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A R T I C L E I N F O A B S T R A C T

Editor: Stephan Stieberger The superconformal index ý of the 6d (2,0) theory on ÿ5×ÿ1 (which is related to the localization 
partition function of 5d SYM on ÿ5) should be captured at large ý by the quantum M2 
brane theory in the dual M-theory background. Generalizing the type IIA string theory limit 
of this relation discussed in arXiv :2111 .15493 and arXiv :2304 .12340, we consider semiclassically 
quantized M2 branes in a half-supersymmetric 11d background which is a twisted product of 
thermal AdS7 and ÿ4. We show that the leading non-perturbative term at large ý is reproduced 
precisely by the 1-loop partition function of an “instanton” M2 brane wrapped on ÿ1 × ÿ2

with ÿ2 ⊂ ÿ4. Similarly, the (2,0) theory analog of the BPS Wilson loop expectation value is 
reproduced by the partition function of a “defect” M2 brane wrapped on thermal AdS3 ⊂ AdS7. 
We comment on a curious analogy of these results with similar computations in arXiv :2303 .15207
and arXiv :2307 .14112 of the partition function of quantum M2 branes in AdS4 × ÿ7∕ℤý which 
reproduced the corresponding localization expressions in the ABJM 3d gauge theory.
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1. Introduction

The 6d (2,0) superconformal field theory should be describing the low-energy dynamics of ý coincident M5 branes. It is expected 
to be dual [1] to 11d M-theory theory on the AdS7 × ÿ4 background, which is a limit of the M5 brane solution of 11d supergravity 
[2]2

ýý2
11

= ÿ2
(
ýý2

AdS7
+

1

4
ýý2

ÿ4

)
, ý4 = ýÿ3 = ÿ2ÿ3 volÿ4 , ÿ3 = 8ÿý ý

3
ÿ
. (1.1)

Due to the lack of an intrinsic definition of the (2,0) theory and having only ý as a free parameter, it is not clear how to define 
non-trivial observables (computable, e.g., by localization) that can be used to test this AdS/CFT duality.3

To introduce an extra parameter one may consider some “orbifolding” of (1.1) (by analogy, e.g., with the ABJM theory [10] of 
multiple M2 branes on ℝ8∕ℤý dual to M-theory on AdS4 ×ÿ7∕ℤý). One option is to consider the (2,0) theory on ÿ

5 ×ÿ1
ÿ
where ÿ is 

the length of the circle. The dual M-theory background may then have the AdS7 part with the corresponding ÿ
5 ×ÿ1

ÿ
boundary, i.e. 

ýý2
AdS7

= ýý2 + sinh2 ý ýÿ5 + cosh2 ý ýÿ2 where ÿ ≡ ÿ + ÿ and ýÿ5 is the metric of a unit-radius 5-sphere.
4

Dimensionally reducing on the ÿ-circle, i.e. considering the limit of ÿ → 0, the M5 brane solution will reduce to the D4 brane 
solution of type IIA 10d supergravity, while the (2,0) theory on ÿ5 × ÿ1

ÿ
is expected to be related to the maximally supersymmetric 

5d SYM theory on ÿ5. The 5d SYM theory does not have a first-principles definition being nonrenormalizable, i.e. the (2,0) theory 
should be thought of as its UV completion (cf. [12]). Yet this relation may be useful at a heuristic level as one may attempt to define 
free energy of the SYM theory on ÿ5 by analogy with 4d SYM theory where it can be computed from localization.

It turns out that the requirement of preservation of 16 real supersymmetries demands introducing an extra R-symmetry twist in 
the (2,0) theory on ÿ5 × ÿ1

ÿ
, or a twist in the ÿ4 part of the background (1.1). This was understood in [13] when constructing the 

type IIA solution which corresponds to a D4 brane world volume wrapped on ÿ5. The 11d uplift of this solution is related by an 
analytic continuation to the following 11d background [13–15]

ýý2
11

= ÿ2
([
ýý2 + sinh2 ýýÿ5 + cosh2 ýýÿ2

]
+

1

4

[
ýÿ2 + cos2 ÿýÿ2 + sin2 ÿ (ýÿ+ ÿýÿ)2

])
, (1.2)

ÿ3 = −
1

8
ÿ3 cos2 ÿ volÿ2 ∧(ýÿ+ ÿýÿ) . (1.3)

Here the ÿ4 part ýÿ2 + cos2 ÿ ýÿ2 + sin2 ÿ ýÿ2 got the 2ÿ periodic angle ÿ shifted by ÿÿ where ÿ ∈ (0, ÿ) is the circular 11d coordi-
nate.5 This background is related to (1.1) by a periodic identification and a coordinate shift so is an obvious solution of the 11d 
supergravity.6 We will denote the first 7d part of (1.2) as AdS7,ÿ and the 4d part as ÿ̃

4 and somewhat loosely refer to (1.2) as a 
“direct product” AdS7,ÿ × ÿ̃4.

Our aim in this paper is to consider the quantum M2 brane in the (ý, ÿ) dependent background (1.2), (1.3) and compute its 
partition function in the semiclassical (large tension T2 = ÿ3ÿ2 =

2

ÿ
ý ≫ 1) expansion near particular classical solutions similarly to 

how that was done in the AdS4 ×ÿ7∕ℤý case in [18,19]. This will represent an M-theory generalization of the type IIA string theory 
semiclassical computations done in the limit ÿ → 0, ý →∞ with fixed ýÿ in [15,20].

2 Here ýý2
AdS7

and ýý2
ÿ4
are the metrics of the unit-radius AdS7 and ÿ4 . We shall often use the notation ýÿÿ ≡ ýý2

ÿÿ . ýÿ is the 11d Planck constant related to 
the gravitational constant in the (Euclidean) 11d supergravity action ÿ11 = −

1

2ÿ2
11

∫ ý11ý
√
ÿ(ý − 1

2⋅4!
ý 2
ýýÿÿ

+ ...) as 2ÿ2
11
= (2ÿ)8ý9

ÿ
and to the M2 brane tension as 

ÿ2 =
1

(2ÿ)2ý3
ÿ

. Also, volÿ4 is the normalized volume 4-form of ÿ4 , i.e. ∫
ÿ4 volÿ4 = 1 with vol(ÿ4) = 8ÿ2

3
.

3 Almost all of the available information comes from the 11d supergravity effective action and supersymmetry considerations that may be used, e.g., to determine 
the M-theory predictions for the a- and c- conformal anomaly coefficients of the (2,0) theory (see, e.g., [3–7]) and thus, in particular, the expression for its free energy 
on ÿ6 (that should have the same structure as the free energy of the N = 4 SYM on ÿ4): ý ∼ a(ý) logΛ + const. One may also find a defect conformal anomaly by 
using M2 brane probe in AdS7 ×ÿ4 background as discussed in [8,9] and refs. there.
4 In general, introducing a thermal circle one would need to consider also black hole like geometry with the corresponding asymptotics [11]. This will not be the 

case here as we will be interested in the background corresponding to a superconformal index with an extra R-symmetry twisting and periodic fermions.
5 This complex background becomes real after ÿ → ÿý with the time-like direction ý here playing the role of the 11d circle.
6 Note that near ý = 0, ÿ = 0 and relevant part of the metric becomes ýÿ2 + ýÿ2 + ÿ2(ýÿ + ÿýÿ)2 so that it may be thought of as a special case of a (complex or 

time-like) Melvin twist discussed in [16] and, in particular, in 11d context in [17]).
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We will provide a check of the AdS7/CFT6 correspondence in this setting by establishing matching of quantum M2 brane results 
with the large ý expansion of the supersymmetric partition function of the (2,0) theory on ÿ5 × ÿ1

ÿ
with R-symmetry twist (and 

periodic fermions), identified with the corresponding superconformal index computed in [21,22].7

As the non-abelian (2,0) theory does not have an explicit Lagrangian formulation, its supersymmetric partition function on ÿ5×ÿ1

that should be equal to the index cannot be computed directly, but it may be interpreted as a partition function of the 5d SYM theory 
(assuming the latter has a well-defined UV completion). Then the superconformal index may be interpreted as a (properly defined) 
localization result for the partition function of 5d SYM on ÿ5 with ý2

YM
proportional to ÿ up to a length scale factor. By analogy with 

the 4d SYM theory, this suggests also to consider the localization expression for the BPS Wilson loop expectation value (cf. [24]) 
which may be then compared with an M2 brane semiclassical computation as in [18].

Denoting by ýý (ÿ) the index of the (2, 0) theory on ÿ5 × ÿ1
ÿ
one finds for the large ý , fixed ÿ expansion of the corresponding 

free energy ýý (ÿ) = − logýý (ÿ) [21,22]

ýý (ÿ) = ý
pert

ý
(ÿ) + ý

np

ý
(ÿ) , ý

pert

ý
(ÿ) = −(

1

6
ý3 −

1

8
ý)ÿ +

∞∑

ÿ=1

ýÿ ÿ
−ÿÿ , (1.4)

ý
np

ý
(ÿ) =

1

4 sinh2
ÿ

2

ÿ−ýÿ +O(ÿ−2ýÿ ) . (1.5)

For the natural analog of the Wilson loop one finds for large ý [21,22]

ïÿ ð = 1

2sinh
ÿ

2

ÿýÿ +O(ý0) . (1.6)

Below we will reproduce the expressions (1.5) and (1.6) on the M-theory side, by performing semiclassical M2-brane computations 
in the background (1.2), (1.3). In the case of the non-perturbative contribution to free energy in (1.5), the classical M2 brane solution 
will be wrapped on ÿ1

ÿ
× ÿ2 with ÿ1

ÿ
⊂AdS7,ÿ and ÿ

2 ⊂ ÿ̃4. In the case of the Wilson loop (1.6), the dual M2 brane solution will be 
wrapped on AdS3,ÿ ⊂AdS7,ÿ , where AdS3,ÿ is the “thermal” AdS3 background.

In both cases, the exponents in (1.5) and (1.6) will come from the classical M2 brane action while the ÿ dependent prefactors will 
be precisely reproduced by the one-loop M2 brane fluctuation determinants as in [18,19]. Our results will generalize to the finite ÿ
case the analogous computations in the type IIA string-theory limit in [15,20].

The plan of the paper is as follows. In section 2 we review the localization results for the (2, 0) theory superconformal index and 
the analog of the supersymmetric Wilson loop, leading to (1.5), (1.6). In section 3 we discuss the general structure of the M2 brane 
semiclassical partition function. Section 4 presents the details of the calculation of this partition function in the case of the ÿ1

ÿ
× ÿ1

M2 brane instanton background reproducing (1.5). Section 5 addresses similar computation in the case of the M2 brane wrapped on 
AdS3,ÿ reproducing the Wilson loop expectation value in (1.6). Section 6 contains a summary and concluding remarks. Appendices 
contain some technical details used in the main part of the paper.

2. Localization expressions for the free energy and Wilson loop

The superconformal index of ý (ý) (2,0) theory on ÿ5 × ÿ1
ÿ
was found [21,22] to be given by a matrix model which is the same 

as for the supersymmetric 3d pure Chern-Simons theory solved in [25]. The result may be represented as a product of two factors8

ýý (ÿ) ≡ ÿ−ýý (ÿ) =ý
(0)

ý
(ÿ)ý inst

ý
(ÿ) , ÿ ≡ ÿ−ÿ , (2.1)

ý
(0)

ý
(ÿ) =

( ÿ

2ÿ

)ý∕2

ÿ
ý(ý2−1)

6
ÿ
ý−1∏

ÿ=1

(1 − ÿ−ÿÿ )ý−ÿ , ý inst
ý

(ÿ) =
[
ÿ
(
2ÿÿ

ÿ

)]−ý
. (2.2)

We shall refer to ýý as partition function. ýý (ÿ) = − logýý (ÿ) may be interpreted as a “supersymmetric” free energy.9

To study the expansion of the partition function ýý at large ý and fixed ÿ, it is convenient to apply a modular transformation 
to the ÿ-function factor ý inst

ý
(ÿ) in ýý . This gives

ýý (ÿ) = ÿÿ0(ý) ý̂ý (ÿ) , ÿ0(ý) = −
1

6
ý(ý2 − 1) −

1

24
ý = −

1

6
ý3 +

1

8
ý , (2.3)

7 Ref. [21] started with the abelian 6d (2, 0) theory (i.e. tensor multiplet) with 32 supersymmetries and by introducing a Scherk-Schwarz-like R-symmetry twist 
obtained a theory on ÿ5 ×ÿ1 with 16 supersymmetries and a subgroup ÿÿ(2) ×ÿÿ(3) of the original ÿÿ(5) R-symmetry. The ÿÿ(2) ⊂ ÿÿ(5) twist was necessary to 
have constant spinors on ÿ5 . Upon dimensional reduction, the R-symmetry twist leads to extra mass terms in the 5d SYM action. The construction was then extended 
to the non-abelian case via 5d SYM connection, and using supersymmetric localization provided the expression for the perturbative partition function in the form of 
a matrix model [21], which was supplemented by all instanton corrections in [22]. The ÿÿ(2) twist corresponds to the introduction of a chemical potential coupled 
to the R-charge and the corresponding localization matrix model computes the (unrefined) superconformal index of the (2, 0) theory (see also [23]).
8 Here the Dedekind function is ÿ(ÿ) = ÿ

1

24

∏∞

ÿ=1
(1 − ÿÿ) where ÿ = ÿ2ÿÿÿ . Its modular transformation is ÿ(−1∕ÿ) =

√
−ÿÿ ÿ(ÿ).

9 In the interpretation of ýý (ÿ) as a free energy of 5d SYM theory on ÿ5 one may set ÿ =
ý2
YM

2ÿý
where ý is an effective length scale.
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ý̂ý (ÿ) =

ý∏

ÿ=1

∞∏

ÿ=0

1

1 − ÿÿ+ÿ
, (2.4)

where ÿ0(ý) is the “supersymmetric Casimir energy” [26–28].
The partition function (2.4) has an expansion in powers of ÿ with integer ý -dependent coefficients. The coefficients take finite 

values for large ý : the ý →∞ limit ý̂∞(ÿ) of ý̂ý is the MacMahon function

ý̂ý (ÿ)
ý→∞
→ ý̂∞(ÿ) , ý̂∞(ÿ) =

∞∏

ÿ=1

(1 − ÿÿ)−ÿ = 1 + ÿ + 3ÿ2 + 6ÿ3 + 13ÿ4 + 24ÿ5 +⋯ . (2.5)

The expression ý̂∞ may be interpreted as the unrefined superconformal index counting BPS states of 11d supergravity on AdS7 ×ÿ4, 
i.e. given by the sum over Kaluza-Klein states of the ÿ4 compactification [21].

Finite ý corrections to the partition function can be read off from (2.4) after writing it in the following equivalent form

ý̂ý (ÿ) = ý̂∞(ÿ)

∞∏

ÿ=0

∞∏

ÿ=0

(1 − ÿý+ÿ+ÿ+1) . (2.6)

Expanding log ý̂ý in powers of ÿý , summing over ÿ, ÿ, and exponentiating back gives

ý̂ý (ÿ) = ý̂∞(ÿ)
[
1 −

ÿ

(1 − ÿ)2
ÿý +

2ÿ3

(1 − ÿ2)2(1 − ÿ)2
ÿ2ý +⋯

]

= ý̂∞(ÿ)
[
1 −

1

4 sinh2
ÿ

2

ÿ−ýÿ +
1

32 sinh4
ÿ

2
cosh2

ÿ

2

ÿ−2ýÿ +⋯

]
. (2.7)

Combining (2.3) and (2.7), we can write the large ý , fixed ÿ expansion of the free energy ýý in (2.1) as a sum of a perturbative 
and non-perturbative parts

ýý (ÿ) = ý
pert

ý
(ÿ) + ý

np

ý
(ÿ) , (2.8)

ý
pert

ý
(ÿ) = ÿ0(ý)ÿ + ý̂ (ÿ) , ý̂ (ÿ) ≡ −log ý̂∞(ÿ) =

∞∑

ÿ=1

ýÿ ÿ
−ÿÿ , (2.9)

ý
np

ý
(ÿ) =

1

4 sinh2
ÿ

2

ÿ−ýÿ +O(ÿ−2ýÿ ) , (2.10)

where ÿ0(ý) is given in (2.3) and ýÿ in (2.9) following from (2.5) are ý1 = −1, ý2 = −
5

2
, ý3 = −

10

3
, ....

The leading ý3ÿ term in the perturbative part of (2.9) where ÿ0 = −
1

24
(4ý3 − 3ý) as in (2.3) should originate from the 11d 

supergravity action ∫ ý + ... evaluated on the corresponding dual background AdS7,ÿ × ÿ̃4 in (1.2), (1.3).10 The first subleading 

ýÿ term in ý pert

ý
should originate from the ý4 invariant in the 11d effective action, by analogy with the case of the 11d effective 

action evaluated on the standard AdS7 × ÿ4 background, reproducing [4] the order ý term in the coefficient a = 4ý3 −
9

4
ý −

7

4

of the conformal anomaly of the (2,0) theory on ÿ6.11 Let us note that in general the supersymmetric Casimir energy of a 6d (2,0) 
supersymmetric theory on ÿ5 ×ÿ1 should be related to the conformal c-anomaly coefficient as [27] ÿ0 = −

1

24
c. For the ÿý (ý) (2,0) 

theory one has c = 4ý3 − 3ý − 1 [3,6] which is thus consistent with (2.3) (the −1 term is absent in the ý (ý) case).
The term ý̂ (ÿ) in (2.9) should be reproduced by the 1-loop 11d supergravity partition function on AdS7,ÿ × ÿ̃4 (with periodic 

boundary conditions on fermions). The supergravity index ý̂∞(ÿ) was found in [21] from the BPS KK spectrum of ÿ4 compactification 
of 11d supergravity [31], adding also an R-charge shift to the Hamiltonian (conjugate to the Euclidean “time” ÿ) when defining the 
index. This R-charge shift corresponds effectively to computing a supersymmetric partition function on AdS7,ÿ ×ÿ̃

4 with the ÿ → ÿ +ÿÿ

shift in a ÿ4 angle as in (1.2). There is again an analogy with how the constant ý0 term in the a-coefficient of 6d conformal anomaly 
is found from the 1-loop 11d supergravity effective action on AdS7 ×ÿ4 with ÿ6 boundary [5].

10 The computation of the ý3 term in the free energy from the supergravity action in thermal AdS7 ×ÿ4 has a priori no reason to match the coefficient in the index 
asymptotics, see a discussion in Appendix A. Reproducing the coefficient of this leading ý3 contribution attempted in [29,30] requires adding finite “counterterms” 
to the low-dimensional effective supergravity action that were claimed to be needed to preserve supersymmetry. Let us also note that, in view of the relation between 
the supersymmetric Casimir energy and the c-coefficient of the conformal anomaly [27], one may expect that to match the former on the supergravity side one may 
need a more subtle procedure than just directly evaluating the supergravity action on the AdS7 × ÿ4 background: to capture the c-anomaly one needs to perturb the 
AdS7 boundary metric to have a non-zero 6d Weyl tensor [3].
11 Note that while in the case of AdS7 with ÿ6 boundary the value of 11d effective action is proportional to vol(AdS7) = ÿ3

3
logÿ (where ÿ → 0 is an IR cutoff) and 

thus computes the a-anomaly coefficient, in the case of the ÿ5 ×ÿ1
ÿ
boundary we have vol(AdS7,ÿ ) = −

5ÿ4

48
ÿ (see Appendix A) and thus the local ∫ (ý +ý4) part of the 

11d effective action evaluated on AdS7,ÿ ×ÿ4 is finite and linear in ÿ .
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The large ý expansion (2.7) of the superconformal index of the (2, 0) theory was interpreted in [32,33] as representing the 11d 
supergravity index ý̂∞(ÿ) corrected by the contributions of other BPS states corresponding to wrapped M2 branes (that here play 
the role of “giant gravitons”, cf. [34]).

Below we will prove that the leading −[4 sinh2 ÿ

2
]−1ÿ−ýÿ term in (2.7) or in (2.10) originates precisely from the partition function 

of M2 brane wrapped on ÿ1
ÿ
× ÿ2, in full analogy with how that happened [19] for the instanton M2 brane in AdS4 × ÿ7∕ℤý

background in the ABJM case.
By analogy with the familiar N = 4 SYM case [35], it is possible to insert into the matrix model integral found in [21,22] a 

counterpart of the Wilson loop operator ÿ (ÿ) = Tr ÿÿ (where ÿ is the matrix which is the integration variable). One may interpret 
ïÿ ð as the expectation value of a suitable [21,22] supersymmetric Wilson loop in the SYM theory on ÿ5 (cf. [24])12 or rather 
of a corresponding 2-defect operator in the (2,0) theory on ÿ5 × ÿ1

ÿ
that wraps ÿ1 of ÿ5 as well ÿ1

ÿ
. The resulting matrix model 

expectation value is [21,22] (using the original Wilson loop computation in ý (ý) Chern-Simons matrix model [36])

ïÿ ð = ÿ
ýÿ
2

sinh
ýÿ

2

sinh
ÿ

2

=
1

2sinh
ÿ

2

ÿýÿ −
1

2sinh
ÿ

2

. (2.11)

On the M-theory side this expression is expected to be reproduced by the M2 brane semiclassical contributions of the two saddle 
points: of AdS3,ÿ corresponding to M2 ending on ÿ

1 of the ÿ5 boundary of AdS7,ÿ part of (1.2) (having non-zero classical action) 
and of a degenerate M2 brane wrapping only ÿ1

ÿ
(with zero action). As we will show below, the fluctuation determinants near the 

first saddle point reproduce precisely the prefactor [2 sinh ÿ

2
]−1 in (2.11), which is again in full analogy with a similar computation 

in the AdS4 ×ÿ7∕ℤý case in [18].

3. Semiclassical expansion of M2 brane path integral

Our aim will be to consider a semiclassical expansion of the Euclidean M2 brane path integral near particular classical solutions in 
the “twisted” version (1.2), (1.3) of the AdS7 ×ÿ4 background. While the M2 brane action [37] is highly non-linear, when expanded 
near a classical solution with a non-degenerate induced 3d metric it can be straightforwardly quantized in a static gauge. Then the 
leading 1-loop result for its partition function is well defined (has no UV logarithmic divergences) [38–40,9,18,19].

The bosonic part of the M2 brane action may be written as

ÿ = ÿV +ÿWZ, ÿV = ÿ2 ∫ ý3ÿ
√
ý, ýÿÿ = ÿÿÿ

ýÿÿÿ
ý ÿýý (ÿ), (3.1)

ÿWZ = −ÿ ÿ2 ∫ ý3ÿ
1

3!
ÿÿÿýÿýýÿ (ÿ)ÿÿÿ

ýÿÿÿ
ýÿýÿ

ÿ , ÿ2 =
1

(2ÿ)2ý3
ÿ

. (3.2)

Here ÿV is the induced volume (or Dirac-Nambu-Goto) term, while ÿWZ represents the coupling to the ÿ3 potential of 11d super-
gravity. The explicit form of the fermionic part of the M2 brane action is also known, in particular, for the cases of the maximally 
supersymmetric AdS4 × ÿ7 or AdS7 × ÿ4 backgrounds [41,42]. It can also be found for the AdS7,ÿ × ÿ̃4 background (1.2), (1.3)
related to AdS7 × ÿ4 by an “orbifolding” and coordinate redefinition. The 1-loop computation discussed below will require only the 
knowledge of the quadratic fermionic term in the M2 brane action expanded near a bosonic background ÿý (ÿ) [41,39,43,17,44]

ÿý = ÿÿ2 ∫ ý3ÿ
[√

ý ýÿÿÿÿÿ
ý ÿ̄ �ý ÿ̂ÿÿ −

1

2
ÿÿÿýÿÿÿ

ýÿÿÿ
ý ÿ̄ �ýý ÿ̂ýÿ + ...

]
, (3.3)

ýÿÿ = ÿÿÿ
ýÿÿÿ

ýÿýý (ÿ), ÿýý =ýý
ý
ýý
ý
, �ý =ýý

ý
(ÿ)�ý , (3.4)

ÿ̂ÿ = ÿÿÿ
ý ÿ̂ý , ÿ̂ý =Dý −

1

288
(�ÿýÿÿ

ý
+ 8�ÿýÿÿÿ

ý
)ýÿýÿÿ , (3.5)

where ÿ̂ý is the generalized 11d spinor covariant derivative [45] and Dý = ÿý +
1

4
�ýýÿ

ýý
ý
.13

The action (3.1) computed on the twisted AdS7 × ÿ4 background (1.2), (1.3) depends on the effective dimensionless M2 brane 
tension

T2 = ÿ3ÿ2 =
2

ÿ
ý . (3.6)

Thus the semiclassical large tension expansion of the M2 brane partition function should correspond to the large ý expansion on the 
dual field theory side.

12 As discussed in [22], representing ÿ5 as a Hopf fibration over ℂℙ2 suggests the following field theory analog of this operator: ÿ = Tr
[
P exp∮ ýý 

(
ÿýÿý̇

ÿ+ÿ |ý̇|
)]
, 

where ýÿ(ý) wraps the Hopf fiber.
13 In the static gauge ÿÿ = ÿÿ, ÿý = 0 (ý = 1, ..., 8) the natural ÿ-symmetry gauge is like in flat space [41,39]: (1 + �)ÿ = 0, � = 1

6
√
ý
ÿÿÿýÿÿÿ

ýÿÿÿ
ýÿýÿ

ÿ�ýýÿ or 
alternatively (1 + �1...8)ÿ = 0.
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In general, for an M2 solution with a non-vanishing classical action ÿcl = T2ÿ̄cl (where ÿ̄cl represents the total value of the sum of 
the volume and the WZ term in (3.1), (3.2)) the M2 brane partition function Z expanded near this background will contain a factor 
ÿ−ÿcl = ÿ−T2ÿ̄cl = ÿ−ýý where ý may depend on the parameter ÿ of the background (1.2), (1.3).

Given an M2 brane classical solution ÿý = ÿý (ÿ) (ý = 1, … , 11) we may choose the static gauge identifying three of the 
ÿý coordinates with the M2 world-volume coordinates ÿÿ (ÿ = 1, 2, 3) and also fix a ÿ-symmetry gauge for the fermions. Then the 
remaining 8 bosonic and 8 fermionic fluctuations will produce a ÿ-dependent 1-loop prefactor in the M2 brane partition function Z

Z = ∫ [ýÿ ýÿ] ÿ−ÿ[ÿ,ÿ] = Z1 ÿ
−T2ÿ̄cl

[
1 +O(T−1

2
)
]
, ÿcl = T2 ÿ̄cl , (3.7)

Z1 = ÿ−�1 , �1 =
1

2

∑

ý

ÿý logdet �ý , (3.8)

where �ý are 2nd-derivative fluctuation operators and ÿý = ±1 for the bosons and fermions.
Below we will consider the M2 branes wrapped on ÿ1

ÿ
. The leading non-perturbative ÿ−ýÿ term in the free energy (2.10) will 

be reproduced by the solution that wraps also the ÿ2 in the ÿ̃4 part of the metric in (1.2). We will also consider the solution that 
wraps an AdS3,ÿ part of AdS7,ÿ in (1.2) (ending on the big circle of ÿ

5) that will reproduce the leading ÿýÿ term in the Wilson loop 
expectation value in (2.11).

4. ÿÿ

ÿ
×ÿÿ M2 solution: matching non-perturbative free energy

Let us consider the classical M2 brane solution that is wrapped on ÿ1
ÿ
in AdS7,ÿ and ÿ

2 in the ÿ̃4 part of the metric (1.2). It is 

an analog of the instanton M2 brane in AdS4 × ÿ7∕ℤý discussed in [19]. Explicitly, we may choose the coordinate ÿ in (1.2) to be 
ÿ3 (assuming now that ÿ3 ∈ (0, ÿ)) and the coordinates of the unit-radius ÿ2 to be ÿ1 and ÿ2, with the rest of the coordinates in (1.2)
being trivial, i.e. ý = 0, ÿ = 0, etc.14

The corresponding value of the classical M2 brane action in (3.1) (cf. (3.6)) is then15

ÿV,cl = ÿ2 ÿ
3r2 vol(ÿ1

ÿ
×ÿ2) =

1

4
T2 ÿ 4ÿ = 2ýÿ , r ≡ 1

2
, (4.1)

ÿWZ,cl = −ÿ ÿ2 ∫ ÿ3 = −
1

8
ÿ2ÿ

3 ∫ ýÿ ∧ volÿ2 = −
1

8
T2 ÿ 4ÿ = −ýÿ , (4.2)

ÿcl = ÿV,cl +ÿWZ,cl =ýÿ . (4.3)

Thus ÿ−ÿcl matches the exponential factor in the leading term in the non-perturbative part of free energy (2.10).16

4.1. Quadratic fluctuation Lagrangian

To discuss fluctuations near this classical solution we will choose a natural static gauge, i.e. set the fluctuations of ÿ and ÿ2

coordinates to be zero. Let us first discuss fluctuations in the AdS7,ÿ directions of (1.2) parametrizing its metric as

ýý2
AdS7,ÿ

=
(1 +

1

4
ÿ2)2

(1 −
1

4
ÿ2)2

ýÿ2 +
ýÿýýÿý

(1 −
1

4
ÿ2)2

, ÿý = (ÿ1,… , ÿ6), ÿ ≡ ÿ+ ÿ. (4.4)

In the static gauge ÿ = ÿ3 the 6 fluctuations ÿý are thus functions of ÿ
3 ≡ ÿ3 + ÿ and the unit 2-sphere coordinates. As ÿ3 in (1.3)

does not involve AdS7,ÿ coordinates, we need to consider the quadratic fluctuation term of the ÿý part of the M2 brane action (3.1)
only. Let us introduce the notation ýÿÿ (ÿ, ÿ = 1, 2) for the unit-radius ÿ2 metric so that the 3d induced metric may be written as

ýý2 = ýÿÿýÿ
ÿýÿÿ = ýÿÿ (ÿ)ýÿ

ÿýÿÿ + ýÿ3ýÿ3 , ýÿÿ (ÿ)ýÿ
ÿýÿÿ = ýÿ2

1
+ sin2 ÿ1 ýÿ

2
2
. (4.5)

Then expanding to quadratic order in ÿý we get

ÿV = T2r
2 ∫ ý3ÿ

√
ý
(
1 +ℒ2,V +⋯

)
, (4.6)

ℒ2,V(ÿ) =
1

2r2

[
ýÿÿ ÿÿÿ

ýÿÿÿ
ý + r2ÿýÿý + r2(ÿ3ÿ

ý)2
]
. (4.7)

14 Keeping a general constant value of the coordinate ÿ and computing the classical action one can check that ÿ = 0 is an extremum. Note also that the shift of ÿ by 
ÿÿ in (1.2) is irrelevant at the classical level at the ÿ = 0 point.
15 Here we introduced for convenience the notation r for the relative factor 1

2
between the radii of AdS7 and ÿ4 metrics in (1.1) and (1.2).

16 A similar computation in the type IIA string limit (i.e. ÿ → 0 with ÿ = ÿý = fixed) was done in [20]. Wrapping M2 on 2-sphere ÿ times we get a “multi-
instanton” contribution ÿcl = ÿýÿ and thus may match the subleading ÿ−ÿýÿ terms in the free energy ý np in (2.10). Note that if we consider an “anti-instanton” 
solution with reversed orientation of the ÿ2

→ ÿ2 map the contribution of the ÿ3 term (3.2) in the action will then have the opposite sign and thus we will get 
ÿcl = 2ýÿ +ýÿ = 3ýÿ . This “anti-instanton” solution should not be supersymmetric and thus presumably should not be contributing to the free energy (we thank 
the authors of [20] for this suggestion).
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The overall factor 1

r2
here can be rescaled away by redefining ÿý. Expanding ÿý in Fourier modes in the periodic ÿ

3 coordinate we 

get an equivalent 2d theory on ÿ2 for a tower of 6 scalar fields ÿý
ÿ with masses (ÿ3 → ÿ 2ÿ

ÿ
ÿ)

ý2
ÿ,ÿ = r2(1 + ÿ2

ÿ
) =

1

4
+

1

4
ÿ2
ÿ
, ÿ

ÿ
≡ 2ÿÿ

ÿ
, ÿ = 0,±1,±2, ... . (4.8)

The remaining 2 fluctuations in ÿ̃4 directions of (1.2) correspond to ÿ and ÿ coordinates which represent a 2-sphere subspace 
ýÿ2 + sin2 ÿ ýÿ2. Using the Cartesian parametrization for this 2-sphere17

ýÿ2 + sin2 ÿýÿ2 =
ýý2 + ýý2

[1 +
1

4
(ý2 +ý2)]2

, (4.9)

we may use ý and ý as the two fluctuation fields. Rescaling them by (T2)
1∕2 (cf. (4.6)) we then get the following counterpart of 

(4.7) coming from the volume part of the M2 brane action in (3.1)

ℒ2,V(ý,ý) =
1

2

[
ýÿÿ (ÿÿýÿÿý+ ÿÿýÿÿý)

+ r2(ÿ3ý)
2 + r2(ÿ3ý)

2 − (r2 + 2)(ý2 +ý2) + 4ÿ r2ýÿ3ý
]
. (4.10)

Here the mixing term ýÿ3ý is due to the presence of ýÿ = ýÿ3 in the (ýÿ + ÿýÿ)2 term in (1.2) (cf. [17]).
For the contribution of the WZ term in (3.2) with ÿ3 in (1.3) one finds using that ÿ3ÿ = 1 (cf. (4.2))

ÿWZ = −ÿÿ2 ∫ ÿ3 =
ÿ

8
T2 ∫ cos3 ÿ (ÿ3ÿ+ ÿ)ýÿ3 ∧ volÿ2 = −

1

8
T2 ∫ ý3ÿ

√
ý cos3 ÿ (1 − ÿÿ3ÿ). (4.11)

Expanding to quadratic order in the fluctuations ý, ý we get the following addition to (4.10)

ℒ2,WZ(ý,ý) =
3

16r2
(ý2 +ý2) −

3

8r2
ÿýÿ3ý . (4.12)

Summing up (4.10) and (4.12) gives (setting r = 1

2
and ignoring a total derivative)

ℒ2(ý,ý) =
1

2
ýÿÿ (ÿÿýÿÿý+ ÿÿýÿÿý) +ℒ2,ý (ý,ý) , (4.13)

ℒ2,ý (ý,ý) = −
3

8
(ý2 +ý2) +

1

8

[
(ÿ3ý)

2 + (ÿ3ý)
2
]
− ÿýÿ3ý . (4.14)

Setting ÿ = ý+ÿý√
2
, ÿ̄ =

ý−ÿý√
2
we get

ℒ2,ý (ÿ) =
1

2

(
ÿ ÿ̄

)
(

0 −
3

4
+ ÿ3 −

1

4
ÿ2
3

−
3

4
− ÿ3 −

1

4
ÿ2
3

0

)(
ÿ

ÿ̄

)
. (4.15)

Expanding ÿ(ÿ) in Fourier modes in ÿ3 we get an effective 2d Lagrangian for a tower of complex scalars on ÿ2 (cf. (4.8))

ℒ2(ÿ) =

∞∑

ÿ=−∞

(
ýÿÿÿÿÿÿÿÿ ÿ̄ÿ +ý2

ÿ,ÿ
ÿÿÿ̄ÿ

)
, (4.16)

ý2
ÿ,ÿ

= −
3

4
+ ÿÿ

ÿ
+

1

4
ÿ2
ÿ
= 1 +

1

4
(ÿ

ÿ
+ 2ÿ)2 . (4.17)

In the limit ÿ → 0 the current problem should reduce to the type IIA string computation considered in [20]: the string spectrum 
should be the ÿ = 0 level of the M2 brane spectrum. Indeed, the ÿ = 0 values of the masses of the 6 fluctuations in (4.8) and 2 
fluctuations in (4.17) agree with the bosonic string fluctuation masses in Table 1 of [20].

The fermionic part of the M2 brane action directly corresponds (upon double dimensional reduction as in [46]) to the fermionic 
part of type IIA superstring action. In the superstring limit one finds [20] that the quadratic part of the GS action is equivalent to 
8 fermions in ÿ2 geometry with the square of the Dirac operator containing the mass term with ý2 = −

1

4
. Explicitly, the 2d Dirac 

operator is given by (cf. [20,19]): D = ÿÿýDý +ýÿ3 where ÿÿ are the three Pauli matrices with the ÿ3 term originating from the 
terms with �11 factors in the membrane action (3.3). Its square is � 1

2

= −D2 +
1

4
ý(2) +ý2, where ý(2) = 2 is the curvature of the 

2-sphere. In the type IIA string limit [20] one gets ý = −
1

2
ÿ.

Starting directly with the M2 brane action (3.3), in the present case with ÿ = ý11 = ÿ3 there are two different ýÿ3 contributions 
to the fermionic D operator. One is coming from the non-zero ÿ-component of ý4 field strength corresponding to ÿ3 in (1.3) that 

17 Explicitly, ÿ = arccos [1−
1

4
(ý2+ý2 )]2

[1+
1

4
(ý2+ý2 )]2

, ÿ = arctan
ý

ý
.
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gets contracted with �ÿ or �11 in (3.5). This corresponds upon double dimensional reduction to a similar term in the type IIA string 
action leading precisely to the above − 1

2
ÿ contribution to ý .

In addition, there is a contribution of the �11ÿ3 term in the covariant derivative in (3.3), (3.5) (cf. also Eq. (4.29) in [19]).18 This 
gives an extra − 1

2
ÿ
ÿ
contribution to the fermion mass ý so that in total ý = −

1

2
ÿ
ÿ
−

1

2
ÿ.

As a result, we get 8 towers of 2d fermions on ÿ2 with

ý2
ÿ,ÿ

=
1

4
(ÿ

ÿ
+ ÿ)2 = −

1

4
+

ÿ

2
ÿ
ÿ
+

1

4
ÿ2
ÿ
. (4.18)

Combined with the 6+2 towers of bosons in (4.8) and (4.17) this represents the complete M2 brane fluctuation spectrum.

4.2. One-loop M2 brane partition function

The expressions for the determinants of the standard bosonic and fermionic massive field operators on ÿ2 in the 1-loop contribu-
tion in (3.8) are well known. In general, using spectral zeta-function regularization one has logdet � = −ÿ�(0) logΛ

2 − ÿ ′
�
(0). Like in 

[18,19] the total coefficient ÿ�(0) of the log UV divergence vanishes if we use the Riemann zeta-function regularization of the sum 
over the modes (that removes power divergences)

ÿtot (0) =
∑

ÿ∈ℤ

2 = 2 + 4ÿý(0) = 0 . (4.19)

Here the coefficient 2 is related to the value of the Euler number of ÿ2 (cf. [47]). The finite −ÿ ′
�
(0) parts of logdet � for the bosonic 

(�0 = −ÿ2 +ý2) and fermionic (� 1
2

= −D2 +
1

2
+ý2) fields on ÿ2 are given by (we follow the notation in [20,19])

logdet �0 = ý 1
2

(
1

4
−ý2) , logdet � 1

2

= ý0(−ý
2) , (4.20)

ýý(ÿ) ≡ −4ÿ ′(−1, ý) +

ÿ

∫
0

ýý
[
ÿ(ý+

√
ý) +ÿ(ý−

√
ý)
]
, (4.21)

where ÿ ′(ý, ÿ) is the derivative of the Hurwitz ÿ -function over ý and ÿ is the logarithmic derivative of the �-function.
As a result, combining together the contributions of the above (6+2) bosonic and 8 fermionic determinants and summing over ÿ

we find

�1 =
∑

ÿ∈ℤ

ý
(
2ÿÿ

ÿ

)
, ý (ÿ) = 3ý 1

2

(
−

ÿ2

4

)
+ ý 1

2

(
(1 −

ÿÿ

2
)2
)
− 4ý0

(
(
1

2
−

ÿÿ

2
)2
)
. (4.22)

Using (4.21) we observe that19

ý (0) = ÿÿ − 2 log2 , ý (ÿ) +ý (−ÿ) = −4 log2 + 2 log(1 + ÿ2), ÿ > 0 . (4.23)

Thus, like in the case of the instanton M2 brane solution in AdS4 × ÿ7∕ℤý in [19], all non-trivial ÿ -function dependent terms from 
(4.21) cancel out in the sum of the bosonic and fermionic contributions20 and we end up with

�1 = ÿÿ − 2 log2 +

∞∑

ÿ=1

[
− 4 log2 + 2 log

(
1 +

4ÿ2ÿ2

ÿ2

)]

= ÿÿ − 2 log2
(
1 + 2 ÿý(0)

)
+ 2 log

(
2 sinh

ÿ

2

)
= log

(
− 4sinh2

ÿ

2

)
. (4.24)

As a result, the 1-loop factor in the M2-brane partition function (3.7) on this M2 instanton background is given by

Z1 = ÿ−�1 = −
1

4sinh2
ÿ

2

. (4.25)

Taking into account that, as discussed in [19], the field-theory free energy should be matched by minus the M2 brane partition 
function, we thus reproduce the prefactor in the leading non-perturbative term in the free energy in (2.10). This generalizes to finite 
ÿ case the matching found in the string theory limit in [20].

18 To find the quadratic fermionic term in the M2 brane action what matters is the form of the classical bosonic ÿý (ÿ) background that gives the induced 3-bein 
contracted with �ý . In the present case this is coming from the ÿ-dependent terms in the metric (1.2). On the classical solution ÿ = 0, ý = 0, ÿ = ÿ1 , the only term 
that is relevant originates simply from the ýÿ2 term in (1.2).
19 Recall that ÿ ′

ý
(−1) = 1

12
− logý and ÿ ′(−1, 1

2
) = −

1

24
−

1

24
log2 + 1

2
logý where ý is Glaisher’s constant.

20 Note that these cancellations would not happen if we were to ignore the ÿ → ÿ + ÿÿ twist in the metric (1.2) which appears to be consistence with its need for 
preservation of supersymmetry.
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5. ýýÿÿ,ÿ M2 solution: matching Wilson loop expectation value

In analogy with the discussion in the AdS4 × ÿ7∕ℤý case in [18], the leading term in the circular BPS Wilson loop expectation 
value in (2.11) is to be reproduced by the M2 brane partition function expanded near the solution that ends on a circle of the ÿ5

part of the boundary and is also wrapped on the 11d ÿ-circle of AdS7,ÿ while being point-like in ÿ̃
4 part of in (1.2). This should 

generalize to the M-theory (finite ÿ) level the related computation done in the type IIA string theory limit in [15].
Denoting by ÿ ≡ ÿ + 2ÿ the circular coordinate of ÿ5, the relevant AdS3,ÿ ⊂AdS7,ÿ part of the metric (1.2) and thus the induced 

metric for the classical M2 solution ý = ÿ1, ÿ = ÿ2, ÿ = ÿ3 ≡ ÿ3 + ÿ will be that of “thermal” AdS3,ÿ

ýý2
AdS3,ÿ

= ýý2 + sinh2 ýýÿ2 + cosh2 ýýÿ2 → ýÿÿ(ÿ)ýÿ
ÿýÿÿ = ýÿ2

1
+ sinh2 ÿ1 ýÿ

2
2
+ cosh2 ÿ1 ýÿ

2
3
. (5.1)

The corresponding classical M2 brane action gets only the volume contribution (3.1), i.e.

ÿV,cl = T2 vol(AdS3,ÿ ) = −ýÿ . (5.2)

The computation of the regularized volume of AdS2ÿ+1,ÿ with boundary ÿ
2ÿ−1 × ÿ1

ÿ
is reviewed in Appendix A. Explicitly,

vol(AdS3,ÿ ) =

ÿ

∫
0

ýÿ

2ÿ

∫
0

ýÿ

ý0

∫
0

ýý sinhý coshý = ÿ ÿ sinh2 ý0 =
1

4
ÿÿ

( 1

ÿ2
− 2 + ÿ2

)
→ −

1

2
ÿÿ , (5.3)

where we set ý0 = − logÿ as IR cutoff (ÿ → 0) and dropped power divergence. Using (3.6) we thus get the value in (5.2) which indeed 
matches the exponent of the first term in (2.11) (see also [48]). The second term in (2.11) may be expected to come from an M2 
brane solution with vanishing 3-volume but this remains to be clarified.

5.1. Quadratic fluctuation Lagrangian

Choosing the static gauge in which the fluctuations of ý, ÿ and ÿ are set to zero one can check (see below) that since the classical 
solution is trivial in the ÿ̃4 directions, the only contribution to the quadratic fluctuation action comes from the volume part (3.1) of 
the M2 brane action.

The part of the quadratic fluctuation Lagrangian depending only on the AdS7,ÿ coordinates in (1.2) is represented by the four ÿ
5

directions that have trivial classical values. Parametrizing the ÿ5 metric as21

ýÿ5 =
(1 −

1

4
ý2)2

(1 +
1

4
ý2)2

ýÿ2 +
ýýÿýýÿ

(1 +
1

4
ý2)2

, ÿ = 1,… ,4 , (5.4)

and expanding in powers of ýÿ we get from (3.1) (we rescale away the overall factor of tension)

ÿ2,V(ý) =
1

2 ∫ ý3ÿ
√
ýýÿÿ sinh2 ÿ1

(
ÿÿýÿÿÿýÿ − ÿÿ2ÿÿ2ý

2
)
. (5.5)

Setting

ýÿ =
1

sinh ÿ1
ý̃ÿ , (5.6)

and integrating by parts we get

ÿ2,V(ý̃) = ∫ ý3ÿ
√
ýℒ2,V(ý̃) , ℒ2,V(ý̃) =

1

2

(
ýÿÿÿÿý̃ÿ ÿÿý̃ÿ + 3ý̃ÿý̃ÿ

)
. (5.7)

To find the contribution of the other 4 bosonic fluctuations corresponding to ÿ̃4 directions in (1.2) we note that the leading part 
of the ÿ̃4 metric expanded near ÿ = 0 is 1

4
[ýÿ2 + ýÿ2 + ÿ2(ýÿ + ÿ ýÿ3)

2]. Using Cartesian coordinates (ý, ý) to parametrize the (ÿ, ÿ)
plane and ÿý (ý = 1, 2) for ÿ2, i.e.

ý = ÿ cosÿ , ý = ÿ sinÿ , ýÿ2 =
ýÿýýÿý

(1 +
1

4
ÿ2)2

, (5.8)

we get the quadratic fluctuation Lagrangian (rescaling all 4 fields by factor of r = 1

2
; here ÿ, ÿ = 1, 2)22

ℒ2,V(ÿý,ý,ý) =
1

2
ýÿÿ

(
ÿÿÿýÿÿÿý + ÿÿýÿÿý+ ÿÿýÿÿý

)
−

1

2

1

cosh2 ÿ1
(ý2 +ý2) +

2ÿ

cosh2 ÿ1
ýÿ3ý

21 Same result for quadratic fluctuations is found if we use the Hopf fibration parametrization of the ÿ5 metric, i.e. ýÿ5 = (ýÿ′ +ý)2 + ýý2
ℂℙ

2
where ý depends on 

ℂℙ
2 coordinates.

22 Explicitly, we use that ∫ ý3ÿ sinh ÿ1 cosh ÿ1
1

cosh2 ÿ1
[(ÿ3ý)

2 + (ÿ3ý)
2 −ý2 −ý2 + 2ÿ(ýÿ3ý −ýÿ3ý)] = ∫ ý3ÿ

√
ý ý33

[
(ÿ3ý − ÿý)2 + (ÿ3ý + ÿý)2

]
.
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=
1

2

(
ýÿÿÿÿÿýÿÿÿý + ýÿÿ (ÿÿýÿÿý+ ÿÿýÿÿý) + ý33[(ÿ3ý− ÿý)2 + (ÿ3ý + ÿý)2]

)
. (5.9)

Note that the (ý, ý) mixing term may be formally diagonalized by a ÿ3-dependent “rotation”

ý = cosÿ ÿ + sinÿ ý , ý = −sinÿ ÿ + cosÿ ý , ÿ = ÿÿ3 , (5.10)

(ÿ3ý− ÿý)2 + (ÿ3ý + ÿý)2 = (ÿ3ÿ)2 + (ÿ3ý )
2. (5.11)

Since ÿ3 is periodic, this redefinition is only formal as it shifts the value of the ÿ1
ÿ
mode number (cf. (4.8)) as ÿ

ÿ
→ ÿ

ÿ
+ ÿ and this 

should be taken into account.
Indeed, here we have a coupling of the complex scalar ý + ÿý to a constant 3d gauge potential with the component A3 = −ÿ in 

the ÿ1
ÿ
direction which can not be gauged away.23 Its origin is related to the presence of the twist ÿ → ÿ + ÿÿ in the metric (1.2). This 

shift is similar to what we found in the ÿ̃4 part of the fluctuation Lagrangian (4.17) in the ÿ2 instanton case where ÿ
ÿ
+ 2ÿ rather 

than ÿ
ÿ
+ ÿ was due to the contribution of the WZ term.24

Finally, let us note that the ÿ3 coupling term (3.2) evaluated on the background (1.3) gives

ÿWZ = −ÿÿ2 ∫ ÿ3 =
ÿ

8
T2 ∫ cos3 ÿ (ýÿ+ ÿýÿ) ∧

ýÿ1 ∧ ýÿ2

(1 +
1

4
(ÿ2

1
+ ÿ2

2
))2

. (5.12)

Since ÿ = ÿ3, expanding to quadratic order in the fields projected on the world-volume this reduces to a total derivative term 
ÿÿÿÿýýÿÿÿýÿÿÿý and thus does not indeed contribute to the leading order.

As for the fermionic fluctuation Lagrangian, it can be found by a generalization of its string theory (ÿ → 0) limit discussed in [15]. 
We should get 8 fermions in AdS3,ÿ with D = ÿÿýDý +ýÿ3 where ý =

3

2
. The ÿ3 derivative term in Dý produces (upon Fourier 

expansion in ÿ3) a mode number ÿ
ÿ
contribution as in (4.8), (4.18). Also, as in the case of the (ý, ý) fields in (5.9), here the covariant 

derivative contains (in addition to the standard AdS3,ÿ spin connection) a constant ý (1) potential term, reflecting again the presence 
of the twist in the metric (1.2), i.e. we have (cf. [17])

D3 = ÿ3 − ÿA3 + ..., A3 = −
1

2
ÿ . (5.13)

5.2. One-loop M2 brane partition function

The fluctuation Lagrangian represents a collection of massive bosons and fermions propagating in AdS3,ÿ , i.e. in “thermal” AdS3
with ÿ1 ×ÿ1

ÿ
boundary. The expressions for the corresponding determinants are well-known from the literature (see, e.g., [49–51]).

For a scalar field with mass ý one finds [50]25

�(�)(ÿ) ≡ 1

2
logdet(−ÿ2 +ý2) =ýý(�)ÿ −

∞∑

ÿ=1

ÿ−ÿÿ�

ÿ(1 − ÿ−ÿÿ)2
, (5.14)

�= 1 +
√
1 +ý2 . (5.15)

Here � is the conformal dimension of the “dual boundary field” and ýý is the Casimir energy

ýý(�) =
1

2�(ÿ)

∞

∫
0

ýÿ ÿÿ−1
ÿ−ÿ�

(1 − ÿ−ÿ )2
|||ÿ→−1

=
1

24
(� − 1) (1 − 4�+ 2�2) . (5.16)

For ÿ →∞ we have �(�)(ÿ) =ýý(�) ÿ +O(ÿ−ÿ�), while for ÿ → 0 one finds (see Appendix B)

�(�)(ÿ) = −
ÿ(3)

ÿ2
+

ÿ2(� − 1)

6ÿ
−ÿ(�) +

1

12
(5 − 12�+ 6�2) logÿ

+
(1 − 20�+ 50�2 − 40�3 + 10�4)

2880
ÿ2 +O(ÿ4) , (5.17)

ÿ(�) =(� − 1)
[
1

2
log(2ÿ) − log�(�)

]
+ ÿ ′(−1,�) . (5.18)

We still need to address the following subtlety: the scalars ý, ý in (5.9) are not just massless scalars in AdS3,ÿ but are coupled also 
to a flat but topologically non-trivial ý (1) gauge potential in ÿ3 direction that leads to a shift ÿ′

ÿ
= ÿ

ÿ
+ ÿ of the ÿ1

ÿ
mode number. To 

23 Equivalently, this is the ÿÿ(2) gauge field coupled to Φý = (ý, ý) via ÿ3Φý = ÿ3Φý + ÿýýA3Φý , cf. [17].
24 Again, the origin of this shift can be traced to the structure of the metric in (1.2): in view of the definition of ý, ý in (5.8), redefining ÿ → ÿ + ÿÿ3 translates into 
the rotation (5.10).
25 This expression was found in [50] (for the Casimir contribution see [52]) by applying the method of images to the heat kernel for the thermal quotient of AdS3 . 
It is rederived in an alternative way in Appendix C below by using the explicit expansion in modes along the two boundary circles ÿ1 ×ÿ1

ÿ
, cf. (C.17).
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account for the effect of such coupling on the scalar determinant we may use the path integral representation for the log det or heat 
kernel of the fluctuation operator in (5.9) defined on the complex scalar ý + ÿý in which the coupling to a background 3d gauge 
field Aÿ appears as a phase factor exp[ÿ ∫ ýÿA ⋅ ý̇]. For constant

A3 = −ÿÿ (5.19)

this gives a factor of ÿÿÿÿ where ÿ is the number of times the worldline ý(ÿ) wraps around the thermal circle (in (5.9) we have 
ÿ = 1). This implies the following modification of (5.14)

�(�,ÿ)(ÿ) =
1

2

[
�(�+ÿ)(ÿ) + �(�−ÿ)(ÿ)

]
=ýý(�, ÿ)ÿ −

1

2

∞∑

ÿ=1

1

ÿ

ÿ−ÿÿ�(ÿ−ÿÿ + ÿÿÿ )

(1 − ÿ−ÿÿ)2
, (5.20)

ýý(�, ÿ) =
1

2
[ýý(� + ÿ) +ýý(� − ÿ)] =

1

24
(� − 1)(1 − 4�+ 2�2 + 6ÿ2) . (5.21)

This is derived directly using the ÿ1 × ÿ1
ÿ
mode expansion in Appendix C, see (C.25).

The determinant of the squared massive Dirac operator in AdS3,ÿ , i.e. � 1
2

= −D2 +
1

4
ý(3) +ý2, where ý(3) = −6, is given by the 

same expression as in (5.14) but instead of the relation between � and ý in the scalar case in (5.15) here one has (see, e.g., [53])

�= 1 + |ý| . (5.22)

Eq. (5.22) is the ý = 3 case of the standard AdSý/CFTý−1 relation for the fermions � = ý−1

2
+ |ý| (see, e.g., [54]).26 The generaliza-

tion to the case of the presence of a constant gauge potential A3 = −ÿÿ is straightforward as this coupling is via the D3 term in the 
covariant derivative and thus the same as in the scalar case. It is given again by (5.20).

We are now ready to compute the total contribution to the 1-loop effective action (3.8) in the present case. According to the 
discussion in the previous subsection we have 4 scalars with ý2 = 3 in (5.7), 2 massless scalars ÿý in (5.9), two scalars (ý, ý) in 
(5.9), (5.11) with ý2 = 0 coupled to a constant potential (5.19) with ÿ = 1 and 8 fermions with ý =

3

2
coupled to (5.19) with ÿ =

1

2

(see (5.13)).27

Thus we get from (5.14), (5.20)

�1 = 4�(3,0)(ÿ) + 2�(2,0)(ÿ) + 2�(2,1)(ÿ) − 8�
(
5
2
, 1
2
)
(ÿ)

=
ÿ

2
−

∞∑

ÿ=1

ÿ−ÿÿ

ÿ
=

ÿ

2
+ log(1 − ÿ−ÿ ) = log

(
2 sinh

ÿ

2

)
. (5.23)

Like in other similar cases of supersymmetric M2 brane 1-loop effective actions we observe remarkable cancellations of all “compli-
cated” contributions that happen in the sum over all fields.28

The final result for the “defect” M2 brane 1-loop partition function is very simple

Z1 =
1

2sinh
ÿ

2

, (5.24)

and thus matches the prefactor in the leading term in the Wilson loop expectation value in (2.11).

6. Summary and concluding remarks

Let us summarize what we have found above. We considered the semiclassical expansion of the M2 brane partition function Z (3.7)
in the 11d background AdS7,ÿ × ÿ̃4 (1.2), (1.3) which is an ÿ1

ÿ
-compactified and “twisted” version of the maximally supersymmetric 

AdS7 × ÿ4 limit (1.1) of the multiple M5 brane solution of 11d supergravity. The main dimensionless parameters are ÿ (the ratio of 
the length of 11-circle to the scale ÿ of AdS7 in (1.1), (1.2)) and the effective M2 brane tension T2 (or ý)

T2 = ÿ3ÿ2 =
2

ÿ
ý, ÿ2 =

1

(2ÿ)2ý3
ÿ

, ÿ = 2(ÿý)1∕3ýÿ . (6.1)

26 In general, for a spin ý field in AdS3 with the operator −D2
ý
+ ÿ2 one has � = 1 +

√
ÿ2 + ý+ 1. Thus for ý = 1

2
we get � = 1 +

√
ÿ2 +

3

2
. Since here ÿ2 =

1

4
ý(3) +ý2 = −

3

2
+ý2 we get � = 1 + |ý|.

27 Note that the corresponding values of � with multiplicities 4, 4 and 8 are 3, 2 and 5

2
. This hints at an effective 3d supersymmetry, but its realization for the 

above system of 8+8 scalars and fermions on AdS3,ÿ should be non-trivial as it appears to require the presence of the flat connection in scalar and fermion covariant 
derivatives originating from the twist in ÿ̃4 .
28 One may draw an analogy of these cancellations with what happens in the case of supersymmetric partition functions on ÿ1 × ÿý that are equivalent to 
superconformal indices and thus effectively receive contributions only from BPS states. Indeed, the prefactor 1

4 sinh2
ÿ

2

=
ÿ

(1−ÿ)2
of the M2 brane instanton contribution 

ÿ−ýÿ in (1.5), (2.7) that we reproduced as the M2 brane partition function in (4.25) may be also interpreted [32] as the superconformal index of ý = 1 abelian 
ABJM theory [55] or as a supersymmetric partition function of a single N = 8 3d scalar supermultiplet in ÿ1

ÿ
× ÿ2 background with extra twist on ÿ2 required for 

supersymmetry (i.e. corresponding to the presence of rotation generator in the definition of the 3d superconformal index). Similar relation may somehow apply also 
to the WL computation in this section.
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Our first example was the “instanton” M2 brane solution that is wrapped on ÿ1
ÿ
of AdS7,ÿ and ÿ

2 of ÿ̃4. We found that in this case 
(see (4.1)-(4.3), (4.25))

ÿ1
ÿ
× ÿ2 ∶ Z = −

1
(
2 sinh

ÿ

2

)2 ÿ−T2ÿ̄cl
[
1 +O(T−1

2
)
]
, ÿ̄cl = (1 −

1

2
)ÿÿ =

1

2
ÿÿ . (6.2)

We also studied the “defect” M2 brane solution wrapped on the “thermal” AdS3,ÿ part of AdS7,ÿ that corresponds to “open” M2 brane 
ending on the ÿ1 ×ÿ1

ÿ
at the boundary of AdS7,ÿ (thus representing a Wilson-surface like “defect” in the (2,0) theory that generalizes 

the circular BPS Wilson loop in gauge theory).29 In this case (see (5.2), (5.24))

AdS3,ÿ ∶ Z =
1

2 sinh
ÿ

2

ÿ−T2ÿ̄cl
[
1 +O(T−1

2
)
]
, ÿ̄cl = −

1

2
ÿÿ . (6.3)

It is useful to compare these results with what was found in [18,19] for similar M2 brane solutions in AdS4 × ÿ7∕ℤý M-theory 
background dual to ýý(ý) × ý−ý(ý) 3d Chern-Simons-matter ABJM theory [10]. This 11d background is the supersymmetric ℤý

orbifold of the AdS4 ×ÿ7 which is a limit of the multiple M2 brane solution of 11d supergravity (cf. (1.1), (6.1)):

ýý2
11

=ý2
( 1

4
ýý2

AdS4
+ ýý2

ÿ7∕ℤý

)
, (6.4)

ýý2
ÿ7∕ℤý

= ýý2
ℂℙ

3
+ (ýy +ý)2 , y ≡ y + b , b ≡ 2ÿ

ý
, (6.5)

ý4 = −
3

8
ÿý3 volAdS4 , ý =

(
32ÿ2ýý

)1∕6
ýÿ , T2 =ý3ÿ2 =

√
2ý

ÿ

√
ý . (6.6)

We are assuming the Euclidean signature and ý depends on the 6 coordinates of ℂℙ3. Here the dimensionless parameters are ý and 
ý , or b and the effective tension T2.

The M2 brane “instanton” solution considered in [19] is the 11d uplift of the IIA string ℂℙ1 instanton of [56]: it is wrapped on 
the 11d circle y of dimensionless length b = 2ÿ

ý
and on ℂℙ1 ⊂ ℂℙ

3, so that it has the ÿ3∕ℤý world-volume metric. In this case one 
finds for the M2 brane partition function [19]30

ÿ3∕ℤý ∶ Z =
1

(
2 sinb

)2 ÿ−T2ÿ̄cl
[
1 +O(T−1

2
)
]
, ÿ̄cl = vol(ÿ3∕ℤý) = ÿb = 2ÿ2

ý
. (6.7)

This corresponds to the leading ÿ−2ÿ
√

2ý
ý term in the large ý non-perturbative part of the localization result [57] for the free energy 

of the ABJM theory on ÿ3 .
Another M2 brane solution in (6.4) considered in [58,18] has world-volume of AdS2 × ÿ1∕ℤý where ÿ

1∕ℤý corresponds to the 
y-circle in (6.4) and AdS2 ⊂AdS4 has the ÿ

1 boundary. It may be interpreted as a dual of the circular BPS Wilson loop in the ABJM 
theory. In this case [18]

AdS2 × ÿ1∕ℤý ∶ Z =
1

2 sinb
ÿ−T2ÿ̄cl

[
1 +O(T−1

2
)
]
, ÿ̄cl =

1

4
vol(AdS2)b = −

1

2
ÿb = −

ÿ2

ý
. (6.8)

This matches the leading large ý term [2 sin 2ÿ

ý
]−1ÿ

ÿ

√
2ý
ý in the localization result [59] for the 1

2
-BPS Wilson loop in the ABJM 

theory, in the limit of large ý with ý fixed.
Comparing (6.2), (6.3) with (6.7), (6.8) we observe close similarities. This suggests some relation by analytic continuation of 

both the backgrounds and the M2 brane solutions. Indeed, the maximally supersymmetric AdS7 ×ÿ4 and AdS4 ×ÿ7 backgrounds are 
related by a formal analytic continuation (like the one between AdSÿ and ÿ

ÿ, i.e. ýý2+sinh2 ý ýÿÿ−1 → −(ýÿ2+sin2 ÿ ýÿÿ−1), ÿ = ÿý) 
and the same will apply to the M2 brane actions in these backgrounds.

The compactification ÿ ≡ ÿ + ÿ of the circle in AdS7,ÿ part of (1.2) suggests an analogy with the discrete orbifolding y ≡ y + b

in ÿ7∕ℤý part of (6.4) and thus a similar role of ÿ and b, which is indeed evident from the comparison of (6.2), (6.3) with (6.7), 
(6.8). Such analytic continuation suggests that the “instanton” ÿ1

ÿ
× ÿ2 M2 solution in AdS7,ÿ × ÿ̃4 may be related to the “Wilson 

loop” AdS2 × ÿ1∕ℤý solution in AdS4 × ÿ7∕ℤý, and vice versa, the “defect” AdS3,ÿ solution in AdS7,ÿ × ÿ̃4 may be related to the 
“instanton” ÿ3∕ℤý solution in AdS4 ×ÿ7∕ℤý.

31

29 The similar AdS3 “defect” M2 brane solution considered in [9] has ÿ2 boundary instead of ÿ1 ×ÿ1
ÿ
and thus has logarithmically divergent classical action related 

to the defect conformal anomaly.
30 Here we ignore the overall factor 4 that accounts for contribution of the anti-instanton saddle and also for the effect of resolution of the 0-mode degeneracy (see 
[20,19]).
31 The factor of 2 mismatch in powers of sinh/sin prefactors in the corresponding M2 brane partition functions may be related to the fact that the analytic 
continuation maps a world-volume with ÿ1 times a 2-sphere topology to ÿ1 times a disk (AdS2) one.
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Still, some details do not match: the ℤý orbifold of ÿ
7 in the Hopf fibration parametrization is not equivalent to an analytic 

continuation of an orbifold of AdS7 with ÿ
5 ×ÿ1 boundary.32 Also, there is no analog of the ÿ → ÿ + ÿÿ twist in AdS7,ÿ × ÿ̃4 in (1.2)

on the AdS4 × ÿ7∕ℤý side. Thus the reason for the close similarity between the expressions in (6.2), (6.3) and (6.7), (6.8) calls for 
further insight.
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Appendix A. Renormalized volume of ýýÿÿÿ+ÿ with boundary ÿÿÿ−ÿ ×ÿÿ

As is well known, the regularized volume of global AdS2ÿ+1 with ÿ
2ÿ boundary has logarithmic IR divergence, vol(AdS2ÿ+1) =

−
2(−1)ÿÿÿ

ÿ!
logÿ (where ÿ → 0); in particular, vol(AdS7) =

ÿ3

3
logÿ (see, e.g., [61]). At the same time, in the case of ÿ2ÿ−1×ÿ1 boundary 

the volume contains only power divergences and thus is finite after one drops them. This is analogous to the case of AdS2ÿ with 
ÿ2ÿ−1 boundary where vol(AdS2ÿ) =

(−1)ÿ(2ÿ)ÿ

(2ÿ−1)!!
.

To find the volume of AdS2ÿ+1 with ÿ
2ÿ−1 × ÿ1 boundary33

ýý2 = ýý2 + sinh2 ýýÿ2ÿ−1 + cosh2 ýýÿ2 , ÿ ≡ ÿ+ 2ÿ . (A.1)

Let us introduce an IR cutoff 0 < ý f ý0 in the volume integral

vol(AdS2ÿ+1) = vol(ÿ
2ÿ−1 × ÿ1)

ý0

∫
0

ýý coshý sinh2ÿ−1 ý = vol(ÿ2ÿ−1 ×ÿ1)
1

2ÿ
sinh2ÿ ý0 . (A.2)

A natural cutoff is ÿ = ÿ2 → 0 in Fefferman-Graham coordinates ýý2 = 1

4ÿ2
ýÿ2 + 1

ÿ
ýÿÿ(ý, ÿ)ýý

ÿýýÿ which is related to ý0 as ý0 =

− logÿ.34 Dropping 1

ÿý
power divergences in (A.2) and setting ÿ → 0 gives (using that vol(ÿÿ) = 2ÿ

ÿ+1
2

�(
ÿ+1
2

)
)

vol(AdS2ÿ+1) = vol(ÿ2ÿ−1 × ÿ1)
(1 − ÿ2)2ÿ

22ÿ+1 ÿÿ2ÿ
→ vol(ÿ2ÿ−1 ×ÿ1)

(−1)ÿ�(ÿ+ 1

2
)

2ÿ2
√
ÿ�(ÿ)

=
(−1)ÿÿÿ+1(2ÿ)!

22ÿ−1 (ÿ!)3
. (A.3)

In particular,

vol(AdS3) = −ÿ2, vol(AdS5) =
3ÿ3

8
, vol(AdS7) = −

5ÿ4

48
. (A.4)

32 The ÿ7 metric can be parametrized as ý∗
ÿ
ýÿ = 1 (ÿ = 1, 2, 3, 4) with ýÿ = ÿÿyÿÿ where y = y + 2ÿ and ÿ ∗

ÿ
ÿÿ = 1 parametrize ℂℙ3 so that (see, e.g., [60]) 

ýÿ7 = ýý2
ℂℙ

3
+ (ýy +ý)2 , where ý depends on ℂℙ3 coordinates. Alternatively, we may set ý1 = cos ÿ ÿÿÿ, ýÿ = sin ÿ ýÿ (ÿ = 1, 2, 3), ý ∗

ÿ
ýÿ = 1 where ýÿ parametrize ÿ5 . 

Then the ÿ7 metric is ýÿ7 = ýÿ2 + sin2 ÿ ýÿ5 + cosh2 ÿ ýÿ2 . To relate this to the first Hopf fibration parametrization of the metric we need to redefine ýÿ by ÿÿÿ and 
identify ÿ with y. Then the orbifold of y will act also on ÿ5 . But orbifolding ÿ ≡ ÿ + b in the second form of the metric does not act on ÿ5 . Thus the two orbifolds are 
not equivalent.
33 This space may be viewed as “thermal” AdS2ÿ+1 , i.e. is obtained from Minkowski signature AdS2ÿ+1 by analytic continuation and periodical identification of the 
Euclidean time.
34 For comparison, in the case of AdS2ÿ+1 with ÿ2ÿ boundary, i.e. ýý2 = ýý2 + sinh2 ý ýÿ2ÿ , we get ∫ ý0

0
ýý sinh2ÿ ý = (−1)ÿ�(ÿ+ 1

2
)

√
ÿ�(ÿ+1)

ý0 +⋯, where dots stand for powers 

of sinhý0 leading to powers of 1ÿ and subleading finite terms. Multiplying by vol(ÿ
2ÿ), one gets vol(AdS2ÿ+1) = −

2(−1)ÿÿÿ

ÿ!
logÿ.
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As an application, let compute the value of the 11d supergravity action on AdS7,ÿ × ÿ4 of radius ÿ where ÿ is the length of the ÿ1

circle ÿ as in (1.2). Compactifying on ÿ4 (that has radius ÿ
2
) we get

ÿ11 = −
1

2ÿ2
11

(
ÿ

2
)4 vol(ÿ4) ∫ ý7ý

√
ý
(
ý(7) − 2Λ

)
, 2ÿ2

11
= (2ÿ)8ý9

ÿ
, (A.5)

where for the AdS7 solution one has ý
(7) = −

42

ÿ2
, Λ = −

15

ÿ2
. Since vol(ÿ4) = 8ÿ2

3
, we get

ÿ11 = −
1

(2ÿ)8
(
ÿ

ýÿ

)9
8ÿ2

3
(
1

2
)4(−12)

ÿ

2ÿ
vol(AdS7) =

ÿ

(2ÿ)8
(
ÿ

ýÿ

)9ÿ vol(AdS7) . (A.6)

Using (A.4), i.e. vol(AdS7) = −
5ÿ4

48
, and (1.1) implying ( ÿ

ýÿ
)9 = 29ÿ3ý3 we end up with

ÿ11 = −
5

24
ý3ÿ . (A.7)

The same result is found also for the “twisted” AdS7,ÿ × ÿ̃4 background in (1.2) (the shift ÿ → ÿ + ÿÿ along the ÿ4 isometry ÿ-direction 
does not change the value of the 11d volume form ∼ ýÿ ∧ ýÿ ∧ ...). At the same time, the leading large ý term in the free energy in 
(2.9), is ý pert

ý
= −

1

6
ý3ÿ + ..., so there is a 5∕4 mismatch with (A.7).

This discrepancy was noted in [62,48], see also [63]. A way to resolve it at the level of 7d gauged supergravity with extra (non-
invariant) counterterms was suggested in [30]. It is unclear at the moment how to reach the same conclusion directly at the level 
of 11d supergravity action, i.e. to see how the leading-order term can distinguish between the standard and “supersymmetric” free 
energy. One may contemplate adding some non-invariant boundary terms, but this issue needs further clarification.

Appendix B. ÿ → ÿ expansion of scalar free energy in thermal ýýÿÿ,ÿ

Here we discuss several methods to compute the small ÿ expansion of the non-Casimir part of the scalar log det in (5.14), i.e. of 
the function

ÿ (ÿ;�) ≡
∞∑

ÿ=1

ÿÿ�

ÿ(1 − ÿÿ)2
, ÿ = ÿ−ÿÿ , � g 2, (B.1)

that can be written equivalently as

ÿ (ÿ;�) = −

∞∑

ý,ý′=0

log(1 − ÿý+ý
′+�) = −

∞∑

ÿ=0

(ÿ+ 1) log(1 − ÿÿ+�). (B.2)

The first method is to expand ÿ in (B.1) at small ÿ and sum the terms using Riemann zeta-function regularization (i.e. multiplying 
by ÿý, summing, and taking the finite part of the ý → 0 limit). This gives

(I): ÿ (ÿ;�) =
ÿ(3)

ÿ2
−

ÿ2(−1 +�)

6ÿ
+

1

12
ÿE(5 − 12�+ 6�2) +

1

24
(−1 +�)(1 − 4�+ 2�2)ÿ

+
(−1 + 20�− 50�2 + 40�3 − 10�4)

2880
ÿ2

+
(−5 + 42�+ 63�2 − 420�3 + 525�4 − 252�5 + 42�6)

3628800
ÿ4 +⋯ . (B.3)

The constant ÿE term is regularization dependent and is related to the dropped pole ∼ 1

ý
.

Another method is to expand ÿ in (B.2) at small ÿ, multiply by (ÿ + �)ý, sum over ÿ and then take the finite part of the ý → 0

limit. This way we obtain

(II): ÿ (ÿ;�) =ÿ(�) −
1

12
(5 − 12�+ 6�2) logÿ +

1

24
(−1 +�)(1 − 4�+ 2�2)ÿ

+
(−1 + 20�− 50�2 + 40�3 − 10�4)

2880
ÿ2

+
(−5 + 42�+ 63�2 − 420�3 + 525�4 − 252�5 + 42�6)

3628800
ÿ4 +⋯ , (B.4)

ÿ(�) =(� − 1)
[
1

2
log(2ÿ) − log�(�)

]
+ ÿ ′(−1,�). (B.5)

Comparing to (B.3), we see that we miss the 1

ÿ2
and 1

ÿ
terms and the ÿE term is replaced by the logÿ term.
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A rigorous (third) method is to follow [64].35 Starting again from (B.2) and differentiating over ÿ gives

ÿ ′(ÿ;�) = −

∞∑

ÿ=0

(ÿ+ 1)(ÿ+�)

ÿ(�+ÿ)ÿ − 1
= −

∞∑

ÿ=0

∞∑

ÿ=1

(ÿ+ 1)(ÿ+�)ÿ−(�+ÿ)ÿÿ . (B.6)

Now using that ÿ−ý = 1

2ÿÿ
∫
ÿ ýý ý−ý �(ý) (where the contour ÿ is along the imaginary axis with large enough real part of ý) gives the 

Mellin representation

ÿ ′(ÿ;�) =
1

2ÿÿ ∫
ÿ

ýý

∞∑

ÿ=0

∞∑

ÿ=1

(� + ÿ)−ýÿ−ýÿ−ý�(ý)(ÿ+ 1)(ÿ+�) =
1

2ÿÿ ∫
ÿ

ýýÿ−ýÿ(ý), (B.7)

ÿ(ý) = �(ý)[ÿ(−2 + ý,�) + (1 −�)ÿ(−1 + ý,�)]ÿ(ý). (B.8)

Closing the contour to the left we get for the ÿ → 0 expansion (up to exponentially suppressed terms denoted by dots)

ÿ ′(ÿ;�) = −

∞∑

ÿ=0

Res
ý=3−ÿ

(ÿ−ýÿ(ý)) + ... (B.9)

Integrating this over ÿ gives

(III): ÿ (ÿ;�) =ÿ(�) +
ÿ(3)

ÿ2
−

ÿ2(� − 1)

6ÿ
−

1

12
(5 − 12�+ 6�2) logÿ

+
1

24
(−1 +�)(1 − 4�+ 2�2)ÿ +

(−1 + 20�− 50�2 + 40�3 − 10�4)

2880
ÿ2

+
(−5 + 42�+ 63�2 − 420�3 + 525�4 − 252�5 + 42�6)

3628800
ÿ4 +⋯ , (B.10)

where ÿ(�) is yet undetermined integration constant. By doing numerics, we found that (B.10) is the correct expansion with ÿ(�)

being the same as in (B.5). The expansion (B.10) reproduces the two singular 1

ÿ2
and 1

ÿ
terms in (B.3) and the logarithm in (B.4).

For example, this gives for � = 3

ÿ (ÿ; 3) =
ÿ(3)

ÿ2
−

ÿ2

3ÿ
+

1

12

(
1 − 12 log

ý

2ÿ

)
−

23

12
logÿ +

7ÿ

12
−

121ÿ2

2880
+

251ÿ4

725760
+⋯ . (B.11)

Appendix C. Scalar determinant in ýýÿÿ,ÿ from expansion in modes on ÿÿ ×ÿÿ

ÿ

Here we derive the expression in (5.14) by directly expanding in Fourier modes in the two ÿ1 × ÿ1
ÿ
boundary angles.36 Let us 

start with the scalar operator ÿ̂ ≡�0 = −ÿ2 +ý2 in the AdS3,ÿ metric (5.1) in the explicit coordinate form (here ý2 =�(� −2) as 
in (5.15))

ÿ̂ = −
1

sinh ÿ1 cosh ÿ1
ÿ1(sinh ÿ1 cosh ÿ1ÿ1) −

1

sinh2 ÿ1
ÿ2
2
−

1

cosh2 ÿ1
ÿ2
3
+�(� − 2) . (C.1)

Redefining ÿ1 →
1

2
ÿ and expanding in modes so that ÿ2 → ÿ ÿ, ÿ3 → ÿ ÿ

ÿ
= ÿ 2ÿ

ÿ
ÿ, we get a “radial” 1d operator

ÿÿ,ÿ = −
4

sinhÿ

ý

ýÿ

(
sinhÿ

ý

ýÿ

)
+

ÿ2

sinh2
ÿ

2

+
ÿ2
ÿ

cosh2
ÿ

2

+�(�− 2), ÿ
ÿ
=

2ÿ

ÿ
ÿ , ÿ,ÿ ∈ℤ. (C.2)

By applying the Gelfand-Yaglom theorem (see, e.g., [65]) we have

log
detÿÿ,ÿ

detÿÿ,0

= lim
ÿ→∞

log
ÿÿ,ÿ(ÿ)

ÿÿ,0(ÿ)
, (C.3)

ÿÿ,ÿÿÿ,ÿ(ÿ) =0, ÿÿ,ÿ(ÿ)
ÿ→0
→ ÿ|ÿ| +⋯ . (C.4)

The solution of (C.4) is

ÿÿ,ÿ(ÿ) = 2|ÿ|(tanh
ÿ

2
)|ÿ| (cosh

ÿ

2
)−� 2ý1

(�+ |ÿ|− ÿÿ
ÿ

2
,
�+ |ÿ|+ ÿÿ

ÿ

2
,1 + |ÿ|, tanh2 ÿ

2

)
, (C.5)

and as a consequence of (C.3)

35 Another rigorous approach is based on the temperature inversion relations as in [49].
36 As usual, the determinant will be defined using analytic regularization so that power divergences will be ignored (there is no logarithmic divergence in the present 
3d case).
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log
detÿÿ,ÿ

detÿÿ,0

= log
�(

�

2
+

|ÿ|
2
)2

�(
�

2
+

|ÿ|
2

− ÿ
ÿ
ÿ

2
)�(

�

2
+

|ÿ|
2

+ ÿ
ÿ
ÿ

2
)
. (C.6)

Thus

�(�)(ÿ) ≡ 1

2
logdet ÿ̂ =

1

2

∑

ÿ,ÿ∈ℤ

logdetÿÿ,ÿ = −
1

2

∑

ÿ,ÿ∈ℤ

log
[
�
(
�

2
+

|ÿ|
2

− ÿ
ÿ
ÿ

2

)
�
(
�

2
+

|ÿ|
2

+ ÿ
ÿ
ÿ

2

)]
, (C.7)

where we dropped ÿ-independent term as 
∑

ÿ∈ℤ 1 = 1 + 2ÿý(0) = 0. As in [66] we may use that

log
[
�(ý+ ÿÿ)�(ý− ÿÿ)

]
= 2 log�(ý) −

∞∑

ý=0

log
[
1 +

ÿ2

(ý+ ý)2

]
. (C.8)

Then from (C.7) we get

�(�)(ÿ) =
1

2

∑

ÿ,ÿ∈ℤ

∞∑

ý=0

log
[
1 +

ÿ2
ÿ

(� + |ÿ|+ 2ý)2

]
. (C.9)

The set |ÿ| + 2ý with ÿ ∈ℤ and ý ∈ℕ0 can be replaced by a sum over ý ∈ℕ0 with multiplicity ý + 1. Thus,

�(�)(ÿ) =
1

2

∑

ÿ∈ℤ

∞∑

ý=0

(ý+ 1) log
[
1 +

ÿ2
ÿ

(� + ý)2

]
. (C.10)

The ÿ = 0 term vanishes and separating the divergent part of the sum over ÿ we get37

�(�)(ÿ) = �
(�)

div
(ÿ) + �(�)reg (ÿ) , (C.11)

�
(�)

div
(ÿ) =

∞∑

ÿ=1

∞∑

ý=0

(ý+ 1) log
ÿ2
ÿ

(� + ý)2
, �(�)

reg
(ÿ) =

∞∑

ÿ=1

∞∑

ý=0

(ý+ 1) log
[
1 +

(� + ý)2

ÿ2
ÿ

]
. (C.12)

Computing �(�)
div

(ÿ) using again the Riemann zeta-function regularization gives

�
(�)

div
(ÿ) =

∞∑

ý=0

(ý+ 1)

∞∑

ÿ=1

log
ÿ2
ÿ

(� + ý)2
=

∞∑

ý=0

(ý+ 1)

∞∑

ÿ=1

[−2 log(� + ý) + 2 log
2ÿ

ÿ
+ 2 logÿ]

=

∞∑

ý=0

(ý+ 1)
[
log(� + ý) − log

2ÿ

ÿ
+ log(2ÿ)

]
=

∞∑

ý=0

(ý+ 1)
[
log(� + ý) + logÿ

]
. (C.13)

Here the sum over ý may also be computed using zeta-function regularization but it is useful not to do this before combining it with 
�
(�)
reg (ÿ).
Since

∞∑

ÿ=1

log
(
1 +

ÿ2

ÿ2

)
= log

sinh(ÿÿ)

ÿÿ
= ÿÿ− log(ÿÿ) − log2 + log(1 − ÿ−2ÿÿ) , (C.14)

we find that �(�)reg (ÿ) in (C.12) (here for ÿ =
1

2ÿ
(� + ý)ÿ) may be written as

�(�)reg (ÿ) =

∞∑

ý=0

(ý+ 1)
[
1

2
(� + ý)ÿ − log((� + ý)ÿ) + log(1 − ÿ−(�+ý)ÿ )

]
. (C.15)

Adding (C.13) and (C.15) gives

�(�)(ÿ) = 1

2
ÿ

∞∑

ý=0

(ý+ 1)(� + ý) +

∞∑

ý=0

(ý+ 1) log
(
1 − ÿ−(�+ý)ÿ

)
. (C.16)

Doing the sum in the first term using Hurwitz zeta-function regularization gives finally the expression [50] equivalent (cf. (B.1), 
(B.2)) to the one in (5.14), (5.16)

�(�)(ÿ) =
1

24
(� − 1)(1 − 4�+ 2�2)ÿ +

∞∑

ý=0

(ý+ 1) log(1 − ÿ�+ý) . (C.17)

37 Note that here the “reg” part may still contain a divergent contribution from the sum over ý (see below).
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Note that in the ÿ → 0 expansion the first “Casimir” term cancels against the linear in ÿ term in the second term in (C.17) (see 
(B.10)).

C.1. Including the twist ÿ3 → ÿ3 − ÿ or ÿ
ÿ
→ ÿ

ÿ
+ ÿÿ

Let us now consider the determinant of the scalar operator including the coupling to the flat gauge potential in the ÿ3 direction 
(5.13), (5.19), i.e. ÿ3 → ÿ3 − ÿ or ÿ

ÿ
→ ÿ

ÿ
+ ÿÿ where ÿ

ÿ
=

ÿ

2ÿ
. Repeating the above calculation with ÿ

ÿ
→ ÿ

ÿ
+ ÿÿ we get in (C.14)

∑

ÿ∈ℤ

log
(
1 +

ÿ2

ÿ2

)
→

∑

ÿ∈ℤ

log
(
1 +

ÿ2

(ÿ+ ÿ
ÿÿ

2ÿ
)2

)
, (C.18)

where the sum can be computed using

∑

ÿ∈ℤ

log
(
1 +

ÿ2

(ÿ+ ÿÿ)2

)
= log

|||1 −
sinh2(ÿÿ)

sinh2(ÿÿ)

||| . (C.19)

This leads to the following modification of the expression (C.11), (C.12) for the determinant in (C.7)

�(�,ÿ)(ÿ) = �
(�,ÿ)

div
(ÿ) + �(�,ÿ)reg (ÿ) , �

(�,ÿ)

div
(ÿ) =

1

2

∞∑

ÿ∈ℤ

∞∑

ý=0

(ý+ 1) log
(ÿ

ÿ
+ ÿÿ)2

(� + ý)2
, (C.20)

�(�,ÿ)reg (ÿ) =
1

2

∞∑

ý=0

(ý+ 1) log
[ sinh2( (ý+�)ÿ

2
)

sinh2(
ÿÿ

2
)

− 1
]
. (C.21)

This can be written in a form similar to (B.1) as follows. For the divergent part of the sum over ÿ we get (ignoring again a sum of a 
constant assuming ÿý regularization)

�
(�,ÿ)

div
(ÿ) =

1

2

∞∑

ý=0

(ý+ 1)
[
log(

ÿ2ÿ2

4ÿ2
) +

∞∑

ÿ=1

log
[
(ÿ+ ÿ

ÿÿ

2ÿ
)2
]
+

∞∑

ÿ=1

log
[
(ÿ− ÿ

ÿÿ

2ÿ
)2
]]

=
1

2

∞∑

ý=0

(ý+ 1)
[
log(

ÿ2ÿ2

4ÿ2
) + 2 log

( 4ÿ
ÿÿ

sinh
ÿÿ

2

)]
=

∞∑

ý=0

(ý+ 1) log(2 sinh
ÿÿ

2
) . (C.22)

Using that

log
[ sinh2 (ý+�)ÿ

2

sinh2
ÿÿ

2

− 1
]
= −2 log(2 sinh

ÿÿ

2
) + ÿ(ý+�) + log[(1 − ÿý+�+ÿ )(1 − ÿý+�−ÿ )] , (C.23)

for the �(�,ÿ)reg (ÿ) part we get38

�(�,ÿ)reg (ÿ) =
1

2

∞∑

ý=0

(ý+ 1)
[
− 2 log(2 sinh

ÿÿ

2
) + ÿ(ý+�) +

∑

±

log(1 − ÿý+�±ÿ )
]

(C.24)

= −

∞∑

ý=0

(ý+ 1) log(2 sinh
ÿÿ

2
) +

1

24
(� − 1)(1 − 4�+ 2�2 + 6ÿ2)ÿ +

1

2

∑

±

∞∑

ý,ý′=0

log(1 − ÿý+ý
′+�±ÿ )

= −

∞∑

ý=0

(ý+ 1) log(2 sinh
ÿÿ

2
) +

1

24
(� − 1)(1 − 4�+ 2�2 + 6ÿ2)ÿ −

1

2

∑

±

∞∑

ÿ=1

1

ÿ

ÿÿ(�±ÿ )

(1 − ÿÿ)2
.

Adding together (C.22) and (C.24) we finally get the finite expression quoted in (5.20), (5.21)

�(�,ÿ)(ÿ) =
1

24
(� − 1)(1 − 4�+ 2�2 + 6ÿ2)ÿ −

1

2

∞∑

ÿ=1

1

ÿ

ÿÿ(�+ÿ )

(1 − ÿÿ)2
−

1

2

∞∑

ÿ=1

1

ÿ

ÿÿ(�−ÿ )

(1 − ÿÿ)2
. (C.25)

The small ÿ expansion of �(�,ÿ)(ÿ) can be found as in (B.1), (B.10):

�(�,ÿ)(ÿ) = −
ÿ(3)

ÿ2
−

ÿ2(� − 1)

6ÿ
− C(�, ÿ) +

1

12
(5 − 12�+ 6�2 + 6ÿ2) logÿ −

∞∑

ÿ=1

C2ÿ(�, ÿ)ÿ
2ÿ, (C.26)

where

38 The Casimir term is computed by splitting � = 1

2
(� + ÿ) + 1

2
(� − ÿ) and using Hurwitz zeta function regularization, i.e. introducing a factor (ý + � ± ÿ)ý and 

dropping singular terms in the limit ý → 0.
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C(�, ÿ) =
1

2
[C(� + ÿ) + C(� − ÿ)] , (C.27)

C2(�, ÿ) =
−1 + 20�− 50�2 + 40�3 − 10�4

2880
+

1

288
(−5 + 12�− 6�2)ÿ2 −

ÿ4

288
, (C.28)

C4(�, ÿ) =
−5 + 42�+ 63�2 − 420�3 + 525�4 − 252�5 + 42�6

3628800

+
(1 − 20�+ 50�2 − 40�3 + 10�4)ÿ2

57600
+

(5 − 12�+ 6�2)ÿ4

34560
+

ÿ6

86400
, ... (C.29)

C.2. Alternative derivation by Poisson resummation

An alternative way to derive the expression for the log det in (C.7) is to apply the Poisson resummation trick

∑

ÿ∈ℤ

ÿ (ÿ) =
∑

ý∈ℤ

ÿ̃ (ý), ÿ̃ (ý) = F[ÿ ] ≡
∞

∫
−∞

ýÿÿ (ÿ) ÿ−2ÿÿýÿ. (C.30)

Since

F
[
log(1 + ÿ2ÿ2)

]
= −

1

|ý| exp
(
−

2ÿ|ý|
|ÿ|

)
, (C.31)

this gives

�(�)(ÿ) =
1

2

∑

ý∈ℤ

∞∑

ý=0

(ý+ 1)
1

|ý| ÿ
−|ý|(�+ý)ÿ . (C.32)

If we separate the ý = 0 term, we obtain

�(�)(ÿ) = “ý = 0 term”+
∞∑

ý=0

(ý+ 1) log(1 − ÿ−(�+ý)ÿ ). (C.33)

This can be generalized to the case of a non-zero ÿ-shift using that

F
[
log(1 + ÿ2(ÿ+ ÿÿ)2

]
= ÿ2ÿýÿ F[log(1 + ÿ2ÿ2)], (C.34)

which leads to the last term in (C.24).
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