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Bayesian inference can be extended to probability distributions defined in terms of their 
inverse distribution function, i.e. their quantile function. This applies to both prior and like-
lihood. Quantile-based likelihood is useful in models with sampling distributions which lack 
an explicit probability density function. Quantile-based prior allows for flexible distributions 
to express expert knowledge. The principle of quantile-based Bayesian inference is demon-

strated in the univariate setting with a Govindarajulu likelihood, as well as in a parametric 
quantile regression, where the error term is described by a quantile function of a Flattened 
Skew-Logistic distribution.

 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Most statistics courses and textbooks introduce continuous random variables via the (cumulative) distribution function
(CDF) and the probability density function (PDF). “An equally adequate representation” (Tukey, 1965) of a random variable 
can be made using the inverse CDF, known as the quantile function (QF), and its derivative, the quantile density function (QDF), 
but the use of such quantile distributions is rare. Defining a distribution via its quantile function has several advantages, 
including that the distributions with explicit quantile functions are easy to sample from and more complex distributions 
can be crafted using the simpler quantile functions as the building blocks (Gilchrist, 2000; Parzen, 1980; Hadlock, 2017; 
Powley, 2013).

Some of the widely used probability distributions defined in terms of the CDF and PDF (density-defined distributions) are 
not easily invertible (e.g. normal or gamma) and, therefore, the numerical approximation of their QF is used. Similarly, there 
are other distributions defined in terms of their QF and QDF (quantile distributions), that are also not invertible, and thus, 
the numerical approximation of their CDF can be used.

Most of the knowledge and methods for Bayesian inference have been developed for the density-defined distributions. 
While there have been several published articles where quantile distributions were used in the context of the likelihood-
free approximate Bayesian computation (Allingham et al., 2009; Drovandi and Pettitt, 2011; Karabatsos and Leisen, 2018; 
Fearnhead and Prangle, 2012; Bernton et al., 2019; McVinish, 2012), the likelihood-based application of the Bayesian infer-
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Fig. 1. Probability distributions, quantile distributions and parameterization.

ence for quantile distributions has been limited (Rayner and MacGillivray, 2002; Haynes and Mengersen, 2005; Nair et al., 
2020).

This article builds on the ideas of Gilchrist (2000), Rayner and MacGillivray (2002), Nair et al. (2020) and systematically 
presents and illustrates the Bayesian inference using quantile functions. We refer to this method of inference as quantile-
based because it deals with the inverse transformation of the intermediate cumulative probabilities (depths, indicating how 
“deep” an observation is into the distribution) corresponding to the observations given the parametrized model. We aim to 
show that the quantile-based Bayesian inference using the intermediate depths leads to the same posterior beliefs as the 
conventional density-based inference. We apply the principles of quantile-based inference to Bayesian updating of parameters 
in the univariate and regression settings using the flexible and extensible quantile sampling distributions.

Section 2 revisits the functions and identities for characterizing the distribution of a continuous random variable. Then 
in Section 3 we introduce the terms of quantile-based likelihood and quantile-based prior in Bayesian inference and show that 
the likelihood (and prior) can be expressed without the PDF. Section 4 discusses the computational aspects of the numerical 
inversion of quantile functions for approximating the intermediate depths in a quantile-based likelihood expressed by a 
quantile distribution. Section 5 discusses the applications of quantile-based inference in univariate and regression settings. 
We discuss the models and provide code examples implementing quantile-based likelihood in Stan (Gabry and Češnovar, 
2022) and in R (R Core Team, 2021). The proposed models have been validated using the Simulation-Based Calibration 
(Modrák et al., 2022; Talts et al., 2020; Cook et al., 2006). The results of these simulation studies (provided in the Sup-
plementary Materials) show successful recovery of model parameters for all widths of the posterior credible intervals. We 
conclude the paper with a discussion and summary of the results in Section 6.

Although the description of the quantile-based likelihood (Rayner and MacGillivray, 2002; King, 1999; Gilchrist, 2007; Nair 
et al., 2020) and prior (Nair et al., 2020) appeared in the literature before, they were presented in the context of specific 
distributions and not as a general principle of inference. In their recent work, Nair et al. (2020) presented Bayesian infer-
ence with quantile functions, but their presentation of what we describe here as quantile-based prior lacked the necessary 
adjustment due to the nonlinear transformation of the parameters involved (see Section 3.2 below).

In this paper, we apply the principles of quantile-based inference to implement the Bayesian version of the paramet-

ric quantile regression (Gilchrist, 2008) with the error term is described by a bespoke quantile function and estimate the 
regression parameters using MCMC.

2. Distribution specification

To set the scene for the discussion of density-based and quantile-based Bayesian inference we briefly review the different 
ways of specifying a probability distribution and discuss several examples of the distributions defined by a quantile function, 
found in the literature (Fig. 1).

2.1. Essential functions

Let Y be a continuous random variable. It can be expressed via the (cumulative) distribution function (CDF)

FY (y|θ) = Pr(Y ≤ y|θ), θ ∈ A ⊂ R. (1)

2
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Table 1

Gilchrist’s quantile function transformation rules.

Original QF Rule Resulting QF Resulting variable
Q Y (u) Reflection rule −Q (1− u) QF of -Y
Q Y (u) Reciprocal rule 1/Q (1− u) QF of 1/Y
Q 1(u), Q 2(u) Addition rule Q 1(u) + Q 2(u) valid QF
Q 1(u), Q 2(u) Linear combination rule aQ 1(u) + bQ 2(u) valid QF for a, b > 0

Q 1(u), Q 2(u) > 0 Multiplication rule Q 1(u)Q 2(u) valid QF
Q Y (u) Q-transformation T (Q Y (u)) QF of T (Y ),

T (Y ) non-decreasing

Q Y (u) p-transformation Q Y (H(u)) p-transformation of Q Y (u), 
H(u) non-decreasing

An alternative way of describing the random variable Y is via the quantile function (QF)

Q Y (u|θ) = inf{y : FY (y|θ) ≥ u}, 0 ≤ u ≤ 1. (2)

The subscript Y is used to indicate the random variable that the depth u corresponds to.
New quantile functions can be easily created using Gilchrist’s quantile function transformation rules (Gilchrist, 2000; 

Powley, 2013; Hadlock, 2017; Sharma and Chakrabarty, 2017) summarized in Table 1. We use these rules for crafting a 
bespoke quantile function for modeling the error term in a Bayesian parametric quantile regression in Section 5.

If FY (y|θ) is continuous and strictly monotonically increasing over the support of Y , then Q Y (u|θ) is simply the inverse 
of FY (y|θ). Therefore, the quantile function is often referred to as the inverse CDF, i.e.

Q Y (u|θ) = F−1
Y (y|θ). (3)

Not all QFs are analytically invertible (Fig. 1). A distribution whose quantile function Q Y (u|θ) is not analytically invertible 
is called a quantile distribution (Gilchrist, 1997) or a quantile-based distribution (Sharma and Chakrabarty, 2020).

The derivative of the CDF is the probability density function (PDF) denoted by

fY (y|θ) =
dFY

dy
. (4)

Similarly, the derivative of the QF is the quantile density function (QDF) denoted by

qY (u|θ) =
dQ Y

du
, 0 ≤ u ≤ 1. (5)

The reciprocal of the QDF [qY (u|θ)]−1 = f (Q Y (u|θ)) is referred to as the density quantile function (Parzen, 1980) or p-
pdf (Gilchrist, 2000). Here and for the rest of the article, we will often omit the subscript Y and the conditioning on θ to 
simplify the notation.

f (Q (u)) =
dF (Q (u))

dQ (u)
=

dF (Q (u))/du

dQ (u)/du
=

dF (F−1(u))/du

q(u)
=

du/du

q(u)
= [q(u)]−1. (6)

In Section 3 of this paper, we rely on the density quantile function (DQF) [q(u)]−1 , i.e. the density of a random variable 
expressed in terms of the cumulative distribution function (Perri and Tarsitano, 2007), to define the likelihood in a Bayesian 
model based on a quantile sampling distribution.

2.2. Derivatives of the inverses and the numerical approximation

Following the inverse function theorem (Price, 1984), for a function to be invertible in the neighborhood of a point, it 
should have a continuous non-zero derivative at that point. If the function is invertible, the derivative of the inverse is 
reciprocal to the function’s derivative (Marsden et al., 1985). Formally, if dt/dy exists and dt/dy �= 0, then dy/dt also exists 
and dy/dt = [dt/dy]−1 . Therefore, for a quantile function Q (u) = y, if a QDF q(u) exists and q(u) �= 0, then PDF f (y) also 
exists and it is equal to f (y) = [q(u)]−1 .

Fig. 2 illustrates the relationship between the key probability functions. The distribution function (CDF) and the quantile 
function (QF) are depicted on the opposite sides of the Moebius strip. The derivatives of these functions (PDF and QDF, 
respectively) end up on the same side, due to the geometry of the Moebius surface. It means that the derivatives are no 
longer the inverses of each other, but rather the reciprocals, as stated in the equation at the bottom. The “do-it-yourself” 
copy of this probability function Moebius strip is included in the Supplementary Materials, along with the graphs of the 
five essential functions (CDF, PDF, QF, QDF, and DQF) for the common probability distributions (Normal, Logistic, Weibull, 
Exponential, and Kumaraswamy).

Even though the quantile distributions lack the closed-form CDF F (y) = u in most cases the depths u can be approxi-

mated by numerically inverting the Q (u). We denote the numerically inverted quantile function as Q̂ −1(y) or F̂ (y). The 
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Fig. 2. Moebius strip of probability functions.

inverse of a quantile function Q (u) at point u, corresponding to the observation y, is obtained by minimizing the differ-
ence between the actual observation y and Q (u) by iteratively refining the depth u. The details of the numerical inversion 
algorithm are discussed in Section 4.

Figure provides examples of the CDF/PDF and QF/QDF for some common statistical distributions (normal, beta, lognormal, 
exponential and Weibull).

2.3. Quantile distributions

Statistical methods utilizing QF and QDF were pioneered by the seminal work of Parzen (1979). Some of the quantile 
distributions covered in the literature are generalized g-and-h and its sibling g-and-k distribution (Haynes and Mengersen, 
2005; Jacob, 2017; Prangle, 2017; Rayner and MacGillivray, 2002), Tukey Lambda Distribution and its generalizations, known 
as GλD (Aldeni et al., 2017; Chalabi et al., 2012; Dedduwakumara et al., 2021; Ramberg and Schmeiser, 1974; Fournier 
et al., 2007; Freimer et al., 1988), Wakeby distribution (Rahman et al., 2015), flattened logistic distribution (Sharma and 
Chakrabarty, 2019) and Govindarajulu distribution (Nair et al., 2012, 2013).

The mathematical notation for describing probability distributions has been standardized and adopted across different 
domains. The first use of the tilde symbol ∼ to denote the CDF can be traced back to early 1960s. Olkin and Tate (1961)
wrote: “X ∼ F (x) means that x is distributed according to the distribution function F (x)”. Today this convention is adopted 
by the majority of Bayesian textbooks (Gelman et al., 2013; Johnson et al., 2022; O’Hagan et al., 2006; Lambert, 2018; 
Gelman et al., 2021; Koller and Friedman, 2009). For example, if a variable Y is normally distributed it is described as

Y ∼ N(μ,σ ), (7)

which means that the random variable Y has the distribution function FY (y) = �(y|μ, σ ), where � is the CDF of the 
normal distribution (Johnson et al., 1994).

When the distribution of a random variable Y is described by a non-invertible quantile function, such as, for example, 
the extensively researched Generalized Lambda Distribution (GLD) proposed by Ramberg and Schmeiser (1974)

Q Y (u|λ1, λ2, λ3, λ4) = λ1 +
1

λ2

[
uλ3 + (1− u)λ4

]
, (8)

stating Y ∼ GLD(λ1, λ2, λ3, λ4) is not strictly accurate, because the GLD quantile function is not invertible and its CDF can 

be computed only numerically as FY (y) ≅̂
Q −1

Y (y).

Therefore, in this paper, we propose to denote this distribution as

u
y
∽ GLD(λ1, λ2, λ3, λ4), (9)

where the back-tilde with the variable name overscript 
y
∽ should be read as “inversely distributed as” to indicate that the 

depth u is fully determined given the value of the random variable Y and the parameterized inverse distribution function 
indicated to the right of the back-tilde symbol (in this case, GLD). In situations where extra clarity is required, the depth vari-

able name can also be mentioned in describing the density-defined distributions, e.g. X
p
∼ N(μ, σ ), where μ 

v∼ N(μ0, σ0).

Although in this paper we focus on the distributions with abstract parameters, the distributions parameterized by the 
quantile-probability pairs (quantile-parameterized distributions) are also worth a mention. The most prominent examples 
of the quantile-parameterized density-defined distributions are Myerson distribution (Myerson, 2005), Johnson QPD (J-QPD) 
with its generalizations (Hadlock and Bickel, 2017, 2019) and Simple Q-Normal distribution (Keelin and Powley, 2011). The 
group of the quantile-parameterized quantile distributions is represented by Metalog distribution (Keelin, 2016). Quantile-
parameterized distributions play an important role in representing expert beliefs about variables, parameters, or quantities 
of interest (Dion et al., 2020; Gu et al., 2018; Larrain et al., 2021; Reinhardt et al., 2016; Baey et al., 2022), although they 
don’t lend themselves easily as sampling distributions due to the special nature of their parameterization.
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3. Bayesian inference with quantile functions

Gilchrist (2000), p. 209 used the term quantile-based likelihood while describing the method of maximum likelihood 
applied to a quantile distribution. Rayner and MacGillivray (2002) describe a three-step process of computing the log-
likelihood for a quantile distribution and use it for the maximum likelihood estimation of parameters in g-and-k and 
generalized g-and-h distributions. Nair et al. (2020) performed quantile function substitution for both the observables 
yi = Q (ui |θ), i = {1, 2, . . .n}, and parameters θ = Q�(v) and computed the Bayes estimator under the squared error loss 
for the Govindarajulu likelihood. In this section, we summarize this approach and use the terms quantile-based prior and 
quantile-based likelihood based on the identities and substitutions introduced in Section 2 to demonstrate the equivalence 
of the two ways of expressing the likelihood in Bayesian models.

3.1. Density-based and quantile-based likelihood

The traditional Bayesian inference formula can be restated using the substitutions involving quantile functions (Nair et 
al., 2020). Assume that the prior information about the scalar parameter θ can be summarized by the prior distribution over 
the parameter space �. Then, given a random sample of y = {y1, y2, . . . yn}, the posterior distribution of θ can be expressed 
as:

f (θ |y) ∝ L(θ; y) f (θ), (10)

where f (θ |y) is the posterior distribution of θ after having observed the sample y, f (θ) is the prior distribution of θ , 
and L(θ; y) =

∏n
i=1 f (yi |θ) is the likelihood, which is a function of θ . We refer to this form of likelihood as density-based, 

because it is expressed using the density function (PDF) of the observable y .
Given the random sample y and the value of the parameter θ , we can use the quantile function Q Y (u|θ) to compute Q =

{Q (u1), Q (u2), . . . Q (un)}, such that ui = F (yi |θ), i = {1, 2, . . .n}. The depths ui are degenerate random variables because 
they are fully determined given the values of y and the parameter θ . Since Q Y (ui |θ) = yi we can substitute Q for y. Then 
the Bayesian inference formula (10) becomes

f (θ |Q ) ∝ L(θ; Q ) f (θ). (11)

We refer to the likelihood L(θ; Q ) =
∏n

i=1 f (Q (ui |θ)) =
∏n

i=1[q(ui |θ)]−1 as quantile-based, because it relies on comput-

ing the intermediate depths ui = F (yi |θ) corresponding to the observations yi, i = {1, 2, . . .n}. The two forms of likelihood 
L(θ; Q ) and L(θ; y) are equivalent to each other. Therefore, following the likelihood principle, the posterior beliefs about θ
in both cases are identical.

Since the likelihood in the Equation (11) is expressed in terms of Q , an additional transformation is required to arrive at 

u = F (y|θ). In case the CDF F (y|θ) is not available, the numeric approximation of Q̂ −1(y|θ) may be used. We discuss the 
details of the numerical approximation of the inverse quantile function in Section 4 of this paper.

3.2. Density-based and quantile-based prior

It is possible to extend the same logic of quantile function substitution to define density-based and quantile-based pri-

ors. In this section, we discuss the parameter transformation required for defining a quantile-based prior and show its 
connection to the inverse transform used for non-uniform sampling.

The Bayesian inference formula can be restated using the quantile form of the prior (Nair et al., 2020). Assume that the 
prior distribution of θ can be described using the invertible CDF F�(θ |ψ) = v with hyperparameter ψ , so that Q�(v|ψ) = θ . 
Substituting the quantile values Q�(v|ψ) for values of θ , prior beliefs about the parameter(s) of the distribution of θ can 
be expressed using the distribution of the quantile values corresponding to the random variate v , given hyperparameter ψ
of the prior distribution as f (Q�(v)|ψ) = [q�(v|ψ)]−1 . We refer to the such formulation of the prior as quantile-based
because it describes the prior distribution of the random variate v given hyperparameter ψ corresponding to the parameter 
θ = Q�(v|ψ) and not the distribution of the parameter θ itself.

Likewise, the likelihood L(Q�(v|ψ); y) will also rely on the parameter transformation θ = Q�(v|ψ). However, such non-
linear parameter transformation requires a Jacobian adjustment (Andrilli and Hecker, 2010), which is equal to the absolute 
derivative of the transform, i.e. J (Q�(v|ψ)) = |dQ�(v|ψ)/dv| = |q�(v|ψ)|. Provided that the Q�(v) is a valid (non-
decreasing) quantile function, meaning that q�(v|ψ) is non-negative on v ∈ [0, 1], the density quantile term [q�(v|ψ)]−1

representing the prior and the Jacobian adjustment |q�(v|ψ)| can be dropped as they are reciprocal to each other. Therefore, 
the quantile-based posterior of the random variate v after observing the sample y can be expressed as

[q�(v|y)]−1 ∝ L(Q�(v|ψ); y)[q�(v|ψ)]−1|q�(v|ψ)| =⇒
[q�(v|y)]−1 ∝ L(Q�(v|ψ); y),

(12)

5
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where [q�(v|y)]−1 is the quantile form of the posterior, and the (quantile) prior density [q�(v|ψ)]−1 is implied by QF 
transform Q�(v|ψ) = θ, v ∈ [0, 1].

Quantile-based prior can also be used in combination with quantile-based likelihood, since, as we showed previously, 
regardless of the form of the likelihood used, the posterior beliefs about the parameter θ will be the same. In such a case, 
neither prior nor likelihood would require the PDF, and, therefore, both of them can be represented by quantile distributions.

4. Numerical inversion of quantile functions

4.1. Root-finding algorithms

The core element of the quantile-based likelihood method is the use of the intermediate depths u, corresponding to the 
observables y given the parameter θ . These values can either be found analytically, as F (y) for distributions with CDF, or 

numerically via root-finding algorithm, as F̂Y (y) ≅̂
Q −1

Y (y) e.g. in case of quantile distributions (Fig. 1).
The problem of inverting a quantile function is tantamount to finding the root of a target function

�(u; y, θ) = [y − Q Y (u|θ)], (13)

where y is a known observation, θ is the parameter value, and u is the depth. Provided that the Q Y (u|θ) is a non-decreasing 
function and y is a fixed observable value, the target function �(u; y, θ) is non-increasing. The root-finding algorithm uses 
the target function to take an observable y and “pull in” its inverted equivalent Q Y (u|θ) until the two values exactly meet 
by iteratively adjusting u.

Since the target function �(u; y, θ) has a range u ∈ [0, 1], the bracketing root-finding algorithms, such as bisection or 
regula falsi (Atkinson, 2008; Burden and Faires, 2011) may be used, although depending on the shape of the quantile function 
their convergence can be slow. Modern bracketing methods, such as Chandrupatla (Chandrupatla, 1997), Ridders (Ridders, 
1979), Zhang (Zhang, 2011; Stage, 2013) and TOMS748 (Alefeld et al., 1995), implemented in the Boost C++ library (Schäling, 
2011), combine cubic, quadratic and linear (secant) interpolation to ensure robust and efficient convergence.

The convergence may be accelerated with the help of the non-bracketing root-finding algorithms e.g. Newton-Raphson, 
Halley and Schröder (Householder, 1970), which rely on computing the derivatives of the target function �. The first deriva-
tive of the target function is simply the negative QDF �′(u; y, θ) = d[y−Q Y (u|θ)]

du
= −qY (u|θ). Unfortunately, the derivative-

based algorithms do not guarantee that the root will be found and may end up in infinite loops and divergences. The bigger 
issue with trying to use a non-bracketing algorithm to find the root of the target function � is related to intermediate val-
ues of u falling outside of the [0,1] interval. In such a case Q Y (u|θ) will return an error, which will cause the root-finding 
convergence check to fail. Modern derivative-based root-finding algorithms, such as NewtSafe (Acton, 1990; Press, 2007), 
perform the root search within a specified interval and fall back to bisection if the algorithm iteration leads the guess 
outside of the interval.

In this paper we used the Brent bracketing root-finding algorithm (Press, 2007) to invert the quantile functions. In R 
(R Core Team, 2021) the algorithm is available as the uniroot() function and in Stan (Gabry and Češnovar, 2022) we 
implemented it as a custom user-defined function. All source code is available in the Supplementary Materials.

4.2. Computational cost

Quantile-based method of inference comes at a computational cost associated with inverting a quantile function. In order 
to assess the cost of numerical inversion of quantile functions and to compare the integrated autocorrelation times (IAT) 
between the density-based and the quantile-based models, we performed simulation-based calibration (Modrák et al., 2022; 
Säilynoja et al., 2022; Talts et al., 2020; Cook et al., 2006) of the standard Exponential model, under the Gamma prior with 
α = 4 and β = 1, which can be formulated both in the density-based and in the quantile-based form (since the exponential 
distribution is fully invertible). We refer to the Supplementary Materials for the details of the simulation-based calibration 
(SBC) algorithm.

We calculated IAT as the number of iterations of the sampler divided by the parameter’s effective sample size (ESS) 
estimator (Betancourt, 2020). In addition to the standard rank-normalized ESS estimator, we calculated the minimum of the 
ESS for the 5% and 95% quantiles of the sample, known as the “tail ESS” (Vehtari et al., 2021).

We ran 200 replications of each of the models. Each SBC replication consisted of 2000 draws (of which half was used for 
burn-in) and 2 parallel chains (to assess the quality of chain mixing). The Stan code for running both density-based and the 
quantile-based Gamma-Exponential models is available in the Supplementary Materials.

We found that, on average, the numerical inversion of QF costs additional 6.43 sec/chain of 2000 samples (paired t-test 
95% CI: [6.28, 6.59]). The MCMC proposals are also slightly more likely to be rejected (average increase in rejections is 0.345 
based on the paired t-test with 95% CI of [0.216, 0.474]), as the quantile-based models are more dependent on the feasible 
initial values.

At the same time we found no significant difference in IAT for either the bulk of the samples (mean difference of 0.012 
with 95% CI: [-0.0264, 0.0503], pair-wise t-test), nor the tail of the distribution (mean difference of -0.029 with 95% CI: 
[-0.0690, 0.0118], pair-wise t-test).

6
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Fig. 3. Histogram of time-to-failure for 50 devices.

The cost may be more significant if the quantile function is expensive to compute, e.g. for distributions with a large 
number of parameters or involving computationally expensive transformations, or in the presence of covariates, as the case 
is for parametric quantile regression, discussed below.

5. Applications

In this section, we illustrate the application of the quantile-based inference to univariate and regression models and 
provide code examples for models based on the quantile sampling distributions in Stan (Gabry and Češnovar, 2022) and 
in R (R Core Team, 2021). For the univariate model, we update the shape parameter of a bathtub-shaped Govindarajulu 
distribution and for the regression model, we pick the flattened skew-logistic distribution to model the error term.

5.1. Univariate model

We take the dataset provided in Aarset (1987) on the time-to-failure of 50 devices (Fig. 3). Lifetime reliability data are 
often modeled using specialized distributions (Nadarajah, 2009) or 2(3)-component mixtures. Nair et al. (2020) obtained 
the Bayes estimator under the squared error loss function for the posterior mean of the parameter γ in the Govindarajulu 
distribution (Nair et al., 2012), under the generalized exponential prior (Gupta and Kundu, 2007). We reuse their example 
extending it to estimating the full posterior distribution by implementing the model in Stan (Gabry and Češnovar, 2022).

The QF and the QDF of the Govindarajulu distribution (Nair et al., 2012) are given by:

Q (u|σ ,γ ) = σ [(γ + 1)uγ − γ uγ +1]
q(u|σ ,γ ) = σγ (γ + 1)uγ −1(1 − u),

(14)

where σ , γ > 0. The distribution has support on Q (u|σ , γ ) ∈ [0, σ ]. Note, that the QDF in Nair et al. (2020) is slightly devi-
ating from their original formula shown above. We refer to Nair et al. (2012) for the correct definition of the Govindarajulu 
distribution (including the same distribution with shifted support).

We adopt the generalized exponential prior with hyperparameters α = 0.59012 and λ = 1, used by Nair et al. (2020) for 
the parameter γ of the Govindarajulu distribution. The CDF and PDF of the generalized exponential distribution are given 
by

F (x|λ,α) = (1− e−λx)α

f (x|λ,α) = αλ(1− e−λx)α−1e−λx,
(15)

where α, λ > 0. The support of the distribution is x ∈ [0, ∞]. The quantile function and the quantile density of this distri-
bution are:

Q (u|λ,α) =
1

λ
[− ln(1− u1/α)]q(u|λ,α) =

u(1/α)−1

αλ(1− u1/α)
, (16)

where it is visible that Generalized Exponential distribution is a p-transformed exponential distribution (Gilchrist, 2000) 
with the scale parameter λ, and the shape parameter α.

Nair et al. (2020) estimated the σ parameter of the Govindarajulu distribution using L-moments and assumed it to be 
known and equal to 93.463 for this problem, which we adopt it as a fixed parameter, as well.
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Table 2

Summary of the posterior samples from the GenExp-Govindarajulu model.

parameter mean median q5 q95 rhat

gamma 2.132 2.1 1.638 2.73 1.001

Fig. 4. Prior and posterior distributions of the parameter ‘gamma’ in the GenExp-Govindarajulu model.

As discussed Section 2.3, since Govindarajulu distribution does not have a closed-form CDF, it would be inappropriate 
to write Y ∼ Govindarajulu(σ , γ ). Instead, our proposed notation highlights that the Govindarajulu distribution is defined 
via the QF, and it is, therefore, the degenerate random variate u that is inversely distributed according to this U-shaped 
distribution and not the observation y itself.

u
y
∽ Govindarajulu(σ ,γ ). (17)

This notation also indicates the need to invert the QF to compute the random variate u corresponding to the observations 
y given the values of parameters σ , γ .

The resulting model takes the form

u
y
∽ Govindarajulu(93.463,γ )

γ ∼ GenExp(1,0.59012).
(18)

The GenExp-Govindarajulu model has been validated using the Simulation-Based Calibration (Cook et al., 2006; Modrák 
et al., 2022; Talts et al., 2020). As evident from the diagnostic plots in the Supplementary Materials, the model parameters 
are successfully recovered for all widths of the posterior credible intervals.

We ran 2500 post-warmup iterations and 4 chains in Stan (Gabry and Češnovar, 2022). Table 2 summarizes the posterior 
distribution of the parameter γ of Govindarajulu distribution. We compare the prior and the posterior distribution in Fig. 4
and include the Bayes estimate by Nair et al. (2020), noting that the variation in the results could be attributed to the minor 
discrepancy in the quantile density formula between Nair et al. (2012) and Nair et al. (2020). The Stan code for this model 
can be found in the Supplementary Materials.

5.2. Parametric quantile regression

Quantile functions are useful not only for modeling the observables, but they can also be used to represent unobserved 
quantities of interest, such as the error term in a parametric quantile regression.

Using Gilchrist’s Linear Combination rule in Table 1 any quantile function can be represented as

Q (u|μ,σ , θ) = μ + σ Q s(u|θ), (19)

where Q s(u) is a “basic” quantile function (Gilchrist, 2000), μ and σ are location and scale parameters, respectively, and θ is 
an optional shape parameter. Many quantile functions, such as logistic Q (u) = μ +σ logit(u) or normal Q (u) = μ +σ�−1(u), 
are already in this form. Others, such as the SLD discussed in Section 2, can have location and scale parameters added to 
them to enable shifted and scaled support, e.g. Q (u|μ, σ , δ) = μ +σ [(1− δ) ln(u) − δ ln(1 − u)]. The basic quantile functions 
(i.e. logit(u) for the logistic and �−1(u) for the normal) can be useful as the building blocks for constructing more complex 
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Fig. 5. Car stopping distance dataset.

distributions (Table 1). Basic quantile functions with the median centered at zero are called standard quantile functions 
(Gilchrist, 2000) denoted here as S(u|θ) = Q s(u|θ) − Q s(0.5|θ).

A simple linear regression of a random variable Y given the covariate X can be written as

yi = α + βxi︸ ︷︷ ︸
deterministic term

+ εi︸︷︷︸
stochastic term

, (20)

where yi is the i-th observation of Y , xi is i-th observation of covariate X , α and β are unknown intercept and slope, 
respectively. The εi represents the error, which in ordinary least squares (OLS) regression is assumed (or forced through 
the link function) to be normally distributed with the mean of zero. An alternative way of representing the error term is 
through a standard quantile function εi = Sε(ui |θ), where ui is the depth corresponding to the error εi in the regression 
model with the intercept α, slope β and the shape parameter θ (which are assumed to be independent).

yi = α + βxi + Sε(ui|θ), (21)

We want to emphasize that the traditional quantile regression introduced by Koenker (2005) is in essence semi-

parametric, because it does not require the user “to specify the distribution of the error term as it is allowed to take 
any form” (Yu and Moyeed, 2001). The regression Equation (21) represents the parametric quantile regression (PQR), because 
in this type of regression the error term is modeled explicitly (Gilchrist, 2008; Sharma and Chakrabarty, 2020; Su, 2015; 
Dean and King, 2009; Muraleedharan et al., 2016; Perri and Tarsitano, 2007, 2008).

Note that the deterministic term in (21) can be viewed as a location parameter in the quantile function

Q Y (ui|μi, θ) = μi + Sε(ui|θ), (22)

where μi = α + βxi . Likewise, if the stochastic component Sε(ui |θ) is made dependent on the covariate xi , the resulting 
PQR QF can capture the heteroscedasticity of the error term.

The depth ui can be found by inverting the quantile function ui ≅
̂
Q −1

Y (yi |μi, θ). In cases where inverting the PQR 
QF may be analytically difficult (e.g. when the Sε(ui, θ) is not invertible), the numerical approximation can be used (see 
Section 4 above). Once the depths u = {u1, u2, . . . , un} are found, the likelihood of N observations y = {y1, y2, . . . , yn} given 
parameter θ can be calculated using the density quantile function corresponding to the PQR QF.

Because the deterministic term μi in PQR QF Q Y (ui |μi, θ) is additive and does not depend on the depth ui it can be 
dropped from the derivative.

[qY (ui |μi, θ)]−1 =
[
dQ Y (ui|μi, θ)

du

]−1

=
[
dSε(ui|θ)

du

]−1

= [qε(ui|θ)]−1, (23)

where [qε(ui |θ)]−1 is the density quantile function of the error term.

We illustrate the application of PQR using the car stopping distance data from Gilchrist (2000), sec. 12.4. The dataset 
(Fig. 5) contains 30 observations of the car speed and the corresponding stopping distances. As suggested by the physics’ 
kinetic energy equation (Lutus, 2021) the speed of the car is proportional to the square root of the braking distance. We can 
draw a mean regression line through the observations, as shown in Fig. 5 relating the car to the square root of the stopping 
distance using ordinary least squares (OLS). In the rest of this section we will estimate the quantile regression lines for the 
median, the 5th, and the 95th quantile using the PQR.

One of the simplest quantile functions which could be used to model the error in PQR is the logistic quantile function 
Q (u) = ln(u) − ln(1 − u). The distribution of the errors in the stopping distance model might be less “peaked” than the 
standard logistic distribution due to various factors (about vehicles or the drivers) not included in the model. Therefore, 
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adding some effect of the standard uniform quantile function u (Lampasi, 2008) might be reasonable. Flattened Logistic 
Distribution (FLD) described by Sharma and Chakrabarty (2019) combines the standard QFs of logistic and uniform distribu-
tions by applying positive affine transformation for scale and shape parameters (ref. Addition and Linear Combination rules 
in Table 1).

Q ε(u|χ ,η,κ) = χ + η

⎡
⎢⎣ln(u) − ln(1− u)︸ ︷︷ ︸

logistic

+κ × u︸︷︷︸
uniform

⎤
⎥⎦ , (24)

where χ is the location parameter, η, κ > 0 are scale and shape parameters, respectively. For the standard quantile function 
Sε(u|κ) = Q ε(u|κ) − Q ε(0.5|κ), the location should be set to 0 and the scale set to 1.

The Flattened Logistic Distribution is symmetrical. This assumption might be too restrictive for modeling the residuals 
in the car stopping distance model (e.g. because of inertia). Sharma and Chakrabarty (2020) replaced the logistic quantile 
function in the FLD with the skew-logistic quantile function; the resulting QF can be referred to as the flattened skew-

logistic distribution (FSLD).
The FSLD QF and the DQF are

Q ε(u|χ ,η, δ,κ) = χ + η

⎛
⎜⎝(1− δ) ln(u) − δ ln(1 − u)︸ ︷︷ ︸

skew-logistic

+κ × u︸︷︷︸
uniform

⎞
⎟⎠

[qε(u|χ ,η, δ,κ)]−1 =
[
η

(
1− δ

u
+

δ

1− u
+ κ

)]−1

.

(25)

Since the variance in the speed Y increases with the car stopping distance X , a heteroscedastic model can be used to 
describe the error term in the PQR for the stopping distances. The resulting PQR QF and the corresponding DQF can be 
expressed as

Q Y (u|α, β, θ; x) = α + β
√
x+ Sε(u; θ)

√
x

[qY (u|θ; x)]−1 =
[
dQ Y (u|α, β, θ; x)

du

]−1

=
1

√
x
[qε(u; θ)]−1,

(26)

where α, β are intercept and slope, θ = {η, δ, κ} represent the parameters of the standard flattened logistic distribution 
Sε(u; θ) with the density quantile function [qε(u|θ)]−1 , u is the depth corresponding to the error in the model for the 
speed y given the stopping distance x and the regression parameters {α, β, θ}. The depth u can be computed by inverting 

the PQR QF u ≅̂
Q −1

Y (y|α, β, θ; x) (26).

For each of the n observations of speed in the sample Y = {y1, y2, . . . , yn} we can compute Q Y = {Q Y (u1|α, β, θ, x1), . . . ,

Q Y (un|α, β, θ, xn)}, such that ui ≅
̂
Q −1

Y (yi |α, β, θ, xi), i = {1, 2, . . .n}.
Let’s further assume that the expert’s prior belief about the intercept was elicited using a set of quantile-probability pairs 

and the best fit was achieved using the FLD quantile function with hyperparameters χ = 1, η = 1, and κ = 10. Similarly, the 
expert belief about the slope is described by the FSLD with hyperparameters χ = 2, η = 2, δ = 0.8, and κ = 2.

Since FLD and FSLD are quantile distributions, the prior for the parameters α and β of PQR must be defined in the 
quantile form. This means that the density quantile functions f (Qα(v)), f (Q β(w)) and the Jacobian adjustments |qα(v)|, 
|qβ(w)| can be dropped, as explained in Section 3.2 above.

f (Qα(v), Qβ(w), θ |Q Y , x) ∝ L(θ; Q Y , x) f (Qα(v))|qα(v)| f (Qβ(w))|qβ(w)| f (θ) =⇒

f (Qα(v), Qβ(w), θ |Q Y , x) ∝ L(θ; Q Y , x) f (θ).
(27)

Therefore, the posterior distribution of the PQR parameters α = Qα(v), β = Q β(w), and θ can be expressed using the 
quantile-based likelihood (and the quantile-based prior for parameters α and β).
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Table 3

Summary of the posterior samples from the FSLD PQR model.

parameter mean median q5 q95 rhat

v 0.3452 0.3458 0.3224 0.3632 1.012

Q(v) 3.8107 3.8201 3.4817 4.0702 1.012

w 0.4599 0.4598 0.4485 0.4715 1.013

Q(w) 4.5148 4.5133 4.4254 4.6059 1.013

eta 0.2691 0.2625 0.1937 0.3655 1.014

k 0.1142 0.0804 0.0063 0.3171 1.057

dlt 0.8065 0.8329 0.5766 0.9426 1.084

Fig. 6. Posterior predictive quantiles (0.05, 0.5, 0.95) for stopping distances. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

f (α, β, θ |Q Y , x) ∝ L(θ; Q Y ,α, β, θ, x) f (θ)

L(θ; Q Y ,α, β, θ, x) =
n∏

i=1

f (Q Y (ui |α, β, θ; xi)) =
n∏

i=1

[
qε(ui|θ)

√
xi

]−1

Q Y (u|α, β, θ; x) = α + β
√
x+ Sε(u; θ)

√
x

u
y
∽ Q Y (α, β, θ; x)

v
α
∽ FLD(1,1,10)

w
β
∽ FSLD(2,2,0.8,2)

η ∼ Exp(1/10)

δ ∼ Beta(2,1)

κ ∼ Exp(1/0.1),

(28)

where f (θ) = f (η) f (δ) f (κ). Note that, as we discussed in Section 2.3, the Parametric Regression Quantile Function 
Q Y (u|α, β, θ; x) is not invertible and therefore it would be inappropriate to write Y ∼ Q Y (u|α, β, θ; x). Instead, we indi-

cate u 
y
∽ Q Y (α, β, θ; x), which means that the likelihood is defined via the QF and needs to be inverted to find the random 

variate u corresponding to observations y. This notation also helps distinguish between the random variate used for likeli-
hood (u) and those used by the quantile-based priors (v and w for the parameters α and β , respectively).

The PQR model has been validated using the Simulation-Based Calibration (Cook et al., 2006; Modrák et al., 2022; Talts 
et al., 2020) in Stan. The diagnostic plots provided in the Supplementary Materials, show that the PQR model parameters 
are successfully recovered for all widths of the posterior credible intervals.

We ran 2500 post-warmup iterations and 4 chains using the Robust Adaptive Metropolis algorithm by Vihola (2012)
implemented in fmcmc package (Vega Yon and Marjoram, 2019) in R (R Core Team, 2021). The code is provided in the 
Supplementary Materials.

Table 3 summarizes the posterior distribution of the parameters in the parametric quantile regression model for the car 
stopping distances.

Posterior predictive check (Gabry et al., 2019) can be done by generating a grid of values for the car stopping distances x
and using randomly sampled parameters from the posterior distribution to compute the value of the response y using the 
PQR QF. Since in the PQR the regression equation is expressed in terms of the depth u we can extract the coherent (non-
crossing) quantile regression lines for any set of fractiles. Fig. 6 illustrates hypothetical outcome plots for the 5th, 50th, and 
95th quantile regression lines. The solid red lines are the conditional mean curves, representing the respective predictive 
quantiles.
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In order to assess the empirical goodness of fit, we calculated the proportion of data points falling below the 5th, 50th, 
and 95th predictive quantile. Out of n = 30 observations, 93% of observations fell inside the conditional 95% posterior pre-
dictive interval (shown as the outer solid red lines on the plot), while 57% of observations turned out below the predictive 
median curve.

6. Discussion and conclusion

In the past 20 years, many examples of using quantile distributions for the approximate Bayesian computation (ABC) 
appeared in the literature (Allingham et al., 2009; Drovandi and Pettitt, 2011; Dunson and Taylor, 2005; McVinish, 2012; 
Smithson and Shou, 2017). ABC methods normally do not require computation of the likelihood, which, in case of the 
quantile distributions, is convenient, as these distributions lack an explicit CDF and PDF.

Regardless of whether the distribution is defined by the CDF of the QF, the defining function sometimes needs to be 
inverted. If the inverse does not exist in closed form, the function has to be inverted numerically. In the case of the density-
based likelihood, the inverse distribution function may be needed for sampling from the posterior (e.g. for the posterior 
predictive check). In the case of the quantile-based likelihood, the inverse is needed for computing the intermediate depth 
values, corresponding to observations (conditional on covariates) for every draw of the parameters. No numerical inversion 
of the quantile function is needed for defining the quantile-based prior. A wide selection of efficient root-finding algorithm 
implementations in the popular statistical software makes the inversion of custom quantile functions accessible. We provide 
a generic wrapper for inverting arbitrary quantile functions using Brent method in the accompanying R package (Perepolkin, 
2019). Further research of custom root-finding algorithms for non-decreasing functions on unit-interval can make inverting 
of quantile function even more computationally efficient.

The quantile-based inference opens up a wide set of new distributions to serve as likelihood and/or prior in Bayesian 
models. Although many flexible density-defined distributions have been proposed in recent decades (Jones, 2015; Steel and 
Rubio, 2015), quantile distributions play an important role in certain field applications (Nair et al., 2013; Chalabi et al., 2012), 
as well as in expert knowledge elicitation and decision analysis (Mikkola et al., 2021; Hadlock, 2017; Powley, 2013). Besides, 
the flexibility offered by the distributions defined in terms of the quantile function (Gilchrist, 2007), and in particular 
their easily extensible nature (Table 1), allows ultimate freedom in expressing the expert-informed priors. In this paper we 
showed the connection of quantile parameter transformation to inverse transform sampling and used quantile distribution 
as a prior for regression parameters.

Multivariate versions of quantile distributions have been explored in the past (Field and Genton, 2006; Vineshkumar 
and Nair, 2019), but their adoption in the scientific literature remains low. One possibility of utilizing the flexibility of the 
quantile distributions in a multivariate setting is to employ them as marginal distributions for bivariate copulas, which 
can be assembled into higher-dimensional structures using vines (Czado, 2019; Kurowicka and Joe, 2011). When used as 
priors (Wilson, 2018), the copula structure can be elicited from the experts (Elfadaly and Garthwaite, 2017) along with the 
marginal quantile-probability pairs for fitting the quantile distribution (O’Hagan et al., 2006; Mikkola et al., 2021). Versatile 
and user-friendly multivariate quantile distributions represent an opportunity for further research.

Gilchrist (2007) provides a review of the traditional approach to quantile regression, as proposed by Koenker and Bassett 
(1978) and contrasts it with the fully parametric approach taken by PQR (Gilchrist, 2000, 2008; Su, 2015). The parametric 
approach to regression provides coherent (non-crossing) estimates of posterior quantiles, allowing the scientists to model 
the distribution of the error term explicitly (instead of making assumptions). Note that the parametric quantile regression 
may also be used with invertible distributions (logistic, normal, etc), as long they have computable QF and QDF (�−1(u)

and �−1(u)/du, for normal distribution).
Traditionally, the fitting of parameters in quantile distributions was performed using the matching of moments or L-

moments (Gilchrist, 2008; Asquith, 2007; Karvanen and Nuutinen, 2008), matching of percentiles (Karian and Dudewicz, 
2011), location and scale-free shape functionals (King and MacGillivray, 2007), distributional least squares/absolutes 
(Gilchrist, 2007; Sharma and Chakrabarty, 2020), and maximum likelihood (Rayner and MacGillivray, 2002; Su, 2007; Tar-
sitano, 2005). The various methods of obtaining parameter estimates for the quantile distributions have been extensively 
studied and compared, primarily in application to GλD (King and MacGillivray, 1999; Karian and Dudewicz, 2011; Fournier 
et al., 2007; Tarsitano, 2010), but also to some other distributions (Rayner and MacGillivray, 2002; Jeong-Soo, 2005). This 
paper generalizes the approach to quantile-based likelihood (Gilchrist, 2000; Rayner and MacGillivray, 2002; Haynes and 
Mengersen, 2005; Nair et al., 2020) connecting the previous research on parametric quantile regression (Gilchrist, 2008; Su, 
2015; Sharma and Chakrabarty, 2020) with more recently introduced work on quantile-based priors (Nair et al., 2020) and 
implementing both of these concepts in Stan (Gabry and Češnovar, 2022) and R (Vega Yon and Marjoram, 2019).

Since the definition of quantile function is usually mathematically simpler (and more easily extendable) than the re-
spective CDF and PDF (Gilchrist, 2000), quantile-based priors represent an inexpensive and flexible way of incorporating prior 
knowledge in Bayesian models. The unit sampling space may offer some additional computational advantage for MCMC/HMC 
algorithms. The quantile-based formulation of the prior may not be appropriate if the sampler constraints need to be defined 
on the parameter level (e.g. prior truncation). In such a case, the traditional density-based prior may be more useful.

Quantile-based likelihoods open a wide range of possibilities for designing flexible data generative models for special ar-
eas of application (e.g. Govindarajulu for reliability problems, Wakeby for modeling of floods, GLD in other instances) where 
the density-based equivalent is not available. The alternatives usually involve falling back to the non-Bayesian estimation 
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methods (Karian and Dudewicz, 2011; Asquith, 2007; Karvanen and Nuutinen, 2008) or using the approximate computation 
algorithms (Drovandi et al., 2011; Dunson and Taylor, 2005; McVinish, 2012), both of which are outside of the scope for this 
paper. The availability of efficient MCMC samplers (Gabry and Češnovar, 2022) and modern root-finding algorithms (Schäling, 
2011), make quantile-based likelihood computationally feasible. Gilchrist (2000) writes: “The lack of use of maximum like-
lihood is surprising as it is perfectly straightforward if one uses the general-purpose maximization software available rather 
than look for specific formulae for estimators”. We share his sentiment.

Embracing and expanding the use of quantile distributions in Bayesian analysis can enable new solutions for old problems 
and enrich the toolkit available to scientists for performing hard inference tasks. We hope that the quantile-based inference
methods presented in this paper can contribute to the expanding body of knowledge about the use of quantile functions in 
Bayesian statistics and fuel further research in the area of quantile distributions.

Data availability

The qpd R package used in this paper is available on Github at https://github .com /dmi3kno /qpd. Contact corresponding 
author Dmytro Perepolkin (Dmytro .Perepolkin @cec .lu .se) for requests for data.
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