0. It would be useful to study the σ effective
action in detail and see if there are non-trivial “classical” saddle points with σ ∼

√
N . As

explained in section 4.2 above, we expect at least one such saddle point corresponding to
the O(N) breaking phase, but there may be other O(N) invariant saddle points (similarly
to the boundary case analyzed in [17]). This may be relevant to elucidate the transition
between the large N behavior in 3 < d < 4 and that in d = 3.

Another direction is to study similar surface defects in other theories, such as the
Gross-Neveu CFT. In this case, the fermion bilinear ψ̄ψ ∼ σ has dimension slightly below 1
at large N , so it is natural to consider a surface defect with action SD ∼

∫
d2xσ2(x⃗, 0). A

similar defect can be considered in the Gross-Neveu-Yukawa description near d = 4, where
σ becomes a propagating scalar field, so the surface operator would be analogous to the
one studied in this paper in the interacting scalar theory in d = 4− ϵ.

7Since ∂S/∂h is related to the one-point function of the perturbing defect operator, it should vanish
at the fixed point, and it is then natural to expect that it is simply proportional to the beta function to
this order in perturbation theory. See [26, 27] for a related discussion on the CFT sphere free energy in
conformal perturbation theory.
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It would be also interesting to see if the surface defect has a natural holographic
description. The free and critical O(N) models in d-dimensions, restricted to the O(N)
singlet sector, are dual to the Vasiliev higher spin theory in AdSd+1 (the free and critical
theory correspond to alternate choice of boundary conditions for the bulk scalar field dual
to the ϕ2a operator, see [41] for a review). Since the surface defect (1.1) is defined in terms
of the O(N) invariant “single trace” operator ϕ2a dual to the bulk scalar field, it should have
a realization in the higher spin theory. A natural starting point would be to consider a
H3 × Sd−3 slicing of AdSd+1, and look for configurations where the metric and bulk scalar
(and possibly the higher spin fields) have a non-trivial profile preserving the isometries of
H3×Sd−3 (since these are the symmetries of the DCFT). It would be interesting to explore
this and make contact with the predictions of the large N expansion.
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A Formulas

In this appendix we collect some useful formulas that were used for the calculations in the
main text of the paper.

Fourier transform: ∫
ddx

e−ikx

xa
= 2d−aπd/2Γ((d− a)/2)

Γ(a/2)
1

kd−a
(A.1)

Eq. (A.2), (A.3), and (A.4) can be found in [42]; eq. (A.5) in [28]:

∫
ddq

(2π)d

1
q2α(p+ q)2β

= 1
(4π)

d
2

Γ
(

d
2 − α

)
Γ
(

d
2 − β

)
Γ
(
α+ β − d

2

)
Γ(α)Γ(β)Γ(d− α− β)

( 1
p2

)α+β− d
2

(A.2)

∫ ddk

(2π)d

1
(k2 +m2)λ1 (k2)λ2

= Γ (λ1 + λ2 − d/2) Γ (−λ2 + d/2)
(4π)d/2Γ (λ1) Γ(d/2)

1
(m2)λ1+λ2−d/2 (A.3)

∫∫ ddk ddl

(k2 +m2)λ1 [(k + l)2]λ2 (l2 +m2)λ3

= πdΓ (λ1 + λ2 − d/2) Γ (λ2 + λ3 − d/2) Γ (d/2− λ2) Γ (λ1 + λ2 + λ3 − d)
Γ (λ1) Γ (λ3) Γ (λ1 + 2λ2 + λ3 − d) Γ(d/2) (m2)λ1+λ2+λ3−d

(A.4)
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∫
dDp

(2π)D

1
(p2 +m2)a [(p − k)2 +m2]b

= Γ(a+ b−D/2)
(4π)D/2Γ(a)Γ(b)

∫ 1

0
dx

(1− x)a−1xb−1

[m2 + k2x(1− x)]a+b−D/2 (A.5)

For a1 + a2 + a3 = d, the uniqueness relation is [31]∫
ddx

1
|x1 − x|2a1 |x2 − x|2a2 |x3 − x|2a3

= U (a1, a2, a3)
|x12|d−2a3 |x13|d−2a2 |x23|d−2a1

(A.6)

where

U(a, b, c) =
π

d
2 Γ
(

d
2 − a

)
Γ
(

d
2 − b

)
Γ
(

d
2 − c

)
Γ(a)Γ(b)Γ(c) (A.7)
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