
SPRITE: Secure and Private Routing in Payment Channel
Networks

Gaurav Panwar, Roopa Vishwanathan, George Torres, Satyajayant Misra

New Mexico State University

{gpanwar, roopav, gtorresz, misra}@nmsu.edu

ABSTRACT
Payment channel networks are a promising solution to the scal-

ability challenge of blockchains and are designed for significantly in-

creased transaction throughput compared to the layer one blockchain.

Since payment channel networks are essentially decentralized peer-

to-peer networks, routing transactions is a fundamental challenge.

Payment channel networks have some unique security and privacy

requirements that make pathfinding challenging, for instance, net-

work topology is not publicly known, and sender/receiver privacy

should be preserved, in addition to providing atomicity guaran-

tees for payments. In this paper, we present an efficient privacy-

preserving routing protocol, SPRITE, for payment channel net-

works that supports concurrent transactions. By finding paths of-

fline and processing transactions online, SPRITE can process trans-

actions in just two rounds, which is more efficient compared to

prior work. We evaluate SPRITE’s performance using Lightning

Network data and prove its security using the Universal Compos-

ability framework. In contrast to the current cutting-edge methods

that achieve rapid transactions, our approach significantly reduces

the message complexity of the system by 3 orders of magnitude

while maintaining similar latencies.

CCS CONCEPTS
• Security and privacy→ Distributed systems security; Secu-
rity protocols.

KEYWORDS
Privacy preserving protocols, Payment channel networks, Secure

pathfinding

ACM Reference Format:
Gaurav Panwar, Roopa Vishwanathan, George Torres, Satyajayant Misra.

2024. SPRITE: Secure and Private Routing in Payment Channel Networks. In

Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,

17 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Researchers have been devising efficient techniques to make cryp-

tocurrency transactions more scalable, e.g., Bitcoin currently pro-

cesses around seven transactions per second, and Ethereum around

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2024 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

thirty transactions per second [6, 18], compared to centralized pay-

ment systems, such as Visa Inc., which, at a conservative estimate,

can support up to 1700 transactions per second [5]. For addressing

this, Layer-2 protocols, such as payment channels have been pro-

posed as a workaround [31, 36, 45, 46], where several thousands of

transactions can be processed with minimal blockchain writes and

with no changes required to the blockchain’s underlying consensus

mechanism (unlike other approaches such as sharding and alter-

nate consensus mechanisms [22, 28, 29, 37, 41]). Payment channels

also help enable microtransactions, which allow users to send small

amounts of money, e.g., 10
−4

Bitcoin, but without incurring high

blockchain transaction fees [30].

Overview of payment channels: Two parties, Alice and Bob open
a payment channel by depositing a certain amount of cryptocur-

rency into an address on a blockchain controlled by both parties’

signing keys. Say, Alice deposits 𝑥 coins, and Bob deposits 𝑦 coins.

Alice and Bob can conduct several transactions by exchanging au-

thenticated messages, thus changing the distribution of the coins in

the channel, but without writing anything to the blockchain. The

net worth of the channel remains 𝑥 +𝑦 coins. At a mutually agreed-

upon time, they can close the channel by writing a blockchain

transaction that commits the final, authenticated distribution of the

coins to the blockchain. The coins are paid to Alice and Bob per

the final transaction. To facilitate transactions between two par-

ties that may not have a payment channel currently open between

them, decentralized payment channel networks (PCNs) that enable

transitive payments have been proposed [34, 35, 39, 47], where two

unconnected users can send/receive payments if there exists a path

comprising of several users with payment channels between them.

Motivation: Layer-2 protocols such as PCNs are gaining wide-

spread acceptance. Lightning Network, which is a popular PCN

based on the Bitcoin blockchain, had over 6 million users and 28 mil-

lion payment channels open between June 2021 to July 2022 [31, 44].

Peer-to-peer (p2p) transactions between users in PCNs are becom-

ing increasingly common, e.g., in 2021, another popular PCN, Ripple,

had 15 million unique p2p transactions annually, with a maximum

path length of 43 hops [4, 7]. Routing protocols which help discover

payment paths between sender and receiver are at the core of PCNs.

There could exist several paths between a sender and receiver in a

PCN with differing channel balances. Each hop on a path incurs a

routing fee, hence longer paths cost more.

Routing in PCNs is fundamentally different from traditional net-

work routing in both, intent and security/privacy requirements,

hence network routing protocols cannot be trivially ported to PCNs.

Assuming a network graph with nodes and weighted links connect-

ing them, in regular network routing, the intent is to transmit data,

not route payments. Transmitting data does not alter the state of

the nodes, but routing payments changes nodes’ available link bal-

ances. In network routing, bandwidth capacities and router/switch

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Gaurav Panwar, Roopa Vishwanathan, George Torres, Satyajayant Misra

identities are usually not considered private information, whereas,

in PCNs, transaction amounts and node identities need to be kept

private from all other nodes in the network. Transmission range and

physical distance between devices are factors in network routing,

but not in PCNs. PCNs reside entirely at the application layer, unlike

network protocols in communication networks. Hence network

routing protocols cannot be trivially ported.

Maximumflow algorithms such as Ford-Fulkerson [23] or Goldberg-

Tarjan [24] would require either source routing or an external cen-

tralized, trusted entity to compute routes, besides having a high

path computation overhead of𝑂 (|𝑉 | |𝐸 |2) and𝑂 (|𝑉 |3) respectively,
in a graph 𝐺 (𝑉 , 𝐸). While distributed versions of shortest path al-

gorithms such as Dijkstra’s algorithm exist [11, 12], they incur a

computational complexity of 𝑂 (|𝑉 |2) +𝑂 (|𝑉 |), which makes their

scalability to large PCNs challenging.

Robust, scalable, decentralized PCN routing protocols hold the

promise of making cryptocurrency transactions faster, hence, de-

signing secure and efficient PCN routing protocols is a challenging

research problem of practical significance. Such protocols can be

used for on-demand pathfinding and routing in other decentral-

ized networks, particularly edge networks, which have high node

turnover rates.

Table 1: Routing Protocols in PCNs

PCN Routing proto-

cols

Privacy of

nodes

Decen-

tralized

Atomi-

city

FSTR [33] ✗ ✗ ✗

Eckey et al. [20] ✗ ✓ ✓
Auto tune [26] ✗ ✗ ✗

Kadry et al. [27] ✗ ✗ ✗

MPCN-RP [17] ✗ ✗ ✓
SilentWhispers [34] ✓ ✗ ✓
SpeedyMurmurs [47] ✓ ✓ ✗

BlAnC [39] ✓ ✓ ✓
Coinexpress [53] ✗ ✓ ✓
Vein [25] ✗ ✗ ✗

Spider [49] ✗ ✗ ✗

Flash [52] ✗ ✗ ✓
Robustpay [55] ✗ ✗ ✓
Robustpay+ [56] ✗ ✗ ✓
Webflow [54] ✓ ✓ ✗

SPRITE ✓ ✓ ✓

Related Work: Several early PCN routing protocols were cen-

tralized where routing relied on trusted entities [34, 38, 51]. Some

protocols did not support concurrency [34], while others chose

paths without knowing whether the chosen path can satisfy a

minimum asking amount [47]. Some routing protocols do source

routing [35, 49] where a sender constructs the entire path from

itself to the receiver, while many protocols do not consider secu-

rity and privacy aspects [17, 20, 21, 25–27, 55–57]. We provide a

comparison of other relevant PCN routing protocols with SPRITE
in Table 1, where our comparison metrics are informed by our

security/privacy goals. The protocol in [39], while satisfying our

three comparison metrics, has a very high communication over-

head, where every transaction requires blockchain writes, which

defeats the idea of off-chain PCNs. Real-world PCNs such as Light-

ning Network (LN) [13, 31] implement a gossiping routing protocol,

where each node gossips with its peers to build a local map of the

network. This has issues such as nodes not being able to validate

information given by peers, and often not finding the shortest path.

Our Contributions: In this paper, we design a decentralized rout-

ing protocol for PCNs, SPRITE, which helps reduce trust assump-

tions, takes into account network dynamics, and preserves key

security/privacy goals, while supporting concurrent transactions

with short paths. We formally prove the security of SPRITE in the

Universal Composability framework. We experimentally evaluate

the performance of SPRITE using Lightning Network datasets and

compare its performance with two other state-of-the-art schemes,

on several network topologies. Our analysis shows that SPRITE
performs significantly better over a wide array of quantitative and

qualitative metrics while improving security and privacy.

Outline: In Section 2, we define our system and threat models,

in Section 3, we give an overview of the workflow of SPRITE. In
Section 4, we describe the protocols that constitute SPRITE. In
Section 5, we give the security analysis of SPRITE. In Section 6, we

describe our experiments, and in Section 7 we conclude the paper.

2 SPRITE SYSTEM MODEL
In this section, we discuss the basics of a PCN, the parties involved

in SPRITE and system parameters.

A PCN fundamentally can be conceptualized as a graph with

users representing vertices and edges representing the payment

channels between users. Figure 1 shows four parties and three

two-party channels. The crossed-out number next to each party’s

name denotes that party’s original balance in the channel, while the

number above it denotes the new balance. The directionality of the

arrows denotes the direction in which a payment can be processed.

Figure 1: George sending 25 coins to Ron via two intermedi-
aries Alice and Bob in a PCN.

2.1 Parties
1) Routing nodes: In SPRITE some nodes with high number of

connections will serve as publicly identifiable routing nodes (RN), in
exchange for a fee, and denote the set of RNs byRN. RNs are already
in use in real-world PCNs, such as Lightning Network as liquidity

providers [32], we leverage them for routing. In SPRITE, RNs help
facilitate transactions: broadly, we segment the path between the

sender and the receiver, with each segment checkpointed by an RN.

If RN𝑠 and RN𝑟 are the RNs closest to sender and receiver respec-

tively, the payment from sender to receiver will progress as: sender

→ RN𝑠 → RN1→ . . . → RN𝑛 → RN𝑟 → receiver. The sender need

only tell RN𝑠 the identity of the destination RN𝑟 , RN𝑠 will find the

shortest path to RN𝑟 , who will, in turn, be contacted by the receiver.

Consequently, node disconnections/failures or malicious activities

SPRITE: Secure and Private Routing in Payment Channel Networks Conference’17, July 2017, Washington, DC, USA

on a segment are addressed and mitigated locally on each segment,

and the rest of the path stays unaffected. Nodes volunteer to be

RNs, and RNs are financially incentivized to help route transactions.

RNs periodically broadcast messages about the available liquidity

on their links to nodes within a radius, hopMax
RN

.

SPRITE does not require any special security assumptions on

which entities can choose to be RNs, and accounts for malicious RNs

in the system (discussed further in Section 2.4 and Section 5). In a

given transaction, RNs involved do not know the identities of Alice,
Bob, or any other nodes on the path (except intermediate RNs or

their immediate neighbors). RNs do not have a privileged position

from a monitoring standpoint, except RN𝑠 and RN𝑟 will know that

somebody in their hopMax
RN

radius is the sender/receiver, respec-

tively. Additionally, intermediate RNs will neither know the identi-

ties of, nor the distances to RN𝑠 and RN𝑟 for a given transaction.

Alice and Bob are free to choose the RN𝑠 and RN𝑟 per transaction

based on the RNs available in their respective routingTables. If an
Alice does not receive a broadcast message from any RN (indicating

that she is outside the hopMax
RN

radius of all RNs in the system),

she would need to connect either directly to a RN by forming a

new payment channel or connect to another node in the network

which is within hopMax
RN
− 1 hops of some RN.Since RNs are

economically incentivized to facilitate transactions, we assume RNs

will be online, but SPRITE’s functioning will not be impacted by

any specific RN(s) going offline.

2) Perimeter nodes: Perimeter nodes are nodes that are located

closer to the boundary of an RN’s broadcast area where the area

is determined by radius hopMax
RN

. The idea of using perimeter

nodes is to enable RNs that are spaced across the network to be able

to communicate, without having to establish direct connections

with each other. Two RNs that are far apart and want to route a

transaction just need to find a common perimeter node in their local

routing tables, and can route payments using that node. Since we

want to preserve the perimeter nodes’ privacy from RNs, in SPRITE,
perimeter nodes are only identified by nonces they generate. The

perimeter nodes will send a unique nonce to any RN that they re-

ceive a broadcast message from. If two RNs receive the same nonce,

then they know they can reach each other through the perimeter

node that sent the nonce. RNs with overlapping neighborhoods

may have several common perimeter nodes.

3) Regular nodes: Any node that is not a routing node or a

perimeter node is a regular node. We assume all nodes are rational

and will act in their best economic interests. We assume the sender

and receiver in a transaction can exchange messages out-of-band

with each other, but payments are routed through nodes on the

PCN. We use the terms users and nodes interchangeably.

4) Blockchain: SPRITE can work with any permission-less

blockchain, and does not rely on blockchain-specific constructs

such as hash time lock contracts (HTLCs) used in the Bitcoin

blockchain, or smart contracts which are supported only by Tur-

ing complete blockchains, such as Ethereum. The blockchain is

only used for opening/closing payment channels, thus avoiding

excessive write/validator fees.

2.2 Setup
When a node joins the PCN, it establishes payment channels with

other nodes who offer to connect with it or accept its connection

offer. A node needs to connect to at least one other node to be

part of the PCN. Nodes only reveal their identities to peers that

they share a channel with. In this paper, we refer to peers sharing

a channel as neighbors. Every node’s identity is represented by

a keypair denoted by (VK𝑖 , SK𝑖), of which VK𝑖 is revealed to its

neighbors. RNs will need to make their identities, i.e., verification

keys, known to all nodes in the PCN, so nodes can use them for

routing transactions.

Cryptographic Primitives: A sequential aggregate signature is a
cryptographic primitive in which a series of users sign a message,

where the final signature is computed sequentially by each user who

adds her signature on her message. We use sequential aggregate

signatures [43] (defined in Appendix 8.1) to maintain the privacy

of non-RN nodes in the network (no need for publicly registered

signing keypair) while still allowing for authentication of broadcast

messages during the bootstrap phase. Furthermore, this helps from

an efficiency perspective, since only one final signature needs to be

verified rather than a series of signatures.

2.3 System Parameters
Transactions in a PCN might on occasion fail, e.g., due to abrupt

node disconnections and insufficient liquidity along a path, thus

necessitating retries. We set the number of times a transaction can

be retried after a failure as a system-wide parameter, maxRetries.
We also assume that each node 𝑖 maintains a local state where

it stores the number of times each transaction is retried, specifi-

cally, it maintains an arithmetic counter for each transaction (txid𝑖),
retry.txid𝑖 ∈ Z+, 𝑖 ∈ Z+. If retry.txid𝑖 == maxRetries, any new

messages about that transaction will be rejected so the transac-

tion can be tried on other paths. After transaction txid𝑖 has been
completed, times out, or is revoked, retry.txid𝑖 is deleted.
Hops:We define five parameters used in SPRITE: hopMax

RN
, hopMax,

pathStretch, hopCount, and hopBand. hopMax
RN

is the maximum

number of hops an RN’s broadcast message travels, hence defining

the RN’s neighborhood. hopBand is used for determining the dis-

tance of perimeter nodes. For example, if node 𝑟 is anRN, hopMax
RN

is set to 20 hops and hopBand is set to 3, then all nodes that are

at 18, 19, and 20 hops away from node 𝑟 act as perimeter nodes.

hopMax
RN

and hopBand are set individually by RNs. hopMax is a

dynamic parameter that denotes the maximum number of hops a

transaction can travel in a given segment. It is set by the sender for

a given segment based on the estimated hopCount in the sender’s

routingTable. pathStretch, set by the sender, denotes an absolute

upper bound on hopMax and is intended to be used only in case of

routing problems that call for transaction retries within a segment.

hopCount at a given node denotes the number of hops traveled by

a message up until that node.

Timers: Transactions in SPRITE have two phases, hold and pay, and
their corresponding segment-specific timers, 𝑡𝑒1 .txid and 𝑡𝑒2 .txid,
are maintained by each node participating in a given transaction

designated by txid. These are internal countdown timers that are

maintained by each node locally and are used by the nodes individ-

ually to determine when they should timeout the given transaction

Conference’17, July 2017, Washington, DC, USA Gaurav Panwar, Roopa Vishwanathan, George Torres, Satyajayant Misra

and retry on a different path. Since each segment in the hold phase

terminates at an RN, timer 𝑡𝑒1 is cleared by nodes in a segment

after a successful hold phase when the receiving downstream RN

responds with an acknowledgment message for the transaction.

Else, nodes will retry the transaction’s hold phase on another path

in the given segment after 𝑡𝑒1 expires. Timer 𝑡𝑒2 is cleared by all

nodes in a transaction segment after a successful pay phase when

they receive an acknowledgment that the payment has concluded

successfully in their segment. Else, if 𝑡𝑒2 expires, then the trans-

action is retried for hold and pay phases in the given segment. In

SPRITE, we consider 𝑡𝑒1 and 𝑡𝑒2 to be system parameters set based

on current network statistics and dynamics.

Fees: Similar to prior works, we assumeRNs get paid a fixed amount

periodically, contributed to by other nodes, and do not impose

routing fees for transactions.
1
An economic analysis of routing fee

models and optimal routing fee design is an orthogonal problem.

2.4 Threat Model and Security/Privacy Goals
Adversary actions: An adversary can adaptively corrupt any sub-

set of users, including regular nodes, perimeter nodes and RNs,

upon which the corrupted nodes’ channels will be controlled by

the adversary. The adversary can cause the corrupted users to be-

have in arbitrarily malicious ways, including misrouting payments

and/or disseminating false information. We do not consider any

node dropping/ignoring routing requests as malicious behavior,

since that just means the node does not wish to participate in a

given transaction, and an alternate path has to be found.

Adversary goals: An adversary wants to know nodes’ identities

that are not its immediate neighbors, including sender/receiver

identities, and/or make people lose money, i.e., violate the atomicity

of transactions.

Privacy-preservation: No node, not even RNs, know the identities

of the sender, receiver, or any non-RN intermediaries for routing

transactions, thus preserving sender/receiver privacy. SPRITE does

not require the topology of the network to be known by any par-

ticipating node in the system, as is standard in topology-hiding

PCNs.
2
We assume the adversary cannot corrupt all PCN users.

Security/Privacy goals:
1) Privacy of nodes: Nodes should not know the identities of any

nodes beyond their neighbors and RNs, nor garner any information

(number of channels or balances) about other nodes.

2) Transaction privacy: No node should know the identities of

the sender, receiver or the intermediaries in a transaction, unless

it shares a channel with them. It should also not know amounts

transferred in transaction paths it is not a part of.

3) Atomicity: Either a payment goes through in its entirety or

not at all, i.e., either all link weights along a transaction path get

updated by the transaction amount or none at all. In other words, no

1
In real-world PCNs such as LN, routing nodes currently get paid the same as other

nodes, although there are proposals to update the fee structure [8–10].

2
In LN, although edited snippets of the topology are made available for research

purposes [19], one cannot extract the full network topology, as nodes’ channel balances

are not made public. Further, each payment channel funding transaction is a Pay-to-

Witness-Script-Hash (P2WSH) address, and the nature of the script (a 2-of-2 multisig)

will only be revealed once the funding transaction output is spent. Even if this were

known/guessed, not all 2-of-2 multisig scripts on the Bitcoin blockchain correspond to

payment channels. Finally, signing/verification keys are rotated by nodes for every

channel (see [13]).

honest party should lose credits because of the malicious behavior

of other parties in the network.

Figure 2: Example of SPRITE protocol

3 WORKFLOW OF SPRITE
In this section, we provide an example run-through of the SPRITE

protocol using Figure 2 where Alice is the sender and Bob is the

receiver for a transaction. For presentation clarity, we do not pic-

torially depict multiple intermediary nodes between each of the

parties in Figure 2. The bootstrap phase is used by RNs in the sys-

tem to broadcast update messages that help nodes in their vicinity

build routing tables. At the end of the broadcast phase, each node

in the network will have a local routing table that indicates which

RNs are reachable and through which of the node’s neighbors. The

nodes’ routing tables also have estimates about the hop count and

liquidity available to the corresponding RNs. The bootstrap phase

also allows RNs to obtain information about what RNs are in their

adjacent neighborhoods, the perimeter nodes that connect them,

and how to reach RNs that are not in the adjacent neighborhoods.

When a transaction needs to occur, Alice and Bob coordinate out-
of-band to confirm their closest reachable RNs (Charlie for Alice
and Denise for Bob). From their routing table estimates, Alice and
Bob decide the transaction amount based on the estimated liquid-

ity available between Alice-Charlie and Denise-Bob, according to
Alice’s and Bob’s corresponding routing tables. Alice sends a hold𝑠
message to Charlie via one of her neighbors and this message is

passed on by each node along the path including Mikaela, until it

reaches Charlie (Figure 2, Steps 1-2 on Alice-Charlie segment). Si-

multaneously, Bob sends a hold𝑟 message towards Denise through
Hu (Figure 2, Steps 1-2 on Bob-Denise segment). Along the path,

all nodes create pair-wise multisig hold contracts with their neigh-

bors to reserve the transaction amount and set some local variables

including hold phase timer (𝑡𝑒1) and pay phase timer (𝑡𝑒2).

When the messages reach Charlie and Denise, they reply with

holdACKmessages so that all nodes receiving the holdACKmessage

clear their local 𝑡𝑒1 timers and will no longer timeout and retry

another path (Figure 2, Steps 3-4 in Alice-Charlie segment and Bob-
Denise segment). Additionally, Charlie updates Alice’s message so

that it can be routed within the network through any intermediate

RNs (Rajiv in this case) and is finally received by Denise (Figure 2,

SPRITE: Secure and Private Routing in Payment Channel Networks Conference’17, July 2017, Washington, DC, USA

Steps 3-5 on Charlie-Rajiv and Rajiv-Denise segments). The mes-

sage is updated by each perimeter node (Larry) and RN (Rajiv) on

the path to facilitate forwarding the message towards Denise.
All nodes on the Alice to Denise path also set corresponding

𝑡𝑒1 and 𝑡𝑒2 timers (Figure 2, Steps 3-4 in Charlie-Rajiv segment

and Step 5 in Rajiv-Denise segment) which are cleared when the

corresponding RN in that segment is reached (Figure 2, Steps 5-6 in

Charlie-Rajiv segment and Step 6 in Rajiv-Denise segment). In Fig-

ure 2, all nodes between Charlie and RN Rajiv, including perimeter

node Larry will clear their 𝑡𝑒1 timers after they receive a holdACK
from Rajiv (Figure 2, Steps 6-8 on Charlie-Rajiv segment) and nodes

between Rajiv and Denise will clear their timers when holdACK
fromDenise is received (Figure 2, Steps 6 on Rajiv-Denise segment).

When Denise receives the two hold𝑟 and hold𝑠 messages, she sends

Bob a proceedPay message (Figure 2, Steps 6-7 on Bob-Denise seg-
ment). On receiving proceedPay, Bob creates a pay message and

sends it towards Denise (Steps 8-9 on Bob-Denise segment), which

is then forwarded towardsCharlie through intermediate RNs (Steps

10-12 on Charlie-Rajiv and Rajiv-Denise segment), and finally to

Alice (Steps 13-14 on Alice-Charlie segment).

Each RN on the path replies with a payACK message when it

receives a pay message and thus clearing timer 𝑡𝑒2 for all nodes

receiving the payACK message (Denise’s payACK represented by

Steps 10-11 on Bob-Denise segment, Rajiv’s payACK represented

by Step 11 on Rajiv-Denise segment, and Charlie’s payACK rep-

resented by Steps 13-14 on Charlie-Rajiv segment). Finally, Alice
sends out her own payACK when she receives the pay message

(Steps 15-16 on Alice-Charlie segment), clearing the 𝑡𝑒2 timers for

nodes in the last segment, thus concluding the transaction.

4 CONSTRUCTION OF SPRITE
In the current Lightning Network, most new nodes connect to

highly connected nodes in the network. This leads to a high concen-

tration of nodes connected directly or with low hopcounts to well-

connected nodes (RNs). This setup does not provide sender/receiver

privacy from the highly connected nodes and there is the danger

of highly connected nodes’ link balances getting depleted quickly.

Furthermore, if any RNs get disconnected or go offline, many other

nodes would get disconnected from the network. In a network sim-

ilar to Lightning, where RN nodes are closely located in terms of

hop count, an RN-to-RN broadcast algorithm, which we refer to as

R2RB (Algorithm 9) and define in Appendix 8.2, would work well.

However, if a PCN is built from the ground up with transaction

security and node privacy as the focus, it is easy to assert that nodes

would not necessarily always set up payment channels directly with

well-known nodes (RNs) in the network since this would make the

RN their next-hop neighbor and thus leak their identity as well

as all their transactions’ details. In a truly distributed network,

new nodes would join other nodes in the periphery that they trust

and not just RNs. In a system where RNs are located further apart,

R2RB suffers from high message complexity due to long distances

for RN-Update broadcast messages. We developed Algorithms 1, 2,

henceforth referred to as R2NB, which reduces the distance each RN

broadcasts to during the Setup phase, thus reducing the message

complexity and adding to the efficiency of our scheme. The hold
and pay phases remain the same for both approaches.

In practice, the first bootstrap phase in a given PCN will in-

volve tuning of the hopMax
RN

parameter by the RNs to get an

optimal overlap of perimeter nodes between neighboring RNs. The

hopMax
RN

parameter is only used during the bootstrap phase of

SPRITE and helps in limiting the number of broadcast messages

from each RN; it is not used during a transaction. When new nodes

join the network, they will receive their neighbors’ routingTables
regardless of their distance from any given RN and thus will join

the neighborhood of the RN(s) that their neighbors occupy.

4.1 Bootstrap phase
This phase is described in Algorithm 1 and Algorithm 2. In the

bootstrap phase the RNs first broadcast messages in the PCNwithin

hopMax𝑅𝑁 hops, advertising their available liquidity. The goal is

to make nodes within hopMax𝑅𝑁 aware that they can reach the

respective RN, and help them construct their local routing tables.

RN broadcast to bootstrap neighborhood (Algorithm 1): In
Algorithm 1, Lines 2-5, each RN 𝑘 sets up the public parameters

of an aggregate signature scheme, 𝑝𝑝𝑘 and creates an aggregate

signature keypair for itself (sk𝑘 , vk𝑘). This is so all nodes in the

RNs neighborhood can set up pseudonymous keypairs to hide their

identity while propagating messages. It then composes an update

message𝑚𝑘 , to be sent to all its neighbors. Themessage𝑚𝑘 contains

𝑘’s available liquidity in the outgoing direction, currMax
𝑘
𝑠 , liquidity

in the incoming direction currMax
𝑘
𝑟 , and its real identity, VK𝑘 . It

also sets hopCount to be zero and sets the hopBand. Perimeter

nodes will be the farthest nodes from 𝑘 in the band defined by

nodes lying between hopMax𝑅𝑁 hops and (hopMax𝑅𝑁 −hopBand)
hops from 𝑘 . Each RN 𝑘 can set its hopBand independently. RN 𝑘

timestamps and signs the message𝑚𝑘 using the signing key tied

into its real identity, and produces a signature, 𝜎′
𝑘
. It then again

signs 𝜎′
𝑘
and 𝑚𝑘 using its aggregate signature signing key and

creates an aggregate signature, 𝜎𝑘 , which is sent to 𝑘’s neighbors.

In Line 6, each node 𝑖 within hopMax𝑅𝑁 receives a set of mes-

sages (𝑚′
𝑘
, . . . ,𝑚 𝑗) and a set of verification keys (vk𝑘 , . . . , vk𝑗) and

a single aggregate signature 𝜎 𝑗 which represents the aggregate sig-

nature of all nodes along the path from RN 𝑘 to node 𝑗 . Node 𝑖 will

then verify the signature, perform other checks (Lines 6-10), and

update the values of currMax
𝑘
𝑠 and currMax

𝑘
𝑟 in its local routing ta-

ble (Line 12). If node 𝑖 is a non-perimeter and non-RN node, it then

composes a new RN-Update message to forward to its neighbors.

It increments the hopCount by one, computes the new values of

currMax
𝑘
𝑠 , currMax

𝑘
𝑟 based on its local channel balances, appends

its message to the message list and generates an aggregate signature

on the appended list. It then sends the updated RN-Update message

to its neighbors (Lines 19-22).

If node 𝑖 happens to be a perimeter node (Lines 13-16) based on

the hopCount of the received message, it generates a nonce Nonce𝑖 .

It creates an RN-UpdateReply tuple that includes Nonce𝑖 , updated
values of currMax

𝑘
𝑠 , currMax

𝑘
𝑟 , and hopCount, and sends it to it’s

previous node towards RN. All perimeter nodes also forward the

RN-Updatemessage until it reaches the node(s) at hopMax𝑅𝑁 hops,

who will send a reply but not broadcast the message further.

When nodes receive an RN-UpdateReply tuple, they act differ-

ently depending on whether they are an RN or a regular node.

If the receiving node is an RN, then the message has traveled to

Conference’17, July 2017, Washington, DC, USA Gaurav Panwar, Roopa Vishwanathan, George Torres, Satyajayant Misra

Algorithm 1: R2NB: Bootstrap broadcast from RN to

perimeter nodes

1 Each node 𝑖 initializes a table, routingTable𝑖 containing
columns: (reachableRNs, next hop neighbor 𝑗, currMax𝑠 ,

currMax𝑟 , hopCount, 𝑡𝑒).

2 for each RN, 𝑘 ∈ RN do
3 𝑘 does AS.Setup(1𝜆) → 𝑝𝑝𝑘 and runs

AS.KeyGen(𝑝𝑝𝑘) → (sk𝑘 , vk𝑘).
4 Create a tuple𝑚𝑘 = (RN-Update, 𝑝𝑝𝑘 , VK𝑘 , currMax

𝑘
𝑠 ,

currMax
𝑘
𝑟 , hopCount = 0, hopBand, hopMax𝑅𝑁 , ts)

for each neighbor 𝑗 , 𝑗 ∈ [1..𝑙] where 𝑙 is the total
number of neighbors of 𝑘 . Create 𝜎′

𝑘
← Sign(SK𝑘 ,𝑚𝑘)

and set𝑚′
𝑘
= (𝑚𝑘 , 𝜎′𝑘) Create signature

𝜎𝑘 ← AS.Sign(sk𝑘 ,⊥,⊥,⊥,𝑚′𝑘).
5 return𝑀 = ((𝑚′

𝑘
), (vk𝑘), 𝜎𝑘) to each neighbor 𝑗 .

6 for each node 𝑖 in the network on receiving an RN-Update
message from neighbor 𝑗 do

7 On receiving𝑀 = ((𝑚′
𝑘
, . . . ,𝑚 𝑗), (vk𝑘 , . . . , vk𝑗), 𝜎 𝑗), 𝑖

parses (𝑚𝑘 , 𝜎′𝑘) ←𝑚′
𝑘
and (RN-Update, 𝑝𝑝𝑘 , VK𝑘 ,

currMax
𝑘
𝑠 , currMax

𝑘
𝑟 , hopCount, hopBand,

hopMax𝑅𝑁 , ts)←𝑚𝑘 .

8 if (Verify(𝑚𝑘 ,VK𝑘 , 𝜎′𝑘) → 0)∨
(AS.Verify((𝑚′

𝑘
, . . . ,𝑚 𝑗), (vk𝑘 , . . . , vk𝑗), 𝜎 𝑗) → 0)

then
9 Return ⊥.

10 𝑖 checks that hopCount value in all messages

(𝑚′
𝑘
, . . . ,𝑚 𝑗) are incremented by 1 in each message. If

not, return ⊥.
11 𝑖 runs AS.KeyGen(𝑝𝑝𝑘) → (sk𝑖 , vk𝑖).
12 𝑖 updates its local routingTable for RN 𝑘 and neighbor 𝑗

by updating the expiry time 𝑡𝑒 = currTime + 𝑒 ,
currMax

𝑘
𝑠 , and currMax

𝑘
𝑟 .

13 if ((hopMax𝑅𝑁 −hopBand < hopCount) ∧ (hopCount
≤ hopMax𝑅𝑁)) then

14 Create a nonce Nonce𝑖 ←$ {0, 1}𝜆 .
15 Create return message𝑚𝑟 ′

𝑖
by updating contents of

𝑚 𝑗 as𝑚𝑟
′
𝑖
= (RN-UpdateReply, ·, ·, currMax

𝑘
𝑠 ,

currMax
𝑘
𝑟 , hopCount, ·, ·, ·,Nonce𝑖) where

hopCount = hopCount + 1,
currMax

𝑘
𝑠 =𝑚𝑖𝑛(currMax

𝑘
𝑠 , lw𝑗,𝑖), and

currMax
𝑘
𝑟 =𝑚𝑖𝑛(currMax

𝑘
𝑟 , lw𝑖, 𝑗).

16 𝑖 creates signature 𝜎𝑖 ← AS.Sign(sk𝑖 , 𝜎 𝑗 , (𝑚′𝑘 ,
. . . ,𝑚 𝑗), (vk𝑘 , . . . , vk𝑗),𝑚𝑟 ′𝑖). 𝑖 sends𝑀𝑅 = ((𝑚′

𝑘
,

. . . , 𝑚 𝑗 , 𝑚𝑟
′
𝑖
), (vk𝑘 , . . . , vk𝑗 , vk𝑖), 𝜎𝑖) back to

neighbor 𝑗 .

the perimeter nodes and back. The receiving RN will store the re-

ply information sent by the perimeter nodes in its RNroutingTable,
indexed by the Nonce value sent by the perimeter node (Line

27-29). On the other hand, if the node receiving RN-UpdateReply
is a non-RN node, then it updates its local routing table again

with the received information (currMax
𝑘
𝑠 , etc.), adds the perimeter

node’s nonce to its local routing table, computes new values of

Algorithm 1: R2NB: Bootstrap broadcast from RN to

perimeter nodes (continued)

17 if hopCount ≥ hopMax𝑅𝑁 then
18 Return ⊥.
19 for each neighbor 𝑠 do
20 𝑖 creates𝑚𝑖 by updating contents of𝑚 𝑗 as

hopCount = hopCount + 1,
currMax

𝑘
𝑠 =𝑚𝑖𝑛(currMax

𝑘
𝑠 , lw𝑖,𝑠), and

currMax
𝑘
𝑟 =𝑚𝑖𝑛(currMax

𝑘
𝑟 , lw𝑠,𝑖).

21 𝑖 creates signature 𝜎𝑖 ← AS.Sign(sk𝑖 , 𝜎 𝑗 , (𝑚′𝑘 , . . . ,
𝑚 𝑗), (vk𝑘 , . . . , vk𝑗), 𝑚𝑖).

22 𝑖 sets𝑀 = ((𝑚′
𝑘
, . . . ,𝑚 𝑗 ,𝑚𝑖), (vk𝑘 , . . . , vk𝑗 , vk𝑖), 𝜎𝑖)

and return𝑀 to neighbor 𝑠 .

23 for each node 𝑗 in the network on receiving an
RN-UpdateReply message from neighbor 𝑜 do

24 On receiving𝑀𝑅 =

((𝑚′
𝑘
, . . . ,𝑚𝑟 ′

𝑖
, . . . ,𝑚𝑟 ′𝑜), (vk𝑘 , · · · , vk𝑖 , . . . , vk𝑜), 𝜎𝑜).

25 if (AS.Verify((𝑚′
𝑘
, . . . ,𝑚𝑟 ′𝑜), (vk𝑘 , . . . , vk𝑜), 𝜎𝑜) → 0)

then
26 return ⊥.
27 if 𝑗 is the RN 𝑘 then

28 if (hopMax𝑅𝑁 − hopBand)
?

≤

|{𝑚′
𝑘
, . . . ,𝑚𝑟 ′

𝑖
, . . . ,𝑚𝑟 ′𝑜 }|/2

?

≤ hopMax𝑅𝑁) then
29 Add (Nonce𝑖 , 𝑜, ·, ·, ·, ·) to RNroutingTable𝑘 .
30 else
31 Add Nonce𝑖 and neighbor 𝑜 to routingTable.
32 Update contents of𝑚𝑟 ′𝑜 as𝑚𝑟 ′

𝑗
= (RN-UpdateReply, ·,

·, currMax
𝑘
𝑠 , currMax

𝑘
𝑟 , hopCount, ·, ·, ·,Nonce𝑖)

where hopCount = hopCount − 1,
currMax

𝑘
𝑠 =𝑚𝑖𝑛(currMax

𝑘
𝑠 , lw𝑗,𝑜), and

currMax
𝑘
𝑟 =𝑚𝑖𝑛(currMax

𝑘
𝑟 , lw𝑜,𝑗).

33 𝑗 creates signature 𝜎 𝑗 ← AS.Sign(sk𝑗 , 𝜎𝑜 , (𝑚′𝑘 , . . . ,
𝑚𝑟 ′𝑜), (vk𝑘 , . . . , vk𝑜), 𝑚𝑟 ′𝑗).

34 Forward message𝑀𝑅 = ((𝑚′
𝑘
, . . . , 𝑚𝑟 ′𝑜 , 𝑚𝑟

′
𝑗
), (vk𝑘 ,

· · · , vk𝑜 , vk𝑗), 𝜎 𝑗) to neighbor from who

RN-Update message of 𝑘 with timestamp ts was
received.

currMax
𝑘
𝑠 , currMax

𝑘
𝑟 , decrements hopCount, and sends the signed

message to the neighbor from whom it received the correspond-

ing RN-Update (Lines 31-34). Here 𝑒 is the system-wide parameter

for depicting the time duration after which a record is considered

expired/stale in nodes’ routingTable. In case node 𝑖 had received

the same message tuple with a lower hopCount earlier, it drops the

message to avoid loops. A possible optimization is nodes updating

currMax
𝑘
𝑠 , currMax

𝑘
𝑟 only once, instead of twice, i.e., on receipt of

the RN-Update tuple (Line 20) and not again after receipt of the

RN-UpdateReply tuple (Line 32). New nodes joining the PCN get

routingTables from their neighbors as soon as they join and will

participate in RN-Update broadcasts in the next time epoch. No

SPRITE: Secure and Private Routing in Payment Channel Networks Conference’17, July 2017, Washington, DC, USA

Algorithm 2: RNs exchanging nonces

1 Each RN𝑖 ∈ RN creates a table with rows (Nonce𝑚 , 𝑗 ,

·, ·, ·, ·), where 𝑗 is the neighbor RN𝑖 received Nonce𝑚 from.

Let N𝑖 be the set of all nonces obtained by RN𝑖 .

2 Each RN𝑖 then picks 𝛼 ←$ Z𝑝 , picks 𝑑 ∈ Z+, and creates set

R𝑖 = {𝑟𝑖 , ∀ 𝑖 ∈ [1..𝑑]; 𝑟𝑖 ←$ {0, 1}𝜆}, 𝑑 = |R𝑖 |. RN𝑖 then
sets 𝑁𝑖 = N𝑖 ∪ R𝑖 .

3 RN𝑖 sends N𝑖 to all RN𝑗 ∈ RN \ RN𝑖 .
4 Each RN𝑖 computes N𝑖 𝑗 ← N𝑖 ∩ N𝑗 for all RN𝑗 ∈ RN \ RN𝑖 ,

and builds its RNroutingTable locally.

re-calculation or broadcasts happen when new nodes join the net-

work. For highly dynamic networks, the epoch value can be tuned

or lowered so that the RN-Update broadcast messages account for

significant changes in the topology. The cost of the RN-Update boot-
strap phase is similar across epochs and depends on the current

size of the network during the broadcast.

Algorithm 3: Alice-RN𝑠 - · · · - RN𝑟 hold segments

1 Alice picks RN𝑠 and Bob picks RN𝑟 . Bob sets

preimage←$ {0, 1}𝜆 and digest = 𝐻 (preimage), and shares

digest with Alice.
2 Let 𝜈 be the amount of credits Alice wishes to send to RN𝑠 .

Alice picks token, preimagetxid ←$ {0, 1}𝜆 ,
txid = 𝐻 (preimagetxid), and sends txid to Bob.

3 Alice does 𝐶RN𝑟
= 𝐸𝑃𝐾RN𝑟

(token, 𝜈, txid) and
𝐶RN𝑠

= 𝐸𝑃𝐾RN𝑠
(𝑉𝐾RN𝑟

, 𝜈, txid,𝐶RN𝑟
).

4 Alice looks up her routingTable and picks a tuple

(RN𝑠 , node𝑘 , 𝑝𝑘), with

𝑝𝑘 = (hopCount, currMax𝑠 , currMax𝑟 , 𝑡𝑒) where
currMax𝑠 ≥ 𝜈 and sets hopMax = hopCount + pathStretch.
Alice creates a tuple (hold𝑠 , RN𝑠 ,𝑉𝐾RN𝑠

, 𝜈 , txid, 𝐶RN𝑠
,

hopMax, digest, 𝑡𝑒1, 𝑡𝑒2) and sends it to node𝑘 .

5 for Each node (node𝑖) in the network do
6 Follow Algorithm 5

RNs exchanging nonces (Algorithm 2): After the PCN is

bootstrapped, the RNs need to setup their local RNroutingTables
which will help them find other RNs. At the end of Algorithm 1,

each RN 𝑖 would have received RN-UpdateReply tuples of the form

(Nonce𝑚, ·, ·, ·, ·, ·) from its neighbors, where𝑚 is a perimeter node

within 𝑖’s hopMax𝑅𝑁 radius. RN 𝑖 will receive several tuples con-

taining nonces, we represent the set of unique nonces that 𝑖 receives

by N𝑖 (Line 1). RN 𝑖 then pads the set N𝑖 with random strings and

generates a larger set R𝑖 (Line 2). This is to ensure that other RNs

cannot guess the size of N𝑖 , thus preserving privacy. SPRITE not

only hides the identity of the perimeter nodes against all RNs in the

system using the randomly generated nonces by perimeter nodes,

but also hides the number of perimeter nodes each RN has within

its hopMax𝑅𝑁 radius. All RNs then exchange their nonce sets and

each RN finds the intersection of its set with other RNs’ sets (Line 4).

If even the nonce values need to be hidden for any reason, we can

use more involved protocols such as private set intersection [42].

Algorithm 4: Bob − RN𝑟 hold segment

1 Bob generates 𝐶′
RN𝑟

= 𝐸𝑃𝐾RN𝑟
(token, 𝜈, txid).

2 Bob looks up his routingTable and picks a tuple

(RN𝑟 , node𝑘 , 𝑝𝑘), with

𝑝𝑘 = (hopCount, currMax𝑠 , currMax𝑟 , 𝑡𝑒) where
currMax𝑟 ≥ 𝜈 and sets hopMax = hopCount + pathStretch.
Bob creates a tuple

(hold𝑟 , RN𝑟 ,𝑉𝐾RN𝑟
, 𝜈, txid,𝐶′

RN𝑟
, hopMax, digest, 𝑡𝑒1, 𝑡𝑒2)

and sends it to node𝑘 .

3 for Each node (node𝑖) in the network do
4 Follow Algorithm 5

Determining 𝑡𝑒1 and 𝑡𝑒2 values: After Algorithm 2, RNs help

senders determine 𝑡𝑒1 and 𝑡𝑒2 values for their transactions. A low

value for 𝑡𝑒1 and 𝑡𝑒2 could result in premature timeout of a trans-

action when waiting a little longer would have resulted in the

transaction completing successfully. 𝑡𝑒1 and 𝑡𝑒2 also shouldn’t be

so large that the liquidity in the network is locked up despite there

being no viable paths via the involved RNs. The value of 𝑡𝑒1 can be

Algorithm 5: Subroutine for every node for hold and pay
phase

Each node (node𝑖):

Case 1: on receiving hold𝑥 message, 𝑥 ∈ {𝑠, 𝑟 },𝑚𝑠𝑔 =

(hold𝑥 , 𝑌 , 𝑉𝐾RN(·) , 𝜈, txid, 𝐶RN(·) , hopMax, digest, 𝑡𝑒1, 𝑡𝑒2),
calls hold(𝑚𝑠𝑔) defined in Algorithm 8.

Case 2: on receiving holdReject𝑥 message𝑚𝑠𝑔 =

(holdReject𝑥 , 𝑌 , VKRN(·) , 𝜈 , txid) along with routingTable
update, calls holdReject(𝑚𝑠𝑔) defined in Algorithm 8.

Case 3: on receiving holdACK𝑥 message𝑚𝑠𝑔 =

(holdACK𝑥 , 𝑡, 𝜎RN(·)) along with routingTable update, calls
holdACK(𝑚𝑠𝑔) defined in Algorithm 8.

Case 4: that did not receive a holdACK𝑥 tuple for a

transaction txid, and current time > 𝑡𝑒1, calls

holdACKTimeout() defined in Algorithm 8.

Case 5: on receiving pay message𝑚𝑠𝑔 = (pay, preimage, 𝜈 ,
txid), calls pay(msg) defined in Algorithm 8.

Case 6: on receiving payACK message𝑚𝑠𝑔 = (payACK, ·, ·),
calls payACK(𝑚𝑠𝑔) defined in Algorithm 8.

Case 7: that did not receive a payACK tuple for a

transaction txid, and current time > 𝑡𝑒2, calls

payACKTimeout() defined in Algorithm 8.

set by the sender based on a sampling of communication times with

its next-hop neighbors. For setting the value of 𝑡𝑒2, each RN can

estimate the communication time to its neighboring RNs, based on

an estimate of number of hops per neighborhood and its estimated

𝑡𝑒1; this can be built into the routing protocol with little overhead.

This information can be broadcasted by RNs in their neighborhood

(as part of the routing messages). When a sender sets the transac-

tion’s 𝑡𝑒2, they can use the aggregate statistic of 𝑡𝑒2 values they

receive from their RN, e.g., 3 times the aggregate 𝑡𝑒2. We assume a

certain amount of trial and error in finding the right multiplier on

the part of the sender.

Conference’17, July 2017, Washington, DC, USA Gaurav Panwar, Roopa Vishwanathan, George Torres, Satyajayant Misra

4.2 Hold phase
This is the first phase of transaction processing. In this phase, all

nodes along a path from Alice to Bob will reserve or “hold" the

amount Alice wishes to send to Bob. For ease of discussion, we

divide the path into three segments, Alice − RN𝑠 , RN𝑠 − RN𝑟 , and
Bob − RN𝑟 . Since the Alice-RN𝑠 hold segment (Algorithm 3) and

Bob-RN𝑟 hold segment (Algorithm 4) are self-explanatory, due to

space constraints, we describe them in the full version [40].

Hold phase and Pay phase functions for intermediate
nodes (Algorithm 5): This algorithm depicts the functions called

by different nodes, i.e., regular/perimeter nodes and RNs, when

they receive different messages during a SPRITE transaction (full

details of the functions are in Appendix 8.2, Algorithm 8.) Let us

now discuss when/why these functions are called by various nodes.

The hold function is called by a node on receiving a hold𝑟 or

hold𝑠 message. The node checks its routing table and decides which

neighbor the hold message needs to be forwarded to in order to

route it to the target RN in the message. If no viable paths are

available then the current node would forward a holdRejectmessage

to the neighbor from which it received the hold message originally.

If a node in the network receives a holdReject message then it uses

the holdReject function to process the message and make a decision

about whether it should retry on other available paths or forward

the holdReject message back in the direction of the sender.

holdACK and payACK functions are called by nodes in the net-

work on receiving holdACK or payACK messages, respectively.

These functions involve the verification of the received acknowl-

edgment messages and forwarding them toward the sender on

the transaction path. If a node in the network does not receive

a holdACK or payACK message during the hold and pay phases,

respectively, and the timers expire (𝑡𝑒1 for hold phase and 𝑡𝑒2 for
pay phase), then the respective nodes call the timeout functions,

holdACKTimeout for hold phase and payACKTimeout for pay phase.
Hold phase and Pay phase RNs’ actions (Algorithm 6): We

now discuss how the RNs handle operations in the hold phase,

described in Algorithm 6.We recollect that RN𝑠 is the first RN in the

path, and RN𝑟 is the last one. When RN𝑠 receives a hold𝑠 message

fromAlice, it retrieves the verification key of RN𝑟 (Line 3). RN𝑠 then

constructs an onion consisting of successive encryptions for all the

RNs, {RN𝑙 , . . . , RN𝑘 } between RN𝑠 and RN𝑟 , with RN𝑟 being the

innermost layer of the onion. RN𝑠 sends the onion to its next-hop

neighbor along the path to RN𝑙 (Line 3-8). Note that the intended

recipient is the perimeter node common to RN𝑠 and RN𝑙 (since RN𝑠

is not within hopMax distance of RN𝑙). RN𝑠 also sends a signed

holdACKmessage to Alice whom it received the hold𝑠 message from

(Line 9). This is done to give the sender assurance that RN𝑠 has

received her message, but without requiring any blockchain writes.

If malicious nodes drop holdACK messages, Alice will re-send the

hold𝑠 tuple after a timeout.

The honest intermediaries along the pathwill recognize the hold𝑠
message with the same txid as a duplicate and will re-send the old,

stored holdACKmessage along a different path. When RN𝑟 receives

the hold𝑠 tuple, she sends a holdACK tuple to Alice. Similarly, RN𝑟

also sends a signed holdACK message back to Bob (Line 11-14).

When an intermediate RN that is part of the onion created by RN𝑠

receives hold𝑠 , it peels off its layer, finds the identity of the next RN

Algorithm 6: RN operations in hold and pay phase.

1 if hold phase then
2 if 𝑛𝑜𝑑𝑒𝑖 == RN𝑠 then
3 RN𝑠 on receiving (hold𝑠 , RN𝑠 ,𝑉𝐾RN𝑠

, 𝜈, txid, 𝐶RN𝑠
,

hopMax,digest, 𝑡𝑒1,𝑡𝑒2) tuple from a neighbor, does

𝑚RN𝑠
← 𝐷𝑆𝐾RN𝑠

(𝐶RN𝑠
) where

𝑚RN𝑠
= (𝑉𝐾RN𝑟

, 𝜈, txid,𝐶RN𝑟
).

4 RN𝑠 looks up RNroutingTable to find a path

(RN𝑘 , RN𝑘+1, . . . RN𝑙) to RN𝑟 .

5 RN𝑠 creates𝑚hold = (𝑉𝐾RN𝑟
, 𝜈 , txid, 𝐶RN𝑟

)

6 for RN𝑖 in {RN𝑙 , . . . , RN𝑘+1, RN𝑘 } do
7 RN𝑠 does𝑚hold = (𝑃𝐾RN𝑖

, 𝜈, txid,
𝐸𝑃𝐾RN𝑖

(𝑚hold))
8 RN𝑠 then sends (hold𝑠 , 𝑌 ,𝑉𝐾RN𝑙

, 𝜈, txid, 𝑚hold,

hopMax, digest, 𝑡𝑒1,𝑡𝑒2), to its neighbor towards 𝑌

according to RNroutingTable for selected path to 𝑌

with hopMax = hopCount of the path.

9 RN𝑠 does 𝑡 = (txid, hold𝑠 , 𝜈), 𝜎RN𝑠
←

Sign(skRN𝑠
, 𝑡), sends (holdACK𝑠 , 𝑡, 𝜎RN𝑠

) along
with local routingTable to neighbor that sent hold𝑠 .

10 else if 𝑛𝑜𝑑𝑒𝑖 == RN𝑟 then
11 if message is hold𝑠 then
12 When RN𝑟 receives the hold𝑠 message, then the

Alice − RN𝑟 segment is complete. RN𝑟 does

𝑡 = (txid, hold𝑠 , 𝜈), 𝜎RN𝑟
← Sign(skRN𝑟

, 𝑡),
sends (holdACK𝑠 , 𝑡, 𝜎RN𝑟

) along with local

routingTable to neighbor that sent hold𝑠 .
13 else
14 When RN𝑟 receives the hold𝑟 message, then the

RN𝑟 − Bob segment is complete. RN𝑟 sends

𝑡 = (txid, hold𝑟 , 𝜈), 𝜎RN𝑟
← Sign(skRN𝑟

, 𝑡),
sends (holdACK𝑟 , 𝑡, 𝜎RN𝑟

) along with local

routingTable to neighbor that sent hold𝑟 .
15 else if node𝑖 = RN𝑖 ,∀RN𝑖 ∈ [RN𝑘 , RN𝑘+1, . . . RN𝑙]

then
16 RN𝑖 on receiving the tuple (hold𝑠 , RN𝑖 ,𝑉𝐾RN𝑖

, 𝜈,

txid, 𝑚hold, hopMax,digest,𝑡𝑒1,𝑡𝑒2) parses
𝑚hold = (𝑃𝐾RN𝑖

,𝐶RN𝑖
), sets

𝑚hold = (𝑃𝐾RN𝑖+1 ,𝐶RN𝑖+1) ← 𝐷𝑆𝐾RN𝑖
(𝐶RN𝑖

).
17 RN𝑖 then sends (hold𝑠 , 𝑌 ,𝑉𝐾RN𝑖+1 , 𝜈, txid, 𝑚hold,

hopMax, digest, 𝑡𝑒1,𝑡𝑒2) to its neighbor towards 𝑌

according to RNroutingTable for selected path to 𝑌

with hopMax = hopCount of the path.

18 RN𝑖 does 𝑡 = (txid, hold𝑠 , 𝜈), 𝜎RN𝑖
← Sign(skRN𝑖

, 𝑡),
sends (holdACK𝑠 , 𝑡, 𝜎RN𝑖

) along with local

routingTable to neighbor that sent hold𝑠 .
19 if pay phase then
20 RN𝑖 on receiving pay tuple, sets 𝑡 = (pay, txid, vkRN, 𝜈),

does 𝜎RN← Sign(skRN, 𝑡).
21 RN𝑖 then creates payACK tuple as (payACK, 𝑡, 𝜎RN) to

neighbor it had received pay tuple from.

it needs to forward the message to, and sends the signed tuple to

the perimeter node it knows can reach the destination RN (it finds

this information from its RNroutingTable) (Line 15-18).

SPRITE: Secure and Private Routing in Payment Channel Networks Conference’17, July 2017, Washington, DC, USA

Algorithm 7: Initialization of the pay phase.

1 At the end of hold phase (before 𝑡𝑒2 expiry time) if RN𝑟 has

received a hold𝑠 tuple and a hold𝑟 tuple with matching

token, 𝜈 , and txid values, creates a message,

𝑚 = (proceedPay, txid, 𝜈), creates signature 𝜎proceedPay =

Sign(𝑆𝐾RN𝑟
, 𝑚) sends a tuple (proceedPay, txid, 𝜈,

𝜎proceedPay) towards Bob through Bob − RN𝑟 segment.

2 On receiving the message Bob and Alice communicate out

of band and Bob sends (proceedPay, txid, 𝜈, 𝜎proceedPay)
tuple to Alice.

3 Bob creates a tuple (pay, preimage, 𝜈, txid) and forwards it

to its neighbor 𝑛𝑜𝑑𝑒𝑜 with txid towards RN𝑟 .

4 for Each node 𝑛𝑜𝑑𝑒𝑖 on txid path on receiving pay message
msg do

5 node𝑖 calls pay(msg) defined in Algorithm 8.

6 for Each node 𝑛𝑜𝑑𝑒𝑖 on txid path on receiving payACK
message msg do

7 node𝑖 calls payACK(𝑚𝑠𝑔) defined in Algorithm 8.

8 for Each node 𝑛𝑜𝑑𝑒𝑖 on txid path that did not receive a
payACK tuple and current time > 𝑡𝑒2 do

9 node𝑖 calls payACKTimeout() defined in Algorithm 8.

Since PCNs are highly dynamic, there might be a situation during

a transaction that an RN𝑖 on the path between RN𝑠 and RN𝑟 cannot

find a path to the next RN𝑖+1, even after the maxRetries number of

retries. Neither the intermediate RNs nor any other non-RN nodes

on the path can deviate from the original RN path defined by the

onion created by RN𝑠 . The intermediate nodes on each segment

between two RNs do not know the next segment’s target RN. In

this case, the transaction needs to be failed all the way back to RN𝑠

and then retried on a different path (different intermediate RNs)

from RN𝑠 to RN𝑟 .

4.3 Pay phase
Algorithm 7: The pay phase is initialized by RN𝑟 after it receives

the hold𝑠 and hold𝑟 tuples originating from Alice and Bob respec-

tively. Specifically, RN𝑟 decrypts𝐶RN𝑟
contained in hold𝑠 and𝐶′

RN𝑟

contained in hold𝑟 , and compares the token contained in both of

them. If the token is the same, that signifies to RN𝑟 that some nodes

Alice and Bob are sender and receiver in the transaction identified

by txid, since only the two of them know token. RN𝑟 then sends a

signed proceedPay tuple to Bob, which signals the start of the pay

phase. Bob forwards RN𝑟 ’s proceedPay tuple to Alice to let her know
the pay phase has started (Line 2). If RN𝑟 does not receive token in

either hold𝑠 or hold𝑟 , it sends a multisig(𝑅𝑒𝑣, ·, RN𝑟 , ·, ·, ·, txid, ·) to
its neighbor in the transaction path.

In the pay phase Bob’s preceding neighbor along the path pays

Bob first. Following this, each node pays its successor first, then

gets paid back by its predecessor. Since nodes need some form of

acknowledgment that the pay phase has gone through successfully,

RN’s that initiated the current segment send signed payACK tuples

to the nodes in their segment (Algorithm 6, Lines 20, 21).

5 SECURITY ANALYSIS
We now discuss some potential attacks on SPRITE, and mitigation

strategies, and then briefly discuss the formal analysis. We also

give a phase-wise analysis of malicious activities in each of the

bootstrapping, hold, and pay phases of SPRITE in Appendix 8.3.

5.1 Potential Attacks and Mitigation
Transactionmalleability attack: A malicious RN𝑠 colluding with

a receiver Bob and RN𝑟 might change the transaction amount 𝜈

to 𝜈 ′. In the Alice-RN𝑠 segment, the amount will be 𝜈 , the change

occurs in the segments after that, all the way up until Bob.
Case 1: Let us assume 𝜈 ′ > 𝜈 and 𝛿 = (𝜈 ′ − 𝜈). At the end of this

attack, Alice has paid Bob 𝜈 coins and RN𝑠 has paid Bob 𝛿 coins.

None of the honest intermediaries will lose money: they get paid as

many coins (by their successor) as they have paid along the path to

their predecessor. The only entity losing money is RN𝑠 since it will

not get paid the 𝛿 amount and will only get paid 𝜈 coins, tied to the

tuple it received. Case 2: Let 𝜈 ′ < 𝜈 . If Bob, RN𝑠 , and RN𝑟 are all

malicious, Bob will get paid 𝜈 ′ and RN𝑠 will get paid the difference

(𝛿 = 𝜈 − 𝜈 ′) tied to the tuple received from Alice with 𝜈 coins, but

since they were both collaborating malicious entities, this does not

affect honest intermediaries. If Bob is honest, then Bob will get

paid 𝜈 , but RN𝑠 will send a lower amount 𝜈 ′ to RN𝑟 , thus making

malicious RN𝑟 lose money. In both cases the adversaries end up

losing money but none of the honest nodes get less coins than what

they paid, hence we do not consider these to be successful attacks

on SPRITE.

Transaction forgery attack: We assume no honest users in the

system will share their signing keys related to SPRITE with other

users. This avoids any situations where an adversary can commu-

nicate on a channel created between two neighbors on behalf of

one of them (e.g., Alice/Bob→ Craig, where Alice and Bob share

a channel and Bob is malicious), or the adversary can sign con-

tracts on behalf of an honest Alice without Alice’s knowledge (e.g.,
Bob→ Alice→ Craig, where Bob is malicious). If any user’s keys

are leaked then that user will generate a new set of keys and notify

all her neighbors about the new keys. One could use forward-secure

signatures [14] for invalidating the old leaked keys.

Sybil/Counting-based attack: An adversary could intercept net-

work communications over time, isolating hold𝑥 messages, and

associating messages sharing the same txid and digest. The ad-

versary will try to identify the sender/receiver in a transaction by

isolating messages with the highest hopMax or lowest timer values.

Counting number of hops based on hopMax does not reveal the

identity of sender/receiver since each RN resets the hopMax value

for each segment. The hopMax value is decremented by each node

and is an estimate of the expected hopCount to the target routing

helper in the current segment, and tells how far the current message

should go before being dropped. This does not leak to a node in

the network information about how far the sender of the current

received message was from it (intermediate nodes do not know

which segment they are a part of). Since 𝑡𝑒1 and 𝑡𝑒2 are system

parameters and are included in the hold messages, all nodes in the

network will receive the same value of 𝑡𝑒1 and 𝑡𝑒2. On receiving

the hold message, each node locally computes its timeout values

𝑡𝑒1 .txid and 𝑡𝑒2 .txid, and does not forward the local values further.

Conference’17, July 2017, Washington, DC, USA Gaurav Panwar, Roopa Vishwanathan, George Torres, Satyajayant Misra

Sender refusing to pay: Whenever there are timeouts in the hold

phase for a specific segment, the sender RN for that segment will

retry the hold phase on a different path. If there are timeouts in

the pay phase the nodes that timed out in that specific segment,

will publish their hold and pay contracts on a public repository

or blockchain. Since the hold and pay contracts are signed with

pseudonymous identities, this does not leak information about

nodes to the public, but neighbors know each others’ identities and

if a node does not post a pay contract associated with a hold contract

then this identifies the malicious activity to the whole network. Any

honest neighbors will then avoid the malicious node for subsequent

retries and transactions. If the sender is the malicious node, then

all nodes on the path need to discard the hold and pay contracts

and roll back the transaction since the sender has been identified

as malicious and the sender-RN𝑠 segment will not be retried.

5.2 Formal Security Analysis
We analyze the security of SPRITE in the Universal Composabil-

ity framework [15]. To this end, we define an ideal functionality,

FSPRITE, consisting of three functionalities, Fsetup, Fhold, and Fpay .
We use two helper functionalities from [15], Fsig and Fsmt, to model

ideal functionalities for digital signatures and secure/authenticated

channels, respectively.

Fsetup models the broadcast phase where nodes register and es-

tablish payment channels and RNs register and make known their

verification key to other nodes in the network. It also provides

functionality for broadcasting messages such as RN-Update and
RN-UpdateReply. F

hold
provides interfaces for creating a hold𝑠 mes-

sage from sender and hold𝑟 message from receiver, RN-specific hold
phase functionalities, and the pairwise contract multisig function-
ality. Fpay provides interfaces specific to the pay phase, creation

and verification of a pay message, pairwise contracts creation and

signing in pay phase, etc. We assume that all functionalities in

Fsprite have access to a global clock from which they can obtain

the current time. We give the proof of the following theorem along

with the functionalities in the full version [40].

Theorem 5.1. Let Fsprite be an ideal functionality for SPRITE. Let
A be a probabilistic polynomial-time (PPT) adversary for SPRITE, and
let S be an ideal-world PPT simulator for Fsprite. SPRITE UC-realizes
Fsprite for any PPT distinguishing environmentZ.

6 EXPERIMENTAL ANALYSIS
6.1 Experimental Setup
We compared R2RB and R2NB with BlAnC [39] and Speedy Mur-

murs [48] (referred to as SM in this section), across two topology

types, ten topologies each [50]. The first topology, referred to as LT,

was taken from the publicly available Lightning gossip dataset [2]

from May 31, 2022. The network has 15833 nodes and 156072 chan-

nels. We removed any nodes that did not have any outgoing con-

nections along with 80% of the nodes which had one incoming

or outgoing connection (these nodes are not involved in routing),

leaving 8995 nodes and 129724 channels in LT. We designated the

top 10 highly connected nodes as RNs for evaluating R2RB and

BlAnC, and to act as landmarks in SM. As channel capacity is not

present in the gossip messages from the Lightning data, we choose

the maximum allowed amount for a single transaction as the link

weight as this value should correlate to a realistic channel capacity.

We compare the performance of BlAnC, SM, and R2RB on LT. R2NB

is not applicable to LT due to the closely located RN nodes.

We constructed a second privacy-preserving network topology

(PPNT) as described in Section 4, to evaluate R2RB, R2NB, BlAnC,
and SM. We start by taking the RNs in LT and start adding nodes to

the PCN where the initial few nodes set up payment channels with

RNs but subsequent nodes joining the network connect to other

regular nodes, thus forming layers around the RNs. We add nodes

until each RN has a diameter of about 7 hops and a neighborhood

of roughly 800 nodes. The perimeter nodes of each neighborhood

are randomly connected to perimeter nodes belonging to other RN

neighborhoods. PPNT had 7978 nodes and 25302 channels. The link

weights used in this topology are similar to LT. We categorized the

link weights from LT into two groups, the first group contained

channels with at least one highly connected node (RN), and the

second group was made up of links between two regular nodes. The

link weights were then randomly sampled from these two groups

and assigned to the links in PPNT based on the channel type.

We randomly chose senders and receivers with at least 3 and

8 hops between them for LT & PPNT respectively. Although pub-

licly available data for the Lightning network claims an average

of 22𝑘 transactions per day [1] – significantly lower than 10 trans-

actions/second, we set a transaction rate at 10 transaction/second.

This high rate was used to assess the scalability of SPRITE. In SM,

each transaction gets split into 10 uniform sub-transactions, one

for each RN (referred to as landmarks in SM).

We implemented R2RB, R2NB, SM and BlAnC, and deployed the
generated topologies in the 𝑛𝑠-3 simulator [3] for our experiments.

The results were averaged over 10 runswith PPNT for a total of 100𝑘

transactions. The simulations were run on a Desktop class machine

with Intel(R) Core(TM) i7-10700 @ 3.8 GHz CPU and 64 GB of RAM.

The metrics for comparison are: path stretch (ratio of the hop-count

of a completed transaction to the optimal hop-count), end-to-end

transaction processing time (latency), transaction success rate, set

up costs during Bootstrap phase (message complexity and duration),

and the overall message complexity of the entire simulation.

6.2 Experimental Results
LT Topology results: Figure 3a shows the growth of the message

complexity within LT over time. BlAnC inundates the network with

broadcasts for each transaction and given the interconnected nature

of LT this results in a dramatic increase in message complexity,

growing at a rate roughly 100 times that of SM. SM, while having

only a fraction of the number of messages compared to BlAnC, still
grows at a much faster rate than R2RB. This is attributable to the

splitting of each transaction and the acknowledgments sent back

on the payment path in the routing phase.

Figure 3b shows the growth of latency with respect to hop-count.

BlAnC has a higher latency compared to R2RB and SM. This is

attributed to BlAnC having three phases as opposed to two in SM

and R2RB. Note that given its sub-optimality, BlAnC never chooses

a 3-hop sender-receiver path. SM and R2RB have similar latencies.

We model cryptographic operations for both R2RB and BlAnC, but
not for SM (they didn’t have any). We also do not model the delay

SPRITE: Secure and Private Routing in Payment Channel Networks Conference’17, July 2017, Washington, DC, USA

(a) # of messages (Y-Axis is split to account for mes-
sages’ explosion in BlAnC).

(b) Average latencies with respect to transaction
hop-count.

(c) CDF of Transaction latencies.

(d) # of messages for the Bootstrap phase. (e) Duration of the Bootstrap phase. (f) Path-stretch of transactions.

Figure 3: Results for simulations in the Lightning Topology (LT).

imposed by blockchain operations for BlAnC. The hop-counts of
transactions in LT range between 3-10 hops, with BlAnC, SM, and

R2RB having average hop-counts of 7, 5, and 6, respectively. The

hop-counts for SM represent the highest across the hop-counts of

all the split transactions.

Figure 3c shows the cumulative distribution function (CDF) of

latencies for all transactions. Both R2RB and SM outperform BlAnC
significantly, which had an average latency of 113.5 ms, while SM

and R2RB had average latencies of 79.6ms and 95.3ms, respectively.

The additional delay in BlAnC is on account of the extra broadcast-

based 𝐹𝑖𝑛𝑑 phase. R2RB is able to perform almost as well as SM

in terms of real-world delays while providing significantly more

security and privacy guarantees. It also has a significantly higher

transaction success rate at 97.17% compared to SM’s 81.3%. R2RB

outperforms SM in terms of success rate due to our in-network retry

mechanism, as well as routingTable updates that are propagated
within the network for each holdACK and holdRejectmessage. In LT

9.864% of transactions required a retry attempt for R2RB. Due to the

design of BlAnC, the sender can only send the maximum available

credits on the fastest path to the receiver, hence, only 69.06% of

transactions sent the full amount of required credits. For practical

applications, these transactions can be repeated by splitting the

larger ones into sub-transactions, similar to SM.

Figure 3d shows the total number of messages required to boot-

strap the network with routing information while Figure 3e shows

the duration of the phase. BlAnC is excluded from this comparison

as it does not have a Bootstrap phase. SM requires more messages

for its bootstrapping phase in LT than R2RB but takes about 10 ms

less than R2RB to complete this phase.

The path stretch of transactions is shown in Figure 3f, it should

be noted that BlAnC always finds the most optimal path in terms of

hop-count due to its broadcast-based pathfinding mechanism. The

path stretch for SM was calculated by taking the average amount

of hops taken by each sub-transaction and comparing that against

the optimal path (obtained from Dijkstra’s algorithm) between

the sender and the receiver. For R2RB and BlAnC, the number

of hops taken by a transaction were compared against the total

hops in the corresponding optimal paths between the sender &

RN𝑠 , RN𝑠 & RN𝑟 , and RN𝑟 & the receiver. SM incurs the worst

path stretch with a median of 1.075, while R2RB has a median

path stretch of 1.0. The variation in path stretch for transactions

in R2RB is due to the routingTable of nodes becoming stale as the

simulation progresses with new transactions. The routing tables

can remain fresh by issuing periodic broadcasts from RNs, similar

to the Bootstrap phase, to update the routingTable of nodes. The
higher path stretch in SM can be attributed to its embedded prefix

routing and splitting of transactions among different paths.

PPNT Topology results: All four schemes show linear growth

in the number of messages as seen in Figure 4a. With R2RB and

R2NB the number of messages is the lowest and continues to grow

linearly at these low values. As with LT, BlAnC’s 𝐹𝑖𝑛𝑑 phase results
in thousand times more messages than R2RB and R2NB while SM

results in a ten times higher number of messages in comparison.

Figure 4b shows the growth of latency with respect to hop-

count. Both R2RB and R2NB have a slightly larger latency for each

Conference’17, July 2017, Washington, DC, USA Gaurav Panwar, Roopa Vishwanathan, George Torres, Satyajayant Misra

(a) # of messages (Y-Axis is split to account for mes-
sages’ explosion in BlAnC).

(b) Average latencies with respect to transaction
hop-count.

(c) CDF of Transaction latencies.

(d) # of messages for the Bootstrap phase. (e) Duration of the Bootstrap phase. (f) Path stretch of transactions.

Figure 4: Results for simulations in the Privacy Preserving Network Topology (PPNT).

transaction of a given hop-count when compared to SM due to the

cryptographic operations between pairs of nodes on the path.

Figure 4c shows a CDF where it can be observed that for the

majority of transactions, R2RB and R2NB have lower latencies

than BlAnC and SM while maintaining transaction success rates

of 97.01% and 96.02%. SM on the other hand, has a success rate of

76.08%. Roughly five percent of transactions in SPRITE (R2RB and

R2NB) have higher latencies than those found in BlAnC and SM

due to SPRITE’s in-network retries that would otherwise fail.

The number of messages and the duration of the Bootstrap phase

were averaged over ten runs; results shown in Figure 4d and 4e.

In contrast to LT, SM has high number of messages, with an aver-

age of around 348𝑘 messages when compared to R2RB with 190𝑘

messages and R2NB with 88𝑘 messages respectively. The high com-

plexity of R2RB and SM is due to the more distributed nature of the

PPNT network, where the landmarks (RNs in SPRITE) have a much

lower degree than LT. In SM, this results in more nodes receiving

multiple messages for each landmark advertisement compared to

LT. Transactions in SM take the least amount of time, while R2RB

takes the most, but similar to LT the difference is negligible.

The transaction path stretch in Figure 4f shows that BlAnC is the

most efficient in terms of transaction path length. This is because

it finds the most optimal path in terms of hop-count due to its

broadcast-based pathfinding mechanism. This optimal path stretch

does come at the cost of higher overhead and much higher latencies.

The median path stretch value for SM is 1.45 and is significantly

higher than R2RB and R2NB with respective values of 1.07 and

1.15. Due to the distributed topology, the prefix-based embedding

system in SM does not identify the shortest path when landmarks

are far from the sender or receiver. R2NB’s inefficiency is due to

the unknown distance of chosen perimeter node to the next RN.

7 CONCLUSION
In this paper, we present SPRITE, a secure, privacy-preserving, and
efficient routing protocol for payment channel networks. SPRITE
can support concurrent transactions and takes just two rounds of

communication for pathfinding and routing transactions, which is

the most optimal till date. One direction for future work is investi-

gating the design of economic models for estimating and optimizing

routing fees for both, regular nodes and routing nodes in a PCN.

Another direction for future work is to mechanically verify the

proof of security of SPRITE (and potentially other PCN protocols)

using interactive theorem provers such as EasyUC [16].

ACKNOWLEDGEMENTS
The authors thank Ryan Gentry and Alex Bosworth from Lightning

Labs for their insights and discussion, which helped us improve the

paper. The authors also thank Kartick Kolachala for his help with

Table 1, and the anonymous reviewers for their feedback. This re-

search was partially funded by the US National Science Foundation

under grants #2148358 and #1914635, and the US Department of

Energy grant #DE-SC0023392. Any opinions, findings, conclusions,

or recommendations expressed in this material are solely those

of the authors and do not necessarily reflect the views of the US

federal agencies.

SPRITE: Secure and Private Routing in Payment Channel Networks Conference’17, July 2017, Washington, DC, USA

REFERENCES
[1] [n. d.]. The growth of the Lightning Network. https://k33.com/research/archive/

articles/the-growth-of-the-lightning-network.

[2] [n. d.]. Lightning network gossip datasets and topology. https://github.com/

lnresearch/topology.

[3] [n. d.]. ns-3 network simulator. https://www.nsnam.org/.

[4] [n. d.]. Ripple data. https://data.ripple.com/.

[5] [n. d.]. Visa fact sheet. https://www.visa.co.uk/dam/VCOM/download/corporate/

media/visanet-technology/aboutvisafactsheet.pdf.

[6] [n. d.]. What is the Lightning Network in Bitcoin and how does it

work? https://cointelegraph.com/bitcoin-for-beginners/what-is-the-lightning-

network-in-bitcoin-and-how-does-it-work.

[7] [n. d.]. Xrpscan. https://xrpscan.com/.

[8] 2023. Phoenix Wallet 4: Trampoline payments. Accessed: 2023-12-19.
[9] 2023. Trampoline routing. Accessed: 2023-12-19.
[10] 2023. What are trampoline payments. Accessed: 2023-12-19.
[11] Abdelrahaman Aly, Edouard Cuvelier, Sophie Mawet, Olivier Pereira, and Math-

ieu Van Vyve. 2013. Securely Solving Simple Combinatorial Graph Problems.

In Financial Cryptography and Data Security - 17th International Conference, FC
2013, Okinawa, Japan, April 1-5, 2013, Revised Selected Papers (Lecture Notes in
Computer Science, Vol. 7859), Ahmad-Reza Sadeghi (Ed.). Springer, 239–257.

[12] Abdelrahaman Aly and Mathieu Van Vyve. 2014. Securely Solving Classical

Network Flow Problems. In Information Security and Cryptology - ICISC 2014 -
17th International Conference, Seoul, Korea, December 3-5, 2014, Revised Selected
Papers (Lecture Notes in Computer Science, Vol. 8949), Jooyoung Lee and Jongsung

Kim (Eds.). Springer, 205–221.

[13] Andreas Anotonopoulos, Olaoluwa Osuntokun, and Rene Pickhardt. [n. d.]. Mas-

tering the Lightning Network. https://github.com/lnbook/lnbook.

[14] Mihir Bellare and Sara K. Miner. 1999. A Forward-Secure Digital Signature

Scheme. In Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings
(Lecture Notes in Computer Science, Vol. 1666), Michael J. Wiener (Ed.). Springer,

431–448.

[15] Ran Canetti. 2004. Universally composable signature, certification, and authenti-

cation. In Proceedings. 17th IEEE Computer Security Foundations Workshop, 2004.
[16] Ran Canetti, Alley Stoughton, andMayank Varia. 2019. EasyUC: Using EasyCrypt

to Mechanize Proofs of Universally Composable Security. In 32nd IEEE Computer
Security Foundations Symposium, CSF 2019, Hoboken, NJ, USA, June 25-28, 2019.
IEEE, 167–183.

[17] Yanjiao Chen, Yuyang Ran, Jingyue Zhou, Jian Zhang, and Xueluan Gong. 2022.

MPCN-RP: A Routing Protocol for Blockchain-Based Multi-Charge Payment

Channel Networks. IEEE Transactions on Network and Service Management 19, 2
(2022), 1229–1242.

[18] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed E.

Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, Dawn Song,

and Roger Wattenhofer. 2016. On Scaling Decentralized Blockchains - (A Posi-

tion Paper). In Financial Cryptography and Data Security - FC 2016 International
Workshops, BITCOIN, VOTING, and WAHC, Christ Church, Barbados, February 26,
2016, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 9604), Jeremy

Clark, Sarah Meiklejohn, Peter Y. A. Ryan, Dan S. Wallach, Michael Brenner, and

Kurt Rohloff (Eds.). Springer, 106–125.

[19] Christian Decker. [n. d.]. Lightning Network Research - Topology Datasets.

https://github.com/lnresearch/topology. https://doi.org/10.5281/zenodo.4088530

[20] Lisa Eckey, Sebastian Faust, Kristina Hostáková, and Stefanie Roos. 2020. Splitting

Payments Locally While Routing Interdimensionally. IACR Cryptol. ePrint Arch.
2020 (2020), 555.

[21] Felix Engelmann, Henning Kopp, Frank Kargl, Florian Glaser, and Christof Wein-

hardt. 2017. Towards an Economic Analysis of Routing in Payment Channel

Networks. In Proceedings of the 1st Workshop on Scalable and Resilient Infrastruc-
tures for Distributed Ledgers (SERIAL ’17). Article 2, 6 pages.

[22] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert van Renesse. 2016.

Bitcoin-NG: A Scalable Blockchain Protocol. In 13th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI 2016, Santa Clara, CA, USA,
March 16-18, 2016, Katerina J. Argyraki and Rebecca Isaacs (Eds.). USENIX Asso-

ciation, 45–59.

[23] L.R. Ford and D.R. Fulkerson. 1954. Maximal flow through a network. Canadian
Journal of Mathematics 8 (1954).

[24] A.V. Goldberg and R. E. Tarjan. 1988. A new approach to the maximum flow

problem. J. of ACM 35 (1988), 921–940.

[25] Qianyun Gong, Chengjin Zhou, Le Qi, Jianbin Li, Jianzhong Zhang, and Jingdong

Xu. 2021. VEIN: High Scalability Routing Algorithm for Blockchain-based Pay-

ment Channel Networks. In 20th IEEE International Conference on Trust, Security
and Privacy in Computing and Communications, TrustCom 2021, Shenyang, China,
October 20-22, 2021. IEEE, 43–50.

[26] Hsiang-Jen Hong, Sang-Yoon Chang, and Xiaobo Zhou. 2022. Auto-Tune: Effi-

cient Autonomous Routing for Payment Channel Networks. In 2022 IEEE 47th
Conference on Local Computer Networks (LCN). 347–350.

[27] Heba Kadry and Yasser Gadallah. 2021. A Machine Learning-Based Routing

Technique for Off-chain Transactions in Payment Channel Networks. In 2021
IEEE International Conference on Smart Internet of Things (SmartIoT). 66–73. https:
//doi.org/10.1109/SmartIoT52359.2021.00020

[28] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017.

Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. In Advances
in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I (Lecture Notes in
Computer Science, Vol. 10401), Jonathan Katz and Hovav Shacham (Eds.). Springer,

357–388.

[29] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa

Syta, and Bryan Ford. 2018. OmniLedger: A Secure, Scale-Out, Decentralized

Ledger via Sharding. In 2018 IEEE Symposium on Security and Privacy, SP 2018,
Proceedings, 21-23 May 2018, San Francisco, California, USA. IEEE Computer

Society, 583–598.

[30] MITMedia lab. Digital currency initiative. [n. d.]. Layer 2: The Lightning Network.

https://dci.mit.edu/lightning-network.

[31] lightning [n. d.]. Lightning network. https://lightning.network/.

[32] Lightning Network [n. d.]. Lightning Network Routing Nodes.

https://docs.lightning.engineering/the-lightning-network/multihop-

payments/what-makes-a-good-routing-node.

[33] Siyi Lin, Jingjing Zhang, and Weigang Wu. 2020. FSTR: Funds Skewness Aware

Transaction Routing for Payment Channel Networks. In 50th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN 2020, Valencia,
Spain, June 29 - July 2, 2020. IEEE, 464–475.

[34] G. Malavolta, P. Moreno-Sanchez, A. Kate, and M. Maffei. 2017. SilentWhispers:

Enforcing Security and Privacy in Decentralized Credit Networks. In Annual
Network and Distributed System Security Symposium, NDSS.

[35] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Ravi. 2017. Concur-

rency and Privacy with Payment-Channel Networks. In Proceedings ACM SIGSAC
Conference on Computer and Communications Security, CCS. 455–471.

[36] Andrew Miller, Iddo Bentov, Surya Bakshi, Ranjit Kumaresan, and Patrick Mc-

Corry. 2019. Sprites and State Channels: Payment Networks that Go Faster

Than Lightning. In Financial Cryptography and Data Security - 23rd International
Conference, FC 2019, Frigate Bay, St. Kitts and Nevis, February 18-22, 2019, Revised
Selected Papers. 508–526.

[37] Andrew Miller, Ari Juels, Elaine Shi, Bryan Parno, and Jonathan Katz. 2014.

Permacoin: Repurposing Bitcoin Work for Data Preservation. In 2014 IEEE Sym-
posium on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014. IEEE
Computer Society, 475–490.

[38] P. Moreno-Sanchez, A. Kate, M. Maffei, and K. Pecina. 2015. Privacy Preserving

Payments in Credit Networks: Enabling trust with privacy in online marketplaces.

In Annual Network and Distributed System Security Symposium, NDSS.
[39] Gaurav Panwar, Satyajayant Misra, and Roopa Vishwanathan. 2019. BlAnC:

Blockchain-based Anonymous and Decentralized Credit Networks. In Proceed-
ings of the Ninth ACM Conference on Data and Application Security and Privacy,
CODASPY. 339–350.

[40] Gaurav Panwar, Roopa Vishwanathan, George Torres, and Satyajayant Misra.

[n. d.]. SPRITE: Secure and Private Routing in Payment Channel Networks (Full

Version). https://eprint.iacr.org/2024/122.

[41] Sunoo Park, Albert Kwon, Georg Fuchsbauer, Peter Gazi, Joël Alwen, and

Krzysztof Pietrzak. 2018. SpaceMint: A Cryptocurrency Based on Proofs of

Space. In Financial Cryptography and Data Security - 22nd International Confer-
ence, FC 2018, Nieuwpoort, Curaçao, February 26 - March 2, 2018, Revised Selected
Papers (Lecture Notes in Computer Science, Vol. 10957), Sarah Meiklejohn and

Kazue Sako (Eds.). Springer, 480–499.

[42] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. 2019. SpOT-Light:

Lightweight Private Set Intersection from Sparse OT Extension. In Advances in
Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part III (Lecture Notes
in Computer Science, Vol. 11694), Alexandra Boldyreva and Daniele Micciancio

(Eds.). Springer, 401–431.

[43] David Pointcheval and Olivier Sanders. 2016. Short Randomizable Signatures.

In Topics in Cryptology - CT-RSA 2016 - The Cryptographers’ Track at the RSA
Conference 2016, San Francisco, CA, USA, February 29 - March 4, 2016, Proceedings
(Lecture Notes in Computer Science, Vol. 9610), Kazue Sako (Ed.). Springer, 111–126.

[44] Joseph Poon and Thaddeus Dryja. [n. d.]. The Bitcoin Lightning Network: Scalable

Off-Chain Instant Payments. https://lightning.network/lightning-network-paper.

pdf.

[45] raiden [n. d.]. Raiden network. https://raiden.network/.

[46] ripple [n. d.]. Ripple. https://ripple.com.

[47] S. Roos, P. Moreno-Sanchez, A. Kate, and I. Goldberg. 2018. Settling payments

fast and private: efficient decentralized routing for path-based transactions. In

Annual Network and Distributed System Security Symposium, NDSS.
[48] Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Goldberg. 2018.

Settling Payments Fast and Private: Efficient Decentralized Routing for Path-

Based Transactions. In 25th Annual Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California, USA, February 18-21, 2018. The

https://k33.com/research/archive/articles/the-growth-of-the-lightning-network
https://k33.com/research/archive/articles/the-growth-of-the-lightning-network
https://github.com/lnresearch/topology
https://github.com/lnresearch/topology
https://www.nsnam.org/
https://data.ripple.com/
https://www.visa.co.uk/dam/VCOM/download/corporate/media/visanet-technology/aboutvisafactsheet.pdf
https://www.visa.co.uk/dam/VCOM/download/corporate/media/visanet-technology/aboutvisafactsheet.pdf
https://cointelegraph.com/bitcoin-for-beginners/what-is-the-lightning-network-in-bitcoin-and-how-does-it-work
https://cointelegraph.com/bitcoin-for-beginners/what-is-the-lightning-network-in-bitcoin-and-how-does-it-work
https://xrpscan.com/
https://github.com/lnbook/lnbook
https://github.com/lnresearch/topology
https://doi.org/10.5281/zenodo.4088530
https://doi.org/10.1109/SmartIoT52359.2021.00020
https://doi.org/10.1109/SmartIoT52359.2021.00020
https://dci.mit.edu/lightning-network
https://lightning.network/
https://docs.lightning.engineering/the-lightning-network/multihop-payments/what-makes-a-good-routing-node
https://docs.lightning.engineering/the-lightning-network/multihop-payments/what-makes-a-good-routing-node
https://eprint.iacr.org/2024/122
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://raiden.network/
https://ripple.com

Conference’17, July 2017, Washington, DC, USA Gaurav Panwar, Roopa Vishwanathan, George Torres, Satyajayant Misra

Internet Society.

[49] Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakrishnan, Kathleen Ruan, Pari-

marjan Negi, Lei Yang, Radhika Mittal, Giulia C. Fanti, and Mohammad Alizadeh.

2020. High Throughput Cryptocurrency Routing in Payment Channel Networks.

In 17th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2020, Santa Clara, CA, USA, February 25-27, 2020, Ranjita Bhagwan and

George Porter (Eds.). USENIX Association, 777–796.

[50] George Torres and Gaurav Panwar. [n. d.]. SPRITE Implementation. https:

//github.com/nsol-nmsu/sprite.

[51] B. Viswanath, M. Mondal, P. K. Gummadi, A. Mislove, and A. Post. 2012. Canal:

scaling social network-based Sybil tolerance schemes. In Proceedings of EuroSys.
309–322.

[52] PengWang, Hong Xu, Xin Jin, and TaoWang. 2019. Flash: Efficient Dynamic Rout-

ing for Offchain Networks (CoNEXT ’19). Association for Computing Machinery,

New York, NY, USA, 370–381. https://doi.org/10.1145/3359989.3365411

[53] Ruozhou Yu, Guoliang Xue, Vishnu Teja Kilari, Dejun Yang, and Jian Tang. 2018.

CoinExpress: A Fast Payment Routing Mechanism in Blockchain-Based Payment

Channel Networks. In 27th International Conference on Computer Communication
and Networks, ICCCN 2018, Hangzhou, China, July 30 - August 2, 2018. IEEE, 1–9.

[54] Xiaoxue Zhang, Shouqian Shi, and Chen Qian. 2021. WebFlow: Scalable and

Decentralized Routing for Payment Channel Networks with High Resource

Utilization. CoRR abs/2109.11665 (2021). https://arxiv.org/abs/2109.11665

[55] Yuhui Zhang andDejun Yang. 2019. RobustPay: Robust Payment Routing Protocol

in Blockchain-based Payment Channel Networks. In 2019 IEEE 27th International
Conference on Network Protocols (ICNP). 1–4.

[56] Yuhui Zhang and Dejun Yang. 2021. RobustPay
+
: Robust Payment Routing With

Approximation Guarantee in Blockchain-Based Payment Channel Networks.

IEEE/ACM Trans. Netw. 29, 4 (2021), 1676–1686.
[57] Yuhui Zhang, Dejun Yang, and Guoliang Xue. 2019. CheaPay: An Optimal

Algorithm for FeeMinimization in Blockchain-Based Payment Channel Networks.

In 2019 IEEE International Conference on Communications, ICC 2019, Shanghai,
China, May 20-24, 2019. IEEE, 1–6.

8 APPENDIX
8.1 AS Function Definitions

Definition 1. (Sequential Aggregate Signatures [43]). Let G1, G2
be prime-order cyclic groups of size 𝑝 , such that 𝑔 ∈ G1, 𝑔 ∈ G2, and
𝑒 : G1 × G2 → G𝑇 .
• AS.Setup(1𝑘): Given a security parameter 𝑘 , this algorithm
selects a random 𝑥 ∈ Z𝑝 and outputs 𝑝𝑝 ← (𝑝,G1,G2, G𝑇 , 𝑒,
𝑔, 𝑋, 𝑔, 𝑋), where 𝑋 = 𝑔𝑥 and 𝑋 = 𝑔𝑥 .
• AS.KeyGen(𝑝𝑝): This algorithm selects a random 𝑦 ←$ Z𝑝 ,
computes 𝑌 ← 𝑔𝑦 and sets sk as 𝑦 and pk as 𝑌 .
• AS.Sign(sk, 𝜎, (𝑚1, . . . ,𝑚𝑟), (pk1, . . . , pk𝑟),𝑚) proceeds as fol-
lows:
– If 𝑟 = 0, then 𝜎 ← (𝑔,𝑋);
– If 𝑟 > 0 but AS.Verify((pk

1
, . . . , pk𝑟), 𝜎, (𝑚1, . . . ,𝑚𝑟)) =

0, then it halts;
– If𝑚 = 0, then it halts;
– If for some 𝑗 ∈ {1, ..., 𝑟 } pk𝑗 = pk, then it halts.
If the algorithm did not halt, then it parses sk as 𝑦 and 𝜎
as (𝜎1, 𝜎2), selects 𝑡 ←$ Z𝑝 and computes 𝜎′ = (𝜎′

1
, 𝜎′

2
) ←

(𝜎𝑡
1
, (𝜎2 · 𝜎𝑦 ·𝑚

1
)𝑡). It eventually outputs 𝜎′.

• AS.Verify((pk
1
, . . . , pk𝑟), (𝑚1, . . . ,𝑚𝑟), 𝜎) parses𝜎 as (𝜎1, 𝜎2)

and pk𝑗 as 𝑌𝑗 , for 𝑗 = 1, . . . , 𝑟 , and checks whether 𝜎1 ≠ 1G1

and 𝑒 (𝜎1, 𝑋 ·
∏
𝑌
𝑚 𝑗

𝑗
= 𝑒 (𝜎2, 𝑔 are both satisfied. In the positive

case, it outputs 1, and 0 otherwise.

8.2 Algorithms
Subroutine for intermediate node (Algorithm 8): This algo-

rithm details the functions called by nodes in the network during

hold and pay phases discussed in Algorithm 5. hold function is

called by different nodes when they receive a hold𝑠 or hold𝑟 tuple.

If the receiving node happens to be a perimeter node, it checks if

the tuple was addressed to it (line 5). If so, and if it has a path to

transmit the asking amount, it updates the hold𝑠 tuple with the

destination RN as the receiver and forwards the message. Nodes in

the network that have a path to the target RN or perimeter node,

set the transaction’s local retry counter to be zero. They also store

the transaction digest and identity of the destination RN, initialize

the timers 𝑡𝑒1 and 𝑡𝑒2, forward the message to their neighbor, and

sign a multisig hold contract with their neighbor. Each node also

sets its transaction-specific timers, 𝑡𝑒1 .txid and 𝑡𝑒2 .txid. If the node
is the target RN node in the hold message, it follows Algorithm 6

to process the message.

If the node is a non-perimeter, non-RN node, it signs a multisig
contract with its neighbor and forwards the message to its next-

hop neighbor after checking if it has a viable path with sufficient

liquidity to the destination RN/perimeter node (lines 11-16). Let us

now focus on nodes setting their timers. Each Node computes two

transaction-specific timers txid .𝑡𝑒1 and txid .𝑡𝑒2 as functions of the
current time currTime and the global 𝑡𝑒1 and 𝑡𝑒2 (line 13, 15). We

do this since each node that is not a destination (either perimeter

node or an RN) cannot simply use 𝑡𝑒1 and 𝑡𝑒2 for timeouts, since we

need to ensure that timeouts of nodes are staggered, i.e., the node

closest to a destination times out first, whereas the nodes farthest

away from the destination time out last. If a node receives multiple

copies of a hold𝑥 message (where 𝑥 ∈ {𝑠, 𝑟 } corresponding to sender
and receiver respectively) associated with the same txid, it ignores
subsequent messages. When a node cannot find any viable path

to a destination (even after retries), it sends a holdReject message

back to its predecessor from whom it received the hold𝑥 message.

It also sends a copy of its current routingTable so the predecessor
can update its own routingTable.

The holdReject function is called by a node in the network on

receiving a holdReject message. Nodes in the network could choose

to retry on other paths uptomaxRetries limit (lines 18-19) or choose

to forward holdRejectmessage back towards the sender if path is un-

available to a target RN (line 23). If Alice or Bob receive a holdReject,
that means that there is no viable path from their neighbor to RN𝑠

(for Alice) or RN𝑟 (for Bob), hence they need to retry the transac-

tion with different neighbors and possibly new RNs (line 21). The

way RNs handle hold𝑥 , holdReject messages is slightly different; we

discuss RNs’ actions in these phases separately in Algorithm 6. The

holdACK function is called by a node on receiving a holdACK𝑥 mes-

sage. When the target RN in a given segment receives a hold𝑥 tuple,

and is willing to process the transaction, it sends back a holdACK
tuple containing its signature to the neighboring node it received

the hold𝑥 tuple from.

When a node receives a holdACK𝑥 tuple, it deletes its timer

𝑡𝑒1, and forwards the holdACK𝑥 to its predecessor. Ultimately, the

sender should receive the holdACK𝑥 tuple, which will tell her that

the hold𝑥 messages along that segmentwere successful, and reached

the destination RN. If a node does not receive a holdACK tuple until

𝑡𝑒1 expires, it calls the holdACKTimeout function, which retries the

transaction if possible, else it drops the transaction and sends a

holdReject𝑥 tuple towards the sender (line 28). If any node including

an RN receives a hold tuple on a different path, after it has already

forwarded a holdACK towards Alice on another path, then it should

replay the holdACK tuple on the new path and send a holdReject

https://github.com/nsol-nmsu/sprite
https://github.com/nsol-nmsu/sprite
https://doi.org/10.1145/3359989.3365411
https://arxiv.org/abs/2109.11665

SPRITE: Secure and Private Routing in Payment Channel Networks Conference’17, July 2017, Washington, DC, USA

message on the previous path. This accounts for a malicious node on

any path not forwarding holdACK tuples downstream thus timing

out nodes preceding it, and prompting the formation of another

path to the target RN. Due to space constraints, we discuss the pay

phase actions in the full version [40].

Algorithm 8: Subroutine for every node for hold and pay
phase

def hold (hold𝑥 , 𝑌 , 𝑉𝐾RN(·) , 𝜈, txid, 𝐶RN(·) , hopMax, digest,
𝑡𝑒1, 𝑡𝑒2)

1 if � (𝑌 , node𝑗 , 𝑝 𝑗) in routingTable with
𝑝 𝑗 = (hopCount, currMax𝑠 , currMax𝑟 , 𝑡𝑒) where
(hopCount ≤ hopMax) ∧ ((currMax𝑥 ≥ 𝜈)∨ ((lw𝑖 𝑗 ≥
𝜈) ∧ (currTime ≥ 𝑡𝑒))) then

2 Create tuple (holdReject𝑥 , 𝑌 ,𝑉𝐾RN(·) , 𝜈, txid) and
send with routingTable to neighbor that sent hold𝑥 .

3 Call multisig(𝑅𝑒𝑣 ,⊥, 𝑖 , 𝑗 , lw𝑖 𝑗 , 𝜈 , txid, ts) and delete

𝑟𝑒𝑡𝑟𝑦.txid, digest.txid, segTarget.txid = RN(·) ,
𝑡𝑒1 .txid, and 𝑡𝑒2 .txid.

4 return
5 if Nonce𝑖 ∈ (hold𝑠 , Nonce𝑖 , 𝑉𝐾RN(·) , 𝜈, txid, 𝐶RN(·) ,

hopMax,digest, 𝑡𝑒1, 𝑡𝑒2) tuple belongs to node𝑖 then
6 Lookup routingTable for tuple (RN(·) , node𝑗 , 𝑝 𝑗)

with 𝑝 𝑗 = (hopCount, currMax𝑠 , currMax𝑟 , 𝑡𝑒)
where (hopCount ≤ hopMax) ∧ ((currMax𝑥 ≥
𝜈)∨ ((lw𝑖 𝑗 ≥ 𝜈) ∧(currTime ≥ 𝑡𝑒))), update hold𝑠
tuple to (hold𝑠 , RN(·) , 𝑉𝐾RN(·) , 𝜈, txid, 𝐶RN(·) ,
hopMax, digest, 𝑡𝑒1, 𝑡𝑒2) with hopMax = hopCount,

and forward to node𝑗 . Set 𝑟𝑒𝑡𝑟𝑦.txid = 0,

digest.txid = digest, segTarget.txid = RN(·) ,
𝑡𝑒1 .txid = currTime + (𝑡𝑒1 ∗ hopCount), and
𝑡𝑒2 .txid = currTime + 𝑡𝑒2. Call multisig(⊥,hold𝑠 , 𝑖 ,
𝑗 , lw𝑖 𝑗 , 𝜈 ,txid,ts).

7 Update 𝑡𝑒 = currTime + 𝑒 and currMax𝑠 = currMax𝑠

−𝜈 for 𝑝 𝑗 in routingTable. return
8 else if 𝑛𝑜𝑑𝑒𝑖 == RN(·) then
9 Follow Alg. 6.

10 else
11 Update hold𝑥 tuple hopMax = hopMax − 1 and

forward tuple to node𝑗 .

12 if Y = Nonce(·) then
13 Set 𝑟𝑒𝑡𝑟𝑦.txid = 0, digest.txid = digest,

segTarget.txid = RN(·) , 𝑡𝑒1 .txid =

currTime + (𝑡𝑒1 ∗ (hopCount + hopMax𝑅𝑁)),
and 𝑡𝑒2 .txid = currTime + 𝑡𝑒2.

14 else
15 Set 𝑟𝑒𝑡𝑟𝑦.txid = 0, digest.txid = digest,

segTarget.txid = RN(·) ,
𝑡𝑒1 .txid = currTime + (𝑡𝑒1 ∗ hopCount), and
𝑡𝑒2 .txid = currTime + 𝑡𝑒2.

16 Call multisig(⊥,hold𝑥 , 𝑖 , 𝑗 , lw𝑖 𝑗 , 𝜈 ,txid,ts). Update
𝑡𝑒 = currTime + 𝑒 and currMax𝑥 = currMax𝑥 ± 𝜈
for 𝑝 𝑗 in routingTable.

R2RB Bootstrap protocol (Algorithm 9) describes the opera-
tions during the bootstrap phase of the R2RB protocol.

def holdReject (holdReject𝑥 , 𝑌 , VKRN(·) , 𝜈 , txid)
17 Update local routingTable with new info received.

18 if (∃ (𝑌 , node𝑗 , 𝑝 𝑗) with 𝑝 𝑗 = (hopCount, currMax𝑠 ,

currMax𝑟 , 𝑡𝑒) where (hopCount ≤ hopMax) ∧
(𝑟𝑒𝑡𝑟𝑦.txid < maxRetries) ∧ ((currMax𝑥 ≥ 𝜈)∨
((lw𝑖 𝑗 ≥ 𝜈) ∧ (currTime ≥ 𝑡𝑒))) then

19 Update hold𝑥 tuple hopMax = hopMax − 1 and
forward tuple to node𝑗 . Call multisig(⊥,hold𝑥 , 𝑖 , 𝑗 ,
lw𝑖 𝑗 , 𝜈 ,txid,ts). Set 𝑟𝑒𝑡𝑟𝑦.txid = 𝑟𝑒𝑡𝑟𝑦.txid + 1.

20 else if (node𝑖 == Alice ∧ � (RN𝑠 ,node𝑗 ,𝑝 𝑗)) ∨
(node𝑖 == Bob ∧ � (RN𝑟 ,node𝑗 ,𝑝 𝑗)) where
𝑝 𝑗 = (hopCount, currMax𝑠 , currMax𝑟 , 𝑡𝑒) and
currMax𝑥 ≥ 𝜈 then

21 Choose new 𝜈 ′ and restart Algorithm 3 and 4.

22 else
23 Forward tuple (holdReject𝑥 , 𝑌 ,𝑉𝐾RN(·) , 𝜈, txid) along

with local routingTable to neighbor that sent hold𝑥 .
24 Call multisig(𝑅𝑒𝑣 ,⊥, 𝑖 , 𝑗 , lw𝑖 𝑗 , 𝜈 ,txid,ts) and delete

𝑟𝑒𝑡𝑟𝑦.txid, digest.txid, 𝑡𝑒1 .txid, and 𝑡𝑒2 .txid.
def holdACK (holdACK𝑥 , 𝑡, 𝜎RN(·))

25 Update local routingTable with new info received.

26 Parse 𝑡 = (txid, hold𝑥 , 𝜈). Verify(vkRN(·) , 𝜎RN(·) , 𝑡) → 1,

RN(·) == segTarget.txid, and delete timer 𝑡𝑒1 for txid.
27 node𝑖 then forwards the holdACK𝑥 tuple with

routingTable to neighbor that sent hold𝑥 .
def holdACKTimeout()

28 node𝑖 calls multisig(𝑅𝑒𝑣 ,⊥, 𝑖 , 𝑗 , lw𝑖 𝑗 , 𝜈 ,txid,ts) to node𝑗

that it had sent hold𝑥 tuple to, and retries send hold𝑥 to

other neighbors for target 𝑌 for txid. If no such

neighbors exist, create holdReject𝑥 tuple, call

multisig(𝑅𝑒𝑣 ,⊥, 𝑖 , 𝑜 , lw𝑖𝑜 , 𝜈 , txid, ts), and send along

with routingTable to node𝑜 that sent hold𝑥 message.

Delete 𝑟𝑒𝑡𝑟𝑦.txid, digest.txid, segTarget.txid = RN(·) ,
𝑡𝑒1 .txid, and 𝑡𝑒2 .txid.

def pay(pay, preimage, 𝜈 , txid)

29 if 𝐻 (preimage)
?

≠ digest.txid then
30 return ⊥.
31 if node𝑖 is an RN then
32 Follow Alg. 6.

33 if node𝑖 is Alice then
34 Create 𝑡 = (pay, txid, preimagetxid , 𝜈), set payACK =

(payACK, 𝑡, ⊥) and send to neighbor that sent pay
tuple. return

35 Forward pay tuple to next neighbor node𝑜 on txid path

along with multisig(⊥,pay, 𝑖 , 𝑜 , lw𝑖𝑜 , 𝜈 ,txid,ts).

We recall that R2RB differs from R2NB in the distance each RN

has to broadcast the RN-Update message which is depicted in Fig-

ure 5. This distance is larger in R2RB because of the absence of

perimeter nodes in the network. The broadcasted messages from

eachRN travel a certain number of hops away from theRN, allowing

nodes in the given area to route transactions to the corresponding

RN. Due to the larger broadcast area, neighboring RNs will receive

each other’s broadcast messages and be able to route transactions

Conference’17, July 2017, Washington, DC, USA Gaurav Panwar, Roopa Vishwanathan, George Torres, Satyajayant Misra

def payACK(payACK, ·, ·)
36 if Received (payACK, 𝑡, 𝜎RN(·)) then
37 Parse 𝑡 = (pay, txid, vkRN(·) , 𝜈), Verify(vkRN(·) ,

𝜎RN(·) , 𝑡) → 1, verify RN(·) ∈ RN, delete 𝑡𝑒2 .txid.
38 node𝑖 then forwards the payACK tuple to the

neighbor it had received the pay tuple from.

39 else if Received (payACK, 𝑡,⊥) then
40 Parse 𝑡 = (pay, txid, preimagetxid , 𝜈), verify

𝐻 (preimagetxid
?

= digest.txid, if true delete 𝑡𝑒2 .txid.
41 If node𝑖 == RN𝑠 , return, else forward the payACK to

neighbor that sent pay tuple.

def payACKTimeout()
42 node𝑖 calls multisig(𝑅𝑒𝑣 ,⊥, 𝑖 , 𝑗 , lw𝑖 𝑗 , 𝜈 ,txid,ts) to the

neighbor node𝑗 that it had originally sent pay tuple to

and to the other neighbor that it had originally

received pay tuple from.

Figure 5: RNs neighborhoods in R2RB.

between them directly. The key advantage for R2RB is the elim-

ination of perimeter nodes, with the trade-off of larger message

complexity in the system due to larger broadcast distances for the

RN-Update message.

Multisig contracts (Algorithm 10): The hold and pay phases

involve neighboring nodes signing multisig contracts between

them. In the hold phase, the contract stipulates that two neigh-

boring nodes 𝑗 and 𝑘 agree to decrease/increase their link weights

lw𝑗𝑘 and lw𝑘 𝑗 respectively, by the sender’s asking amount (𝜈) in the

future when the pay tuple comes through. Themultisig contract in

the pay phase actually updates the link weights, and both neighbor-

ing nodes need to sign the new balances. Note that in the RN𝑟 -Bob
segment, since the payment goes in the RN𝑟 → Bob direction, the

link weights are updated in the opposite direction compared to the

Alice − RN𝑠 and RN𝑠 − RN𝑟 segments. If amultisig contract signed

in the hold or pay phases needs to be revoked, the contract and

signatures on them are discarded.

8.3 Informal Security Analysis
Bootstrapping phase: For verifying if RNs set up correct AS pa-
rameters, 𝑝𝑝 , all nodes along a path can individually check if they

can produce a valid signature on a test message, else discard the

Algorithm 9: R2RB: Bootstrap broadcast from RN to RN

1 Each node 𝑖 initializes a table, routingTable𝑖 containing
columns: (reachableRNs, next hop neighbor 𝑗, currMax𝑠 ,

currMax𝑟 , hopCount, 𝑡𝑒).
2 for each RN, 𝑘 ∈ RN do
3 𝑘 does AS.Setup(1𝜆) → 𝑝𝑝𝑘 and runs

AS.KeyGen(𝑝𝑝𝑘) → (sk𝑘 , vk𝑘).
4 Create a tuple𝑚𝑘 = (RN-Update, 𝑝𝑝𝑘 , vkRI𝑘 , currMax

𝑘
𝑠 ,

currMax
𝑘
𝑟 , hopCount = 0, hopMax, ts) for each

neighbor 𝑗 , 𝑗 ∈ [1..𝑙] where 𝑙 is the total number of

neighbors of 𝑘 . Create 𝜎′
𝑘
← Sign(skRI𝑘 ,𝑚𝑘) and set

𝑚′
𝑘
= (𝑚𝑘 , 𝜎′𝑘) Create signature

𝜎𝑘 ← AS.Sign(sk𝑘 ,⊥,⊥,⊥,𝑚′𝑘).
5 𝑘 sends𝑀 = ((𝑚′

𝑘
), (vk𝑘), 𝜎𝑘) to each neighbor 𝑗 .

6 for each node 𝑖 in the network on receiving an RN-Update
message from neighbor 𝑗 do

7 On receiving𝑀 = ((𝑚′
𝑘
, . . . ,𝑚 𝑗), (vk𝑘 , . . . , vk𝑗), 𝜎 𝑗), 𝑖

parses (𝑚𝑘 , 𝜎′𝑘) ←𝑚′
𝑘
and (RN-Update, 𝑝𝑝𝑘 , 𝑉𝐾𝑘 ,

currMax
𝑘
𝑠 , currMax

𝑘
𝑟 , hopCount, hopMax, ts)←𝑚𝑘 .

8 if (Verify(𝑚𝑘 , 𝑉𝐾𝑘 ,𝜎′𝑘) → 0)∨ (AS.Verify((𝑚𝑘 , . . . ,
𝑚 𝑗), (vk𝑘 , . . . , vk𝑗), 𝜎 𝑗) → 0) then

9 Return ⊥.
10 𝑖 checks that hopCount value in all messages

(𝑚′
𝑘
, . . . ,𝑚 𝑗) are incremented by 1 in each message. If

not, return ⊥.
11 𝑖 runs AS.KeyGen(𝑝𝑝𝑘) → (sk𝑖 , vk𝑖).
12 𝑖 updates its local routingTable for RN 𝑘 and neighbor 𝑗

by updating the expiry time 𝑡𝑒 = ts + 𝑒 , currMax
𝑘
𝑠 , and

currMax
𝑘
𝑟 .

13 if hopCount of received message is equal to hopMax in
𝑚𝑘 then

14 Return ⊥.
15 else
16 for each neighbor 𝑠 do
17 𝑖 creates𝑚𝑖 by updating contents of𝑚 𝑗 as

hopCount = hopCount + 1,
currMax

𝑘
𝑠 =𝑚𝑖𝑛(currMax

𝑘
𝑠 , lw𝑖,𝑠), and

currMax
𝑘
𝑟 =𝑚𝑖𝑛(currMax

𝑘
𝑟 , lw𝑠,𝑖).

18 𝑖 creates signature 𝜎𝑖 ← AS.Sign(sk𝑖 , 𝜎 𝑗 ,
(𝑚′
𝑘
, . . . , 𝑚 𝑗), (vk𝑘 , . . . , vk𝑗),𝑚𝑖).

19 𝑖 sets𝑀 = ((𝑚′
𝑘
, . . . ,𝑚 𝑗 , 𝑚𝑖), (vk𝑘 , . . . ,

vk𝑗 , vk𝑖), 𝜎𝑖) and sends it to neighbor 𝑟 .

𝑝𝑝 (we have not shown this simple step for presentation clarity).

If RNs do not selectively forward to certain neighbors, we do not

consider it as malicious behavior. The regular nodes within a given

RN’s hopMax radius will receive the RN’s broadcasted messages

from other neighbors in the neighborhood.

The next issue is nodes underreporting or overreporting currMax𝑠

and currMax𝑟 . We do not consider nodes underreporting currMax𝑠

and currMax𝑟 as malicious behavior since every node can individu-

ally decide the amount of funds to commit on its own links. If nodes

overreport currMax𝑠 , currMax𝑟 to a value greater than that of their

SPRITE: Secure and Private Routing in Payment Channel Networks Conference’17, July 2017, Washington, DC, USA

Algorithm 10: Multisig Exchange

Input :𝑜 ∈ {⊥, 𝑅𝑒𝑣},𝑡 ∈ {hold𝑠 | hold𝑟 | pay}, 𝑗 , 𝑆𝐾 𝑗 , 𝑉𝐾𝑗 ,
𝑘 , 𝑆𝐾𝑘 , 𝑉𝐾𝑘 , lw𝑗𝑘 , 𝜈 ,txid,ts

1 if 𝑜 == 𝑅𝑒𝑣 then
2 𝑗 and 𝑘 discard currently stored contracts for txid and

delete 𝑓 𝑤 𝑗𝑘 .txid and 𝑓 𝑤𝑘 𝑗 .txid.
3 return
4 if 𝑡 == pay then
5 𝑗 and 𝑘 set lw𝑗𝑘 = 𝑓 𝑤 𝑗𝑘 .txid and lw𝑘 𝑗 = 𝑓 𝑤𝑘 𝑗 .txid.
6 return
7 if 𝑡 == hold𝑠 then
8 Set 𝑓 𝑤 𝑗𝑘 = lw𝑗𝑘 − 𝜈 . Set 𝑓 𝑤𝑘 𝑗 = lw𝑘 𝑗 + 𝜈 .
9 if 𝑡 == hold𝑟 then
10 Set 𝑓 𝑤 𝑗𝑘 = lw𝑗𝑘 + 𝜈 . Set 𝑓 𝑤𝑘 𝑗 = lw𝑘 𝑗 − 𝜈 .
11 𝑗 sends 𝜎 𝑗 ← Sign𝑆𝐾𝑗

(contract = (lw𝑗𝑘 ,lw𝑘 𝑗 , 𝑓 𝑤 𝑗𝑘 ,

𝑓 𝑤𝑘 𝑗), txid, digest, ts) to 𝑘 .
12 𝑘 sends 𝜎𝑘 ← Sign𝑆𝐾𝑘

(contract = (lw𝑗𝑘 ,lw𝑘 𝑗 , 𝑓 𝑤 𝑗𝑘 ,

𝑓 𝑤𝑘 𝑗), txid , digest, ts) to 𝑗 .

13 if Verify𝑉𝐾𝑘
(contract, 𝜎𝑘)

?← 1 then
14 𝑗 stores (𝜎 𝑗 , 𝜎𝑘 , contract), 𝑓 𝑤𝑘 𝑗 .txid = 𝑓 𝑤𝑘 𝑗 and

𝑓 𝑤 𝑗𝑘 .txid = 𝑓 𝑤 𝑗𝑘 .

15 if Verify𝑉𝐾𝑗
(contract, 𝜎 𝑗)

?← 1 then
16 𝑘 stores (𝜎 𝑗 , 𝜎𝑘 , contract), 𝑓 𝑤𝑘 𝑗 .txid = 𝑓 𝑤𝑘 𝑗 and

𝑓 𝑤 𝑗𝑘 .txid = 𝑓 𝑤 𝑗𝑘 .

17 if 𝑡 == hold𝑠 then
18 𝑗 updates the currMax𝑠 =𝑚𝑖𝑛(𝑓 𝑤 𝑗𝑘 , currMax𝑠) for all

paths going through 𝑘 . 𝑘 updates the

currMax𝑟 =𝑚𝑖𝑛(𝑓 𝑤𝑘 𝑗 , currMax𝑟) for all paths going
through 𝑗 .

19 if 𝑡 == hold𝑟 then
20 𝑗 updates the currMax𝑟 =𝑚𝑖𝑛(𝑓 𝑤 𝑗𝑘 , currMax𝑟) for all

paths going through 𝑘 . 𝑘 updates the

currMax𝑠 =𝑚𝑖𝑛(𝑓 𝑤𝑘 𝑗 , currMax𝑠) for all paths going
through 𝑗 .

own links, that is malicious behavior. Due to privacy concerns,

nodes’ link weights cannot, of course, be verified by anyone, but

overreporting will eventually cause transaction failure (since there

was no actual liquidity) and result in revoked hold/pay contracts

with penalties for the misbehaving node. In any case, no node will

lose money. The AS scheme helps verify that the currMax values do

not increase in the series of aggregated messages to help identify

malicious nodes in the network as well. A malicious node cannot

increase the currMax𝑠 , currMax𝑟 value signed by the RN as part of

the first aggregated message because the first message is signed by

the RN using its publicly verifiable signing key.

The other potential source of malicious behavior is nodes un-

derreporting or overreporting hopCount values. First note that the

hopCount is contained in every message ((𝑚′
𝑘
, . . . ,𝑚 𝑗), Line 7 in

Algorithm 1) that is aggregated in the signature. Any honest node

along a path can verify that the hopCount contained within every

message is incremented by one, starting with𝑚′
𝑘
= 0 (thus reduc-

ing hopCounts would be immediately detected, and the RN-Update

message discarded). Inflating hopCounts would not be in the best

interest of the malicious node(s) because honest nodes could have

alternative shorter paths to the intended target node.

Concerning perimeter nodes, two situations could arise: Case 0:

A regular node pretends to be a perimeter node by overreporting its

hopCount. In this case, that node’s nonce will not figure in the set

intersection of two RNs since the node was not actually a perimeter

node. The node cannot do anything further. Case 1: A perimeter

node underreports its hopcount or drops a message. We do not

consider this malicious behavior, since it just means that the node

does not wish to participate in transactions. Since the RN-Update
messages are broadcasted, RNs will get replies from other perimeter

nodes. Even if an RN does not pad its nonce list with random nonces

(Algorithm 2, Line 2), it will not leak the identity of its perimeter

nodes to other RNs, although it will reveal the number of perimeter

nodes that RN has paths to.

Hold phase: If an honest node along a path does not receive

holdACK or holdReject messages for a given transaction before the

expiry of its timer 𝑡𝑒1, the transaction will time out and will have to

be retried. Malicious nodes can try to change the message type (the

first field), but unknown message types will get dropped by honest

nodes along a path. Malicious nodes might also try to change the

“Y” parameter denoting the identity of the next RN or perimeter

node to forward messages to (Algorithm 5, Case 1, 2). The message

will be held at the misdirected RN/perimeter node which could also

be potentially malicious. But eventually, the hold phase for that

segment will timeout, and the hold contracts will be rolled back.

Other parameters such as hopMax, digest being modified, or𝐶
RN(·)

being re-encrypted (Algorithm 5, Case 1) will result in the hold
messages being misdirected, but the hold phase times out, and we

will not get to the pay phase.

Amalicious RN𝑠 cannot misroute a hold message tuple to an RN
′
𝑟

instead of the sender’s selected RN𝑟 , e.g., by creating an incorrect

onion. This is becauseBob’s hold𝑟 will be sent toRN𝑟 , and sinceRN′𝑟
never received it, the misrouted transaction will eventually time out,

and any signed contracts will be rolled back. Similarly, no malicious

node, including RNs can increase/decrease the transaction amount

𝜈 to an arbitrary value, because: 1) since the receiver knows the

correct amount, the hold will eventually timeout at the last hop

and fail. 2) All honest nodes along the path will have to commit

to paying the amount in the hold phase. Any honest nodes which

receive a paymessage with a transaction amount different from the

original hold message will refuse to proceed with the pay phase,

hence timing out the transaction and causing a rollback of contracts.

The one thing that a malicious RN𝑠 could potentially do is in-

crease the path length to RN𝑟 by several more RNs than is required.

The transaction will eventually reach RN𝑟 via a longer path in the

RN𝑠 − RN𝑟 segments. Potential solutions include the sender speci-

fying a maximum number of layers in the onion encryption at RN𝑠 ,

based on periodic network statistics released by the RNs. We leave

incorporating such mechanisms into SPRITE as future work.

Pay phase: If a node intentionally misroutes the pay tuple or

does not forward it, resulting in the pay tuple not reaching the target

node on time, 𝑡𝑒2 timer will expire, causing nodes to time out and

rollback their pay contracts. In case of any other malicious activity,

the hold contract signed in the previous phase can be enforced.

	Abstract
	1 Introduction
	2 SPRITE System Model
	2.1 Parties
	2.2 Setup
	2.3 System Parameters
	2.4 Threat Model and Security/Privacy Goals

	3 Workflow of SPRITE
	4 Construction of SPRITE
	4.1 Bootstrap phase
	4.2 Hold phase
	4.3 Pay phase

	5 Security Analysis
	5.1 Potential Attacks and Mitigation
	5.2 Formal Security Analysis

	6 Experimental Analysis
	6.1 Experimental Setup
	6.2 Experimental Results

	7 Conclusion
	References
	8 Appendix
	8.1 AS Function Definitions
	8.2 Algorithms
	8.3 Informal Security Analysis

