SPRITE: Secure and Private Routing in Payment Channel
Networks

Gaurav Panwar, Roopa Vishwanathan, George Torres, Satyajayant Misra
New Mexico State University
{gpanwar, roopav, gtorresz, misra}@nmsu.edu

ABSTRACT

Payment channel networks are a promising solution to the scal-
ability challenge of blockchains and are designed for significantly in-
creased transaction throughput compared to the layer one blockchain.
Since payment channel networks are essentially decentralized peer-
to-peer networks, routing transactions is a fundamental challenge.
Payment channel networks have some unique security and privacy
requirements that make pathfinding challenging, for instance, net-
work topology is not publicly known, and sender/receiver privacy
should be preserved, in addition to providing atomicity guaran-
tees for payments. In this paper, we present an efficient privacy-
preserving routing protocol, SPRITE, for payment channel net-
works that supports concurrent transactions. By finding paths of-
fline and processing transactions online, SPRITE can process trans-
actions in just two rounds, which is more efficient compared to
prior work. We evaluate SPRITE’s performance using Lightning
Network data and prove its security using the Universal Compos-
ability framework. In contrast to the current cutting-edge methods
that achieve rapid transactions, our approach significantly reduces
the message complexity of the system by 3 orders of magnitude
while maintaining similar latencies.

CCS CONCEPTS

« Security and privacy — Distributed systems security; Secu-
rity protocols.

KEYWORDS

Privacy preserving protocols, Payment channel networks, Secure

pathfinding

ACM Reference Format:

Gaurav Panwar, Roopa Vishwanathan, George Torres, Satyajayant Misra.
2024. SPRITE: Secure and Private Routing in Payment Channel Networks. In
Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,
17 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Researchers have been devising efficient techniques to make cryp-
tocurrency transactions more scalable, e.g., Bitcoin currently pro-
cesses around seven transactions per second, and Ethereum around

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2024 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

thirty transactions per second [6, 18], compared to centralized pay-
ment systems, such as Visa Inc., which, at a conservative estimate,
can support up to 1700 transactions per second [5]. For addressing
this, Layer-2 protocols, such as payment channels have been pro-
posed as a workaround [31, 36, 45, 46], where several thousands of
transactions can be processed with minimal blockchain writes and
with no changes required to the blockchain’s underlying consensus
mechanism (unlike other approaches such as sharding and alter-
nate consensus mechanisms [22, 28, 29, 37, 41]). Payment channels
also help enable microtransactions, which allow users to send small
amounts of money, e.g., 10~% Bitcoin, but without incurring high
blockchain transaction fees [30].

Overview of payment channels: Two parties, Alice and Bob open
a payment channel by depositing a certain amount of cryptocur-
rency into an address on a blockchain controlled by both parties’
signing keys. Say, Alice deposits x coins, and Bob deposits y coins.
Alice and Bob can conduct several transactions by exchanging au-
thenticated messages, thus changing the distribution of the coins in
the channel, but without writing anything to the blockchain. The
net worth of the channel remains x +y coins. At a mutually agreed-
upon time, they can close the channel by writing a blockchain
transaction that commits the final, authenticated distribution of the
coins to the blockchain. The coins are paid to Alice and Bob per
the final transaction. To facilitate transactions between two par-
ties that may not have a payment channel currently open between
them, decentralized payment channel networks (PCNs) that enable
transitive payments have been proposed [34, 35, 39, 47], where two
unconnected users can send/receive payments if there exists a path
comprising of several users with payment channels between them.
Motivation: Layer-2 protocols such as PCNs are gaining wide-
spread acceptance. Lightning Network, which is a popular PCN
based on the Bitcoin blockchain, had over 6 million users and 28 mil-
lion payment channels open between June 2021 to July 2022 [31, 44].
Peer-to-peer (p2p) transactions between users in PCNs are becom-
ing increasingly common, e.g., in 2021, another popular PCN, Ripple,
had 15 million unique p2p transactions annually, with a maximum
path length of 43 hops [4, 7]. Routing protocols which help discover
payment paths between sender and receiver are at the core of PCNss.
There could exist several paths between a sender and receiver in a
PCN with differing channel balances. Each hop on a path incurs a
routing fee, hence longer paths cost more.

Routing in PCNs is fundamentally different from traditional net-
work routing in both, intent and security/privacy requirements,
hence network routing protocols cannot be trivially ported to PCNs.
Assuming a network graph with nodes and weighted links connect-
ing them, in regular network routing, the intent is to transmit data,
not route payments. Transmitting data does not alter the state of
the nodes, but routing payments changes nodes’ available link bal-
ances. In network routing, bandwidth capacities and router/switch

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

identities are usually not considered private information, whereas,
in PCNs, transaction amounts and node identities need to be kept
private from all other nodes in the network. Transmission range and
physical distance between devices are factors in network routing,
but not in PCNs. PCNs reside entirely at the application layer, unlike
network protocols in communication networks. Hence network
routing protocols cannot be trivially ported.

Maximum flow algorithms such as Ford-Fulkerson [23] or Goldberg-
Tarjan [24] would require either source routing or an external cen-
tralized, trusted entity to compute routes, besides having a high
path computation overhead of O(|V||E|?) and O(|V|?) respectively,
in a graph G(V, E). While distributed versions of shortest path al-
gorithms such as Dijkstra’s algorithm exist [11, 12], they incur a
computational complexity of O(|V|?) + O(|V|), which makes their
scalability to large PCNs challenging.

Robust, scalable, decentralized PCN routing protocols hold the
promise of making cryptocurrency transactions faster, hence, de-
signing secure and efficient PCN routing protocols is a challenging
research problem of practical significance. Such protocols can be
used for on-demand pathfinding and routing in other decentral-
ized networks, particularly edge networks, which have high node
turnover rates.

Table 1: Routing Protocols in PCNs

Decen- Atomi-
tralized city

PCN Routing proto- | Privacy of
cols nodes

FSTR [33]

Eckey et al. [20]
Auto tune [26]
Kadry et al. [27]
MPCN-RP [17]
SilentWhispers [34]
SpeedyMurmurs [47]
BIANC [39]
Coinexpress [53]
Vein [25]

Spider [49]

Flash [52]
Robustpay [55]
Robustpay+ [56]
Webflow [54]
SPRITE

< 3 333 3] x| < <] < x| x| x| x|
N RN R R R R P PR PN R R R R PN R
SR IENENENE L ENENE I ENENE S R ENE S

Related Work: Several early PCN routing protocols were cen-
tralized where routing relied on trusted entities [34, 38, 51]. Some
protocols did not support concurrency [34], while others chose
paths without knowing whether the chosen path can satisfy a
minimum asking amount [47]. Some routing protocols do source
routing [35, 49] where a sender constructs the entire path from
itself to the receiver, while many protocols do not consider secu-
rity and privacy aspects [17, 20, 21, 25-27, 55-57]. We provide a
comparison of other relevant PCN routing protocols with SPRITE
in Table 1, where our comparison metrics are informed by our
security/privacy goals. The protocol in [39], while satisfying our

Gaurav Panwar, Roopa Vishwanathan, George Torres, Satyajayant Misra

three comparison metrics, has a very high communication over-
head, where every transaction requires blockchain writes, which
defeats the idea of off-chain PCNs. Real-world PCNs such as Light-
ning Network (LN) [13, 31] implement a gossiping routing protocol,
where each node gossips with its peers to build a local map of the
network. This has issues such as nodes not being able to validate
information given by peers, and often not finding the shortest path.
Our Contributions: In this paper, we design a decentralized rout-
ing protocol for PCNs, SPRITE, which helps reduce trust assump-
tions, takes into account network dynamics, and preserves key
security/privacy goals, while supporting concurrent transactions
with short paths. We formally prove the security of SPRITE in the
Universal Composability framework. We experimentally evaluate
the performance of SPRITE using Lightning Network datasets and
compare its performance with two other state-of-the-art schemes,
on several network topologies. Our analysis shows that SPRITE
performs significantly better over a wide array of quantitative and
qualitative metrics while improving security and privacy.

Outline: In Section 2, we define our system and threat models,
in Section 3, we give an overview of the workflow of SPRITE. In
Section 4, we describe the protocols that constitute SPRITE. In
Section 5, we give the security analysis of SPRITE. In Section 6, we
describe our experiments, and in Section 7 we conclude the paper.

2 SPRITE SYSTEM MODEL

In this section, we discuss the basics of a PCN, the parties involved
in SPRITE and system parameters.

A PCN fundamentally can be conceptualized as a graph with
users representing vertices and edges representing the payment
channels between users. Figure 1 shows four parties and three
two-party channels. The crossed-out number next to each party’s
name denotes that party’s original balance in the channel, while the
number above it denotes the new balance. The directionality of the
arrows denotes the direction in which a payment can be processed.

25 45 5 75 75 35

50 20 36 50 400 10
George Alice Bob Ron

Figure 1: George sending 25 coins to Ron via two intermedi-
aries Alice and Bob in a PCN.

2.1 Parties

1) Routing nodes: In SPRITE some nodes with high number of
connections will serve as publicly identifiable routing nodes (RN), in
exchange for a fee, and denote the set of RNs by RN. RNs are already
in use in real-world PCNs, such as Lightning Network as liquidity
providers [32], we leverage them for routing. In SPRITE, RNs help
facilitate transactions: broadly, we segment the path between the
sender and the receiver, with each segment checkpointed by an RN.
If RN and RN, are the RNs closest to sender and receiver respec-
tively, the payment from sender to receiver will progress as: sender
— RNg —» RNy — ... — RN, — RN, — receiver. The sender need
only tell RN the identity of the destination RN, RN will find the
shortest path to RN, who will, in turn, be contacted by the receiver.
Consequently, node disconnections/failures or malicious activities

SPRITE: Secure and Private Routing in Payment Channel Networks

on a segment are addressed and mitigated locally on each segment,
and the rest of the path stays unaffected. Nodes volunteer to be
RNs, and RN are financially incentivized to help route transactions.
RNs periodically broadcast messages about the available liquidity
on their links to nodes within a radius, hopMaxpy;.

SPRITE does not require any special security assumptions on
which entities can choose to be RNs, and accounts for malicious RNs
in the system (discussed further in Section 2.4 and Section 5). In a
given transaction, RNs involved do not know the identities of Alice,
Bob, or any other nodes on the path (except intermediate RNs or
their immediate neighbors). RNs do not have a privileged position
from a monitoring standpoint, except RNs and RN, will know that
somebody in their hopMaxgy radius is the sender/receiver, respec-
tively. Additionally, intermediate RNs will neither know the identi-
ties of, nor the distances to RNs and RN, for a given transaction.
Alice and Bob are free to choose the RN and RN per transaction
based on the RNs available in their respective routingTables. If an
Alice does not receive a broadcast message from any RN (indicating
that she is outside the hopMaxpy radius of all RNs in the system),
she would need to connect either directly to a RN by forming a
new payment channel or connect to another node in the network
which is within hopMaxgy — 1 hops of some RN.Since RNs are
economically incentivized to facilitate transactions, we assume RNs
will be online, but SPRITE’s functioning will not be impacted by
any specific RN(s) going offline.

2) Perimeter nodes: Perimeter nodes are nodes that are located
closer to the boundary of an RN’s broadcast area where the area
is determined by radius hopMaxgy;. The idea of using perimeter
nodes is to enable RN that are spaced across the network to be able
to communicate, without having to establish direct connections
with each other. Two RNs that are far apart and want to route a
transaction just need to find a common perimeter node in their local
routing tables, and can route payments using that node. Since we
want to preserve the perimeter nodes’ privacy from RNs, in SPRITE,
perimeter nodes are only identified by nonces they generate. The
perimeter nodes will send a unique nonce to any RN that they re-
ceive a broadcast message from. If two RNs receive the same nonce,
then they know they can reach each other through the perimeter
node that sent the nonce. RNs with overlapping neighborhoods
may have several common perimeter nodes.

3) Regular nodes: Any node that is not a routing node or a
perimeter node is a regular node. We assume all nodes are rational
and will act in their best economic interests. We assume the sender
and receiver in a transaction can exchange messages out-of-band
with each other, but payments are routed through nodes on the
PCN. We use the terms users and nodes interchangeably.

4) Blockchain: SPRITE can work with any permission-less
blockchain, and does not rely on blockchain-specific constructs
such as hash time lock contracts (HTLCs) used in the Bitcoin
blockchain, or smart contracts which are supported only by Tur-
ing complete blockchains, such as Ethereum. The blockchain is
only used for opening/closing payment channels, thus avoiding
excessive write/validator fees.

Conference’17, July 2017, Washington, DC, USA

2.2 Setup

When a node joins the PCN, it establishes payment channels with
other nodes who offer to connect with it or accept its connection
offer. A node needs to connect to at least one other node to be
part of the PCN. Nodes only reveal their identities to peers that
they share a channel with. In this paper, we refer to peers sharing
a channel as neighbors. Every node’s identity is represented by
a keypair denoted by (VK;, SK;), of which VK; is revealed to its
neighbors. RNs will need to make their identities, i.e., verification
keys, known to all nodes in the PCN, so nodes can use them for
routing transactions.

Cryptographic Primitives: A sequential aggregate signature is a
cryptographic primitive in which a series of users sign a message,
where the final signature is computed sequentially by each user who
adds her signature on her message. We use sequential aggregate
signatures [43] (defined in Appendix 8.1) to maintain the privacy
of non-RN nodes in the network (no need for publicly registered
signing keypair) while still allowing for authentication of broadcast
messages during the bootstrap phase. Furthermore, this helps from
an efficiency perspective, since only one final signature needs to be
verified rather than a series of signatures.

2.3 System Parameters

Transactions in a PCN might on occasion fail, e.g., due to abrupt
node disconnections and insufficient liquidity along a path, thus
necessitating retries. We set the number of times a transaction can
be retried after a failure as a system-wide parameter, maxRetries.
We also assume that each node i maintains a local state where
it stores the number of times each transaction is retried, specifi-
cally, it maintains an arithmetic counter for each transaction (txid;),
retry.itxid; € Z*, i € Z*. If retry.txid; == maxRetries, any new
messages about that transaction will be rejected so the transac-
tion can be tried on other paths. After transaction txid; has been
completed, times out, or is revoked, retry.txid; is deleted.

Hops: We define five parameters used in SPRITE: hopMaxgy;, hopMax,
pathStretch, hopCount, and hopBand. hopMaxpy; is the maximum
number of hops an RN’s broadcast message travels, hence defining
the RN’s neighborhood. hopBand is used for determining the dis-
tance of perimeter nodes. For example, if node r is an RN, hopMaxpy
is set to 20 hops and hopBand is set to 3, then all nodes that are
at 18, 19, and 20 hops away from node r act as perimeter nodes.
hopMaxgy and hopBand are set individually by RNs. hopMax is a
dynamic parameter that denotes the maximum number of hops a
transaction can travel in a given segment. It is set by the sender for
a given segment based on the estimated hopCount in the sender’s
routingTable. pathStretch, set by the sender, denotes an absolute
upper bound on hopMax and is intended to be used only in case of
routing problems that call for transaction retries within a segment.
hopCount at a given node denotes the number of hops traveled by
a message up until that node.

Timers: Transactions in SPRITE have two phases, hold and pay, and
their corresponding segment-specific timers, te;.txid and tep.txid,
are maintained by each node participating in a given transaction
designated by txid. These are internal countdown timers that are
maintained by each node locally and are used by the nodes individ-
ually to determine when they should timeout the given transaction

Conference’17, July 2017, Washington, DC, USA

and retry on a different path. Since each segment in the hold phase
terminates at an RN, timer te; is cleared by nodes in a segment
after a successful hold phase when the receiving downstream RN
responds with an acknowledgment message for the transaction.
Else, nodes will retry the transaction’s hold phase on another path
in the given segment after te; expires. Timer te; is cleared by all
nodes in a transaction segment after a successful pay phase when
they receive an acknowledgment that the payment has concluded
successfully in their segment. Else, if te; expires, then the trans-
action is retried for hold and pay phases in the given segment. In
SPRITE, we consider te; and tey to be system parameters set based
on current network statistics and dynamics.

Fees: Similar to prior works, we assume RNs get paid a fixed amount
periodically, contributed to by other nodes, and do not impose
routing fees for transactions.! An economic analysis of routing fee
models and optimal routing fee design is an orthogonal problem.

2.4 Threat Model and Security/Privacy Goals

Adversary actions: An adversary can adaptively corrupt any sub-
set of users, including regular nodes, perimeter nodes and RN,
upon which the corrupted nodes’ channels will be controlled by
the adversary. The adversary can cause the corrupted users to be-
have in arbitrarily malicious ways, including misrouting payments
and/or disseminating false information. We do not consider any
node dropping/ignoring routing requests as malicious behavior,
since that just means the node does not wish to participate in a
given transaction, and an alternate path has to be found.
Adversary goals: An adversary wants to know nodes’ identities
that are not its immediate neighbors, including sender/receiver
identities, and/or make people lose money, i.e., violate the atomicity
of transactions.

Privacy-preservation: No node, not even RNs, know the identities
of the sender, receiver, or any non-RN intermediaries for routing
transactions, thus preserving sender/receiver privacy. SPRITE does
not require the topology of the network to be known by any par-
ticipating node in the system, as is standard in topology-hiding
PCNs.2 We assume the adversary cannot corrupt all PCN users.
Security/Privacy goals:

1) Privacy of nodes: Nodes should not know the identities of any
nodes beyond their neighbors and RNs, nor garner any information
(number of channels or balances) about other nodes.

2) Transaction privacy: No node should know the identities of
the sender, receiver or the intermediaries in a transaction, unless
it shares a channel with them. It should also not know amounts
transferred in transaction paths it is not a part of.

3) Atomicity: Either a payment goes through in its entirety or
not at all, i.e,, either all link weights along a transaction path get
updated by the transaction amount or none at all. In other words, no

!n real-world PCNs such as LN, routing nodes currently get paid the same as other
nodes, although there are proposals to update the fee structure [8-10].

In LN, although edited snippets of the topology are made available for research
purposes [19], one cannot extract the full network topology, as nodes’ channel balances
are not made public. Further, each payment channel funding transaction is a Pay-to-
Witness-Script-Hash (P2WSH) address, and the nature of the script (a 2-of-2 multisig)
will only be revealed once the funding transaction output is spent. Even if this were
known/guessed, not all 2-of-2 multisig scripts on the Bitcoin blockchain correspond to
payment channels. Finally, signing/verification keys are rotated by nodes for every
channel (see [13]).

Gaurav Panwar, Roopa Vishwanathan, George Torres, Satyajayant Misra

honest party should lose credits because of the malicious behavior
of other parties in the network.

(RH) ___ . .40= = » ’
(RH,) 9 =~ = 4

DI quoemnanigeserrees g
A AL 2 A' 1 A
8 |13 |1o|5 17 n
. | s L
1z‘| el xlale\‘
I 1) 6: | &1
v | vv: vViy
—_14 —_— P
<= =1n= (RH)
I
............ 4.9 Rajiv B
< = = = payACK message
-« — holdACK message
-+ hold message * = — paymessage
{— - - — proceedPay message

Figure 2: Example of SPRITE protocol

3 WORKFLOW OF SPRITE

In this section, we provide an example run-through of the SPRITE
protocol using Figure 2 where Alice is the sender and Bob is the
receiver for a transaction. For presentation clarity, we do not pic-
torially depict multiple intermediary nodes between each of the
parties in Figure 2. The bootstrap phase is used by RNs in the sys-
tem to broadcast update messages that help nodes in their vicinity
build routing tables. At the end of the broadcast phase, each node
in the network will have a local routing table that indicates which
RNs are reachable and through which of the node’s neighbors. The
nodes’ routing tables also have estimates about the hop count and
liquidity available to the corresponding RNs. The bootstrap phase
also allows RNs to obtain information about what RNs are in their
adjacent neighborhoods, the perimeter nodes that connect them,
and how to reach RN that are not in the adjacent neighborhoods.

When a transaction needs to occur, Alice and Bob coordinate out-
of-band to confirm their closest reachable RNs (Charlie for Alice
and Denise for Bob). From their routing table estimates, Alice and
Bob decide the transaction amount based on the estimated liquid-
ity available between Alice-Charlie and Denise-Bob, according to
Alice’s and Bob’s corresponding routing tables. Alice sends a hold
message to Charlie via one of her neighbors and this message is
passed on by each node along the path including Mikaela, until it
reaches Charlie (Figure 2, Steps 1-2 on Alice-Charlie segment). Si-
multaneously, Bob sends a hold, message towards Denise through
Hu (Figure 2, Steps 1-2 on Bob-Denise segment). Along the path,
all nodes create pair-wise multisig hold contracts with their neigh-
bors to reserve the transaction amount and set some local variables
including hold phase timer (te;) and pay phase timer (tez).

When the messages reach Charlie and Denise, they reply with
holdACK messages so that all nodes receiving the hold ACK message
clear their local te; timers and will no longer timeout and retry
another path (Figure 2, Steps 3-4 in Alice-Charlie segment and Bob-
Denise segment). Additionally, Charlie updates Alice’s message so
that it can be routed within the network through any intermediate
RNs (Rajiv in this case) and is finally received by Denise (Figure 2,

SPRITE: Secure and Private Routing in Payment Channel Networks

Steps 3-5 on Charlie-Rajiv and Rajiv-Denise segments). The mes-
sage is updated by each perimeter node (Larry) and RN (Rajiv) on
the path to facilitate forwarding the message towards Denise.

All nodes on the Alice to Denise path also set corresponding
te; and tep timers (Figure 2, Steps 3-4 in Charlie-Rajiv segment
and Step 5 in Rajiv-Denise segment) which are cleared when the
corresponding RN in that segment is reached (Figure 2, Steps 5-6 in
Charlie-Rajiv segment and Step 6 in Rajiv-Denise segment). In Fig-
ure 2, all nodes between Charlie and RN Rajiv, including perimeter
node Larry will clear their te; timers after they receive a holdACK
from Rajiv (Figure 2, Steps 6-8 on Charlie-Rajiv segment) and nodes
between Rajiv and Denise will clear their timers when holdACK
from Denise is received (Figure 2, Steps 6 on Rajiv-Denise segment).
When Denise receives the two hold, and holds messages, she sends
Bob a proceedPay message (Figure 2, Steps 6-7 on Bob-Denise seg-
ment). On receiving proceedPay, Bob creates a pay message and
sends it towards Denise (Steps 8-9 on Bob-Denise segment), which
is then forwarded towards Charlie through intermediate RNs (Steps
10-12 on Charlie-Rajiv and Rajiv-Denise segment), and finally to
Alice (Steps 13-14 on Alice-Charlie segment).

Each RN on the path replies with a payACK message when it
receives a pay message and thus clearing timer te; for all nodes
receiving the payACK message (Denise’s payACK represented by
Steps 10-11 on Bob-Denise segment, Rajiv’s payACK represented
by Step 11 on Rajiv-Denise segment, and Charlie’s payACK rep-
resented by Steps 13-14 on Charlie-Rajiv segment). Finally, Alice
sends out her own payACK when she receives the pay message
(Steps 15-16 on Alice-Charlie segment), clearing the te, timers for
nodes in the last segment, thus concluding the transaction.

4 CONSTRUCTION OF SPRITE

In the current Lightning Network, most new nodes connect to
highly connected nodes in the network. This leads to a high concen-
tration of nodes connected directly or with low hopcounts to well-
connected nodes (RNs). This setup does not provide sender/receiver
privacy from the highly connected nodes and there is the danger
of highly connected nodes’ link balances getting depleted quickly.
Furthermore, if any RNs get disconnected or go offline, many other
nodes would get disconnected from the network. In a network sim-
ilar to Lightning, where RN nodes are closely located in terms of
hop count, an RN-to-RN broadcast algorithm, which we refer to as
R2RB (Algorithm 9) and define in Appendix 8.2, would work well.

However, if a PCN is built from the ground up with transaction
security and node privacy as the focus, it is easy to assert that nodes
would not necessarily always set up payment channels directly with
well-known nodes (RNs) in the network since this would make the
RN their next-hop neighbor and thus leak their identity as well
as all their transactions’ details. In a truly distributed network,
new nodes would join other nodes in the periphery that they trust
and not just RNs. In a system where RNs are located further apart,
R2RB suffers from high message complexity due to long distances
for RN-Update broadcast messages. We developed Algorithms 1, 2,
henceforth referred to as R2NB, which reduces the distance each RN
broadcasts to during the Setup phase, thus reducing the message
complexity and adding to the efficiency of our scheme. The hold
and pay phases remain the same for both approaches.

Conference’17, July 2017, Washington, DC, USA

In practice, the first bootstrap phase in a given PCN will in-
volve tuning of the hopMaxpy parameter by the RNs to get an
optimal overlap of perimeter nodes between neighboring RNs. The
hopMaxgy parameter is only used during the bootstrap phase of
SPRITE and helps in limiting the number of broadcast messages
from each RN; it is not used during a transaction. When new nodes
join the network, they will receive their neighbors’ routingTables
regardless of their distance from any given RN and thus will join
the neighborhood of the RN(s) that their neighbors occupy.

4.1 Bootstrap phase

This phase is described in Algorithm 1 and Algorithm 2. In the
bootstrap phase the RN first broadcast messages in the PCN within
hopMaxg,; hops, advertising their available liquidity. The goal is
to make nodes within hopMaxps aware that they can reach the
respective RN, and help them construct their local routing tables.

RN broadcast to bootstrap neighborhood (Algorithm 1): In
Algorithm 1, Lines 2-5, each RN k sets up the public parameters
of an aggregate signature scheme, pp; and creates an aggregate
signature keypair for itself (skg, vkg). This is so all nodes in the
RNs neighborhood can set up pseudonymous keypairs to hide their
identity while propagating messages. It then composes an update
message my, to be sent to all its neighbors. The message mj contains
k’s available liquidity in the outgoing direction, currMaxic , liquidity
in the incoming direction currMaxlrc , and its real identity, VK. It
also sets hopCount to be zero and sets the hopBand. Perimeter
nodes will be the farthest nodes from k in the band defined by
nodes lying between hopMaxp,; hops and (hopMaxp; — hopBand)
hops from k. Each RN k can set its hopBand independently. RN k
timestamps and signs the message my. using the signing key tied
into its real identity, and produces a signature, O';C. It then again
signs U;(and my using its aggregate signature signing key and
creates an aggregate signature, oy, which is sent to k’s neighbors.

In Line 6, each node i within hopMaxp; receives a set of mes-
sages (m;c, ...,mj) and a set of verification keys (vkg, . .., vk;) and
a single aggregate signature o; which represents the aggregate sig-
nature of all nodes along the path from RN k to node j. Node i will
then verify the signature, perform other checks (Lines 6-10), and
update the values of currMax¥ and currMax¥ in its local routing ta-
ble (Line 12). If node i is a non-perimeter and non-RN node, it then
composes a new RN-Update message to forward to its neighbors.
It increments the hopCount by one, computes the new values of
currMax¥, currMax® based on its local channel balances, appends
its message to the message list and generates an aggregate signature
on the appended list. It then sends the updated RN-Update message
to its neighbors (Lines 19-22).

If node i happens to be a perimeter node (Lines 13-16) based on
the hopCount of the received message, it generates a nonce Nonce;.
It creates an RN-UpdateReply tuple that includes Nonce;, updated
values of currMax]SC R currMafo , and hopCount, and sends it to it’s
previous node towards RN. All perimeter nodes also forward the
RN-Update message until it reaches the node(s) at hopMaxp hops,
who will send a reply but not broadcast the message further.

When nodes receive an RN-UpdateReply tuple, they act differ-
ently depending on whether they are an RN or a regular node.
If the receiving node is an RN, then the message has traveled to

Conference’17, July 2017, Washington, DC, USA

Gaurav Panwar, Roopa Vishwanathan, George Torres, Satyajayant Misra

Algorithm 1: R2NB: Bootstrap broadcast from RN to
perimeter nodes

Algorithm 1: R2NB: Bootstrap broadcast from RN to
perimeter nodes (continued)

1 Each node i initializes a table, routingTable; containing
columns: (reachable RNs, next hop neighbor j, currMaxg,
currMax;, hopCount,).

2 for each RN, k € RN do

3 k does AS.Setup(l/l) — ppi and runs

AS.KeyGen(ppyr) — (skg, vkg).

4 Create a tuple my = (RN-Update, ppy, VK, currMaxISC ,

currMax],C , hopCount = 0, hopBand, hopMaxpy, ts)

for each neighbor j, j € [1..l] where [is the total
number of neighbors of k. Create o} « Sign(SKg, my)
and set m;C = (my, a]’c) Create signature

o < AS.Sign(skg, L, L, 1, m;c).

5 return M = ((m;c), (vkg), ox) to each neighbor j.

6 for each node i in the network on receiving an RN-Update

message from neighbor j do

7 On receiving M = ((m;(, coomj), (VKg, ..., VKG), 04), 0

parses (my, 0,) < m) and (RN-Update, ppy., VK,

currMax];, currMaX’;, hopCount, hopBand,
hopMaxgy, ts) < my.

8 if (Verify (mg, VK, 0p) — 0)V

(AS.Verify((m;c, coomj), (Vkg, ..., vkj), 0) — 0)

then
9 ‘ Return L.
10 i checks that hopCount value in all messages
(m;c ...,mj) are incremented by 1 in each message. If

not, return L.

1 i runs AS.KeyGen(ppy) — (ski, vk;).

12 i updates its local routingTable for RN k and neighbor j
by updating the expiry time ¢, = currTime + e,
currMaxy, and currMaxlrC .

13 if ((hopMaxpy —hopBand < hopCount) A (hopCount
< hopMaxpy;)) then

14 Create a nonce Nonce; «s {0, 1}*.

15 Create return message mr; by updating contents of
mj as mrl{ = (RN-UpdateReply, -, -, currMaxéC,
currMaxlrc , hopCount, -, -, -, Nonce;) where
hopCount = hopCount + 1,

currMax¥ = min(currMax¥, lw 7,i), and

currMax¥ = min(currMaxX, Iw;, i)

16 i creates signature o; < AS.Sign(sk;, o7, (m?,
coomy), (VRg, L, vkg), mrlf). i sends MR = ((m;c
-oomj, mr)), (VKg, ..., vkj, vk;), 07) back to
neighbor j.

the perimeter nodes and back. The receiving RN will store the re-
ply information sent by the perimeter nodes in its RNroutingTable,
indexed by the Nonce value sent by the perimeter node (Line
27-29). On the other hand, if the node receiving RN-UpdateReply
is a non-RN node, then it updates its local routing table again
with the received information (currMaxé‘, etc.), adds the perimeter
node’s nonce to its local routing table, computes new values of

17 if hopCount > hopMaxp,; then

18 ‘ Return L.
19 for each neighbors do
20 i creates m; by updating contents of m; as

hopCount = hopCount + 1,
currMax¥ = min(currMax¥, lw;), and
currMax¥ = min(currMax, lws ;).

21 i creates signature o; < AS.Sign(sk;, oj, (m;c, .,
mj), (Vk, ..., vkj), m;).
22 isets M = ((m;c, S, My, m;), (vVkg, ..., ij, vk;), o)

and return M to neighbor s.
23 for each node j in the network on receiving an
RN-UpdateReply message from neighbor o do

24 On receiving MR =
((m;t, o mrlf, cooomrl), (kg -+ vk, L., VK), 06).
25 if (AS.Verify((m;c, coosmr)), (VKg, ..., vko), o) — 0)
then
26 ‘ return L.
27 if j is the RN k then
?
28 if (hopMaxpy — hopBand) <
?
|{m;c, o,mri,...,mrg}|/2 < hopMaxgy) then
29 ‘ Add (Nonce;, 0, -,-, -, -) to RNroutingTable,..
30 else
31 Add Nonce; and neighbor o to routingTable.
32 Update contents of mr}, as mr} = (RN-UpdateReply, -,
. currMaxlsC R currMaxlrC , hopCount, -, -, - Nonce;)

where hopCount = hopCount — 1,
currMax¥ = min(currMax¥, lw j,0), and
currMax¥ = min(currtMax¥, lw,, i)

33 Jj creates signature o; < AS.Sign(sk;, oo, (m;< e
mr}), (VKg, ..., vKo), mr;.).
34 Forward message MR = ((m;c, oo, mrl, mr}), (vkg,

.-+, ko, vkj), o) to neighbor from who
RN-Update message of k with timestamp ts was
received.

currMax’s< , currMax’,‘, decrements hopCount, and sends the signed
message to the neighbor from whom it received the correspond-
ing RN-Update (Lines 31-34). Here e is the system-wide parameter
for depicting the time duration after which a record is considered
expired/stale in nodes’ routingTable. In case node i had received
the same message tuple with a lower hopCount earlier, it drops the
message to avoid loops. A possible optimization is nodes updating
currMax’S‘ , currMaxlr‘ only once, instead of twice, i.e., on receipt of
the RN-Update tuple (Line 20) and not again after receipt of the
RN-UpdateReply tuple (Line 32). New nodes joining the PCN get
routingTables from their neighbors as soon as they join and will
participate in RN-Update broadcasts in the next time epoch. No

SPRITE: Secure and Private Routing in Payment Channel Networks

Conference’17, July 2017, Washington, DC, USA

Algorithm 2: RNs exchanging nonces

Algorithm 4: Bob — RN, hold segment

1 Each RN; € RN creates a table with rows (Nonce,, j,

-, -+, -), where j is the neighbor RN; received Nonce, from.
Let N; be the set of all nonces obtained by RN;.

2 Each RN; then picks a < Zy, picks d € Z*, and creates set
R = {ri, Vi€ [1.d];r; < {0,1}*}, d = |R;|. RN; then
sets N; = N; UR;.

3 RN; sends N; to all RN; € RN \ RN;.

4 Each RN; computes N;; < N; NN for all RN; € RN\ RNj,
and builds its RNroutingTable locally.

re-calculation or broadcasts happen when new nodes join the net-
work. For highly dynamic networks, the epoch value can be tuned
or lowered so that the RN-Update broadcast messages account for
significant changes in the topology. The cost of the RN-Update boot-
strap phase is similar across epochs and depends on the current
size of the network during the broadcast.

Algorithm 3: Alice-RN; - - - - - RN, hold segments

1 Alice picks RN and Bob picks RN,. Bob sets
preimage «s$ {0, 1}* and digest = H(preimage), and shares
digest with Alice.

2 Let v be the amount of credits Alice wishes to send to RN;.

Alice picks token, preimage,,;; < {0, 14,
txid = H(preimage,,;;), and sends txid to Bob.

3 Alice does CrN, = Epkyy, (token, v, txid) and
CrN, = EPKRNS (VKRNV, v, txid, CRN,)-

4 Alice looks up her routingTable and picks a tuple
(RN, nodey, pr), with
pr = (hopCount, currMax, currMax,, t.) where
currMaxg > v and sets hopMax = hopCount + pathStretch.
Alice creates a tuple (holds, RN, VKRN, v, txid, CrN,,
hopMax, digest, teq, tes) and sends it to nodey.

5 for Each node (node;) in the network do

6 ‘ Follow Algorithm 5

RNs exchanging nonces (Algorithm 2): After the PCN is
bootstrapped, the RNs need to setup their local RNroutingTables
which will help them find other RNs. At the end of Algorithm 1,
each RN i would have received RN-UpdateReply tuples of the form

within i’s hopMaxp; radius. RN i will receive several tuples con-
taining nonces, we represent the set of unique nonces that i receives
by N; (Line 1). RN i then pads the set N; with random strings and
generates a larger set R; (Line 2). This is to ensure that other RNs
cannot guess the size of N;, thus preserving privacy. SPRITE not
only hides the identity of the perimeter nodes against all RNs in the
system using the randomly generated nonces by perimeter nodes,
but also hides the number of perimeter nodes each RN has within
its hopMaxp; radius. All RNs then exchange their nonce sets and
each RN finds the intersection of its set with other RNs’ sets (Line 4).
If even the nonce values need to be hidden for any reason, we can
use more involved protocols such as private set intersection [42].

1 Bob generates Cf{Nr = Epkqy, (token, v, txid).

2 Bob looks up his routingTable and picks a tuple
(RN, nodeg, pr), with
pr = (hopCount, currMaxg, currMax;, te) where
currMax, > v and sets hopMax = hopCount + pathStretch.
Bob creates a tuple
(holdy, RNy, VKRN, , v, txid, CIIIN ,hopMax, digest, tey, tez)
and sends it to nodey. '

3 for Each node (node;) in the network do

4 ‘ Follow Algorithm 5

Determining te; and te; values: After Algorithm 2, RNs help
senders determine te; and tey values for their transactions. A low
value for te; and tey could result in premature timeout of a trans-
action when waiting a little longer would have resulted in the
transaction completing successfully. te; and te; also shouldn’t be
so large that the liquidity in the network is locked up despite there
being no viable paths via the involved RNs. The value of te; can be

Algorithm 5: Subroutine for every node for hold and pay
phase

Each node (node;):
Case 1: on receiving holdy message, x € {s,r}, msg =
(holdy, Y, VKRN(_), v, txid, CRN(.>s hopMax, digest, teq, tez),
calls hold(msg) defined in Algorithm 8.
Case 2: on receiving holdReject, message msg =
(holdReject,, Y, VKRN(.), v, txid) along with routingTable
update, calls holdReject(msg) defined in Algorithm 8.
Case 3: on receiving hold ACKy message msg =
(holdACKy, t, O'RN(_)) along with routingTable update, calls
holdACK(msg) defined in Algorithm 8.
Case 4: that did not receive a holdACK tuple for a
transaction txid, and current time > teq, calls
holdACKTimeout() defined in Algorithm 8.
Case 5: on receiving pay message msg = (pay, preimage, v,
txid), calls pay(msg) defined in Algorithm 8.
Case 6: on receiving payACK message msg = (payACK, -,),
calls payACK(msg) defined in Algorithm 8.
Case 7: that did not receive a payACK tuple for a
transaction txid, and current time > tes, calls
payACKTimeout() defined in Algorithm 8.

set by the sender based on a sampling of communication times with
its next-hop neighbors. For setting the value of tez, each RN can
estimate the communication time to its neighboring RNs, based on
an estimate of number of hops per neighborhood and its estimated
tey; this can be built into the routing protocol with little overhead.
This information can be broadcasted by RNs in their neighborhood
(as part of the routing messages). When a sender sets the transac-
tion’s teg, they can use the aggregate statistic of tep values they
receive from their RN, e.g., 3 times the aggregate tez. We assume a
certain amount of trial and error in finding the right multiplier on
the part of the sender.

Conference’17, July 2017, Washington, DC, USA

4.2 Hold phase

This is the first phase of transaction processing. In this phase, all
nodes along a path from Alice to Bob will reserve or “hold" the
amount Alice wishes to send to Bob. For ease of discussion, we
divide the path into three segments, Alice — RNg, RNg — RN, and
Bob — RN;.. Since the Alice-RNs hold segment (Algorithm 3) and
Bob-RN, hold segment (Algorithm 4) are self-explanatory, due to
space constraints, we describe them in the full version [40].

Hold phase and Pay phase functions for intermediate
nodes (Algorithm 5): This algorithm depicts the functions called
by different nodes, i.e., regular/perimeter nodes and RNs, when
they receive different messages during a SPRITE transaction (full
details of the functions are in Appendix 8.2, Algorithm 8.) Let us
now discuss when/why these functions are called by various nodes.

The hold function is called by a node on receiving a hold, or
holds message. The node checks its routing table and decides which
neighbor the hold message needs to be forwarded to in order to
route it to the target RN in the message. If no viable paths are
available then the current node would forward a holdReject message
to the neighbor from which it received the hold message originally.
If a node in the network receives a holdReject message then it uses
the holdReject function to process the message and make a decision
about whether it should retry on other available paths or forward
the holdReject message back in the direction of the sender.

holdACK and payACK functions are called by nodes in the net-
work on receiving holdACK or payACK messages, respectively.
These functions involve the verification of the received acknowl-
edgment messages and forwarding them toward the sender on
the transaction path. If a node in the network does not receive
a holdACK or payACK message during the hold and pay phases,
respectively, and the timers expire (te; for hold phase and te; for
pay phase), then the respective nodes call the timeout functions,
holdACKTimeout for hold phase and payACKTimeout for pay phase.

Hold phase and Pay phase RNs’ actions (Algorithm 6): We
now discuss how the RNs handle operations in the hold phase,
described in Algorithm 6. We recollect that RN is the first RN in the
path, and RN, is the last one. When RN receives a holds message
from Alice, it retrieves the verification key of RN, (Line 3). RN then
constructs an onion consisting of successive encryptions for all the
RNs, {RNy, ..., RN} between RNg and RN, with RN, being the
innermost layer of the onion. RN sends the onion to its next-hop
neighbor along the path to RN; (Line 3-8). Note that the intended
recipient is the perimeter node common to RNg and RNy (since RNy
is not within hopMax distance of RNj). RN; also sends a signed
holdACK message to Alice whom it received the hold; message from
(Line 9). This is done to give the sender assurance that RN has
received her message, but without requiring any blockchain writes.
If malicious nodes drop holdACK messages, Alice will re-send the
hold; tuple after a timeout.

The honest intermediaries along the path will recognize the hold
message with the same txid as a duplicate and will re-send the old,
stored holdACK message along a different path. When RN, receives
the holds tuple, she sends a holdACK tuple to Alice. Similarly, RN,
also sends a signed holdACK message back to Bob (Line 11-14).
When an intermediate RN that is part of the onion created by RNg
receives holds, it peels off its layer, finds the identity of the next RN

Gaurav Panwar, Roopa Vishwanathan, George Torres, Satyajayant Misra

Algorithm 6: RN operations in hold and pay phase.

1 if hold phase then

2 if node; == RN then

3 RN; on receiving (holds, RNs, VKRN, v, txid, CrN,,
hopMax,digest, tej tez) tuple from a neighbor, does
mrN, < Dskgy, (CrN,) Where

mpN, = (VKRN,., v, txid, CrN,.).

4 RN; looks up RNroutingTable to find a path
(RNg, RNg, 1, ... RNj) to RN,.
5 RN creates mpyq = (VKRN, , v, txid, CrN,.)
6 for RN; in {RNj, ..., RNy, ;,RN.} do
7 RN; does mpo1q = (PKRN;, v, txid,
Epkgy; (Mhold))
8 RN then sends (holds, Y, VKrN;, v, txid, mpgq,

hopMax, digest, tej,tez), to its neighbor towards Y
according to RNroutingTable for selected path to Y
with hopMax = hopCount of the path.

9 RN does t = (txid, holds, v), orN, <

Sign(skgrn,, t), sends (holdACKs, t, orn,) along
with local routingTable to neighbor that sent holds.
10 else if node; == RN, then

1 if message is holds then

12 When RN, receives the hold; message, then the
Alice — RN, segment is complete. RN, does

t = (itxid, holds, v), orN, < Sign(skgrn,, t),
sends (holdACKG, t, orn,) along with local
routingTable to neighbor that sent hold;.

13 else

14 When RN, receives the hold, message, then the
RN, — Bob segment is complete. RN, sends

t = (txid, holdy, v), orN, < Sign(skgrn,.,t),
sends (holdACKy, t, orN,) along with local
routingTable to neighbor that sent hold,.

15 else if node,— =RN;, VRN; € [RNk, RNk+1, . RNI]
then

16 RN; on receiving the tuple (holds, RN;, VKRN;, v,
txid, mpy1q, hopMax,digest,tey,tey) parses

Mpold = (PKRN;, CrN,), sets

Mpold = (PKRN;.;» CRNyy) < Dskay, (CrN,)-

17 RN; then sends (holds, Y, VKRN,,,, V» txid, mpelg,
hopMax, digest, tej,tey) to its neighbor towards Y
according to RNroutingTable for selected path to Y
with hopMax = hopCount of the path.

18 RN; does t = (txid, holds, v), orN, < Sign(skgrn;, t),
sends (holdACKs, t, orN,) along with local
routingTable to neighbor that sent hold;.

19 if pay phase then

20 RN; on receiving pay tuple, sets t = (pay, txid, vk, V),
does orn « Sign(skgrn;, t).

21 RN; then creates payACK tuple as (payACK, t, orN) to
neighbor it had received pay tuple from.

it needs to forward the message to, and sends the signed tuple to
the perimeter node it knows can reach the destination RN (it finds
this information from its RNroutingTable) (Line 15-18).

SPRITE: Secure and Private Routing in Payment Channel Networks

Algorithm 7: Initialization of the pay phase.

1 At the end of hold phase (before te; expiry time) if RN, has
received a holds tuple and a hold, tuple with matching
token, v, and txid values, creates a message,

m = (proceedPay, txid, v), creates signature opoceedpay =
Sign(SKRrN,, m) sends a tuple (proceedPay, txid, v,
OproceedPay) towards Bob through Bob — RN, segment.

2 On receiving the message Bob and Alice communicate out
of band and Bob sends (proceedPay, txid, v, 0 proceedpay)
tuple to Alice.

3 Bob creates a tuple (pay, preimage, v, txid) and forwards it
to its neighbor node, with txid towards RNj.

4 for Each node node; on txid path on receiving pay message
msg do

5 ‘ node; calls pay(msg) defined in Algorithm 8.

6 for Each node node; on txid path on receiving payACK
message msg do

7 ‘ node; calls payACK(msg) defined in Algorithm 8.

8 for Each node node; on txid path that did not receive a
payACK tuple and current time > tep do

9 ‘ node; calls payACKTimeout() defined in Algorithm 8.

Since PCNs are highly dynamic, there might be a situation during
a transaction that an RN; on the path between RN and RN, cannot
find a path to the next RN;,1, even after the maxRetries number of
retries. Neither the intermediate RNs nor any other non-RN nodes
on the path can deviate from the original RN path defined by the
onion created by RN;. The intermediate nodes on each segment
between two RNs do not know the next segment’s target RN. In
this case, the transaction needs to be failed all the way back to RNy
and then retried on a different path (different intermediate RNs)
from RN; to RN,

4.3 Pay phase

Algorithm 7: The pay phase is initialized by RN, after it receives
the holds and hold, tuples originating from Alice and Bob respec-
tively. Specifically, RN, decrypts Crn, contained in holds and C},QN,
contained in hold,, and compares the token contained in both of
them. If the token is the same, that signifies to RN, that some nodes
Alice and Bob are sender and receiver in the transaction identified
by txid, since only the two of them know token. RN, then sends a
signed proceedPay tuple to Bob, which signals the start of the pay
phase. Bob forwards RN,’s proceedPay tuple to Alice to let her know
the pay phase has started (Line 2). If RN, does not receive token in
either hold; or holdy, it sends a multisig(Rev, -, RNy, -, -, -, txid, -) to
its neighbor in the transaction path.

In the pay phase Bob’s preceding neighbor along the path pays
Bob first. Following this, each node pays its successor first, then
gets paid back by its predecessor. Since nodes need some form of
acknowledgment that the pay phase has gone through successfully,
RN’s that initiated the current segment send signed payACK tuples
to the nodes in their segment (Algorithm 6, Lines 20, 21).

Conference’17, July 2017, Washington, DC, USA

5 SECURITY ANALYSIS

We now discuss some potential attacks on SPRITE, and mitigation
strategies, and then briefly discuss the formal analysis. We also
give a phase-wise analysis of malicious activities in each of the
bootstrapping, hold, and pay phases of SPRITE in Appendix 8.3.

5.1 Potential Attacks and Mitigation

Transaction malleability attack: A malicious RN; colluding with
a receiver Bob and RN, might change the transaction amount v
to v/. In the Alice-RN; segment, the amount will be v, the change
occurs in the segments after that, all the way up until Bob.

Case I: Let us assume v/ > v and § = (v/ — v). At the end of this
attack, Alice has paid Bob v coins and RN has paid Bob § coins.
None of the honest intermediaries will lose money: they get paid as
many coins (by their successor) as they have paid along the path to
their predecessor. The only entity losing money is RN since it will
not get paid the § amount and will only get paid v coins, tied to the
tuple it received. Case 2: Let v/ < v. If Bob, RN, and RN, are all
malicious, Bob will get paid v' and RN will get paid the difference
(6 = v — ') tied to the tuple received from Alice with v coins, but
since they were both collaborating malicious entities, this does not
affect honest intermediaries. If Bob is honest, then Bob will get
paid v, but RN will send a lower amount v’ to RN}, thus making
malicious RN, lose money. In both cases the adversaries end up
losing money but none of the honest nodes get less coins than what
they paid, hence we do not consider these to be successful attacks
on SPRITE.

Transaction forgery attack: We assume no honest users in the
system will share their signing keys related to SPRITE with other
users. This avoids any situations where an adversary can commu-
nicate on a channel created between two neighbors on behalf of
one of them (e.g., Alice/Bob — Craig, where Alice and Bob share
a channel and Bob is malicious), or the adversary can sign con-
tracts on behalf of an honest Alice without Alice’s knowledge (e.g.,
Bob — Alice — Craig, where Bob is malicious). If any user’s keys
are leaked then that user will generate a new set of keys and notify
all her neighbors about the new keys. One could use forward-secure
signatures [14] for invalidating the old leaked keys.

Sybil/Counting-based attack: An adversary could intercept net-
work communications over time, isolating holdy messages, and
associating messages sharing the same txid and digest. The ad-
versary will try to identify the sender/receiver in a transaction by
isolating messages with the highest hopMax or lowest timer values.

Counting number of hops based on hopMax does not reveal the
identity of sender/receiver since each RN resets the hopMax value
for each segment. The hopMax value is decremented by each node
and is an estimate of the expected hopCount to the target routing
helper in the current segment, and tells how far the current message
should go before being dropped. This does not leak to a node in
the network information about how far the sender of the current
received message was from it (intermediate nodes do not know
which segment they are a part of). Since te; and te; are system
parameters and are included in the hold messages, all nodes in the
network will receive the same value of te; and tez. On receiving
the hold message, each node locally computes its timeout values
te1.txid and tey.txid, and does not forward the local values further.

Conference’17, July 2017, Washington, DC, USA

Sender refusing to pay: Whenever there are timeouts in the hold
phase for a specific segment, the sender RN for that segment will
retry the hold phase on a different path. If there are timeouts in
the pay phase the nodes that timed out in that specific segment,
will publish their hold and pay contracts on a public repository
or blockchain. Since the hold and pay contracts are signed with
pseudonymous identities, this does not leak information about
nodes to the public, but neighbors know each others’ identities and
if anode does not post a pay contract associated with a hold contract
then this identifies the malicious activity to the whole network. Any
honest neighbors will then avoid the malicious node for subsequent
retries and transactions. If the sender is the malicious node, then
all nodes on the path need to discard the hold and pay contracts
and roll back the transaction since the sender has been identified
as malicious and the sender-RN; segment will not be retried.

5.2 Formal Security Analysis

We analyze the security of SPRITE in the Universal Composabil-
ity framework [15]. To this end, we define an ideal functionality,
FSpRITE, consisting of three functionalities, Fsetup, Fhold> and Fpay-
We use two helper functionalities from [15], F5ig and Fsmt, to model
ideal functionalities for digital signatures and secure/authenticated
channels, respectively.

Fsetup models the broadcast phase where nodes register and es-
tablish payment channels and RNs register and make known their
verification key to other nodes in the network. It also provides
functionality for broadcasting messages such as RN-Update and
RN-UpdateReply. F1,014 provides interfaces for creating a holds mes-
sage from sender and hold, message from receiver, RN-specific hold
phase functionalities, and the pairwise contract multisig function-
ality. Fpay provides interfaces specific to the pay phase, creation
and verification of a pay message, pairwise contracts creation and
signing in pay phase, etc. We assume that all functionalities in
Fsprite have access to a global clock from which they can obtain
the current time. We give the proof of the following theorem along
with the functionalities in the full version [40].

THEOREM 5.1. Let Fyprite be an ideal functionality for SPRITE. Let
A be a probabilistic polynomial-time (PPT) adversary for SPRITE, and
let S be an ideal-world PPT simulator for Fsprite. SPRITE UC-realizes
Fsprite for any PPT distinguishing environment Z.

6 EXPERIMENTAL ANALYSIS

6.1 Experimental Setup

We compared R2RB and R2NB with BIAnC [39] and Speedy Mur-
murs [48] (referred to as SM in this section), across two topology
types, ten topologies each [50]. The first topology, referred to as LT,
was taken from the publicly available Lightning gossip dataset [2]
from May 31, 2022. The network has 15833 nodes and 156072 chan-
nels. We removed any nodes that did not have any outgoing con-
nections along with 80% of the nodes which had one incoming
or outgoing connection (these nodes are not involved in routing),
leaving 8995 nodes and 129724 channels in LT. We designated the
top 10 highly connected nodes as RNs for evaluating R2RB and
BIANnC, and to act as landmarks in SM. As channel capacity is not
present in the gossip messages from the Lightning data, we choose

Gaurav Panwar, Roopa Vishwanathan, George Torres, Satyajayant Misra

the maximum allowed amount for a single transaction as the link
weight as this value should correlate to a realistic channel capacity.
We compare the performance of BIAnC, SM, and R2RB on LT. R2NB
is not applicable to LT due to the closely located RN nodes.

We constructed a second privacy-preserving network topology
(PPNT) as described in Section 4, to evaluate R2RB, R2NB, BIAnC,
and SM. We start by taking the RNs in LT and start adding nodes to
the PCN where the initial few nodes set up payment channels with
RNs but subsequent nodes joining the network connect to other
regular nodes, thus forming layers around the RNs. We add nodes
until each RN has a diameter of about 7 hops and a neighborhood
of roughly 800 nodes. The perimeter nodes of each neighborhood
are randomly connected to perimeter nodes belonging to other RN
neighborhoods. PPNT had 7978 nodes and 25302 channels. The link
weights used in this topology are similar to LT. We categorized the
link weights from LT into two groups, the first group contained
channels with at least one highly connected node (RN), and the
second group was made up of links between two regular nodes. The
link weights were then randomly sampled from these two groups
and assigned to the links in PPNT based on the channel type.

We randomly chose senders and receivers with at least 3 and
8 hops between them for LT & PPNT respectively. Although pub-
licly available data for the Lightning network claims an average
of 22k transactions per day [1] - significantly lower than 10 trans-
actions/second, we set a transaction rate at 10 transaction/second.
This high rate was used to assess the scalability of SPRITE. In SM,
each transaction gets split into 10 uniform sub-transactions, one
for each RN (referred to as landmarks in SM).

We implemented R2RB, R2NB, SM and BIAnC, and deployed the
generated topologies in the ns-3 simulator [3] for our experiments.
The results were averaged over 10 runs with PPNT for a total of 100k
transactions. The simulations were run on a Desktop class machine
with Intel(R) Core(TM) i7-10700 @ 3.8 GHz CPU and 64 GB of RAM.
The metrics for comparison are: path stretch (ratio of the hop-count
of a completed transaction to the optimal hop-count), end-to-end
transaction processing time (latency), transaction success rate, set
up costs during Bootstrap phase (message complexity and duration),
and the overall message complexity of the entire simulation.

6.2 Experimental Results

LT Topology results: Figure 3a shows the growth of the message
complexity within LT over time. BIAnC inundates the network with
broadcasts for each transaction and given the interconnected nature
of LT this results in a dramatic increase in message complexity,
growing at a rate roughly 100 times that of SM. SM, while having
only a fraction of the number of messages compared to BIAnC, still
grows at a much faster rate than R2RB. This is attributable to the
splitting of each transaction and the acknowledgments sent back
on the payment path in the routing phase.

Figure 3b shows the growth of latency with respect to hop-count.
BIANnC has a higher latency compared to R2RB and SM. This is
attributed to BIAnC having three phases as opposed to two in SM
and R2RB. Note that given its sub-optimality, BIAnC never chooses
a 3-hop sender-receiver path. SM and R2RB have similar latencies.
We model cryptographic operations for both R2RB and BIAnC, but
not for SM (they didn’t have any). We also do not model the delay

SPRITE: Secure and Private Routing in Payment Channel Networks

Conference’17, July 2017, Washington, DC, USA

100,000 Transactions
100,000 Transactions

160
300 { — BIANC
—— sM 140
200{ —- R2RB
120
g w0 100
H 0
a E
H
E 1254 g 8
5 -~ S
. 100 T &
0.75 - - ®
0.50 PP -
025 . _ B
0.00 0

[200 400 600 800 1000 3 5
Time (s)

(a) # of messages (Y-Axis is split to account for mes-

(b) Average latencies with respect to transaction

10
\ ~3% of R2RB
0.9 transactions fail.
0.8
2 ~18% of SM
go7 transactions fail.
H
g 06
£05
204
2
g 03
&
0.2 — BIANC
01 — SM
00 — R2RB
7 9 0 200 400 600 800 1000

Latency (ms)

(c) CDF of Transaction latencies.

10 Runs 100,000 Transactions

sages’ explosion in BIAnC). hop-count.
10 Runs
1le6
14 0.07
12 0.06
3 10 0.05
- —_
a a
208 9 0.04
£ g
5 06 F 003
#
0.4 0.02
02 0.01
0.0 0.00
M R2RB M

Scheme

(d) # of messages for the Bootstrap phase.

(e) Duration of the Bootstrap phase.

Path Stretch

R2RB BIAnC SM R2RB
Scheme

(f) Path-stretch of transactions.

Figure 3: Results for simulations in the Lightning Topology (LT).

imposed by blockchain operations for BIAnC. The hop-counts of
transactions in LT range between 3-10 hops, with BIAnC, SM, and
R2RB having average hop-counts of 7, 5, and 6, respectively. The
hop-counts for SM represent the highest across the hop-counts of
all the split transactions.

Figure 3c shows the cumulative distribution function (CDF) of
latencies for all transactions. Both R2RB and SM outperform BIAnC
significantly, which had an average latency of 113.5 ms, while SM
and R2RB had average latencies of 79.6 ms and 95.3 ms, respectively.
The additional delay in BIAnC is on account of the extra broadcast-
based Find phase. R2RB is able to perform almost as well as SM
in terms of real-world delays while providing significantly more
security and privacy guarantees. It also has a significantly higher
transaction success rate at 97.17% compared to SM’s 81.3%. R2RB
outperforms SM in terms of success rate due to our in-network retry
mechanism, as well as routingTable updates that are propagated
within the network for each holdACK and holdReject message. In LT
9.864% of transactions required a retry attempt for R2RB. Due to the
design of BIANnC, the sender can only send the maximum available
credits on the fastest path to the receiver, hence, only 69.06% of
transactions sent the full amount of required credits. For practical
applications, these transactions can be repeated by splitting the
larger ones into sub-transactions, similar to SM.

Figure 3d shows the total number of messages required to boot-
strap the network with routing information while Figure 3e shows
the duration of the phase. BIAnC is excluded from this comparison
as it does not have a Bootstrap phase. SM requires more messages

for its bootstrapping phase in LT than R2RB but takes about 10 ms
less than R2RB to complete this phase.

The path stretch of transactions is shown in Figure 3f; it should
be noted that BIAnC always finds the most optimal path in terms of
hop-count due to its broadcast-based pathfinding mechanism. The
path stretch for SM was calculated by taking the average amount
of hops taken by each sub-transaction and comparing that against
the optimal path (obtained from Dijkstra’s algorithm) between
the sender and the receiver. For R2RB and BIAnC, the number
of hops taken by a transaction were compared against the total
hops in the corresponding optimal paths between the sender &
RN, RN & RN, and RN, & the receiver. SM incurs the worst
path stretch with a median of 1.075, while R2RB has a median
path stretch of 1.0. The variation in path stretch for transactions
in R2RB is due to the routingTable of nodes becoming stale as the
simulation progresses with new transactions. The routing tables
can remain fresh by issuing periodic broadcasts from RNs, similar
to the Bootstrap phase, to update the routingTable of nodes. The
higher path stretch in SM can be attributed to its embedded prefix
routing and splitting of transactions among different paths.
PPNT Topology results: All four schemes show linear growth
in the number of messages as seen in Figure 4a. With R2RB and
R2NB the number of messages is the lowest and continues to grow
linearly at these low values. As with LT, BIAnC’s Find phase results
in thousand times more messages than R2RB and R2NB while SM
results in a ten times higher number of messages in comparison.

Figure 4b shows the growth of latency with respect to hop-
count. Both R2RB and R2NB have a slightly larger latency for each

Conference’17, July 2017, Washington, DC, USA

Gaurav Panwar, Roopa Vishwanathan, George Torres, Satyajayant Misra

100,000 Transactions 100,000 Transactions

of messages
Time (ms)

400

600
Time (s)

800

14

18

(a) # of messages (Y-Axis is split to account for mes-

Hops

(b) Average latencies with respect to transaction

3

~3 & ~4% of
R2RB & R2NB
transactions fail,
respectively.

~24% of SM
transactions fail.

—— BIANC
- SM

—— R2RB
—— R2NB

22 24 200 400 600 800

Latency (ms)

1000 1200

(c) CDF of Transaction latencies.

10 Runs 100,000 Transactions

sages’ explosion in BIAnC). hop-count.
10 Runs
le3
350
016
300 014
w 250 012
Q
- —_
& 200 Zolo0
o o
£ E 0.08
5 150 =
#* 0.06
100
0.04
50 0.02
0 0.00

SM R2RB

Scheme

R2NB SM

(d) # of messages for the Bootstrap phase.

R2RB
Scheme

(e) Duration of the Bootstrap phase.

Path Stretch

R2NB BIANC SM R2RB

Scheme

(f) Path stretch of transactions.

R2NB

Figure 4: Results for simulations in the Privacy Preserving Network Topology (PPNT).

transaction of a given hop-count when compared to SM due to the
cryptographic operations between pairs of nodes on the path.

Figure 4c shows a CDF where it can be observed that for the
majority of transactions, R2RB and R2NB have lower latencies
than BIAnC and SM while maintaining transaction success rates
0f 97.01% and 96.02%. SM on the other hand, has a success rate of
76.08%. Roughly five percent of transactions in SPRITE (R2RB and
R2NB) have higher latencies than those found in BIAnC and SM
due to SPRITE’s in-network retries that would otherwise fail.

The number of messages and the duration of the Bootstrap phase
were averaged over ten runs; results shown in Figure 4d and 4e.
In contrast to LT, SM has high number of messages, with an aver-
age of around 348k messages when compared to R2RB with 190k
messages and R2NB with 88k messages respectively. The high com-
plexity of R2RB and SM is due to the more distributed nature of the
PPNT network, where the landmarks (RNs in SPRITE) have a much
lower degree than LT. In SM, this results in more nodes receiving
multiple messages for each landmark advertisement compared to
LT. Transactions in SM take the least amount of time, while R2RB
takes the most, but similar to LT the difference is negligible.

The transaction path stretch in Figure 4f shows that BIAnC is the
most efficient in terms of transaction path length. This is because
it finds the most optimal path in terms of hop-count due to its
broadcast-based pathfinding mechanism. This optimal path stretch
does come at the cost of higher overhead and much higher latencies.

The median path stretch value for SM is 1.45 and is significantly
higher than R2RB and R2NB with respective values of 1.07 and
1.15. Due to the distributed topology, the prefix-based embedding

system in SM does not identify the shortest path when landmarks
are far from the sender or receiver. R2NB’s inefficiency is due to
the unknown distance of chosen perimeter node to the next RN.

7 CONCLUSION

In this paper, we present SPRITE, a secure, privacy-preserving, and
efficient routing protocol for payment channel networks. SPRITE
can support concurrent transactions and takes just two rounds of
communication for pathfinding and routing transactions, which is
the most optimal till date. One direction for future work is investi-
gating the design of economic models for estimating and optimizing
routing fees for both, regular nodes and routing nodes in a PCN.
Another direction for future work is to mechanically verify the
proof of security of SPRITE (and potentially other PCN protocols)
using interactive theorem provers such as EasyUC [16].

ACKNOWLEDGEMENTS

The authors thank Ryan Gentry and Alex Bosworth from Lightning
Labs for their insights and discussion, which helped us improve the
paper. The authors also thank Kartick Kolachala for his help with
Table 1, and the anonymous reviewers for their feedback. This re-
search was partially funded by the US National Science Foundation
under grants #2148358 and #1914635, and the US Department of
Energy grant #DE-SC0023392. Any opinions, findings, conclusions,
or recommendations expressed in this material are solely those
of the authors and do not necessarily reflect the views of the US
federal agencies.

SPRITE: Secure and Private Routing in Payment Channel Networks

REFERENCES

(1]
(2]

(13

[14]

[15]

[16

[17

(18]

[19]

[20

[21]

[22

[23

[24]

[25

[26

[n.d.]. The growth of the Lightning Network. https://k33.com/research/archive/
articles/the-growth-of-the-lightning-network.

[n.d.]. Lightning network gossip datasets and topology. https://github.com/
Inresearch/topology.

[n.d.]. ns-3 network simulator. https://www.nsnam.org/.

[n.d.]. Ripple data. https://data.ripple.com/.

[n.d.]. Visa fact sheet. https://www.visa.co.uk/dam/VCOM/download/corporate/
media/visanet-technology/aboutvisafactsheet.pdf.

[n.d.]. What is the Lightning Network in Bitcoin and how does it
work? https://cointelegraph.com/bitcoin-for-beginners/what-is-the-lightning-
network-in-bitcoin-and-how-does-it-work.

[n.d.]. Xrpscan. https://xrpscan.com/.

2023. Phoenix Wallet 4: Trampoline payments. Accessed: 2023-12-19.

2023. Trampoline routing. Accessed: 2023-12-19.

2023. What are trampoline payments. Accessed: 2023-12-19.

Abdelrahaman Aly, Edouard Cuvelier, Sophie Mawet, Olivier Pereira, and Math-
ieu Van Vyve. 2013. Securely Solving Simple Combinatorial Graph Problems.
In Financial Cryptography and Data Security - 17th International Conference, FC
2013, Okinawa, Japan, April 1-5, 2013, Revised Selected Papers (Lecture Notes in
Computer Science, Vol. 7859), Ahmad-Reza Sadeghi (Ed.). Springer, 239-257.
Abdelrahaman Aly and Mathieu Van Vyve. 2014. Securely Solving Classical
Network Flow Problems. In Information Security and Cryptology - ICISC 2014 -
17th International Conference, Seoul, Korea, December 3-5, 2014, Revised Selected
Papers (Lecture Notes in Computer Science, Vol. 8949), Jooyoung Lee and Jongsung
Kim (Eds.). Springer, 205-221.

Andreas Anotonopoulos, Olaoluwa Osuntokun, and Rene Pickhardt. [n. d.]. Mas-
tering the Lightning Network. https://github.com/Inbook/Inbook.

Mihir Bellare and Sara K. Miner. 1999. A Forward-Secure Digital Signature
Scheme. In Advances in Cryptology - CRYPTO °99, 19th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings
(Lecture Notes in Computer Science, Vol. 1666), Michael J. Wiener (Ed.). Springer,
431-448.

Ran Canetti. 2004. Universally composable signature, certification, and authenti-
cation. In Proceedings. 17th IEEE Computer Security Foundations Workshop, 2004.
Ran Canetti, Alley Stoughton, and Mayank Varia. 2019. EasyUC: Using EasyCrypt
to Mechanize Proofs of Universally Composable Security. In 32nd IEEE Computer
Security Foundations Symposium, CSF 2019, Hoboken, N7J, USA, June 25-28, 2019.
IEEE, 167-183.

Yanjiao Chen, Yuyang Ran, Jingyue Zhou, Jian Zhang, and Xueluan Gong. 2022.
MPCN-RP: A Routing Protocol for Blockchain-Based Multi-Charge Payment
Channel Networks. IEEE Transactions on Network and Service Management 19, 2
(2022), 1229-1242

Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed E.
Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Giin Sirer, Dawn Song,
and Roger Wattenhofer. 2016. On Scaling Decentralized Blockchains - (A Posi-
tion Paper). In Financial Cryptography and Data Security - FC 2016 International
Workshops, BITCOIN, VOTING, and WAHC, Christ Church, Barbados, February 26,
2016, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 9604), Jeremy
Clark, Sarah Meiklejohn, Peter Y. A. Ryan, Dan S. Wallach, Michael Brenner, and
Kurt Rohloff (Eds.). Springer, 106-125.

Christian Decker. [n.d.]. Lightning Network Research - Topology Datasets.
https://github.com/Inresearch/topology. https://doi.org/10.5281/zenodo.4088530
Lisa Eckey, Sebastian Faust, Kristina Hostakova, and Stefanie Roos. 2020. Splitting
Payments Locally While Routing Interdimensionally. IACR Cryptol. ePrint Arch.
2020 (2020), 555

Felix Engelmann, Henning Kopp, Frank Kargl, Florian Glaser, and Christof Wein-
hardt. 2017. Towards an Economic Analysis of Routing in Payment Channel
Networks. In Proceedings of the 1st Workshop on Scalable and Resilient Infrastruc-
tures for Distributed Ledgers (SERIAL ’17). Article 2, 6 pages.

Ittay Eyal, Adem Efe Gencer, Emin Giin Sirer, and Robbert van Renesse. 2016.
Bitcoin-NG: A Scalable Blockchain Protocol. In 13th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI 2016, Santa Clara, CA, USA,
March 16-18, 2016, Katerina J. Argyraki and Rebecca Isaacs (Eds.). USENIX Asso-
ciation, 45-59.

LR. Ford and D.R. Fulkerson. 1954. Maximal flow through a network. Canadian
Journal of Mathematics 8 (1954).

AV. Goldberg and R. E. Tarjan. 1988. A new approach to the maximum flow
problem. J. of ACM 35 (1988), 921-940.

Qianyun Gong, Chengjin Zhou, Le Qi, Jianbin Li, Jianzhong Zhang, and Jingdong
Xu. 2021. VEIN: High Scalability Routing Algorithm for Blockchain-based Pay-
ment Channel Networks. In 20th IEEE International Conference on Trust, Security
and Privacy in Computing and Communications, TrustCom 2021, Shenyang, China,
October 20-22, 2021. IEEE, 43-50.

Hsiang-Jen Hong, Sang-Yoon Chang, and Xiaobo Zhou. 2022. Auto-Tune: Effi-
cient Autonomous Routing for Payment Channel Networks. In 2022 IEEE 47th
Conference on Local Computer Networks (LCN). 347-350.

[27]

[28

(35]

[36

[37

[39

[40

[41

[42

[43]

[44]

Ty
AN

[48

Conference’17, July 2017, Washington, DC, USA

Heba Kadry and Yasser Gadallah. 2021. A Machine Learning-Based Routing
Technique for Off-chain Transactions in Payment Channel Networks. In 2021
IEEE International Conference on Smart Internet of Things (SmartloT). 66-73. https:
//doi.org/10.1109/SmartIoT52359.2021.00020

Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017.
Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. In Advances
in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I (Lecture Notes in
Computer Science, Vol. 10401), Jonathan Katz and Hovav Shacham (Eds.). Springer,
357-388.

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa
Syta, and Bryan Ford. 2018. OmniLedger: A Secure, Scale-Out, Decentralized
Ledger via Sharding. In 2018 IEEE Symposium on Security and Privacy, SP 2018,
Proceedings, 21-23 May 2018, San Francisco, California, USA. IEEE Computer
Society, 583-598.

MIT Media lab. Digital currency initiative. [n. d.]. Layer 2: The Lightning Network.
https://dci.mit.edu/lightning-network.

lightning [n. d.]. Lightning network. https://lightning.network/.

Lightning Network [n.d.]. Lightning Network Routing Nodes.
https://docs lightning.engineering/the-lightning-network/multihop-
payments/what-makes-a-good-routing-node.

Siyi Lin, Jingjing Zhang, and Weigang Wu. 2020. FSTR: Funds Skewness Aware
Transaction Routing for Payment Channel Networks. In 50th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN 2020, Valencia,
Spain, June 29 - July 2, 2020. IEEE, 464-475.

G. Malavolta, P. Moreno-Sanchez, A. Kate, and M. Maffei. 2017. SilentWhispers:
Enforcing Security and Privacy in Decentralized Credit Networks. In Annual
Network and Distributed System Security Symposium, NDSS.

G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Ravi. 2017. Concur-
rency and Privacy with Payment-Channel Networks. In Proceedings ACM SIGSAC
Conference on Computer and Communications Security, CCS. 455-471.

Andrew Miller, Iddo Bentov, Surya Bakshi, Ranjit Kumaresan, and Patrick Mc-
Corry. 2019. Sprites and State Channels: Payment Networks that Go Faster
Than Lightning. In Financial Cryptography and Data Security - 23rd International
Conference, FC 2019, Frigate Bay, St. Kitts and Nevis, February 18-22, 2019, Revised
Selected Papers. 508—526.

Andrew Miller, Ari Juels, Elaine Shi, Bryan Parno, and Jonathan Katz. 2014.
Permacoin: Repurposing Bitcoin Work for Data Preservation. In 2014 IEEE Sym-
posium on Security and Privacy, SP 2014, Berkeley, CA, USA, May 18-21, 2014. IEEE
Computer Society, 475-490.

P. Moreno-Sanchez, A. Kate, M. Maffei, and K. Pecina. 2015. Privacy Preserving
Payments in Credit Networks: Enabling trust with privacy in online marketplaces.
In Annual Network and Distributed System Security Symposium, NDSS.

Gaurav Panwar, Satyajayant Misra, and Roopa Vishwanathan. 2019. BIAnC:
Blockchain-based Anonymous and Decentralized Credit Networks. In Proceed-
ings of the Ninth ACM Conference on Data and Application Security and Privacy,
CODASPY. 339-350.

Gaurav Panwar, Roopa Vishwanathan, George Torres, and Satyajayant Misra.
[n.d.]. SPRITE: Secure and Private Routing in Payment Channel Networks (Full
Version). https://eprint.iacr.org/2024/122.

Sunoo Park, Albert Kwon, Georg Fuchsbauer, Peter Gazi, Joél Alwen, and
Krzysztof Pietrzak. 2018. SpaceMint: A Cryptocurrency Based on Proofs of
Space. In Financial Cryptography and Data Security - 22nd International Confer-
ence, FC 2018, Nieuwpoort, Curagao, February 26 - March 2, 2018, Revised Selected
Papers (Lecture Notes in Computer Science, Vol. 10957), Sarah Meiklejohn and
Kazue Sako (Eds.). Springer, 480-499.

Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. 2019. SpOT-Light:
Lightweight Private Set Intersection from Sparse OT Extension. In Advances in
Cryptology - CRYPTO 2019 - 39th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part III (Lecture Notes
in Computer Science, Vol. 11694), Alexandra Boldyreva and Daniele Micciancio
(Eds.). Springer, 401-431.

David Pointcheval and Olivier Sanders. 2016. Short Randomizable Signatures.
In Topics in Cryptology - CT-RSA 2016 - The Cryptographers’ Track at the RSA
Conference 2016, San Francisco, CA, USA, February 29 - March 4, 2016, Proceedings
(Lecture Notes in Computer Science, Vol. 9610), Kazue Sako (Ed.). Springer, 111-126.
Joseph Poon and Thaddeus Dryja. [n. d.]. The Bitcoin Lightning Network: Scalable
Off-Chain Instant Payments. https://lightning.network/lightning-network-paper.
pdf.

raiden [n.d.]. Raiden network. https://raiden.network/.

ripple [n.d.]. Ripple. https://ripple.com.

S. Roos, P. Moreno-Sanchez, A. Kate, and I. Goldberg. 2018. Settling payments
fast and private: efficient decentralized routing for path-based transactions. In
Annual Network and Distributed System Security Symposium, NDSS.

Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Goldberg. 2018.
Settling Payments Fast and Private: Efficient Decentralized Routing for Path-
Based Transactions. In 25th Annual Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California, USA, February 18-21, 2018. The

https://k33.com/research/archive/articles/the-growth-of-the-lightning-network
https://k33.com/research/archive/articles/the-growth-of-the-lightning-network
https://github.com/lnresearch/topology
https://github.com/lnresearch/topology
https://www.nsnam.org/
https://data.ripple.com/
https://www.visa.co.uk/dam/VCOM/download/corporate/media/visanet-technology/aboutvisafactsheet.pdf
https://www.visa.co.uk/dam/VCOM/download/corporate/media/visanet-technology/aboutvisafactsheet.pdf
https://cointelegraph.com/bitcoin-for-beginners/what-is-the-lightning-network-in-bitcoin-and-how-does-it-work
https://cointelegraph.com/bitcoin-for-beginners/what-is-the-lightning-network-in-bitcoin-and-how-does-it-work
https://xrpscan.com/
https://github.com/lnbook/lnbook
https://github.com/lnresearch/topology
https://doi.org/10.5281/zenodo.4088530
https://doi.org/10.1109/SmartIoT52359.2021.00020
https://doi.org/10.1109/SmartIoT52359.2021.00020
https://dci.mit.edu/lightning-network
https://lightning.network/
https://docs.lightning.engineering/the-lightning-network/multihop-payments/what-makes-a-good-routing-node
https://docs.lightning.engineering/the-lightning-network/multihop-payments/what-makes-a-good-routing-node
https://eprint.iacr.org/2024/122
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://raiden.network/
https://ripple.com

Conference’17, July 2017, Washington, DC, USA

Internet Society.

Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakrishnan, Kathleen Ruan, Pari-

marjan Negi, Lei Yang, Radhika Mittal, Giulia C. Fanti, and Mohammad Alizadeh.

2020. High Throughput Cryptocurrency Routing in Payment Channel Networks.

In 17th USENIX Symposium on Networked Systems Design and Implementation,

NSDI 2020, Santa Clara, CA, USA, February 25-27, 2020, Ranjita Bhagwan and

George Porter (Eds.). USENIX Association, 777-796.

George Torres and Gaurav Panwar. [n.d.]. SPRITE Implementation. https:

//github.com/nsol-nmsu/sprite.

[51] B.Viswanath, M. Mondal, P. K. Gummadi, A. Mislove, and A. Post. 2012. Canal:
scaling social network-based Sybil tolerance schemes. In Proceedings of EuroSys.
309-322.

[52] Peng Wang, Hong Xu, Xin Jin, and Tao Wang. 2019. Flash: Efficient Dynamic Rout-

ing for Offchain Networks (CoNEXT ’19). Association for Computing Machinery,

New York, NY, USA, 370-381. https://doi.org/10.1145/3359989.3365411

Ruozhou Yu, Guoliang Xue, Vishnu Teja Kilari, Dejun Yang, and Jian Tang. 2018.

CoinExpress: A Fast Payment Routing Mechanism in Blockchain-Based Payment

Channel Networks. In 27th International Conference on Computer Communication

and Networks, ICCCN 2018, Hangzhou, China, July 30 - August 2, 2018. IEEE, 1-9.

Xiaoxue Zhang, Shougian Shi, and Chen Qian. 2021. WebFlow: Scalable and

Decentralized Routing for Payment Channel Networks with High Resource

Utilization. CoRR abs/2109.11665 (2021). https://arxiv.org/abs/2109.11665

Yuhui Zhang and Dejun Yang. 2019. RobustPay: Robust Payment Routing Protocol

in Blockchain-based Payment Channel Networks. In 2019 IEEE 27th International

Conference on Network Protocols (ICNP). 1-4.

Yuhui Zhang and Dejun Yang. 2021. RobustPay*: Robust Payment Routing With

Approximation Guarantee in Blockchain-Based Payment Channel Networks.

IEEE/ACM Trans. Netw. 29, 4 (2021), 1676—-1686.

Yuhui Zhang, Dejun Yang, and Guoliang Xue. 2019. CheaPay: An Optimal

Algorithm for Fee Minimization in Blockchain-Based Payment Channel Networks.

In 2019 IEEE International Conference on Communications, ICC 2019, Shanghai,

China, May 20-24, 2019. IEEE, 1-6.

[49

[50

[53

(54

[55

[56

[57

8 APPENDIX

8.1 AS Function Definitions

DEFINITION 1. (Sequential Aggregate Signatures [43]). Let G1, Gy
be prime-order cyclic groups of size p, such that g € Gy, g € Go, and
e: G xGy > GT.

o AS.Setup(1%): Given a security parameter k, this algorithm
selects a random x € Zyp and outputs pp — (p,G1, Gy, Gr, e,
9.X, 3. X), where X = ¢* and X = §*.

o AS.KeyGen(pp): This algorithm selects a random y < Zp,
computes Y gY and sets sk asy and pk as Y.

o AS.Sign(sk, o, (my,...,my), (pky, ..., pk,), m) proceeds as fol-
lows:

- Ifr =0, theno « (¢, X);

— Ifr > 0 but AS.Verify((pky,...
0, then it halts;

— Ifm =0, then it halts;

- If for some j € {1,...,r} pk; = pk, then it halts.

If the algorithm did not halt, then it parses sk as y and o

as (01, 02), selects t «s Z, and computes ¢’ = (0], 0;) —

(0{, (o7 - Uly'm)t)_ It eventually outputs o’ .

o AS.Verify((pky,...,pk,), (m1,...,my), o) parsesc as (o1, 02)
and pkj as ?j,forj =1,...,r, and checks whether o1 # 1g,
ande(al,)? 11 ?;nj = e(0y, g are both satisfied. In the positive
case, it outputs 1, and 0 otherwise.

s Pkr), o, (my,...,myp)) =

8.2 Algorithms

Subroutine for intermediate node (Algorithm 8): This algo-
rithm details the functions called by nodes in the network during
hold and pay phases discussed in Algorithm 5. hold function is
called by different nodes when they receive a holds or hold, tuple.

Gaurav Panwar, Roopa Vishwanathan, George Torres, Satyajayant Misra

If the receiving node happens to be a perimeter node, it checks if
the tuple was addressed to it (line 5). If so, and if it has a path to
transmit the asking amount, it updates the holds tuple with the
destination RN as the receiver and forwards the message. Nodes in
the network that have a path to the target RN or perimeter node,
set the transaction’s local retry counter to be zero. They also store
the transaction digest and identity of the destination RN, initialize
the timers te; and tey, forward the message to their neighbor, and
sign a multisig hold contract with their neighbor. Each node also
sets its transaction-specific timers, te;.txid and tey.txid. If the node
is the target RN node in the hold message, it follows Algorithm 6
to process the message.

If the node is a non-perimeter, non-RN node, it signs a multisig
contract with its neighbor and forwards the message to its next-
hop neighbor after checking if it has a viable path with sufficient
liquidity to the destination RN/perimeter node (lines 11-16). Let us
now focus on nodes setting their timers. Each Node computes two
transaction-specific timers txid.te; and txid.te; as functions of the
current time currTime and the global te; and fez (line 13, 15). We
do this since each node that is not a destination (either perimeter
node or an RN) cannot simply use te; and te; for timeouts, since we
need to ensure that timeouts of nodes are staggered, i.e., the node
closest to a destination times out first, whereas the nodes farthest
away from the destination time out last. If a node receives multiple
copies of a hold, message (where x € {s, r} corresponding to sender
and receiver respectively) associated with the same txid, it ignores
subsequent messages. When a node cannot find any viable path
to a destination (even after retries), it sends a holdReject message
back to its predecessor from whom it received the holdy message.
It also sends a copy of its current routingTable so the predecessor
can update its own routingTable.

The holdReject function is called by a node in the network on
receiving a holdReject message. Nodes in the network could choose
to retry on other paths upto maxRetries limit (lines 18-19) or choose
to forward holdReject message back towards the sender if path is un-
available to a target RN (line 23). If Alice or Bob receive a holdReject,
that means that there is no viable path from their neighbor to RN,
(for Alice) or RN, (for Bob), hence they need to retry the transac-
tion with different neighbors and possibly new RNs (line 21). The
way RNs handle holdy, holdReject messages is slightly different; we
discuss RNs’ actions in these phases separately in Algorithm 6. The
holdACK function is called by a node on receiving a holdACKy mes-
sage. When the target RN in a given segment receives a holdy tuple,
and is willing to process the transaction, it sends back a holdACK
tuple containing its signature to the neighboring node it received
the holdy tuple from.

When a node receives a holdACKy tuple, it deletes its timer
tey, and forwards the holdACKj to its predecessor. Ultimately, the
sender should receive the holdACKy tuple, which will tell her that
the hold, messages along that segment were successful, and reached
the destination RN. If a node does not receive a hold ACK tuple until
tej expires, it calls the holdACKTimeout function, which retries the
transaction if possible, else it drops the transaction and sends a
holdReject, tuple towards the sender (line 28). If any node including
an RN receives a hold tuple on a different path, after it has already
forwarded a holdACK towards Alice on another path, then it should
replay the holdACK tuple on the new path and send a holdReject

https://github.com/nsol-nmsu/sprite
https://github.com/nsol-nmsu/sprite
https://doi.org/10.1145/3359989.3365411
https://arxiv.org/abs/2109.11665

SPRITE: Secure and Private Routing in Payment Channel Networks

message on the previous path. This accounts for a malicious node on
any path not forwarding holdACK tuples downstream thus timing
out nodes preceding it, and prompting the formation of another
path to the target RN. Due to space constraints, we discuss the pay
phase actions in the full version [40].

Algorithm 8: Subroutine for every node for hold and pay
phase

def hold (holdy, Y, VKRN Vs txid, (611N 7 hopMax, digest,

tey, tez)

1 if A (v, node;j, p;) in routingTable with
pj = (hopCount, currMaxs, currMax;, te) where
(hopCount < hopMax) A ((currMaxy > v)V ((Iw;; >
v) A (currTime > t,))) then

2 Create tuple (holdReject,., Y, VKRN, Vs txid) and
send with routingTable to neighbor that sent hold,.
3 Call multisig(Reo, L, i, j, Iw;j, v, txid, ts) and delete

retry.txid, digest.ixid, segTarget.txid = RNy,
te1.txid, and tey.txid.

4 return

5 if Nonce; € (holds, Nonce;, VKpN,), v, txid, CRN
hopMax,digest, teq, tep) tuple belongs to node; then

6 Lookup routingTable for tuple (RN(.), nodej, p;)
with p;j = (hopCount, currMaxs, currMax, te)
where (hopCount < hopMax) A ((currMaxy, >
V)V ((Iwi; = v) A(currTime > t.))), update holds
tuple to (holds, RN(), VKRN(_)> v, txid, CRN(.)>
hopMax, digest, teq, tez) with hopMax = hopCount,
and forward to node;. Set retry.txid = 0,
digest.txid = digest, segTarget.txid = RNy,
tey.txid = currTime + (te; * hopCount), and
tey.txid = currTime + tep. Call multisig(L,holds, i,
J» Wwij, v,txid,ts).

7 Update t, = currTime + e and currMaxg = currMaxg
—v for p; in routingTable. return

8 else if node; == RN(.) then

9 ‘ Follow Alg. 6.

10 else

1 Update holdy tuple hopMax = hopMax — 1 and
forward tuple to node;.

12 if Y = Nonce(.) then

13 Set retry.txid = 0, digest.txid = digest,

segTarget.txid = RNy, teq.txid =

currTime + (te; * (hopCount + hopMaxgy)),
and tes.txid = currTime + tey.

14 else

15 Set retry.txid = 0, digest.txid = digest,
segTarget.txid = RN (),

Conference’17, July 2017, Washington, DC, USA

17

18

19

20

21

22
23

24

25

26

27

28

29
30
31
32
33
34

35

def holdReject (holdReject,,, Y, VKRN(.), v, txid)
Update local routingTable with new info received.
if (3 (Y, nodej, p;) with pj = (hopCount, currMaxs,
currMaxy, to) where (hopCount < hopMax) A
(retry.txid < maxRetries) A ((currMaxy > v)V
((Aw;ij = v) A (currTime > t¢))) then
Update holdy tuple hopMax = hopMax — 1 and
forward tuple to node;. Call multisig(L,holdy, i, j,
Iw;j, v,txid,ts). Set retry.txid = retry.txid + 1.
else if (node; == Alice A # (RN;,node,p;)) v
(node; == Bob A # (RN,,node;,p;)) where
pj = (hopCount, currMaxs, currMaxy, te) and
currMax, > v then
‘ Choose new v/ and restart Algorithm 3 and 4.
else
Forward tuple (holdReject,, Y, VEKRN» Vs txid) along
with local routingTable to neighbor that sent holdy.
Call multisig(Rev, L, i, j, Iw;;, v,txid,ts) and delete
retry.txid, digest.txid, te;.txid, and tey.txid.
def holdACK (holdACKy, t, O'RN(‘))
Update local routingTable with new info received.
Parse t = (txid, holdy, v). Verify(VkRN(_),aRN<_),t) -1,
RN(.y == segTarget.txid, and delete timer te; for txid.
node; then forwards the holdACKj tuple with
routingTable to neighbor that sent hold,.
def holdACKTimeout()
node; calls multisig(Reo, L, i, j, Iw;j, v,txid,ts) to node;
that it had sent holdy tuple to, and retries send holdy to
other neighbors for target Y for txid. If no such
neighbors exist, create holdReject,. tuple, call
multisig(Rev, L, i, 0, Iwj,, v, txid, ts), and send along
with routingTable to node, that sent holdy message.
Delete retry.txid, digest.txid, segTarget.txid = RNy,
te.txid, and tey.txid.
def pay(pay, preimage, v, txid)

2
if H(preimage) # digest.txid then
‘ return L.
if node; is an RN then
‘ Follow Alg. 6.
if node; is Alice then
Create t = (pay, txid, preimage,;, v), set payACK =
(payACK, t, 1) and send to neighbor that sent pay
tuple. return
Forward pay tuple to next neighbor node, on txid path
along with multisig(L,pay, i, 0, lwjo, v,txid,ts).

tej.txid = currTime + (tej * hopCount), and

tes.txid = currTime + tey.

16 Call multisig(L,holdy, i, j, Iwij, v,txid,ts). Update

te = currTime + e and currMax, = currMax, + v
for p; in routingTable.

R2RB Bootstrap protocol (Algorithm 9) describes the opera-

tions during the bootstrap phase of the R2RB protocol.

We recall that R2RB differs from R2NB in the distance each RN
has to broadcast the RN-Update message which is depicted in Fig-
ure 5. This distance is larger in R2RB because of the absence of
perimeter nodes in the network. The broadcasted messages from
each RN travel a certain number of hops away from the RN, allowing
nodes in the given area to route transactions to the corresponding
RN. Due to the larger broadcast area, neighboring RNs will receive
each other’s broadcast messages and be able to route transactions

Conference’17, July 2017, Washington, DC, USA

Gaurav Panwar, Roopa Vishwanathan, George Torres, Satyajayant Misra

def payACK(payACK, -, -)
36 if Received (payACK t, URN(_)) then

37 Parse t = (pay, txid, VkRN(.), v), Verify(VkRN(.),
ORN(,» 1) — 1, verify RN(.y € RN, delete te;.txid.
38 node; then forwards the payACK tuple to the

neighbor it had received the pay tuple from.
Ise if Received (payACK;t, L) then
10 Parse t = (pay, txid, preimage,,,;, v), verify

39

o

H(preimage,,.q 2 digest.txid, if true delete tep.txid.
11 If node; == RN, return, else forward the payACK to
neighbor that sent pay tuple.

def payACKTimeout()

42 node; calls multisig(Reo, L, i, j, lw;;, v,txid,ts) to the
neighbor node; that it had originally sent pay tuple to
and to the other neighbor that it had originally
received pay tuple from.

@ Routing Node
---- RN's Perimeter
(4,5 hop)
@ Regular node

Figure 5: RNs neighborhoods in R2RB.

between them directly. The key advantage for R2RB is the elim-
ination of perimeter nodes, with the trade-off of larger message
complexity in the system due to larger broadcast distances for the
RN-Update message.

Multisig contracts (Algorithm 10): The hold and pay phases
involve neighboring nodes signing multisig contracts between
them. In the hold phase, the contract stipulates that two neigh-
boring nodes j and k agree to decrease/increase their link weights
Iw ji and lwy ; respectively, by the sender’s asking amount (v) in the
future when the pay tuple comes through. The multisig contract in
the pay phase actually updates the link weights, and both neighbor-
ing nodes need to sign the new balances. Note that in the RN,-Bob
segment, since the payment goes in the RN, — Bob direction, the
link weights are updated in the opposite direction compared to the
Alice — RN and RN — RN, segments. If a multisig contract signed
in the hold or pay phases needs to be revoked, the contract and
signatures on them are discarded.

8.3 Informal Security Analysis

Bootstrapping phase: For verifying if RNs set up correct AS pa-
rameters, pp, all nodes along a path can individually check if they
can produce a valid signature on a test message, else discard the

Algorithm 9: R2RB: Bootstrap broadcast from RN to RN

1 Each node i initializes a table, routingTable; containing
columns: (reachable RNs, next hop neighbor j, currMaxg,
currMax,, hopCount, t¢).

2 for each RN, k € RN do

3 k does AS.Setup(11) — ppy. and runs

AS.KeyGen(ppr) — (skg, vkg).

4 Create a tuple my = (RN-Update, ppy., Vkgy, , currMaX’sc,

currMaxlrc , hopCount = 0, hopMax, ts) for each

neighbor j, j € [1..I] where [is the total number of
neighbors of k. Create 0']’C « Sign(skgy,, my) and set

m;c = (my, O—l/c) Create signature

o < AS.Sign(skg, L, L, L, m;c).

5 k sends M = ((m;c), (vkg), ox) to each neighbor j.

6 for each node i in the network on receiving an RN-Update

message from neighbor j do

7 On receiving M = ((m?(, coomj), (VKg, ..., VK), 05),

parses (my, 0,) < m; and (RN-Update, ppy., VK,

currMaxlsC , currMaxlﬁ , hopCount, hopMax, ts) < my.

8 if (Verify(my, VKk,U]’() — 0)V (AS.Verify((m, .. .,

mj), (Vkg, ..., vkj), 0j) — 0) then

9 ‘ Return L.
10 i checks that hopCount value in all messages
(m;c, ...,mj) are incremented by 1 in each message. If

not, return L.

1 i runs AS.KeyGen(ppr) — (ski, vk;).

12 i updates its local routingTable for RN k and neighbor j
by updating the expiry time t, = ts +e, currMaxlsc , and

currMax’rc .

13 if hopCount of received message is equal to hopMax in
my. then

14 ‘ Return L.

15 else

16 for each neighbor s do

17 i creates m; by updating contents of m; as

hopCount = hopCount + 1,

currMax¥ = min(currMax¥, lw;), and
currMax¥ = min(currMax, lws ;).

18 i creates signature o; < AS.Sign(sk;, o7,
(m;c, cmj), (VKg, .., vky), my).

19 isetsM:((m;c,...,mj, m;), (VKg, ...,
vkj, vk;i), 0;) and sends it to neighbor r.

pp (we have not shown this simple step for presentation clarity).
If RNs do not selectively forward to certain neighbors, we do not
consider it as malicious behavior. The regular nodes within a given
RN’s hopMax radius will receive the RN’s broadcasted messages
from other neighbors in the neighborhood.

The next issue is nodes underreporting or overreporting currMaxg
and currMax,. We do not consider nodes underreporting currMax;
and currMax, as malicious behavior since every node can individu-
ally decide the amount of funds to commit on its own links. If nodes
overreport currMaxg, currMax, to a value greater than that of their

SPRITE: Secure and Private Routing in Payment Channel Networks

Algorithm 10: Multisig Exchange
Input :o0 € {1, Rev},t € {holds | hold, | pay}, j, SKj, VKj,
k, SKy., VK., lek, v, txid,ts
1 if 0 == Rev then

2 j and k discard currently stored contracts for txid and
delete fwjy.txid and fwy;.txid.
3 return

4 if t == pay then

5 Jjand k setlw i = fwjp.txid and lwy ; = fwy;.txid.

6 return

7 if t == holds then

8 ‘ Setfwjk =lek—v.Setfwkj =1ij+v.

9 if t == hold, then

10 ‘ Set fwjr =1wjr +v.Set fwg; =1lwg; —v.

1 jsends oj SignSKj (contract = (Iw g lwg; , fwjk,
fwkj), txid, digest, ts) to k.

12 k sends o} « Signgy, (contract = (IwjgIwg; . fwjg,
fwkj), txid , digest, ts) to j.

13 if Verifyyg, (contract, oy) X 1 then

14 j stores (o}, oy, contract), fwy.txid = fwy; and
fwjgtxid = fwjg.

15 if Verifyy . (contract, o) & 1 then

16 k stores (o, oy, contract), fwy.txid = fwy; and
ijk.txid = fW]k

17 if t == holds then

18 Jj updates the currMaxs = min(fwy, currMaxs) for all
paths going through k. k updates the

currMax, = min(fwyj, currMax;) for all paths going

through j.
19 if t == hold, then
20 Jj updates the currMax, = min(fw i, currMax;) for all

paths going through k. k updates the
currMaxs = min(fwyj, currMaxs) for all paths going
through j.

own links, that is malicious behavior. Due to privacy concerns,
nodes’ link weights cannot, of course, be verified by anyone, but
overreporting will eventually cause transaction failure (since there
was no actual liquidity) and result in revoked hold/pay contracts
with penalties for the misbehaving node. In any case, no node will
lose money. The AS scheme helps verify that the currMax values do
not increase in the series of aggregated messages to help identify
malicious nodes in the network as well. A malicious node cannot
increase the currMaxg, currMax, value signed by the RN as part of
the first aggregated message because the first message is signed by
the RN using its publicly verifiable signing key.

The other potential source of malicious behavior is nodes un-
derreporting or overreporting hopCount values. First note that the
hopCount is contained in every message ((m;c ...,mj), Line 7 in
Algorithm 1) that is aggregated in the signature. Any honest node
along a path can verify that the hopCount contained within every
message is incremented by one, starting with m;C = 0 (thus reduc-
ing hopCounts would be immediately detected, and the RN-Update

Conference’17, July 2017, Washington, DC, USA

message discarded). Inflating hopCounts would not be in the best
interest of the malicious node(s) because honest nodes could have
alternative shorter paths to the intended target node.

Concerning perimeter nodes, two situations could arise: Case 0:
A regular node pretends to be a perimeter node by overreporting its
hopCount. In this case, that node’s nonce will not figure in the set
intersection of two RN since the node was not actually a perimeter
node. The node cannot do anything further. Case 1: A perimeter
node underreports its hopcount or drops a message. We do not
consider this malicious behavior, since it just means that the node
does not wish to participate in transactions. Since the RN-Update
messages are broadcasted, RNs will get replies from other perimeter
nodes. Even if an RN does not pad its nonce list with random nonces
(Algorithm 2, Line 2), it will not leak the identity of its perimeter
nodes to other RNs, although it will reveal the number of perimeter
nodes that RN has paths to.

Hold phase: If an honest node along a path does not receive
holdACK or holdReject messages for a given transaction before the
expiry of its timer tey, the transaction will time out and will have to
be retried. Malicious nodes can try to change the message type (the
first field), but unknown message types will get dropped by honest
nodes along a path. Malicious nodes might also try to change the
“Y” parameter denoting the identity of the next RN or perimeter
node to forward messages to (Algorithm 5, Case 1, 2). The message
will be held at the misdirected RN/perimeter node which could also
be potentially malicious. But eventually, the hold phase for that
segment will timeout, and the hold contracts will be rolled back.
Other parameters such as hopMax, digest being modified, or Cryy.)
being re-encrypted (Algorithm 5, Case 1) will result in the hold
messages being misdirected, but the hold phase times out, and we
will not get to the pay phase.

A malicious RN cannot misroute a hold message tuple to an RN},
instead of the sender’s selected RN}, e.g., by creating an incorrect
onion. This is because Bob’s hold, will be sent to RN, and since RN,
never received it, the misrouted transaction will eventually time out,
and any signed contracts will be rolled back. Similarly, no malicious
node, including RNs can increase/decrease the transaction amount
v to an arbitrary value, because: 1) since the receiver knows the
correct amount, the hold will eventually timeout at the last hop
and fail. 2) All honest nodes along the path will have to commit
to paying the amount in the hold phase. Any honest nodes which
receive a pay message with a transaction amount different from the
original hold message will refuse to proceed with the pay phase,
hence timing out the transaction and causing a rollback of contracts.

The one thing that a malicious RNy could potentially do is in-
crease the path length to RN, by several more RNs than is required.
The transaction will eventually reach RN, via a longer path in the
RN — RN, segments. Potential solutions include the sender speci-
fying a maximum number of layers in the onion encryption at RNy,
based on periodic network statistics released by the RNs. We leave
incorporating such mechanisms into SPRITE as future work.

Pay phase: If a node intentionally misroutes the pay tuple or
does not forward it, resulting in the pay tuple not reaching the target
node on time, tey timer will expire, causing nodes to time out and
rollback their pay contracts. In case of any other malicious activity,
the hold contract signed in the previous phase can be enforced.

	Abstract
	1 Introduction
	2 SPRITE System Model
	2.1 Parties
	2.2 Setup
	2.3 System Parameters
	2.4 Threat Model and Security/Privacy Goals

	3 Workflow of SPRITE
	4 Construction of SPRITE
	4.1 Bootstrap phase
	4.2 Hold phase
	4.3 Pay phase

	5 Security Analysis
	5.1 Potential Attacks and Mitigation
	5.2 Formal Security Analysis

	6 Experimental Analysis
	6.1 Experimental Setup
	6.2 Experimental Results

	7 Conclusion
	References
	8 Appendix
	8.1 AS Function Definitions
	8.2 Algorithms
	8.3 Informal Security Analysis

