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We present a partial-differential-equation-based optimal path-planning framework for curvature
constrained motion, with application to vehicles in 2- and 3-spatial-dimensions. This formulation
relies on optimal control theory, dynamic programming, and Hamilton-Jacobi-Bellman equations.
We develop efficient and scalable algorithms for solutions of high dimensional Hamilton-Jacobi
equations which can solve these types of path-planning problems efficiently, even in high
dimensions, while maintaining the Hamilton-Jacobi formulation. Because our method is rooted
in optimal control theory and has no black box components, it has solid interpretability, and thus
averts the tradeoff between interpretability and efficiency for high-dimensional path-planning
problems. We demonstrate our method with several examples.

Introduction

In this manuscript, we develop a Hamilton-Jacobi partial differential equation (PDE) based method for optimal trajectory gen-
ation, with special application to so-called Dubins vehicles which exhibit curvature constrained motion. Specifically, we study
nematic models for simple cars, airplanes, and submarines.
Curvature constrained motion was first considered by Dubins [1] who considered a simple vehicle which could only move forward.
e model was extended by Reeds and Shepp to a car which could move forward and backward [2]. In both cases, the strategy was
 decompose paths into straight line segments and arcs of circles and analyze which combinations could be optimal. Later work
 this direction was devoted to adding obstacles [3], and developing algorithms which can produce approximately optimal paths
hich are robust to perturbation [4].
To the authors’ knowledge the problem was first analyzed using dynamic programming and PDE by Takei, Tsai and others
,6]. Besides their work, there is a strong precedent in the literature for control theoretic, PDE-based optimal path-planning in a
mber of applications [7–14]. Trajectory generation methods which are rooted in PDE have the advantage that they are easy to
plement, entirely interpretable, and can provide theoretical guarantees regarding optimality, robustness, and other concerns. This
to distinguish them from sampling and learning based algorithms (for example [15–19]) which often sacrifice interpretability for
ciency. The main drawbacks of the PDE-based methods are the lack of efficiency and scalability. Because these methods typically
ly on discretizing a domain and approximating a solution to a Hamilton-Jacobi PDE, they can be inefficient even for relatively
w-dimensional problems, and intractable for motion planning problems whose state space is more than three dimensions. While
me effort has been made to improve efficiency of grid-based methods through parallelization [20,21], other recent work has been
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voted to developing grid-free numerical methods based on Hopf-Lax formulas which can approximate solutions to Hamilton-Jacobi 
uations efficiently even in high-dimensions [22–24].
The goal of this manuscript is to develop algorithms for trajectory generation which are (1) interpretable due to the theoretical 
derpinnings provided by PDEs and optimal control theory, and the absence of any black box components, and (2) efficient enough 
 be real-time applicable, even in problems with high-dimensional state spaces. Specifically, we present an optimal path-planning 
ethod for simple vehicles which maintains the Hamilton-Jacobi PDE formulation, but does not rely on spatial discretization and 
thus efficient and scalable. This requires a reformulation of the standard control theoretic minimal-time path-planning problem 
alyzed in [5,6,10–14]. Our method represents a significant step toward fully interpretable PDE-based motion-planning algorithms 
hich are real-time applicable. While the specific focus in this manuscript is Dubins’ type vehicles, with small modifications, it is 
ely that our methods could be adapted to more complex and higher-dimensional models of motion as well.
The paper is laid out as follows. In section 2, we present the basic dynamic programming and PDE-based path-planning framework 
at we use, and introduce models for simple Dubins’ type vehicles. In section 3, we discuss the numerical methods which we use 
 solve the requisite PDEs and generate optimal trajectories, and their specific application to our problem. In section 4, we present 
sults of our simulations. We conclude with a brief discussion of our method and potential future research directions in section 5.

 Modeling

In this section, we derive the PDE-based path-planning framework which we use. In particular, because we will solve these PDEs 
 translating them into optimization problems as described in section 3, it will be most convenient if we can avoid a formulation 
hich requires boundary conditions, which would translate into difficult constraints in the optimization. Because of this, we opt for 
level-set-type formulation in the vein of [7–9], as opposed to the control theoretic approach of [5,6,10–14]. These approaches are 
mpatible, but different in philosophy. We compare and contrast them in section 2.4.
The level-set method is a general method for modeling contours (or more generally, hypersurfaces of codimension 1) which evolve 

ith prescribed velocity depending on the ambient space and properties inherent to the contour itself [25,26]. The basic strategy 
to model the contour as the zero level set of an auxiliary function 𝑢 ∶ ℝ𝑛 × [0, ∞) → ℝ and derive a PDE which 𝑢 satisfies. As 𝑢
olves according to the PDE, the zero level set of 𝑢(⋅, 𝑡) evolves, affecting the level set flow. A general, first-order level set equation 
s the form

𝑢𝑡 +𝐻(𝑥,∇𝑢, 𝑡) = 0

r some Hamiltonian function 𝐻(𝑥, 𝑝, 𝑡) which is homogeneous of degree 1 in the variable 𝑝. The level set function 𝑢 does not need 
 have any physical meaning, though in many cases (as in ours), level set equations are seen to arise as Hamilton-Jacobi-Bellman 
uations for feedback control problems where 𝑢 is a value function.
We demonstrate this with a brief and formal derivation. Given a time-horizon 𝑇 > 0, a starting location 𝑥0 ∈ℝ𝑑 , a desired-ending 
cation 𝑥𝑓 ∈ℝ𝑑 , and a function 𝑓 ∶ℝ𝑑 × [0, 𝑇 ] ×ℝ𝑚 →ℝ𝑑 , we consider trajectories 𝒙 ∶ [0, 𝑇 ] →ℝ𝑑 satisfying

𝒙̇ = 𝑓 (𝒙, 𝑡,𝜶), 0 < 𝑡 ≤ 𝑇 ,

𝒙(0) = 𝑥0.
(1)

re 𝜶(⋅) is a control map, taking values in some admissible control set 𝐴 ⊂ℝ𝑚. The goal is to choose 𝜶(⋅) so as to steer the trajectory 
 close as possible to 𝑥𝑓 by time 𝑇 . Accordingly, we define the cost functional

[𝒙(⋅)] = 1
2
|||𝒙(𝑇 ) − 𝑥𝑓

|||2,
d we would like to solve the optimization problem

inf
𝜶∈[𝒙(⋅)]

here  = {𝜶 ∶ [0, 𝑇 ] → 𝐴 ∶ 𝜶 measurable}. Other choices of cost function are possible, but so as to serve as some measure of 
stance, they should be zero for any path which ends at 𝑥𝑓 , and increase as |𝒙(𝑇 ) − 𝑥𝑓 | increases.
For 𝑥 ∈ℝ𝑑 and 𝑡 ∈ [0, 𝑇 ), we define the value function

𝑢(𝑥, 𝑡) = inf
𝜶∈𝑥,𝑡[𝒙(⋅)], (2)

here 𝑥,𝑡 denotes the same functional restricted to trajectories 𝒙(⋅) such that 𝒙(𝑡) = 𝑥. This value function denotes the minimum 
uare distance to the desired endpoint that one can achieve if they are sitting at point 𝑥 at time 𝑡. In our case, because there is 
 running cost along the trajectory, the dynamic programming principle [27] states that the value function is constant along an 
timal trajectory. That is, for 𝛿 > 0,

𝑢(𝒙(𝑡), 𝑡) = inf
𝜶
{𝑢(𝒙(𝑡+ 𝛿), 𝑡+ 𝛿)},

here the infimum is taken with respect to the values of 𝜶(𝑠) for 𝑠 ∈ [𝑡, 𝑡 + 𝛿). If 𝑢 is smooth, we rearrange, divide by 𝛿 and send 
2

→ 0+ to see
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Fig. 1. A simple self-driving car. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

inf
𝛼∈𝐴

{𝑢𝑡 + ⟨𝒙̇,∇𝑢⟩} = 0.

e can use the equation of motion (1) to replace 𝒙̇. Further, at time 𝑡 = 𝑇 , there is no remaining time to travel, so the value is simply 
e exit cost. Thus we arrive at a terminal-valued Hamilton-Jacobi-Bellman (HJB) equation

𝑢𝑡 + inf
𝛼∈𝐴

{⟨𝑓 (𝑥, 𝑡, 𝛼),∇𝑢⟩} = 0,

𝑢(𝑥,𝑇 ) = 1
2
|||𝑥− 𝑥𝑓

|||2 . (3)

e function 𝐻 ∶ℝ𝑑 ×ℝ𝑑 × [0, 𝑇 ] →ℝ defined by

𝐻(𝑥, 𝑝, 𝑡) = inf
𝛼∈𝐴

{⟨𝑓 (𝑥, 𝑡, 𝛼), 𝑝⟩} (4)

the Hamiltonian. These computations are formal. There is no reason to believe that 𝑢 will be smooth, but under very mild conditions 
 𝑓 , 𝑢 will be the Lipschitz continuous viscosity solution of (3) [28–30]. Assuming the viscosity solution to (3) is known, one resolves 
e optimal control map via

𝜶∗(𝑥, 𝑡) = argmin
𝛼∈𝐴

⟨𝑓 (𝑥, 𝑡, 𝑎),∇𝑢(𝑥, 𝑡)⟩.
ain, pending mild assumptions on 𝑓 , this optimization problem has a unique solution whenever ∇𝑢(𝑥, 𝑡) exists, which is true for 
most every (𝑥, 𝑡) when 𝑢 is Lipschitz continuous. Finally, one can then resolve the optimal trajectory by integrating

𝒙̇ = 𝑓 (𝒙, 𝑡,𝜶∗(𝒙, 𝑡)), 0 < 𝑡 ≤ 𝑇 ,

𝒙(0) = 𝑥0,
(5)

 using a semi-Lagrangian method as described in [6,11,14].
Because we will solve (3) using Hopf-Lax time formulas (and because it is more comfortable for those familiar with PDE), we 
ake the substitution 𝑡 ↦ 𝑇 − 𝑡, to arrive at an initial value Hamilton-Jacobi-Bellman equation:

𝑢𝑡 −𝐻(𝑥,∇𝑢, 𝑇 − 𝑡) = 0,

𝑢(𝑥,0) = 1
2
|||𝑥− 𝑥𝑓

|||2 . (6)

r notational convenience, we will still refer to the solution of (6) as 𝑢, though it is a time-inverted version of the solution of 
). Also, the Hamiltonians we are interested in below are time-independent (unless moving obstacles are introduced, but these are 
counted for separately), so for brevity, we suppress the time-dependence and henceforth write 𝐻 =𝐻(𝑥, 𝑝).
In the ensuing subsections, we use this basic framework to develop optimal path-planning algorithms for Dubins vehicles in 2- and 
dimensions. This 2-dimensional model for kinematic motion goes back to Dubins [1] and Reeds and Shepp [2]. The 3-dimensional 
rsions still serve as simple models for unmanned airplanes [31,32] and seacrafts [33] today. We note that while our inspiration 
self-driving vehicles, curvature constrained motion has other applications such as maneuvering of bevel tipped needles through 
ological tissue [34].

1. Dubins car

We consider a simple rectangular car as pictured in Fig. 1. We let (𝑥, 𝑦) ∈ℝ2 denote the center of mass of the car and 𝜃 ∈ [0, 2𝜋]
3

note the orientation, measured counterclockwise from the horizontal. We refer to (𝑥, 𝑦, 𝜃) as the configuration of the car. The car 
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s a rear axle of length 2𝑅 and distance 𝑑 from the center of mass to the center of the rear axle. The motion of the car is subject to 
e nonholonomic constraint

𝒚̇ cos𝜽− 𝒙̇ sin𝜽 = 𝑑𝜽̇ (7)

hich specifies that movement occurs tangential to the rear wheels. Motion is also constrained by a maximum angular velocity | ≤𝑊 (or equivalently a minimum turning radius 𝜌 = 1∕𝑊 ). The kinematics for the car are given by:

𝒙̇ = 𝒗 cos𝜽−𝝎𝑊 𝑑 sin𝜽,

𝒚̇ = 𝒗 sin𝜽+𝝎𝑊 𝑑 cos𝜽,

𝜽̇ = 𝝎𝑊 .

(8)

re, 𝒗(⋅), 𝝎(⋅) ∈ [−1, 1] are normalized control variables representing tangential and angular velocity, respectively.
Given a desired final configuration (𝑥𝑓 , 𝑦𝑓 , 𝜃𝑓 ) for the car, we can insert these dynamics into the above derivation so that the 
me-reversed) optimal remaining distance function 𝑢(𝑥, 𝑦, 𝜃, 𝑡) for this problem satisfies the Hamilton-Jacobi-Bellman equation

𝑢𝑡 − inf
𝑣,𝜔

{
𝑢𝑥(𝑣 cos𝜃 −𝜔𝑊 𝑑 sin𝜃) + 𝑢𝑦(𝑣 sin𝜃 +𝜔𝑊 𝑑 cos𝜃) +𝜔𝑊 𝑢𝜃

}
= 0.

arranging to isolate 𝑣, 𝜔, we have

𝑢𝑡 − inf
𝑣,𝜔

{
𝑣(𝑢𝑥 cos𝜃 + 𝑢𝑦 sin𝜃) +𝜔𝑊 𝑑(−𝑢𝑥 sin𝜃 + 𝑢𝑦 cos𝜃 +

1
𝑑
𝑢𝜃)

}
= 0.

e recall that the control variables 𝑣, 𝜔 are normalized: 𝑣, 𝜔 ∈ [−1, 1]. Thus since the above infimum is linear in 𝑣 and 𝜔 and their 
pendence is decoupled, the infimum for each control variable must occur at one of the endpoints. Assuming 𝑢(𝑥, 𝑦, 𝜃, 𝑡) is known, 
e optimal controls are given by

𝑣∗(𝑥, 𝑦, 𝜃, 𝑡) = −sign(𝑢𝑥(𝑥, 𝑦, 𝜃, 𝑡) cos𝜃 + 𝑢𝑦(𝑥, 𝑦, 𝜃, 𝑡) sin𝜃),

𝜔∗(𝑥, 𝑦, 𝜃, 𝑡) = −sign(−𝑢𝑥(𝑥, 𝑦, 𝜃, 𝑡) sin𝜃 + 𝑢𝑦(𝑥, 𝑦, 𝜃, 𝑡) cos𝜃 +
1
𝑑
𝑢𝜃),

(9)

d

𝑢𝑡 + |𝑢𝑥 cos𝜃 + 𝑢𝑦 sin𝜃|+𝑊 𝑑|− 𝑢𝑥 sin𝜃 + 𝑢𝑦 cos𝜃 +
1
𝑑
𝑢𝜃| = 0,

𝑢(𝑥, 𝑦, 𝜃,0) = 1
2
|(𝑥, 𝑦, 𝜃) − (𝑥𝑓 , 𝑦𝑓 , 𝜃𝑓 )|2. (10)

 written, one can specify a final location and orientation that the car must achieve (hence the inclusion of 𝜃𝑓 in the initial 
ndition). If one only cares to specify a final location, this can be omitted, and the initial condition can read 𝑢(𝑥, 𝑦, 𝜃, 0) =|||(𝑥, 𝑦) − (𝑥𝑓 , 𝑦𝑓 )

|||2. A similar observation applies for the 3-dimensional models below. When modeling the car as a point mass 
e. setting 𝑑 = 0), (10) simplifies to

𝑢𝑡 + |𝑢𝑥 cos𝜃 + 𝑢𝑦 sin𝜃|+𝑊 |𝑢𝜃| = 0. (11)

We will deal with this latter formulation (i.e., 𝑑 = 0) so that we are neglecting the actual shape of the vehicle as in [5,6]. Note 
at, as presented, we have not yet accounted for obstacles. It is argued in [10,11] that it is easier to account for obstacles when one 
es not simplify the car to a point mass, but the formulation is slightly different in those papers, and we will need to make special 
nsiderations for obstacles regardless. We discuss this further in section 2.4. In the next two subsections, we present two higher 
mensional generalizations of this model.

2. Dubins airplane

We generalize to the case of a simple airplane by introducing a third spatial variable to the dynamics. As a result the autonomous 
hicle operates in the coordinates (𝑥, 𝑦, 𝑧, 𝜃), rather than just (𝑥, 𝑦, 𝜃). This is achieved by adding in a fourth kinematic equation, 
hich applies a restriction to the motion in the 𝑧 direction akin to that imposed on 𝜃. For the sake of this model, the constraint 
posed on 𝑧 is decoupled from the constraint on the planar motion, in a manner similar to that of an airplane so we call this the 
bins Airplane model, though, as in the case of the car, we are simplifying the dynamics compared to that of a real airplane. We 
ce again consider the vehicle to be a point mass. This leads to the kinematic equations

𝒙̇ = 𝒗 cos𝜽,

𝒚̇ = 𝒗 sin𝜽,

𝒛̇ = 𝝎𝒛𝑊𝑧,
(12)
4

𝜽̇ = 𝝎𝒙𝒚𝑊𝑥𝑦,
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here, once again, we enforce 𝒗(⋅), 𝝎𝑥𝑦(⋅), 𝝎𝑧(⋅) ∈ [−1, 1]. In (12), 𝑊𝑥𝑦 > 0 is a constraint on the angular velocity in the 𝑥𝑦-plane, 
d 𝑊𝑧 > 0 is a constraint on the angular velocity in the vertical direction.
Similar reasoning will lead us to the Hamilton-Jacobi-Bellman equation

𝑢𝑡 + |𝑢𝑥 cos𝜃 + 𝑢𝑦 sin𝜃|+𝑊𝑧|𝑢𝑧|+𝑊𝑥𝑦|𝑢𝜃| = 0,

𝑢(𝑥, 𝑦, 𝑧, 𝜃,0) = 1
2
|(𝑥, 𝑦, 𝑧, 𝜃) − (𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓 , 𝜃𝑓 )|2. (13)

 truly model an airplane in flight, it makes sense to restrict to unidirectional velocity: 𝒗(⋅) = 1. In this case, the equation simplifies 

𝑢𝑡 − 𝑢𝑥 cos𝜃 − 𝑢𝑦 sin𝜃 +𝑊𝑧|𝑢𝑧|+𝑊𝑥𝑦|𝑢𝜃| = 0. (14)

As mentioned above, this formulation does not yet account for the presence of obstacles, which will be discussed in section 2.4. 
e could also account for finer-scale modeling concerns such as minimum cruising velocity, but for our purposes, the formulation 
as presented.

3. Dubins submarine

As an alternative to Dubins Airplane, we can model the problem in three dimensions by enforcing a total curvature constraint, 
ther than decoupling the constraints on the planar and vertical motion. We dub this model the Dubins Submarine, though again, we 
e neglecting many of the dynamics of a real submarine. In this case, we let (𝑥, 𝑦, 𝑧) represent the center of mass of the vehicle. The 
ientation of the vehicle is now represented by a pair of angles: 𝜃 ∈ [0, 2𝜋] represents the angular orientation on the 𝑥𝑦-plane (the 
imuthal angle), and 𝜙 ∈ [0, 𝜋] is the angle of inclination, with 𝜙 = 0 pointing straight up the 𝑧-axis and 𝜙 = 𝜋 pointing straight 
wn the 𝑧-axis. In this case, the equations of motion are

𝒙̇ = 𝒗 cos𝜃 sin𝜑,

𝒚̇ = 𝒗 sin𝜃 sin𝜑,

𝒛̇ = 𝒗 cos𝜑,

𝜽̇ = 𝝎1𝑊 ,

𝝋̇ = 𝝎2𝑊 ,

(15)

here 𝒗(⋅) is the normalized control variable representing tangential velocity, 𝝎1(⋅), 𝝎2(⋅) are normalized control variables for angular 
locity, and 𝑊 > 0 is a constraint on the curvature of the path. The magnitude of the curvature of a path obeying (15) is given by

𝜅(𝑡) ∶=
|||| 𝑑𝑑𝑡 (𝒙̇, 𝒚̇, 𝒛̇)|(𝒙̇, 𝒚̇, 𝒛̇)| |||| =𝑊

√
𝝎2
1 sin

2(𝝋) +𝝎2
2,

hich leads to a constraint on 𝝎1, 𝝎2 of the form√
𝝎2
1 sin

2(𝝋) +𝝎2
2 ≤ 1. (16)

Going through the same derivation for the Hamilton-Jacobi-Bellman equation (and having made the substitution 𝑡 ↦ 𝑇 − 𝑡 to 
verse time), we arrive at

𝑢𝑡 − inf
𝑣,𝜔1 ,𝜔2

{
𝑣(𝑢𝑥 cos𝜃 sin𝜑+ 𝑢𝑦 sin𝜃 sin𝜑+ 𝑢𝑧 cos𝜑) +𝜔1𝑢𝜃 +𝜔2𝑢𝜑

}
= 0.

ain, the minimization in 𝑣 is decoupled from that of (𝜔1, 𝜔2), so it is resolved exactly as before. For the minimization in (𝜔1, 𝜔2), 
suming that sin𝜑 ≠ 0, we write

inf
𝜔1 ,𝜔2

{𝜔1𝑢𝜃 +𝜔2𝑢𝜑} = inf
𝜔1 ,𝜔2

{
(𝜔1 sin𝜑)

(
𝑢𝜃

sin𝜑

)
+𝜔2𝑢𝜑

}
.

call, (𝜔1, 𝜔2) are constrained by (16) so that (𝜔1 sin𝜑, 𝜔2) is in the unit circle. Thus,

inf
𝜔1 ,𝜔2

{
(𝜔1 sin𝜑)

(
𝑢𝜃

sin𝜑

)
+𝜔2𝑢𝜑

}
= −

√√√√ 𝑢2
𝜃

sin2𝜑
+ 𝑢2

𝜑
.

us the HJB equation for this model is

𝑢𝑡 + |𝑢𝑥 cos𝜃 sin𝜑+ 𝑢𝑦 sin𝜃 sin𝜑+ 𝑢𝑧 cos𝜑|+𝑊

√√√√ 𝑢2
𝜃

sin2𝜑
+ 𝑢2

𝜑
= 0,

(17)
5

𝑢(𝑥, 𝑦, 𝑧, 𝜃,𝜑,0) = 1
2
|(𝑥, 𝑦, 𝑧, 𝜃,𝜑) − (𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓 , 𝜃𝑓 ,𝜑𝑓 )|2,
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r (𝑥, 𝑦, 𝑧, 𝜃, 𝜑, 𝑡) ∈ ℝ3 × [0, 2𝜋] × (0, 𝜋) × [0, 𝑇 ]. When 𝜑 = 0 or 𝜑 = 𝜋, the submarine is oriented directly upward or downward 
spectively. In this case, to change the orientation, one must modify 𝜙 (i.e., 𝜔1 can take any value, but it will not affect the orien-
tion; only 𝜔2 affects the orientation). One could specifically account for this in the above derivation if desired. For computational 
rposes, it suffices to replace the sin2𝜑 in the denominator in (17) with (sin2𝜑 + 𝜀) where 𝜀 is only a few orders of magnitude 
rger than machine precision. This will circuit any division by zero without materially affecting results. For our purposes, we use 
10−10.
In the ensuing sections, we discuss the formulation of these models in the presences of impassable obstacles, and then move on 

 develop numerical methods for approximating these equations and generating optimal trajectories.

4. Level set vs. optimal control formulation: the time horizon and obstacles

In all the preceding derivations, we implicitly assume that the vehicles are moving in free space. Here we discuss how one may 
count for obstacles which impede the vehicles. We also discuss the role of the time horizon 𝑇 , because both the manner in which 
e include obstacles and the time horizon arise as a consequence of modeling the problem using level set equations, as opposed to 
hat is perhaps a more natural control-theoretic model. To reiterate, we use level set equations because they are amenable to the 
ailable numerical methods. Specifically, using the level set formulation allows us to derive an HJB equation which can resolve 
e-optimal paths without using any boundary conditions. This is desirable because in section 3, we describe how one can solve the 
B equation by reframing it as an optimization problem for which it is difficult to incorporate boundary conditions. However, this 
cision has ramifications that deserve some discussion.
Reverting back to the general framework from the beginning of section 2, we recall that for our models, the value function 𝑢(𝑥, 𝑡)
codes the minimum achievable distance to the desired endpoint given that the vehicle is in position 𝑥 at time 𝑡. An alternative 
proach to path-planning, like that used in [5,6,10–14], is to define the value function 𝜏(𝑥, 𝑡) to be the optimal remaining travel 
e to the desired endpoint given that the vehicle is in position 𝑥 at time 𝑡. In the latter case, by definition, 𝜏(𝑥, 𝑡) = +∞ whenever 
ere is no admissible path for a car which is at 𝑥 at time 𝑡 which can steer the car to the desired ending point before hitting the time 
rizon 𝑇 , and thus 𝜏(𝑥, 𝑡) is finite if and only if there is an admissible path to the ending point in the allotted time. When there are 
 obstacles (or stationary obstacles), once 𝜏(𝑥, 𝑡) becomes finite, it will remain constant. For example, if the optimal travel time from 
to 𝑥𝑓 is 3 units of time, then 𝜏(𝑥, 1) = +∞, 𝜏(𝑥, 3) = 3 and 𝜏(𝑥, 10) = 3. In this case, one can essentially eliminate the time horizon, 
 simply taking 𝑇 large enough that 𝜏(𝑥, 𝑇 ) < +∞ for all points 𝑥 that one cares about. Specifically, with mild assumptions on the 
namics (so that admissible paths are possible from any given point), for any compact spatial domain Ω, there is a time horizon 
= 𝑇 ∗(Ω) > 0, such that 𝜏(𝑥, 𝑇 ∗) < +∞ for all 𝑥 ∈ Ω, and choosing any 𝑇 ≥ 𝑇 ∗ as the time horizon for the problem will yield the 
me results. In this way, it does not matter that one optimally chooses the time horizon: as long as it is large enough, one can resolve 
e time-optimal path from 𝑥 to 𝑥𝑓 and this path will be independent of the time horizon 𝑇 . Moreover, with this modeling choice, 
henever 𝜏(𝑥, 𝑇 ) is differentiable, one can uniquely determine the optimal control values and thus there is a unique time optimal 
th from 𝑥 to 𝑥𝑓 .

The interpretation of our model is slightly different since 𝑢(𝑥, 𝑡) denotes some measure of optimal distance to the endpoint. 
ke 𝜏(𝑥, 𝑡), given stationary obstacles and mild conditions on the dynamics, this function will become constant in finite time: 
r any compact spatial domain Ω, there is a time horizon 𝑇 ∗ = 𝑇 ∗(Ω) > 0 such that 𝑢(𝑥, 𝑇 ∗) = 0, and then 𝑢(𝑥, 𝑡) = 0 for all 
𝑇 ∗. In essence, this says that given enough time, there are paths which can reach the desired final point. However, in this case, 
timality of a trajectory is judged solely in view of “distance to the desired endpoint” so any path that reaches the final endpoint 
equally optimal. Because of this, choosing the time horizon optimally becomes important. Specifically, given a point 𝑥, define 
= inf{𝑡 > 0 ∶ 𝑢(𝑥, 𝑡) = 0}. If 𝑇 > 𝑡𝑥 (and if the vehicle satisfies a small-time local controllability condition [35]), then there will be 
finitely many “optimal” paths from 𝑥 to 𝑥𝑓 since there is more time that needed in order to reach the final point. In this case, we 
ould like the optimal path which requires the minimal time to traverse. In order to resolve the minimal time path beginning from 
point 𝑥, we need to actually use 𝑡𝑥 as the time horizon.
This causes some difficulty because resolving 𝑡𝑥 for a given point 𝑥 requires reformulating the problem in terms of 𝜏(𝑥, 𝑡) as 
scussed above. Empirically, this affects the numerical methods as well, as we discuss in section 4. Before this, we address one 
rther modeling concern.
One last modeling concern is the inclusion of obstacles. Intuitively, any path the intersects with an obstacle at any time should be 
nsidered illegal and assigned infinite cost, so that it is never the optimal path. To model this, assume that a vehicle is navigating a 
main Ω ⊂ℝ𝑛 which, at any time 𝑡 > 0 is disjointly segmented into free space and obstacles, Ω =Ωfree(𝑡) ⊔Ωobs(𝑡).
Using the “travel-time” formulation of [5,6,10,11] as discussed above, one assigns infinite cost to paths that intersect with 
stacles by setting 𝜏(𝑥, 𝑡) = +∞ for any points (𝑥, 𝑡) ∈ Ω × (0, 𝑇 ] such that 𝑥 ∈ Ωobs(𝑡). This becomes a crucial boundary condition 
 the HJB equation for the travel time function 𝜏 . However, as described in section 3, we hope to resolve the solution to our HJB 
uations using optimization routines which are much easier to implement when the HJB equations are free of boundary conditions. 
is is one of the primary motivations for using the level set formulation. In the level set formulation, one incorporates obstacles not 
 enforcing a boundary condition, but by setting velocity to zero in the obstacles. That is, define 𝑂(𝑥, 𝑡) to be the indicator function 
 the free space at time 𝑡: {

0, 𝑥 ∈Ωobs(𝑡), 𝑛
6

𝑂(𝑥, 𝑡) = 𝟏Ωfree(𝑡)(𝑥) = 1, 𝑥 ∈Ωfree(𝑡),
(𝑥, 𝑡) ∈ℝ × [0, 𝑇 ]. (18)
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 set velocity to zero in the obstacles, we then simply multiply the Hamiltonians in (11), (14), (17) (or generally in (6)) by 𝑂(𝑥, 𝑡). 
r example, the version of (11) that we actually solve is

𝑢𝑡 +𝑂(𝑥, 𝑦, 𝑡)
[|𝑢𝑥 cos𝜃 + 𝑢𝑦 sin𝜃|+𝑊 |𝑢𝜃|] = 0. (19)

ving done this, any path which enters an obstacle will be forced to stop, get stuck, and fail to reach the end point, which will never 
 optimal. In this way, we have incorporated obstacles without using any boundary conditions. This raises other numerical issues 
r example, how to efficiently determine whether a given 𝑥 lies in a obstacle at time 𝑡) which we discuss further in the ensuing 
ction. This manner of incorporating obstacles is akin to that of [6–8].

 Numerical methods

To this point, the standard approach to approximating solutions to HJB equations in applications like this has been to use finite 
fference schemes such as fast-sweeping schemes [36–38], fast-marching schemes [39,40], and their generalizations [41,42]. These 
e used, for example, in [5,6,8,10,11]. These methods are easy to implement and can be adapted for high-order accuracy, but 
cause they are grid-based, their computational complexity scales exponentially with the dimension of the domain, meaning that 
ey are only feasible in low dimension. The authors of [20,21] present parallelizable fast-sweeping schemes which can approximate 
e solutions of 3- and 4-dimensional HJB-type equations in a matter of minutes (or in the case of the Eikonal equation, a matter 
 seconds). However, because the model for the Dubins’ submarine is 5-dimensional, and we would like to develop methods which 
ale to even higher dimension, we opt for a grid-free scheme.
Recent numerical methods attempt to break the curse of dimensionality [27] by resolving the solution to certain Hamilton-Jacobi 
uations at individual points using variational Hopf-Lax type formulas [22,23]. In particular, given a Hamiltonian 𝐻 ∶ℝ𝑑 ×ℝ𝑑 →ℝ
hich is convex in its second argument and 𝐶2-smooth, and an initial data function 𝑔 ∶ℝ𝑑 → ℝ which is convex and coercive, the 
thors of [23] conjecture that the solution to the state-dependent Hamilton-Jacobi equation

𝑢𝑡 +𝐻(𝑥,∇𝑢) = 0, 𝑢(𝑥,0) = 𝑔(𝑥), (20)

given by the generalized Hopf-Lax formula,

𝑢(𝑥, 𝑡) = min
𝑣∈ℝ𝑑

⎧⎪⎨⎪⎩𝑔(𝒙(0)) +
𝑡

∫
0

⟨𝒑(𝑠),∇𝑝𝐻(𝒙(𝑠),𝒑(𝑠)) −𝐻(𝒙(𝑠),𝒑(𝑠))⟩𝑑𝑠⎫⎪⎬⎪⎭
subject to the Hamiltonian dynamics,

𝒙̇(𝑠) = ∇𝑝𝐻(𝒙(𝑠),𝒑(𝑠)), 𝒙(𝑡) = 𝑥,

𝒑̇(𝑠) = −∇𝑥𝐻(𝒙(𝑠),𝒑(𝑠)), 𝒑(𝑡) = 𝑣.

(21)

hile the conjecture requires the Hamiltonian to be 𝐶2, the authors of [23] give specific examples which violate this assumption for 
hich the conjecture still holds, so it may hold even more broadly.
Similarly, beginning from (2), we can derive a conjectured saddle-point formula to approximate the value function. To do so, we 
scretize the time interval 𝑡 = 𝑡0 < 𝑡1 <⋯ < 𝑡𝑁 = 𝑇 and let 𝑥𝑗 be discrete approximations to 𝒙(𝑡𝑗 ) for 𝑗 = 0, 1, … , 𝑁 . For simplicity, 
e will always assume a uniform discretization 𝑡𝑗 = 𝑡 + 𝑗𝛿, 𝑗 = 0, 1, … , 𝑁 where 𝛿 = 𝑇−𝑡

𝑁
, though this is not strictly necessary. Then 

e see

𝑢(𝑥, 𝑡) = inf
𝒙(⋅),𝜶(⋅)

{𝑔(𝑥(𝑇 )) ∶ 𝒙(𝑡) = 𝑥, 𝒙̇ = 𝑓 (𝒙, 𝑠,𝜶), 𝑠 ∈ (𝑡, 𝑇 ]} , (22)

here 𝑔(𝑥) = 1
2
|||𝑥− 𝑥𝑓

|||2. Formally, discretizing the constraint using a backward Euler scheme, letting 𝛼𝑗 = 𝜶(𝑡𝑗 ) and 𝑓𝑗 =
𝑥𝑗 , 𝑡𝑗 , 𝛼𝑗 ), and introducing Lagrange multipliers 𝑝𝑗 , we have

𝑢(𝑥, 𝑡) ≈ inf
𝑥𝑗 ,𝛼𝑗

{
𝑔(𝑥𝑁 ) ∶ 𝑥0 = 𝑥,𝑥𝑗 = 𝑥𝑗−1 + 𝛿𝑓𝑗 , 1 ≤ 𝑗 ≤𝑁

}
= inf

𝑥𝑗 ,𝛼𝑗
sup
𝑝𝑗

{
𝑔(𝑥𝑁 ) +

𝑁∑
𝑗=1

⟨
𝑝𝑗 , 𝛿𝑓𝑗 + 𝑥𝑗−1 − 𝑥𝑗

⟩}

= inf
𝑥𝑗 ,𝛼𝑗

sup
𝑝𝑗

{
𝑔(𝑥𝑁 ) +

𝑁∑
𝑗=1

⟨
𝑝𝑗 , 𝑥𝑗−1 − 𝑥𝑗

⟩
+ 𝛿

𝑁−1∑
𝑗=0

⟨
𝑝𝑗 , 𝑓𝑗

⟩}
.

(23)
7

om here, we interchange the infimum over 𝛼𝑗 with the supremum over 𝑝𝑗 and write
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gorithm 1 Splitting Method for Solving (21)
Given a point (𝑥, 𝑡) ∈ ℝ𝑑 × (0, 𝑇 ], a Hamiltonian 𝐻 , an initial data function 𝑔, a time-discretization count 𝑁 , a max iteration count 𝐾 , an error tolerance TOL, 

d relaxation parameters 𝜎, 𝜏, 𝜅 > 0, we resolve the minimization problem (21) as follows.

t 𝑥1
𝑁
= 𝑥, 𝑝10 = 0 and 𝛿 = 𝑡∕𝑁 . Initialize 𝑥1

0, 𝑥1
1, … , 𝑥1

𝑁−1, 𝑝11, … , 𝑝1
𝑁
randomly, and set 𝑧1

𝑗
= 𝑥1

𝑗
for all 𝑗 = 0, 1, … , 𝑁 .

for 𝑘 = 1 to 𝐾 do

Set 𝑝𝑘+10 = 0
for 𝑗 = 1 to 𝑁 do

𝑝𝑘+1
𝑗

= argmin𝑝̃{𝛿𝜎𝐻(𝑥𝑘
𝑗
, ̃𝑝) + 1

2
|||𝑝̃− (𝑝𝑘

𝑗
+ 𝜎(𝑧𝑘

𝑗
− 𝑧𝑘

𝑗−1))
|||22}

end for

𝑥𝑘+1
0 = argmin𝑥̃{𝜏𝑔(𝑥̃) + 1

2
|||𝑥̃− (𝑥𝑘

0 + 𝜏𝑝𝑘+11 )|||22} (note: 𝑝𝑘+10 = 0)
for 𝑗 = 1 to 𝑁 − 1 do

𝑥𝑘+1
𝑗

= argmin𝑥̃{−𝛿𝜏𝐻(𝑥̃, 𝑝𝑘+1
𝑗

) + 1
2
|||𝑥̃− (𝑥𝑘

𝑗
− 𝜏(𝑝𝑘+1

𝑗
− 𝑝𝑘+1

𝑗+1 ))
|||22}

end for

Set 𝑥𝑘+1
𝑁

= 𝑥

for 𝑗 = 0 to 𝑁 do

𝑧𝑘+1
𝑗

= 𝑥𝑘+1
𝑗

+ 𝜅(𝑥𝑘+1
𝑗

− 𝑥𝑘
𝑗
)

end for

change =max{‖𝑥𝑘+1 − 𝑥𝑘‖, ‖𝑝𝑘+1 − 𝑝𝑘‖}
if change < TOL then

break

end if

end for

𝑢 = 𝑔(𝑥0) +
∑𝑁

𝑗=1⟨𝑝𝑗 , 𝑥𝑗 − 𝑥𝑗−1⟩ − 𝛿𝐻(𝑥𝑗 , 𝑝𝑗 )
return 𝑢; the value of the solution of (20) at the point (𝑥, 𝑡)

𝑢(𝑥, 𝑡) ≈ inf
𝑥𝑗

sup
𝑝𝑗

{
𝑔(𝑥𝑁 ) +

𝑁∑
𝑗=1

⟨
𝑝𝑗 , 𝑥𝑗−1 − 𝑥𝑗

⟩
+ 𝛿

𝑁−1∑
𝑗=0

inf
𝛼𝑗
{
⟨
𝑝𝑗 , 𝑓𝑗

⟩
}

}

= inf
𝑥𝑗

sup
𝑝𝑗

{
𝑔(𝑥𝑁 ) +

𝑁∑
𝑗=1

⟨
𝑝𝑗 , 𝑥𝑗−1 − 𝑥𝑗

⟩
+ 𝛿

𝑁−1∑
𝑗=0

𝐻(𝑥𝑗 , 𝑝𝑗 )}

} (24)

nally, as in (6), making the time-reversing substitution 𝑡 ↦ 𝑇 − 𝑡 yields

𝑢(𝑥, 𝑡) ≈ inf
𝑥𝑗

sup
𝑝𝑗

{
𝑔(𝑥0) +

𝑁∑
𝑗=1

⟨
𝑝𝑗 , 𝑥𝑗 − 𝑥𝑗−1

⟩
− 𝛿

𝑁−1∑
𝑗=0

𝐻(𝑥𝑗 , 𝑝𝑗 )}

}
. (25)

 general, swapping the order of optimization does not yield the same value. However, performing this step provides a connection 
tween this optimization problem and the Hamilton-Jacobi-Bellman equation via the Hamiltonian. In the spirit of the conjectured 
pf-Lax formula (21), the authors of [24] conjecture (and provide solid empirical evidence) that having swapped the order of the 
timization, the resulting saddle-point problem still provides an approximation of the solution of the HJB equation. Our results cor-
borate this. In fact, [24] specifically considers Eikonal-type equations whose Hamiltonians 𝐻(𝑥, 𝑝) = 𝑉 (𝑥) |𝑝| share key properties 
ith ours, such as convexity and 1-homogeneity in the second variable and smoothness almost everywhere, so there is precedent to 
pect this saddle point problem can indeed represent our solutions.
An alternating minimization technique in the spirit of the primal-dual hybrid gradient method [43–45] is proposed by [24] to 
lve this saddle-point problem. For completeness of our exposition, we reprint this in Algorithm 1 (note: this is a reprint of Algorithm 
in [24], modified slightly to fit our equations). As this algorithm resolves the values of 𝑢 (the solution of (20)), it also resolves 
screte approximations of the optimal trajectory 𝒙(𝑠), and the optimal costate trajectory 𝒑(𝑠), which can be seen as a proxy for ∇𝑢

ong the optimal trajectory.
Assuming a saddle point exists and that the minima are resolved exactly, convergence of the algorithm to a saddle point is 
aranteed when 𝜎𝜏 ≤ 0.25 and 𝜅 ∈ [0, 1] [24,43]. In our particular implementation, we take 𝜎 = 0.5, 𝜏 = 0.5, and 𝜅 = 1. The norm 
ed to determine convergence is not terribly important. If the state space is 𝑑-dimensional, so that at each time-step 𝑗 = 0, 1 … , 𝑁
d iteration 𝑘, we have 𝑥𝑘

𝑗
= ((𝑥1)𝑘𝑗 , (𝑥2)

𝑘
𝑗
, … , (𝑥𝑑 )𝑘𝑗 ), we use the norm

‖𝑥𝑘+1 − 𝑥𝑘‖ = sup
1≤𝑖≤𝑑,0≤𝑗≤𝑁

|||(𝑥𝑖)𝑘+1𝑗
− (𝑥𝑖)𝑘𝑗

|||
d similarly for 𝑝. Thus we halt the iteration when no coordinate of either 𝑥 or 𝑝 has changed by more than the prescribed TOL
lue.

Note that at each iteration in Algorithm 1, there are approximately 2𝑁 optimization problems

𝑝𝑘+1
𝑗

= argmin
𝑝̃

{𝛿𝜎𝐻(𝑥𝑘
𝑗
, 𝑝̃) + 1

2
|||𝑝̃− (𝑝𝑘

𝑗
+ 𝜎(𝑧𝑘

𝑗
− 𝑧𝑘

𝑗−1))
|||22}, (26)

𝑘+1 1 | 𝑘 𝑘 |2

8

𝑥0 = argmin
𝑥̃

{𝜏𝑔(𝑥̃) +
2 ||𝑥̃− (𝑥0 + 𝜏𝑝1))||2}, (27)
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𝑥𝑘+1
𝑗

= argmin
𝑥̃

{−𝛿𝜏𝐻(𝑥̃, 𝑝𝑘+1
𝑗

) + 1
2
|||𝑥̃− (𝑥𝑘

𝑗
− 𝜏(𝑝𝑘+1

𝑗
− 𝑝𝑘+1

𝑗+1 ))
|||22}, (28)

here 𝑁 is the number of discrete time steps along the path. These are vector valued quantities, with the subscript denoting the time 
p along the path and the superscript denoting the iteration number. We allow a maximum of 𝐾 = 100000 in our simulations, though 
ith baseline parameter values, the routine usually converged to within a tolerance of TOL = 10−3 within 10000 iterations and never 
ached the maximal iteration count (we discuss this more specifically in section 4). Even so, this is a fairly large computational 
rden, so when possible, it behooves one to resolve the optimization problems in Algorithm 1 analytically. When this is not 
ssible, one can use gradient descent or some other comparably simple optimization method. In our applications, the minimization 
oblems in the costate variables 𝑝 can be resolved exactly, while the minimization problems in the state variables 𝑥 will need to be 
proximated in some cases. Empirically, it was observed in [24] (and corroborated in our simulations) that one only needs to very 
udely approximate these minimizers; for example, using only a few steps of gradient descent at each iteration. In this manner, the 
proximation may be very poor at early iterations, but becomes better as the iteration count increases. We describe the specifics of 
w we resolve the minimization problems from Algorithm 1 in the next subsections.

1. Implementation of Algorithm 1 for the Dubins car

Here we describe the implementation of Algorithm 1 for the Dubins car. In (11), we see that the Hamiltonian is

𝐻(𝑥, 𝑝) = |𝑝1 cos(𝑥3) + 𝑝2 sin(𝑥3)|+𝑊 |𝑝3|, (29)

here (𝑥1, 𝑥2, 𝑥3) represent (𝑥, 𝑦, 𝜃) respectively and (𝑝1, 𝑝2, 𝑝3) are proxies for (𝑢𝑥, 𝑢𝑦, 𝑢𝜃) respectively.
An iteration in Algorithm 1 begins by resolving the minimization problem (26), which can be done analytically. For completeness, 

e include the formal derivation of the minimizer here. For this Hamiltonian, the dependence of 𝐻 on (𝑝1, 𝑝2) is decoupled from 
e dependence on 𝑝3, so we can treat these as two separate problems. In what follows, all indexing notation is adapted to MATLAB 
dexing conventions so that 𝑝̃1∶2 indicates the first two components of the vector 𝑝̃, for example.
To simplify notation, we set

𝛾 = (cos((𝑥3)𝑘𝑗 ), sin((𝑥3)
𝑘
𝑗
)), 𝛽 = 𝑝𝑘

𝑗
+ 𝜎

(
𝑧𝑘
𝑗
− 𝑧𝑘

𝑗−1

)
,

 that (26) is can be written

𝑝𝑘+1
𝑗

= argmin
𝑝̃

{
𝛿𝜎

|||𝛾𝑇 𝑝̃1∶2|||+𝑊 ||𝑝̃3||+ 1
2
‖𝑝̃− 𝛽‖22} .

te that, when resolving 𝑝𝑘+1
𝑗

, 𝛾 and 𝛽 are known quantities which depend on 𝑗 and 𝑘, but we suppress this dependence for ease of 
tation. Taking the gradient of the function being minimized and setting to zero, we see that the minimizer 𝑝̃ satisfies

𝛿𝜎
𝛾𝑇 𝑝̃1∶2||𝛾𝑇 𝑝̃1∶2|| 𝛾 + 𝑝̃1∶2 − 𝛽1∶2 = 0, (30)

 that(
𝛿𝜎||𝛾𝑇 𝑝̃1∶2|| 𝛾𝛾𝑇 + 𝐼

)
𝑝̃1∶2 = 𝛽1∶2.

w in order to solve for 𝑝̃1∶2, we project all vectors along 𝛾 and the orthogonal direction to 𝛾 by writing,

𝑝̃1∶2 = 𝑟𝛾 + 𝑠(𝛽1∶2 − (𝛾𝑇 𝛽1∶2)𝛾), (31)

r some 𝑟, 𝑠 ∈ℝ, and

𝛽1∶2 = (𝛾𝑇 𝛽1∶2)𝛾 + (𝛽1∶2 − (𝛾𝑇 𝛽1∶2)𝛾).

serting these in (30) and using 𝛾𝑇 𝛾 = 1 gives

𝛿𝜎𝑟|𝑟| 𝛾 + 𝑟𝛾 + 𝑠(𝛽1∶2 − (𝛾𝑇 𝛽1∶2)𝛾) = (𝛾𝑇 𝛽1∶2)𝛾 + (𝛽1∶2 − (𝛾𝑇 𝛽1∶2)𝛾),

hereupon we immediately have 𝑠 = 1. Then(
𝛿𝜎|𝑟| + 1

)
𝑟 = 𝛾𝑇 𝛽1∶2

ows that 𝑟 shares a sign with 𝛾𝑇 𝛽1∶2, so we can write 𝑟 = 𝑎(𝛾𝑇 𝛽1∶2) for some 𝑎 > 0 and arrive at(
𝛿𝜎

)
𝑇 𝑇 𝛿𝜎
9

𝑎 ||𝛾𝑇 𝛽1∶2|| + 1 𝑎(𝛾 𝛽1∶2) = 𝛾 𝛽1∶2 ⟹ 𝑎 = 1 − ||𝛾𝑇 𝛽1∶2|| .
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this formula yields a negative result, this is a reflection of the fact that the true minimizer 𝑝1∶2 is orthogonal to 𝛾 , whereupon 
is derivation is invalid, since the function being minimized is not differentiable at the minimizer, but this can be accounted for by 
ply setting 𝑎 = 0. Thus we have

𝑎 =max
{
1 − 𝛿𝜎||𝛾𝑇 𝛽1∶2|| ,0

}
.

nally, plugging this back into (31) gives the final update rule

(𝑝1∶2)𝑘+1𝑗
=
[
max

{
0,1 − 𝛿𝜎||𝛾𝑇 𝛽1∶2||

}
− 1

]
(𝛾𝑇 𝛽1∶2)𝛾 + 𝛽1∶2. (32)

e can resolve the minimization for 𝑝3 in a similar manner and arrive at

(𝑝3)𝑘+1𝑗
=max

{
0,1 − 𝛿𝜎𝑊||𝛽3||

}
𝛽3. (33)

Next we resolve the 𝑘 + 1 iterate for the path 𝑥. First, we solve (27) with the initial data function 𝑔(𝑥) = 1
2
|||𝑥− 𝑥𝑓

|||2. Note that 
ese are vector quantities; in a slight abuse of notation we are letting 𝑥 = (𝑥1, 𝑥2, 𝑥3) = (𝑥, 𝑦, 𝜃). Then (27) can be written

𝑥𝑘+1
0 = argmin

𝑥̃

{
𝜏

2
|𝑥̃− 𝑥𝑓 |2 + 1

2
|𝑥̃− (𝑥𝑘

0 + 𝜏𝑝𝑘+11 )|2} .

e easily finds that this has minimizer

𝑥𝑘+1
0 =

𝑥𝑘
0 + 𝜏(𝑥𝑓 + 𝑝𝑘+11 )

1 + 𝜏
. (34)

 update 𝑥𝑘+1
𝑗

for 𝑗 = 1, … , 𝑁 − 1, we note that our Hamiltonian 𝐻(𝑥, 𝑝) given in (29) does not depend on 𝑥1∶2. Because of this, it 
trivial to resolve the first and second coordinate in the minimization (28):

(𝑥1∶2)𝑘+1𝑗
= (𝑥1∶2)𝑘𝑗 − 𝜏

(
(𝑝1∶2)𝑘+1𝑗

− (𝑝1∶2)𝑘+1𝑗+1

)
(35)

 contrast, one cannot resolve the third coordinate (𝑥3)𝑘+1𝑗
of the minimizer in (28) analytically, as the solution to the minimization 

oblem is given in terms of a transcendental equation. Thus we approximate using gradient descent. That is, we set 𝜃∗ = (𝑥3)𝑘+1𝑗

d perform a few iterations of

𝜃∗ = 𝜃∗ − 𝜂ℎ′(𝜃∗) (36)

here ℎ ∶ℝ →ℝ is defined

ℎ(𝜃) = −𝛿𝜏|(𝑝1)𝑘+1𝑗
cos(𝜃) + (𝑝2)𝑘+1𝑗

sin(𝜃)|
+ 1

2
(
𝜃 − ((𝑥3)𝑘𝑗 − 𝜏((𝑝3)𝑘+1𝑗

− (𝑝3)𝑘+1𝑗+1 ))
)2

.
(37)

e then assign (𝑥3)𝑘+1𝑗
= 𝜃∗. Here 𝜂 > 0 is the gradient descent rate. For our simulations, we choose 𝜂 = 0.15, and performed three 

ps of gradient descent at each iteration, though the method also worked with other choices.
Finally, we update the 𝑧 values:

𝑧𝑘+1
𝑗

= 𝑥𝑘+1
𝑗

+ 𝜅(𝑥𝑘+1
𝑗

− 𝑥𝑘
𝑗
).

2. Implementation of Algorithm 1 for the Dubins airplane

For the Dubins airplane, we use the Hamiltonian (14) which can be written

𝐻(𝑥, 𝑝) = −𝑝1 cos(𝑥3) − 𝑝2 sin(𝑥3) +𝑊𝑧|𝑝3|+𝑊𝑥𝑦|𝑝4|.
re our notation is 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4) = (𝑥, 𝑦, 𝑧, 𝜃) and 𝑝 = (𝑝1, 𝑝2, 𝑝3, 𝑝4) = (𝑢𝑥, 𝑢𝑦, 𝑢𝑧, 𝑢𝜃). The update rules for this Hamiltonian are 
rtually unchanged from those of section 3.1, since the minimization for 𝑝1∶2, 𝑝3, 𝑝4 can be resolved individually.
In fact, the minimization for 𝑝1∶2 is simpler, since there are no absolute values on the first two terms in this Hamiltonian. Define

𝛾 = (cos((𝑥4)𝑘𝑗 ), sin((𝑥4)
𝑘
𝑗
)), 𝛽 = 𝑝𝑘

𝑗
+ 𝜎

(
𝑧𝑘
𝑗
− 𝑧𝑘

𝑗−1

)
.

te that these are analogous to the definitions of 𝛾 and 𝛽 in section 3.1. Then the update rule for (𝑝1∶2)𝑘+1𝑗
is
10

(𝑝1∶2)𝑘+1𝑗
= 𝛽1∶2 + 𝛿𝜎𝛾.
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e updates for the components 𝑝3 and 𝑝4 have the same structure as before, but with their respective constraints on the angular 
locities, 𝑊𝑧 for 𝑧 and 𝑊𝑥𝑦 for 𝜃. That is,

(𝑝3)𝑘+1𝑗
=max

{
0,1 −

𝛿𝜎𝑊𝑧|𝛽3|
}

𝛽3,

(𝑝4)𝑘+1𝑗
=max

{
0,1 −

𝛿𝜎𝑊𝑥𝑦|𝛽4|
}

𝛽4.

The updates for the 𝑥 vector are also similar to those in section 3.1. The update for 𝑥𝑘+1
0 remains formally the same, though all 

ctors are four dimensional. The update for the spatial coordinates 𝑥1∶3 is modified only in that in includes the 𝑥3 = 𝑧 coordinate:

(𝑥1∶3)𝑘+1𝑗
= (𝑥1∶3)𝑘𝑗 − 𝜏

(
(𝑝1∶3)𝑘+1𝑗

− (𝑝1∶3)𝑘+1𝑗+1

)
. (38)

e update for (𝑥4)𝑘+1𝑗
is slightly different (again: simpler). We perform some fixed number of steps of the gradient descent

𝜃∗ = 𝜃∗ − 𝜂ℎ(𝜃∗) (39)

here in this case ℎ ∶ℝ →ℝ is defined

ℎ(𝜃) = 𝛿𝜏
(
(𝑝1)𝑘+1𝑗

cos(𝜃) + (𝑝2)𝑘+1𝑗
sin(𝜃)

)
+ 1

2
(
𝜃 − ((𝑥4)𝑘𝑗 − 𝜏((𝑝4)𝑘+1𝑗

− (𝑝4)𝑘+1𝑗+1 ))
)2 (40)

d then assign (𝑥4)𝑘+1
𝑗

= 𝜃∗. The 𝑧 update is the same as in section 3.1.

3. Implementation of Algorithm 1 for the Dubins submarine

The Hamiltonian for the Dubins submarine in (17) can be written

𝐻(𝑥, 𝑝) = ||𝑝1 cos(𝑥4) sin(𝑥5) + 𝑝1 sin(𝑥4) sin(𝑥5) + 𝑝3 cos(𝑥5)||+𝑊
√

𝐴(𝑥5)𝑝4∶5
here the matrix 𝐴 is given by

𝐴(𝑥5) =

[ 1
sin2(𝑥5)

0
0 1

]
.

re our state vector is 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5) = (𝑥, 𝑦, 𝑧, 𝜃, 𝜑).
For ease of notation, when resolving (26)-(28) for this Hamiltonian at a time step 𝑗 on iteration 𝑘 + 1, we define

𝛾 = (cos((𝑥4)𝑘𝑗 ) sin((𝑥5)
𝑘
𝑗
), sin((𝑥4)𝑘𝑗 ) sin((𝑥5)

𝑘
𝑗
), cos((𝑥5)𝑘𝑗 ),

𝛽 = 𝑝𝑘
𝑗
+ 𝜎(𝑧𝑘

𝑗
− 𝑧𝑘

𝑗−1),

𝜈 = 𝑥𝑘
𝑗
− 𝜏(𝑝𝑘+1

𝑗
− 𝑝𝑘+1

𝑗+1 ).

Again, we can resolve (26) mostly analytically, by noting that the dependence of 𝐻(𝑥, 𝑝) on 𝑝1∶3 is decoupled from the dependence 
 𝑝4∶5. The update for 𝑝1∶3 is very similarly to the update for 𝑝1∶2 in section 3.1. We find the rule

(𝑝1∶3)𝑘+1𝑗
=𝑀(𝛾𝑇 𝛽1∶3)𝛾 + (𝛽1∶3)

here the constant 𝑀 is given by

𝑀 =max
(
0,1 − 𝛿𝜎||𝛾𝑇 𝛽||

)
− 1.

The updates for 𝑝4∶5 are a bit more complicated. Specifically, we need to resolve

(𝑝4∶5)𝑘+1𝑗
= argmin

𝑝̃

{𝛿𝜎 |||𝐴((𝑥5)𝑘𝑗 )𝑝̃|||+ 1
2
|𝑝̃− 𝛽4∶5|2}.

is is an evaluation of the proximal operator of the function 𝑓 (𝑝̃) = |𝐴𝑝̃|. Using methods similar to those in section 3.1, one can 
solve this almost analytically. The solution is

(𝑝4∶5)𝑘+1𝑗
=
⎧⎪⎨⎪⎩
0, 𝑎∗ ≤ 0,(
𝐼 + 𝛿𝜎𝑊

𝑎∗
𝐴((𝑥5)𝑘𝑗 )

2
)−1

𝛽4∶5, 𝛼∗ > 0
(41)
11

here 𝐼 is the 2 × 2 identity matrix and 𝛼∗ is the unique root of the function
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𝑔(𝑎) =

1
sin4((𝑥5)𝑘𝑗 )

𝛽24(
𝛿𝜎𝑊

sin4((𝑥5)𝑘𝑗 )
+ 𝑎

)2 +
𝛽25

(𝛿𝜎𝑊 + 𝑎)2
− 1. (42)

is function is decreasing, approaches +∞ as 𝑎 ↘−𝛿𝜎𝑊 , and approaches −1 as 𝑎 ↗+∞, so it has a unique root 𝑎∗ ∈ [−𝜎𝛿𝑊 , ∞). 
e find this root 𝑎∗ using a bisection method. First, we check the values 𝑔(−𝛿𝜎𝑊 +100𝓁), for 𝓁 = 1, 2, 3, … to determine the interval 
 length 100 which contains the root, and then apply the standard bisection method to resolve the root to within 10−8 .
For the 𝑥 vector, our Hamiltonian is again independent of 𝑥1∶3, while 𝑥4∶5 will need to be approximated with gradient descent. 
ecifically,

(𝑥1∶3)𝑘+1𝑗
= 𝜈1∶3, (43)

d for 𝑥4∶5, we perform a few iterations of

(𝜃∗, 𝜑∗) = (𝜃∗, 𝜑∗) − 𝜂∇ℎ(𝜃∗, 𝜑∗) (44)

here

ℎ(𝜃,𝜑) = −𝛿𝜏

(|||(𝑝1)𝑘+1𝑗
cos(𝜃) sin(𝜑) + (𝑝2)𝑘+1𝑗

sin(𝜃) sin(𝜑) + (𝑝3)𝑘+1𝑗
cos(𝜑)|||+

𝑊

√√√√ (𝑝4)𝑘+1𝑗

sin2(𝜑)
+ (𝑝5)𝑘+1𝑗

)
+ 1

2
((𝜃 − 𝜈4)2 + (𝜑− 𝜈5)2),

(45)

d then assign (𝑥4∶5)𝑘+1𝑗
= (𝜃∗, 𝜑∗).

As mentioned before, anywhere one sees a sin2(𝜑) in a denominator, we replace it with sin2(𝜑) + 𝜀 where 𝜀 = 10−10, to avoid 
vision by zero. Once again, the 𝑧 updates are the same.

4. Adding obstacles computationally

One final matter to address is how to computationally account for obstacles. As mentioned in section 2.4, we can account for 
stacles without using boundary conditions by modifying the Hamilton-Jacobi equation by multiplying the Hamiltonian by the 
dicator function of the free space. Thus we are actually solving

𝑢𝑡 +𝑂(𝑥, 𝑡)𝐻(𝑥,∇𝑢) = 0, 𝑢(𝑥,0) = 𝑔(𝑥), (46)

here 𝑂(𝑥, 𝑡) = 0 when 𝑥 ∈Ωobs(𝑡) and 𝑂(𝑥, 𝑡) = 1 otherwise.
However, this raises the question of how to efficiently determine when 𝑥 ∈ Ωobs(𝑡) for a given point 𝑥 and time 𝑡. To make this 
ssible, we restrict ourselves to the case of obstacles which are disjoint collections of balls. Thus at any time 𝑡 > 0, we have

Ωobs(𝑡) =
𝐿⋃

𝓁=1
𝐵(𝑥𝓁(𝑡), 𝑟𝓁(𝑡)).

 this case, it is computationally efficient to check if 𝑥 is in a obstacle at time 𝑡 by checking its distance to each of the centers 𝑥𝓁(𝑡). 
ote, there is another small abuse of notation here: the centers of the obstacles will be spatial coordinates only, whereas our state 
ctor has spatial and angular coordinates.]
Of course, in application, it will almost never be the case that the set of obstacles is a finite collection of balls. In this case, we 
n the following greedy algorithm to iteratively fill the obstacle with disjoint balls of the largest possible radius.

) Given a set of obstacles Ω0 = Ωobs(𝑡) and a minimal radius 𝑟min, set 𝓁 = 1 and do the following
) Compute the signed distance function 𝑑𝓁−1(𝑥) to 𝜕Ω𝓁−1 using the level set method [46], fast marching method [47], parallel 
redistancing method [48,49], or another method of your choice. We choose the distance which is positive inside Ω𝓁−1 and 
negative outside the set.

) Set 𝑥𝓁 = argmax𝑥 𝑑𝓁−1(𝑥), 𝑟𝓁 = 𝑑𝓁−1(𝑥𝓁), and 𝐵𝓁 = 𝐵(𝑥𝓁 , 𝑟𝓁).
) Set Ω𝓁 =Ω𝓁−1 ⧵𝐵𝓁 .

) If 𝑟𝓁 < 𝑟min, break the loop. Otherwise, increment 𝓁 and return to (1).

Doing this results in a collection of disjoint balls which approximate the shape Ωobs(𝑡) and have radii larger than the prespecified 
inimum radius 𝑟min. This is demonstrated in Fig. 2. The 𝑟min we use is chosen on an ad hoc basis. In cases where the obstacles have 
ng, thin” parts, one may need to choose 𝑟min very small, while for smoother, more regular obstacles, a larger choice of 𝑟min may 
ffice. In general, covering of surfaces by balls is a problem of interest in computational geometry [50,51], and theory regarding
cursive subdivision algorithms for circle packing is an active area of research [52]. Our algorithm is admittedly quite simple, but 
12

sufficient for our purposes.
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Fig. 2. Three obstacles approximated by disjoint circles.

Note that as described, this algorithm is somewhat computationally burdensome, but it is done in preprocessing. As an alternative, 
one wishes to do this in real-time (and possibly do away with the need to approximate the obstacle by circles), one could one may 
 able to embed the algorithms from [48,49] into Algorithm 1, since they also compute the distance function based on Hopf-Lax 
pe formulas. For our purposes, we use the algorithm described above and approximate obstacles with circles.
As one final note, we point out how adding the obstacle function 𝑂(𝑥, 𝑡) to the Hamilton-Jacobi equation as in (46) affects the 
date rules in each of the cases above. When replacing the Hamiltonian 𝐻(𝑥, 𝑝) with 𝑂(𝑥𝑠, 𝑡)𝐻(𝑥, 𝑝), where 𝑥𝑠 denotes the spatial 
riables in 𝑥, the update rules for any of the costate variables do not change in any significant way: the indicator function of the 
stacles is simply brought along as a multiplier and appears anywhere where 𝛿𝜎 appears. For example, the update rules for the car 
ven by (32) and (33) become

(𝑝1∶2)𝑘+1𝑗
=

[
max

{
0,1 −

𝑂((𝑥1∶2)𝑘𝑗 , 𝑡𝑗 )𝛿𝜎||𝛾𝑇 𝛽1∶2||
}

− 1

]
(𝛾𝑇 𝛽1∶2)𝛾 + 𝛽1∶2,

(𝑝3)𝑘+1𝑗
=max

{
0,1 −

𝑂((𝑥1∶2)𝑘𝑗 , 𝑡𝑗 )𝛿𝜎𝑊||𝛽3||
}

𝛽3,

hich are the exact same as before aside from the inclusion of 𝑂(𝑥𝑠, 𝑡) evaluated at the current spatial coordinates (𝑥1∶2)𝑘𝑗 and time 
p 𝑡𝑗 . The updates for the airplane or submarine are modified in analogous ways.
Likewise, because the obstacle function 𝑂(𝑥𝑠, 𝑡) depends only on the spatial variables in the state vector, the updates for the 
gular variables (described by equations (36), (37) for the car, by equations (39), (40) for the airplane, and by equations (44), (45)
r the submarine) remain virtually unchanged, except once again for the inclusion of the obstacle function as a multiplier wherever 
appears. For example, for the car, we simply need to change the function ℎ in (37) to

ℎ(𝜃) = −𝛿𝜏𝑂((𝑥1∶2)𝑘𝑗 , 𝑡𝑗 )|(𝑝1)𝑘+1𝑗
cos(𝜃) + (𝑝2)𝑘+1𝑗

sin(𝜃)|
+ 1

2
(
𝜃 − ((𝑥3)𝑘𝑗 − 𝜏((𝑝3)𝑘+1𝑗

− (𝑝3)𝑘+1𝑗+1 ))
)2

,

hich is the exact same as before aside from the inclusion of 𝑂(𝑥𝑠, 𝑡). Analogous modifications are made for the plane and submarine.
The significant change comes in the updates of the spatial components which are given for the car, airplane, and submarine by 
uations (35), (38), and (43) respectively. The minimization problems for these updates can no longer be resolved analytically, 
 they approximate the solutions using gradient descent, as was done with the angular variables before. In each case, we need to 
solve

(𝑥𝑠)𝑘+1𝑗
= argmin

𝑥

{
−𝛿𝜏𝑂(𝑥𝑠, 𝑡)𝐻(𝑥𝑎, 𝑝) +

1
2
‖𝑥− 𝜈‖2}

here 𝜈 = (𝑥𝑠)𝑘𝑗 − 𝜏((𝑝𝑠)𝑘+1𝑗
− (𝑝𝑠)𝑘+1𝑗+1 ). To reiterate, we are using 𝑥𝑠 to denote the spatial variables of 𝑥 (and 𝑝𝑠 to denote the 

rresponding co-state variables), and we introduce 𝑥𝑎 to denote the angular variables. Note that in our three models above, the 
miltonian depends only on the angular variables 𝑥𝑎. To approximate the solution of the minimization problem, we use the gradient 
scent

𝑥∗
𝑠
= 𝑥∗

𝑠
− 𝜂∇ℎ(𝑥∗

𝑠
)

here ℎ is defined

ℎ(𝑥𝑠) = −𝛿𝜏𝑂(𝑥𝑠, 𝑡𝑗 )𝐻((𝑥𝑎)𝑘𝑗 , 𝑝
𝑘+1
𝑗

) + 1
2
|𝑥𝑠 − 𝜈|2

d then set (𝑥𝑠)𝑘+1𝑗
= 𝑥∗

𝑠
. In doing this, we will need to evaluate ∇𝑂(⋅, 𝑡). Recall, this function is the indicator function of the free 

ace, which is discontinuous across the boundary of the obstacles. Accordingly, we approximate the indicator function of the free 
ace by
13

𝑂(𝑥𝑠, 𝑡) ≈
1
2
+ 1

2
tanh(−100𝑑(𝑥𝑠, 𝑡))
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here 𝑑(𝑥𝑠, 𝑡) is the signed distance function to the boundary of the obstacles at time 𝑡 (positive inside the obstacles). This definition 
ves a smooth function which is approximately zero inside the obstacles and approximately 1 in the free space. Here the 100 in 
e definition is an arbitrary large number. We can quickly evaluate the distance function when we are approximating the obstacles 
 disjoint circles. This also gives an efficient method for computing the gradient of the distance function when 𝑥𝑠 is outside the 
stacles: it is the unit vector pointing from 𝑥𝑠 to the center 𝑥𝓁(𝑡) of nearest ball to 𝑥𝑠 in the collection of balls which approximates 
e obstacles.
Note that the updates for 𝑥𝑘+1

0 —which are given by equation (34) for all three models—do not change because the Hamiltonian 
es not appear in these updates.

 Simulations & discussion

In this section, we present the results of several simulations which demonstrate the efficacy of our models. In all simulations, we 
oose somewhat arbitrary and synthetic data, which we list for the individual simulations. The simulations were performed on a 
ptop computer with an AMD Ryzen 7 7735U processor running at a maximum of 4.75 GHz, and 16GB of RAM. Besides anything 
scribed above, no further efforts were made to optimize the algorithms, though certain parts are parallelizable, and the resolution 
 the minimizers used to update the state variables could likely be done more efficiently. Even so, our algorithms are quite efficient 
 reported below.
In all cases we fix the time step 𝛿 = 0.1 and discretize the paths into 𝑁 = 𝑡∕𝛿 steps, where 𝑡 is the time chosen for the simulation 

 seen in Algorithm 1. Whenever it is necessary to use gradient descent to perform the updates described in sections 3.1-3.3, we 
rform 3 steps of gradient descent with a descent rate of 𝜂 = 0.15. We also fix 𝜎 = 0.5, 𝜏 = 0.5 and 𝜅 = 1. In each case, we continue 
e iteration until the maximum change in any coordinate of 𝑥 or 𝑝 is less than TOL = 10−3. This tolerance may appear fairly large, 
t there was no appreciable difference in the resolved optimal trajectories when this tolerance was decreased to 10−8. In each case, 
e use a maximal iteration count of 𝐾 = 100000 but this maximal count was never reached when using the baseline parameter 
lues. When we report clock times and iteration counts for the simulations below, these are averaged over 50 trials. Average clock 
e is then rounded to the nearest tenth of a second and average iteration count is rounded to the nearest integer.
Our first two simulations, the results of which are shown in Fig. 3 and Fig. 4, show a car beginning in the configuration 

0, 𝑦0, 𝜃0) = (−1.5, 1.5, 𝜋∕2) and navigating around obstacles to the point (𝑥𝑓 , 𝑦𝑓 , 𝜃𝑓 ) = (2, 2, 3𝜋∕2) which are in the bottom-left 
d top-right (respectively) of the domain used to plot the results. In both cases, the maximum angular velocity is 𝑊 = 2. The 
stacles in both figures have the same shape, but in Fig. 3 the obstacles remain stationary, whereas in Fig. 4, the obstacles rotation 
ockwise around the origin at a constant rate of 1 radian per unit time. In the former figure, the time required to reach the endpoint 
𝑇 = 8, whereas, when the obstacles rotate out of the way in the latter figure, the car can reach the endpoint by time 𝑇 = 6. As 
entioned in section 2.4, the time-horizon 𝑇 that is chosen for the problem does actually matter here. Theoretically, for any 𝑇 cho-

n large enough, there is an optimal path from the initial point to the end point. However, empirically if 𝑇 is chosen too large the 
gorithm will require longer to converge. As chosen for each of these simulations, the time horizons of 𝑇 = 8 and 𝑇 = 6, respectively, 
e very close to the best possible travel time. For the moving obstacles example (Fig. 4), the algorithm was able to resolve optimal 
ths in an average 1.6 seconds using an average of 1748 iterations. If 𝑇 is chosen too small, so that no path requiring time less than 
to traverse can reach the endpoint, then the algorithm will often fail to converge, or converge to a path which is not meaningful. 
 these examples if the tolerance for convergence is decreased to TOL = 10−8, the optimal trajectories do not appreciably change, 
t the clock time increases to roughly 15 seconds, requiring on the order of 10000-15000 iterations for convergence.
Our next simulation has a Dubins airplane circling down for a landing, which is displayed in Fig. 5. The airplane begins in the 
nfiguration (𝑥0, 𝑦0, 𝑧0, 𝜃0) = (0, 0, 12 , 0) and must end at (𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓 , 𝜃𝑓 ) = (0, 0, 0, 0). In this case, the maximum angular velocity in 
e 𝑥𝑦-plane is 𝑊𝑥𝑦 = 2.5 and the maximum angular velocity in the 𝑧-direction is 𝑊𝑧 = 0.5. In order to make its descent, the airplane 
es in a perfect figure eight in the 𝑥𝑦-plane, while descending in the 𝑧-direction. In Fig. 5, the 3D view is displayed on the left of 
ch panel and the projection down to the 𝑥𝑦-plane is displayed on the right of each panel. This simulation required an average of 
4 seconds of clock time to resolve the optimal path, doing so in an average of 2506 iterations. The updates for the plane are a bit 
pler than those for the car (since the plane can only move forward) which explains why more iterations can be performed in less 

ock time. For this example, there is not much penalty for deceasing the convergence tolerance. Indeed, decreasing the tolerance 
l the way to TOL = 10−8, the algorithm still usually resolves the optimal path in an average of 1.2 seconds and 7233 iterations 
ough the “worst” simulation required 5.4 seconds and 32268 iterations). An interesting note is that the Dubins airplane does not 
ve small time local controllability (STLC), meaning roughly that the plane cannot necessarily reach a point which is with distance 
of its current configuration in time 𝑂(𝜀). The value function for a control problem without STLC can be discontinuous, which 
cessitates special consideration when designing grid based numerical schemes for these problems as discussed in [6]. Because our 
ethod only ever deals with the Hamiltonian and initial data function (and never with approximations to derivatives of the value 
nction), our method is agnostic to whether the dynamics satisfy an STLC condition.
We next consider a Dubins submarine. Here we take the initial configuration to be (𝑥0, 𝑦0, 𝑧0, 𝜃0, 𝜑0) = (−1.8, −1.8, 0, 𝜋∕4, 𝜋∕2) and 

t the submarine navigate through and around obstacles to (𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓 , 𝜃𝑓 , 𝜑𝑓 ) = (1.3, 1.5, −1.5, 0, 𝜋∕2). In this case, the maximum 
gular velocity is 𝑊 = 2. The result is displayed in Fig. 6, where the “third person” view is displayed on the left of each panel and 
e corresponding “first person” view is displayed on the right. In Fig. 6, the red bubbles are obstacles. This simulation required an 
erage of 5.0 seconds of clock time to resolve the optimal trajectory in an average of 1936 iterations. Here the iterations are more 
14

pensive due to the resolution of 𝑝4∶5 by the bisection method described in equations (41), (42). Once again, if we decrease the 



C.

Fig

co

co

an

To

th

in

he

be

to

Ho

In

(a

ch
Journal of Computational Physics 509 (2024) 113050Parkinson and I. Boyle

. 3. A car navigating around obstacles to end point in the top right of each frame. The obstacles are the blue regions, and the collection of green circles is their 
mputational representation.

nvergence tolerance to TOL = 10−8, the path generated is not appreciably different, but requires roughly 28 seconds of clock time 
d on the order of 8000 iterations to resolve.
Finally, we want to empirically study the affect that varying the ambient parameters has on the convergence of the algorithm. 

 do so, we focus on the example of the car with moving obstacles in Fig. 4, and vary the time step 𝛿, the time horizon 𝑇 , and 
e PDHG parameters 𝜎, 𝜏, 𝜅. Once again, the iteration counts are averaged over 50 trials, and the average is rounded to the nearest 
teger. The results are in Fig. 7. In each table in the figure, aside from the parameter being highlighted, all other parameters are 
ld at their baseline values of 𝛿 = 0.1, 𝑇 = 6, 𝜎 = 𝜏 = 0.5, 𝜅 = 1.
Looking at the table, there is a reasonably clear trend that decreasing 𝛿 increases the number of iterations requires. This is likely 
cause with smaller 𝛿 there are simply more points that need to be resolved (and more randomness in the initialization which needs 
 be overcome). Using this same reasoning, one may expect that increasing 𝑇 also increases the number of iterations required. 
wever, this does not hold. When decreasing 𝑇 to 4, there is now no path which can even come close to reaching the final point. 

 cases like this, we consistently found that the algorithm would fail to converge within the maximum iteration count of 100000 
nd showed no apparent signs of nearing convergence). When 𝑇 is increased, the iteration count significantly falls. Unfortunately, 
15

oosing such 𝑇 is still undesirable. When 𝑇 is chosen too large, since any path which reaches the endpoint is an optimal path, 
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Fig. 4. A car navigating around the same obstacles as in Fig. 4, but in this case the obstacles begin rotating clockwise about the center of the domain.

ere are infinitely many optimal paths (assuming small-time local controllability). Thus the algorithm has an easier time finding an 
timal path simply because there are more optimal paths. But observing the selected path, the car will usually dawdle for a bit, 
asting some time before arriving at the endpoint at the time horizon 𝑇 . Paths like this are likely not what one would wish to resolve, 
ough in many cases, one could easily intuit the “correct” optimal path from one of these paths by removing segments of the path 
hich one deems as purposeless motion. One final note regarding either decreasing 𝛿 or increasing 𝑇 is that either of these changes 
creases the cost per iteration by increasing the number of time steps. So for example, when 𝛿 is halved, there is a two-fold increase 
 computation because there are twice as many points, but there is also an increase in computation due to the increased iteration 
unt. Because of this, to maximize efficiency, it is important to choose 𝛿 as large as is allowable for ones particular application.
The PDHG parameters are bound by 𝜎𝜏 ≤ 0.25 and 𝜅 ∈ [0, 1]. Thus, from the baseline values, neither of 𝜎 or 𝜏 can be increased 

ithout decreasing the other, and 𝜅 can only be decreased. Looking at the tables, there are clear trends which indicate that decreasing 
or 𝜅 increases the number of iterations required for convergence. For 𝜏 , there isn’t an abundantly clear trend, though it is possible 
at decreasing 𝜏 could provide a marginal benefit when compared with the baseline value. Another possible benefit of decreasing 
is that it would allow one to increase 𝜎 further, which could decrease the iteration count further. Using this observation, we 
sted further combinations of larger 𝜎 with smaller 𝜏 (keeping other parameters at baseline) and from our simulations, the best case 
16

enario was 𝜎 = 0.75, 𝜏 = 0.25, with an average iteration count of 1442 iterations before convergence.
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. 5. A Dubins airplane circling down for a landing. The 3D view is displayed on the left of each panel, and the projection down to the 𝑥𝑦-axis is displayed on the 

ht.
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. 6. A Dubins submarine navigating through and around obstacles to reach its desired destination. The “third-person” view is displayed on the left of each panel, 

ile the corresponding “first-person” view is displayed on the right. The red bubbles are obstacles.
18
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𝛿 Iters.

0.1 1748

0.05 1777

0.025 2578

0.0125 4317

𝑇 Iters.

4 100000+
6 1748

10 864

14 874

𝜎 Iters.

0.5 1748

0.25 2340

0.125 3405

0.0625 4382

𝜏 Iters.

0.5 1748

0.25 1660

0.125 1763

0.0625 1630

𝜅 Iters.

1 1748

0.75 2173

0.5 3618

0.25 85065∗

. 7. Tables detailing how the number of iterations until convergence depends on the different parameters for the example in Fig. 4. Each iteration count is averaged 
er 50 trials, and in each table all parameters aside from the one being highlighted are held at baseline values. For 𝑇 = 4, no trial resulted in convergence within the 
ximum iteration count of 100000. The asterisk for iteration count when 𝜅 = 0.25 is included because in that case, 18 of the 50 trials failed to converge within the 
ximum iteration count of 100000 so the value is artificially deflated.

 Conclusion & future work

In this paper, we developed an algorithm for optimal path-planning for curvature constrained motion which includes kinematic 
odels for simple cars, airplanes, and submarines. Our method relied on a level-set, PDE-based formulation of the optimal path-
anning problem, wherein the value function is not the optimal travel time (as in more control theoretic models), but optimal 
stance to the desired endpoint. This allowed us to solve the problem using new numerical methods which resolve the solutions to 
milton-Jacobi equations via optimization problems. We discussed the ramifications of this modeling decision, and described in 
tail the implementation of our method. Finally, we demonstrated our method on some synthetic examples. In these examples, we 
e able to resolve optimal trajectories for cars, planes, and submarines in a matter of seconds. This allows one to maintain the PDE 
d control based methodology (and thus maintain interpretability) without sacrificing efficiency or scalability.
An immediate avenue of future work is to look into manners in which convergence of Algorithm 1 could be accelerated using 
ore sophisticated optimization methods, Nesterov-type acceleration, or better approximation of the proximal operator. Here basic 
adient descent was chosen for ease of implementation and exposition, but this could very likely be improved to make the algorithm 
en faster and more robust. Next, while this represents a step toward real-time PDE-based path-planning algorithms, there are still 
fficulties to overcome. As presented, our method can compute optimal paths in a fully-known environment. In realistic scenarios, 
e exact configuration of obstacles is likely unknown and obstacles may move unpredictably. Accordingly, it would be desirable if 
e vehicles had only local information regarding terrain and obstacles which is updated along the trajectory so that they can react 
d recompute paths in semi-real-time. In doing so, one would need to abandon the hope of finding globally optimal trajectories, 
cause only local information would be known. However, this also presents the difficulty of correctly choosing the new time-horizon 
on adding new information in the Hamiltonian and recomputing the optimal path, so it may require a significant change in the 
odeling. In the same vein, it could prove interesting to adapt and apply our method to problems with other realistic concerns such 
 energy-efficient path-planning or rider comfort via jerk bounds or control regularization. Finally, we would like to adapt this 
ethod to a multi-agent control or many-player differential games scenario.
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