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Abstract
This paper extends the application of quantile-based Bayesian inference to probability distributions defined in terms of quan-
tiles of observable quantities. Quantile-parameterized distributions are characterized by high shape flexibility and parameter
interpretability, making them useful for eliciting information about observables. To encode uncertainty in the quantiles elicited
from experts, we propose a Bayesian model based on the metalog distribution and a variant of the Dirichlet prior. We discuss
the resulting hybrid expert elicitation protocol, which aims to characterize uncertainty in parameters by asking questions
about observable quantities. We also compare and contrast this approach with parametric and predictive elicitation methods.
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elicitation · Indirect inference
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1 Introduction

1.1 Parametric and predictive approach to
elicitation

Bayesian parametric inference is about updating prior beliefs
about the model parameters in light of new observations. The
underlying assumption is that an expert’s prior knowledge (or
lack thereof) can be translated into a subjective probability
distribution of model parameters through the process of elic-
itation (Winkler 1967). The direct elicitation of parameters
represents a structural approach to extracting an expert’s
knowledge (Kadane 1980). This approach requires that the
expert comprehends the model and the role a specific param-
eter plays within it. Unfortunately, some parameters may be
abstract, challenging to interpret (such as α and β parameters
in the Gamma distribution), and at times not independent, as
is the case with parameters in a hierarchical model.
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An alternative approach involves eliciting information
about observable quantities, possibly conditioned on observ-
able covariates (Kadane and Wolfson 1998), which may
be more intuitive and relatable for experts. The elicita-
tion of predictions aims to assess the expert’s uncertainty
regarding future observations (Gelman et al. 2013). Kadane
and Wolfson (1998) advise against eliciting moments, with
the exception of possibly the first moment (the arithmetic
average). Instead, assessment should be carried out using
quantiles or probabilities from the predictive distribution.
The challenge with eliciting the predictive distribution is that
it makes no distinction between the randomness explained by
the model and the uncertainty about the parameters within it.
Without this distinction, updating the expert predictions with
the data coming from the new observations may be challeng-
ing.

While the non-Bayesian elicitation often stops at the
quantiles or probabilities related to the expert’s predictive
judgment (Spetzler and Staël Von Holstein 1975; Morgan
2014; Keeney and von Winterfeldt 1991; Hanea et al. 2021),
the Bayesian school of thought attempts to devise a method
to infer the prior distribution, which could have led to the par-
ticular predictions expressed by the expert (Akbarov 2009;
Hartmann et al. 2020; Winkler 1980; Kadane and Wolfson
1998; Bockting et al. 2023; Manderson and Goudie 2023).
Kadane (1980) refer to this process of eliciting the predictive
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distribution followed by inferring the prior as the predictive
approach, as it leverages predictions to derive the distribution
of parameters.

1.2 Aims of the paper

In this paper, we propose a hybrid elicitation approach,
which combines the elicitation of observable quantities with
the elicitation of the associated uncertainty. This method
combines elements of both the predictive and structural
approaches to elicitation and can be employed to establish
the prior distribution for a model defined by a quantile-
parametrized distribution.

Quantile-parameterized distributions (QPDs) (Keelin and
Powley 2011; Hadlock 2017) are parameterized by a set of
quantile-probability pairs describing a random variable. As
a result, the parameters in a QPD are measured on the same
scale as the random variable they represent. These distribu-
tions can be utilized to model either uncertainty about future
observations (predictive distribution) or the distribution of an
unobservable parameter (prior distribution). For a compre-
hensive review of quantile-parameterized distributions, we
refer to Perepolkin et al. (2023b).

Until now there has been, to the best of our knowledge, no
published research on how to update the quantile parameters
of a QPD in light of the new observations. This paper extends
the principles of quantile-based Bayesian inference (Pere-
polkin et al. 2023a) tomodels parameterized by quantiles and
proposes a prior distribution capable of capturing uncertainty
in the quantile parameters. The proposed approach enables
the elicitation and Bayesian updating of a variable quantity
with minimal assumptions about the underlyingmodel struc-
ture.

1.3 Paper structure

Section 2 introduces the method of quantile-based inference
as proposed by Rayner and MacGillivray (2002) and Nair
et al. (2020), and summarized in Perepolkin et al. (2023a).
This method of inference is related to using one of the
quantile-based distributions (Perepolkin et al. 2023b), which
lack an explicit distribution function (CDF) and probability
density function (PDF), as either prior or likelihood com-
ponents within a Bayesian model. Quantile-based priors and
likelihoods rely on substitutions derived from the inverse dis-
tribution function, known as the quantile function (QF).

In Sect. 3, we delve into a subclass of quantile-based
distributions parameterized by sets of quantile-probability
pairs (Fig. 1). We provide a brief overview of the litera-
ture concerning different methods for constructing quantile-
parameterized distributions (QPDs). Our particular focus is
on the quantile-based quantile-parameterized metalog distri-
bution (Keelin 2016), chosen for its parameter flexibility.

In Sect. 4 we introduce the Bayesian model in which
the likelihood is expressed using the metalog distribution,
parameterized by a set of quantile-probability pairs. We
demonstrate how uncertainty in these parameters can be
specified through a variant of the Dirichlet distribution. Sec-
tion5 describes the elicitation of the QDirichlet prior and
introduces a novel hybrid elicitation process for obtaining
quantile-probability pairs along with the uncertainty asso-
ciated with them. We illustrate our approach with excerpts
from a hypothetical interview. The accompanying qpd R
package (Perepolkin 2019), implements several quantile-
parameterized distributions and includes functionality for
supporting the elicitation of the Dirichlet and Connor–
Mosimann distributions (Elfadaly and Garthwaite 2013).

Section 6 discusses the MCMC-based algorithm used for
updating parameters in a quantile-parameterized distribution.
In this paper, we employ Hamiltonian Monte Carlo algo-
rithm in Stan, interfaced by the cmdstanr package in R
(Gabry and Češnovar 2022). An alternative implementation
using the Robust Adaptive Metropolis algorithm by Vihola
(2012), interfaced by the fmcmc package (Vega Yon and
Marjoram 2019), is available in the Supplemental Materi-
als. The models proposed in this paper have been validated
using Simulation-Based Calibration (Cook et al. 2006; Mod-
rák et al. 2022; Talts et al. 2020). The results of the simulation
studies (provided in Appendix C in Supplemental Materials)
demonstrate the successful recovery of the parameter values
for all widths of the posterior credible intervals.

We conclude the paper by discussion and summary of the
results in Sect. 7.

2 Quantile-based Bayesian inference

The use of non-invertible quantile-based distributions as
either a likelihood (Rayner and MacGillivray 2002; King
1999) or a prior (Nair et al. 2020) is not a novel concept in sci-
entific literature. Rayner and MacGillivray (2002) described
a three-step process for computing the log-likelihood of a
quantile-based distribution. They applied this method to esti-
mate the parameters of the g-and-k and generalized g-and-h
distributions using maximum likelihood estimation. Simi-
larly, Nair et al. (2020) employed quantile function substitu-
tions to express both prior and likelihood in a quantile form.
They calculated the posterior Bayes estimator of the parame-
ters in theGovindarajulumodelwith uniformandgeneralized
exponential priors. Perepolkin et al. (2023a) summarized the
approaches to quantile-based inference and provided several
examples of applying the principles of inference with quan-
tile functions in both univariate and regression settings.

For a random sample x = {x1, x2, . . . xn}, the posterior
distribution of θ over the parameter space � can be summa-
rized as:
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Fig. 1 Probability distributions,
quantile-based distributions and
parameterization by quantiles

f (θ |x) ∝ L(θ; x) f (θ) (1)

where f (θ |x) is the posterior distribution of θ after having
observed the sample x , f (θ) is the prior distribution of θ ,
and L(θ; x) = ∏n

i=1 f (xi |θ) is the density-based form of
the likelihood.

Consider a set of conditional probabilities u = {ui |θ} =
{F(xi |θ)}, i = {1, 2, . . . n}, corresponding to the sample
x of the observable x with distribution function F given
the parameter θ , called depths. The conditional probabil-
ities u are degenerate random variables that are entirely
determined given the observations x and the value of
the parameter θ . They are called depths, because they
indicate how “deep” a particular observation is within
the distribution. Using the depths u, we can calculate
Q = {Q1(u1), Q2(u2), . . . Qn(un)|θ}, where Q(u|θ) =
F−1(u|θ) represents the quantile function or inverse cumu-
lative distribution function (CDF). Since Q(ui |θ) = xi , we
can substitute Q for x , and the Bayesian inference formula
(1) becomes:

f (θ |Q) ∝ L(θ; Q) f (θ) (2)

We refer to this form of the likelihood L(θ; Q) =
∏n

i=1 f (Q(ui |θ)) = ∏n
i=1[q(ui |θ)]−1 as quantile-based

because it relies on the calculation of intermediate depths
ui = F(xi |θ), i = {1, 2, . . . n}. Here [q(ui |θ)]−1 is recipro-
cal to the derivative of the quantile function Q(ui |θ) called
the density quantile function (Perepolkin et al. 2023a).

Both forms of the likelihood, L(θ; Q) and L(θ; x), are
equivalent and yield the same posterior beliefs about the
parameter θ (Perepolkin et al. 2023a).

3 Quantile parameterization of distributions

In this section, we consider a special class of distributions
where the parameters are specified by quantile-probability
pairs (Fig. 1), and see how the concept of quantile-based
inference (Perepolkin et al. 2023a) can be applied to these
distributions, as well.

A set of n quantile-probability pairs, denoted as S =
{(pi , qi )}, i = {1, 2, . . . n}, can be thought of as compris-
ing a pair of ordered vectors: a vector of probabilities p and
a vector of quantiles q, with p = {p1, . . . pn}, pi ∈ [0; 1],
and q = {q1, ..qn}, i = {1, 2, . . . n}. As CDF F(x) = p
is a non-decreasing function, the vectors p and q are con-
sidered properly ordered iif qi ≤ qi+1,∀qi ∈ q, and
pi ≤ pi+1,∀pi ∈ p. Additionally, the quantile-probability
pairs within the set S are considered distinct iff ∀{(pi , qi )} ∈
S, ∃!{(p j , q j )} = {(pi , qi )}, j �= i , i = {1, 2, . . . n},
j = {1, 2, . . . n}. In this paper, we refer to the set of n dis-
tinct, properly ordered quantile-probability pairs as a size-n
quantile-probability tuple (QPT) denoted by {p, q}n .

3.1 SPT-parameterization

A recent review (Perepolkin et al. 2023b) describes two
methods for constructing distributions parameterized by
quantile-probability pairs:

• By reparameterization of existing distributions, or
• Through an optimization step, where the distribution
parameters are mapped to quantiles using least squares
or similar algorithms.
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Distributions falling under in the first category are typ-
ically parameterized by the symmetric percentile triplet
(SPT), a QPT of size 3. In the SPT, the middle cumu-
lative probability p2 = 0.5 represents the median, while
p1 = 1 − p3 = α, α ∈ (0, 0.5) (e.g. {0.25, 0.50, 0.75} or
{0.10, 0.50, 0.90}). Examples of SPT-parameterized QPDs
include the Myerson distribution (Myerson 2005), the John-
son Quantile-Parameterized distribution (J-QPD) (Hadlock
and Bickel 2017), and their generalizations (Perepolkin et al.
2023b; Hadlock and Bickel 2019). A special case of SPT-
parameterization also exists for the metalog distribution
(Keelin 2016). For the purposes of this paper, we do not con-
sider SPT-parameterized QPDs, including the SPT-metalog,
Myerson, or J-QPD, due to their strict requirement for sym-
metric probability parameterization.

3.2 Parameterization using implicit functions

Keelin and Powley (2011) and Powley (2013) introduce an
alternative method of parametrizing a distribution by a set
of quantile-probability pairs. This method relies on the finite
Taylor series expansion of parameters within a known quan-
tile function as linear functions of the cumulative probability
p.

The authors created the SimpleQ-Normal (SQN) distribu-
tion by taking the quantile function of a normal distribution
x ≡ μ + σ�−1(p), and making the parameters μ and σ

functions of p; specifically, μ(p) = a1 + a4 p and σ(p) =
a2+a3 p. In a similar vein, Keelin (2016) proposed the meta-
logistic (metalog) distribution by making the parameters μ

and s in the logistic quantile function x ≡ μ+slogit(p)be the
functions of p, i.e.μ = a1+a4(p−0.5)+a5(p−0.5)2+. . .

and s = a2 + a3(p − 0.5) + a6(p − 0.5)2 + . . . . Here, μ

represents the mean, s is proportional to the standard devia-
tion such that σ = sπ/

√
3, logit(p) = ln(p/(1 − p)) is the

log-odds of probability p ∈ [0, 1] and ai , i = {1, 2, . . . n}
are real constants.

In both cases, the quantile function Q(p) whose param-
eters also depend on p is an implicit function. This means
that such a quantile function cannot be simply computed for
arbitrary values of p. Nevertheless, with a set of n quantile-
probability pairs, it is possible to determine the constants
ai , i = 1, 2 . . . n, by solving a system of n linear equations
(Keelin and Powley 2011; Powley 2013). This system can be
represented as the matrix Equation (3).

a = P
−1q (3)

Keelin and Powley (2011) show the conditions under
which a size-n QPT {p, q}n can uniquely determine the con-
stants a = {a1, . . . an}. Additional details of the metalog
distribution, including the composition of the matrix P, can
be found in Appendix A in Supplemental Materials.

The shape flexibility of the QPD increases with the
number of terms added to the finite Taylor expansion of
parameters within the parent distribution. To estimate the
coefficients for the n-term quantile-parameterized distribu-
tion a = {a1, . . . an}, a minimum of n quantile-probability
pairs is required. The order of the terms, denoted as n, is con-
strained by the size of the parameterizing QPT m, (n ≤ m),
and concerns for overfitting. The QPT used for parameteriz-
ing a distribution can be obtained through expert elicitation
or from the empirical CDF (ECDF), which is constructed
from a sample of observations. The ECDF begins at zero and
increments by 1/m at each of them data points in the sample,
representing the fraction of observations that are less than or
equal to the specified value (Wasserman 2006).

Depending on the relationship between the size of the
parameterizing QPT m and the number of terms n in the
QPD QF we use the following terminology:

• When the size of the parameterizing QPT m equals the
number of terms n in the QPD QF, i.e. m = n, we refer
to the process of estimating the vector of coefficients
a = {a1 . . . an} as “fitting”, and we call the resulting
QPD “properly parameterized”. In properly parameter-
ized QPDs, the QF curve is guaranteed to pass through
everyQPTpoint.We label the n-termmetalog parameter-
ized by the n-size QPT {p, q}n as the proper n-metalog.

• When the size of the parameterizing QPT m exceeds the
number of terms n in the QPD’s QF (for example, when
the QPT is derived from the sample ECDF and m > n),
we refer to the process of estimating the vector of coef-
ficients a = {a1 . . . an} as “approximating”, and we call
the resulting QPD “approximated”. Such approximation
is typically achieved through optimization or regression,
and the resultingQF curve is no longer guaranteed to pass
through every QPT point. We designate the n-term met-
alog parameterized by the m-size QPT {p, q}m, m > n
as the approximate n-metalog.

Given the matrix Equation (3), we have two alterna-
tive parameterizations for the proper n-metalog: it can
either be directly parameterized by the coefficients a =
{a1, . . . an} (referred to as the A-parameterization) or indi-
rectly parameterized by a QPT {p, q}n (referred to as the
QPT-parameterization). Therefore, in this paper, when we
mention the proper n-metalog, the notations QMn (u|a) and
QMn (u|p, q) (where u|a or u|p, q represents the depths cor-
responding to the observation x) are used interchangeably.
In the case where the metalog is approximated, only the A-
parameterization is suitable because the number of metalog
terms n is not determined by them data points from theECDF
used to estimate the parameter vector a via Equation (3).
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4 QDirichlet-metalogmodel

In this section, we introduce a Bayesian model with the
likelihood defined by the proper n-term metalog. Since the
metalog is a quantile-based distribution (Fig. 1), we employ
the quantile-based likelihood following Equation (2). The
quantile-based likelihood relies on the intermediate depths
u|θ , which correspond to the sample of observations x .
Since a closed-form CDF for the metalog distribution is not
available, we resort to numerical approximation, denoted as
u = Q̂−1

X (x) (Perepolkin et al. 2023a).

4.1 Parameter uncertainty

To account for the uncertainty in the QPT parameters of a
quantile-parameterized likelihood, such as the metalog, we
must introduce uncertainty either in cumulative probabili-
ties or the corresponding quantile values (or both). Coles
and Tawn (1996) specified the prior for an extreme value
model in terms of the quantile values for certain fixed cumu-
lative probability values. Crowder (1992) suggested that the
prior can be constructed based on the space of probabilities,
with fixed quantiles. In a recent paper on predictive elici-
tation, Hartmann et al. (2020) divided the observable space
into several exhaustive andmutually exclusive categories and
asked experts to assign probabilities that the next observation
falls into each of the categories, treating these probabilities as
uncertain. They assigned aDirichlet prior to these probability
judgments.

We follow a similar approach by using the quantile val-
ues provided by the expert to partition the outcome space.
We then characterize the uncertainty in the correspond-
ing cumulative probabilities using the Dirichlet distribution
(together referred to as the QDirichlet prior). Our method
of constructing a prior distribution for the simplex 	 shares
similarities with the approach adopted by Bürkner and Char-
pentier (2020) for modelling monotonic effects in ordinal
regression. The parameter vector of theDirichlet distribution,
in conjunction with the vector of elicited quantiles, serves as
hyper-parameters for the proposed QDirichlet prior, which
captures the uncertainty in the parameters of the quantile-
parameterized model.

4.2 The QDirichlet prior

Consider a size-nQPT {p, q}n , consisting of a vector of prob-
abilities p and a vector of quantile values q. Now, consider
an extended vector of probabilities b = {0, p, 1} of size
n + 2, containing the vector p. Additionally, consider a for-
ward difference 	 = {	1 . . . 	n+1}, where 	i = bi+1 − bi ,
i = 1, 2, . . . (n + 1), which is a simplex of size n + 1. The
simplex 	 is properly ordered iif it is based on the properly
ordered vector b, and consequently, also p.

To transform the simplex 	 back into the vector of prob-
abilities p, the cumulative sum 
n

1() can be used, so that

p = 
n
1(	) : p j = ∑ j

i=1 	i , j ∈ (1 . . . n), assuming
the simplex 	 is properly ordered. If, for any reason, the
simplex 	 can no longer be considered properly ordered,
we can use an index vector of distinct values, denoted as
I = {I1 . . . .In} : I j = {1, 2, . . . n}, j = {1, 2, . . . n},
∃!I j = Ii , j �= i . This index vector can be used to restore
the proper order before accumulating the simplex 	 into the
probability vector p.

To express prior uncertainty in the simplex 	, we can
use the Dirichlet distribution (Johnson et al. 1997) with a
hyperparameter vector α of size n + 1, conditional upon the
specified quantile values q. We refer to this particular variant
of the Dirichlet prior as theQDirichlet prior, as its parameter
vector α is specified in relation to the fixed quantile values
q.

4.3 Themetalog likelihood

We adopt the notation for quantile-based likelihoods intro-
duced in Perepolkin et al. (2023a), where u

x� . . . should be
read as “the depths u corresponding to the random variable
x inversely distributed as …”. Consequently, QDirichlet-
Metalog model can be expressed as follows:

u
x� Metalog(p, q)

	 ∼ Dirichlet(α|q);
p = 
n

1(	);
(4)

where 	 is a simplex of size n + 1, 
n
1() is the cumulative

sum operator, p is a size-n vector of cumulative probabilities
and q is the corresponding size-n vector of quantiles. Fur-
thermore, u is the depth corresponding to the observable x
given the parameterizing QPT {p, q}. The depths u can be
computed (typically numerically) by inverting the quantile

function Q̂−1(x |p, q). Themetalog quantile function is indi-
rectly parameterized by the QPT {p, q}n through the vector
of metalog coefficients a, determined by the matrix Equation
(3).

In Model (4), the prior is represented by the Dirichlet dis-
tribution with hyperparameter α specifying the uncertainty
in the cumulative probabilities and a vector q representing
the quantile values corresponding to the sampled cumula-
tive probabilities (QDirichlet prior). The metalog (quantile-
based) likelihood parameterized by the QPT {p, q}n relies
on depths u which can be estimated using the numerical
inverse of the metalog quantile function (Perepolkin et al.
2023a).
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4.4 Eliciting Dirichlet distribution

Elfadaly and Garthwaite (2013) describe a method for infer-
ring the parameter vectors of the Dirichlet and Generalized
Dirichlet (Connor–Mosimann) distributions from the condi-
tional univariate beta distributions. In this method, the expert
assesses the quartiles of the probability for each category
using the elicitation of the symmetric percentile triplet (SPT)
as follows:

1. The expert assesses the probability quartiles for the first
category p1.

2. The expert is then asked to assume that the median value
they provided in the assessment of p1, is in fact the correct
probability (true value) for the first category.

3. Next, the expert proceeds to assess the SPT for the
next category, conditional upon the previous assessment,
denoted as p2|p1.

4. The three quartiles of p2|p1 are divided by 1 − p1 to
normalize them, i.e. p∗

2 |p1.
5. The hyperparameters of the beta distribution representing

p∗
2 |p1 are the determined.

6. Steps 3–5 are repeated for all categories, except the last
one.

Elfadaly and Garthwaite (2013) also propose an improve-
ment to Pratt et al. (1995)’s method of fitting the beta
distribution to the elicited conditional SPTs based on the
normal approximation described in Patel and Read (1996).
The α and β parameters of the conditional beta-distributions
are then normalized and the hyperparameter vector α =
{α1 . . . αn+1} is estimated.

The elicitation method proposed by Elfadaly and Garth-
waite (2013) can be applied to assess the uncertainty in the
cumulative probabilities that parametrize the metalog likeli-
hood. If elicitation starts with the left tail of the distribution,
the first category will coincide with the first cumulative prob-
ability p1 in the parameter vector p. Subsequent (higher)
cumulative probabilities will always be conditional upon and
include the median value of the lower probability. If the elic-
itation is performed out of order, which might be expedient
to avoid anchoring effects (Spetzler and Staël Von Holstein
1975; Abbas et al. 2008), the integer index vector I of the
same size can be provided alongwith the results of the assess-
ment to restore the proper ordering of the simplex 	 after
sampling and before its accumulation into the vector of prob-
abilities p.

Note that the parameter vector p in the model (4) is not
independent: it is paired with the vector of fixed quantile
values q. There are several approaches to specifying the
hyperparameter vector q.

• Predictive distribution. The vector q could be coming
from the characterization of the prior predictive distribu-
tion. In this scenario, we could ask the expert to specify
their uncertainty regarding the next observation using
standard predictive elicitation techniques described in
Morgan et al. (1990) or Spetzler and Staël Von Hol-
stein (1975). Predictive elicitation results in the QPT
{p∗, q∗}n , of which vector q∗ can be adopted as the true
values of q, while the vector of cumulative probabilities
p∗ can serve as the initial values for the MCMC/HMC
algorithm.

• Hypothetical sample. Alternatively, the vector q could
be viewed as a representative sample from the predictive
distribution. Randomly sampling the predictive distri-
bution has the advantage that the values closer to the
distribution’s mode are more likely. However, if the sam-
pled values ofq are too closely spaced, fitting theMetalog
to the QPT {p, q}n within the MCMC loop may become
challenging.

The primary goal of eliciting the vector q is to position
the prior on the data (x) scale and provide a reasonable base-
line for the follow up elicitation. In fact, the hyperparameter
vector q specifies the location of the QDirichlet prior, while
the hyperparameter vector α is responsible for defining its
shape.

5 Applications

In this section, we provide an example of hybrid elicitation
for parameterizing the QDirichlet prior to describe the uncer-
tainty in the {p, q}n parameters of the proper metalog.

5.1 Steelhead trout weights

We take a sample of 100 observations from the records
of steelhead trout weights captured and released in Babine
River, Canada, spanning the years of 2006-2014 (Fig. 2).
The dataset has been published by Keelin (2016) and is also
included in the rmetalog (Faber and Jung 2021) package,
which is accessible on CRAN.

Our goal is to elicit prior beliefs regarding the distribution
of fish weights from a hypothetical expert and subsequently
update those beliefs in light of the sampled data. Sections5.2
and 5.3 outline the elicitation process and provide details on
the required diagnostics for prior specification and posterior
inference.
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Fig. 2 Summary of the sample from the steelhead trout dataset

Table 1 Quantile-probability pairs for the predictive distribution of fish
weights

Cumulative probability, p* Weight in lbs, q*

0.1 4

0.5 9

0.9 17

5.2 Specifying location of the prior

The hybrid elicitation involves of two phases: the elicitation
of quantile values q and the elicitation of uncertainty in the
associated cumulative probabilities (i.e. potential vectors of
p that could correspond to the specified q).

Imagine conducting an interview with an experienced fly-
fisherman to gather information about steelhead troutweights
inCanadian rivers.Webeginwith the elicitation of the predic-
tive QPT using the probability-value (PV) method (Spetzler
and Staël Von Holstein 1975; Abbas et al. 2008). After
guiding the expert through essential preparatory steps (moti-
vating, structuring, conditioning, encoding and verification),
we elicit the following predictive QPT {p∗, q∗}3 (Table 1).

Physical weight can be represented by non-negative val-
ues, suggesting the use of a distribution bounded on the left.
To model this, we employ a semi-bounded log-metalog for
the predictiveQPTvalues (Fig. 3). Notably, the three cumula-
tive probabilities p∗ provided by the expert divide the y-axis
of the CDF into four distinct bands (highlighted by different
colors in Fig. 3). These bands can be seen as categories into
which a weight of a randomly drawn fish could fall on the
empirical CDF curve. Similar to the approach taken in Hart-
mann et al. (2020), we use the elicited quantile values q∗ to
partition the outcome space into the exhaustive and mutually
exclusive categories. The widths of the bands correspond to
the increments in cumulative probabilities provided by the

Fig. 3 Probability bands corresponding to the four fish size categories

Table 2 SPT for the count of the small fish (less than 4 lbs)

Cumulative probability Fish count

Small fish 0.25 70

0.50 90

0.75 120

All fish counts are out of the sample of 1000

expert, as represented by the simplex 	 in the model (Equa-
tion (4)).

In the second step of the hybrid elicitation we elicit uncer-
tainty regarding these probability band widths 	, using the
values q as reference points to delineate the categories to
which the random variate pi ∈ p, i = {1, 2, . . . n} would
be associated.

5.3 Hybrid elicitation of the QDirichlet prior

The predictive QPT {p∗, q∗}n we elicited earlier does
not inherently incorporate uncertainty (except for potential
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Fig. 4 Conditional beta distribution fitted to the quartiles provided by the expert

imprecision or inconsistencies in the expert’s expression of
belief). During this phase, we ask the expert to consider
uncertainties surrounding their quantile assessments, aiming
to distinguish aleatory from epistemic uncertainties (Knight
1921). A possible drawback of commencing with predictive
elicitation, as we did above, is that the specified vector p∗
might anchor the expert’s belief to these values, potentially
affecting the range of probabilities that the expertwould asso-
ciate with the vector q. The expert might be inclined to allow
only a small and likely symmetrical variation around the ini-
tially specified p∗ values, hesitating to revise their judgments.
On the other hand, the specified p∗ values can serve as a
starting point for discussion with the expert, validating their
beliefs, and deliberately challenging the expert to reassess
them.

The term “aleatory” signals the use of the sampling frame,
prompting us to shift from assessing the properties of popula-
tion to the evaluating the properties of an imaginary sample.
In this elicitation phase, we transform the cumulative prob-
abilities into natural frequencies (Gigerenzer 2011), treating
the values of pi ∈ p, i = {1, 2, . . . n} as proportions within
a hypothetical large sample.

Recall that the expert has supplied us with a predic-
tive QPT {p∗, q∗}3, where p∗ = {0.1, 0.5, 0.9} and q∗ =
{4, 9, 17} (Table 1).

Interviewer:
Consider a large sample of steelhead trout caught in
British Columbia over the past few years, let’s say
1000 fish. Based on your assessment, it’s expected that
around 100 fish would weigh less than 4 lbs.

The elicited predictive QPT is interpolated with a log-
metalog and presented in Fig. 3. Considering the sampling
frame, the curve we’ve drawn through the three points pro-
vided by the expert is just one of numerous empirical CDF
curves that could be constructed given the inherent sampling
uncertainty.

Table 3 Conditional SPTs for the counts of the fish in the 1000 fish
sample

Category∗ P25 P50 P75

1 Small fish 0.07 0.090 0.12

2 Medium fish 0.34 0.410 0.50

4 Huge fish 0.05 0.075 0.15

∗Small fish is under 4 lbs, Medium fish is 4–9 lbs, Huge fish is over 17
lbs

Table 4 Dirichlet parameter
vector

Category a

1 Small fish 3.77

2 Medium fish 12.86

4 Huge fish 2.70

3 Large fish 10.72

Table 5 Connor–Mosimann
parameter vectors

Category a b

1 Small fish 5.87 55.24

2 Medium fish 6.77 8.01

4 Huge fish 1.32 5.25

We proceed with the elicitation by asking the expert to
contemplate the fish weight cutoff of 4 lbs.

Interviewer:
Let’s delve into this hypothetical sample of 1000 fish.
According to your assessment, there should be approx-
imately 100 fish weighing less than 4 lbs. We will
interpret this assessment as you believing that there’s
about equal chance that the actual number of “small”
fish (weighing less than 4 lbs) in this sample is either
above or below 100. In essence, we interpret it as the
median assessment. Would you like to reconsider this
value?
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Fig. 5 Prior predictive check for Dirichlet distribution

At this stage, the expert may choose to adjust their assess-
ment of the median. Once the median value of the first
category is confirmed, we can proceed with the elicitation of
the range around it. We follow the conventional fixed proba-
bility encodingmethod (Abbas et al. 2008; Spetzler and Staël
Von Holstein 1975) asking the expert about the range of fish
counts in the sample (which actually represent cumulative
probabilities) corresponding to the quartiles or the 10th/90th
percentile.

Suppose, the expert has furnished us with the revised
median and the 50% Interquartile Range (IQR) around the
initially assessed probability p∗

1 = 0.1 for the count of
“small” fish in the hypothetical sample of 1000, as summa-
rized in Table 2.

From this information, we can promptly deduce the uncer-
tainty in the “width” of our first bin. It is now characterized
by a symmetric percentile triplet {0.07, 0.09, and 0.12} with
α = p1 = 1 − p3 = 0.25. Employing this SPT, we can fit
the beta distribution (Fig. 4) using the method proposed in
Elfadaly and Garthwaite (2013).

We then proceed to with the conditional elicitation of
probabilities for the remaining fish weight categories and

uncertainties associatedwith them, conditional on themedian
values of the previously elicited categories. During this
phase, we ask the expert:

Interviewer:
Let’s assume that in the sample of 1000 fish, precisely
90 were found to be small (weighing less than 4 lbs).
What would be your estimate of the number of fish that
would fall within the weight range of 4 to 9 lbs in such
a sample?

In this question, we are soliciting the expert’s input for
a conditional probability distribution. Therefore, we do not
hold the expert accountable for their previous assessment,
where they implied that approximately half of the population
would weigh 9 lbs or less (as suggested by the cumulative
probability of 0.5).Weanticipate that themedian countwould
be close to 500 fish, but not necessarily an exact match. Our
aim is to elicit the count of fish weighing between 4 and
9 lbs. However, if the expert prefers to provide us with the
count corresponding to the “exceedance probability” (i.e.,
for 2 categories combined), we should subtract the median
count of the first category, which is 90.
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Fig. 6 Prior predictive check for Connor–Mosimann distribution

For a total of N groups, we should only need to conduct
N − 1 elicitations (a total of 3 elicitation of triplets in our
case). It might be convenient to elicit the top quantile (repre-
senting the upper tail of the CDF) as 1−∑3

i=1 pi ) and leave
the quantiles for the “Large fish” category (fish weighing
between 9 and 17 lbs) to be calculated from the remaining
information.

Let’s assume that, after eliciting the three conditional SPTs
and converting the hypothetical sample counts to probabil-
ities, we obtain the following assessments (Table 3). Note,
that the assessments for the category 3 Large fish are missing
from the table. They are implied (and will be inferred from)
the rest of the data.

5.4 Fitting Dirichlet and Connor–Mosimann
distributions

We can utilize the elicited conditional SPTs to derive param-
eter vectors for the Dirichlet (Table 4) or Connor–Mosimann
(Table 5) distributions following the process in Elfadaly and
Garthwaite (2013). The algorithm for transforming the con-

ditional SPTs into parameter vector(s) is implemented in the
qpd R package (Perepolkin 2019).

TheDirichlet distribution defines a strong negative depen-
dence between the elements of the simplex 	, meaning that
an increase in the probability of one element necessarily
decreases the probability of every other element (Balakrish-
nan 2014). The Connor–Mosimann distribution relaxes this
assumption of a strong negative correlation between the cat-
egories, allowing for amore flexible encoding of dependence
between the quantiles (Wilson 2017).

5.5 Prior predictive check

Prior predictive checks are crucial for providing the expert
with feedback on the elicited values and diagnosing potential
issues (Gabry et al. 2019). Since uncertainties in the quantile
probabilities were elicited as conditional probabilities, it is
important to show to the expert the impact of the provided
probability ranges on the overall multivariate distribution.
This can be accomplished, for example, usingmarginal plots.
We can draw samples from the Dirichlet distribution (Fig. 5)
or the Connor–Mosimann distribution (Fig. 6) and present

123



Statistics and Computing (2024) 34 :11 Page 11 of 15 11

Fig. 7 Summary of the posterior draws for 	 simplex

the expert with an overview of the parameter distribution in
the same format that will be used for the posterior predictive
check (Fig. 8 in Sect. 6).

6 MCMC implementation

To sample from the posterior distribution of 	,we employed
the Hamiltonian Monte Carlo (HMC) algorithm in Stan,
interfaced via the cmdstanr package (Gabry and Češnovar
2022) in R. An alternative implementation using the Robust
Adaptive Metropolis algorithm by Vihola (2012), imple-
mented in the fmcmc package (Vega Yon and Marjoram
2019), is provided in the Supplemental Materials

We validated the QDirichlet-Metalog model using the
Simulation-Based Calibration algorithm (Cook et al. 2006;
Modrák et al. 2022; Talts et al. 2020). As evident from the
diagnostic plots in the Supplemental Materials Appendix C,
the parameter 	 is successfully recovered for all widths of
the posterior credible interval.

We have also performed Simulation-Based Calibration
for the model with QCM (Generalized Dirichlet) prior. The
diagnostic plots also indicate the successful recovery of the
parameter vector for all widths of the posterior credible inter-
val.

To fit the QDirichlet-Metalog model, we used 2500 post-
warmup iterations and 4 chains. The posterior distribution of
the parameter	 is presented in Table 6 and Fig. 7. The results
reveal a significant reduction in the uncertainty regarding the
cumulative probabilities corresponding to the quantile values
of 4, 9, and 17 lbs. Specifically, the lowest value 4 lbs corre-
sponds to a cumulative probability range of 0.03−0.09, while
the upper value 17 lbs corresponds to a range of 0.89−0.96,
both representing 90% credible intervals.

Additionally, the posterior predictive check demonstrates
a reduction in uncertainty regarding the parameter 	. Com-
pare the posterior predictive check in Fig. 8) with the prior
predictive checks shown in Figs. 5 and 6.

7 Discussion

Over the last two decades, several probability distributions
with interpretable parameters defined on the same scale as
observable quantities were proposed (Myerson 2005; Keelin
and Powley 2011; Hadlock and Bickel 2017). The primary
goal of research into quantile-parameterized distributions is
to simplify the elicitation process and make it more accessi-
ble for experts. In our proposed hybrid elicitation framework,
tailored specifically for models with quantile-parameterized
likelihoods, experts are encouraged to adopt a sampling
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Fig. 8 Posterior predictive check for the QDirichlet-Metalog model

frame.This replaces the challenging taskof expressinguncer-
tainty about cumulative probabilities with a simpler task of
expressing uncertainty about natural frequencies in a hypo-
thetical sample (Gigerenzer 2011; Hoffrage et al. 2002,
2015).

The elicitation method for Dirichlet distribution proposed
by Elfadaly and Garthwaite (2013) asks the expert to assume
that the median of the previously assessed category pi−1

is, in fact, the true value of the probability for the category
i − 1. It then proceeds to elicit the value pi for the next
category i , conditional on this assessment. We believe that
such conditioning can be made simpler if one adopts the
natural frequency framework. Inputs elicited from the expert
in the natural frequency frame can be easily validated through
simulation, providing the expert with immediate feedback on
the implications of their judgments for the model.

In Bayesian analysis, we see quantile-parameterized and
parametric likelihoods as complementary. Initiating a model
with a likelihood expressed by a quantile-parameterized dis-
tribution can be advantageous when only QPT judgments
from experts are available, no specific choice for a parametric
distribution is evident, and data is limited. As data becomes
more abundant and our understanding of the data-generating

Table 6 Posterior sample summary for the simplex 	

Category Mean Median q5 q95 rhat

Small 0.0552 0.0536 0.0306 0.0862 1.000

Medium 0.4328 0.4318 0.3763 0.4927 1.000

Huge 0.0724 0.0703 0.0427 0.1093 1.001

Large 0.4396 0.4398 0.3803 0.4986 1.000

process improves, a transition to a parametric likelihood can
be justified.

TheQDirichlet-Metalogmodel described in this paper can
be applied in conjunction with a predictive approach to elic-
itation (Kadane 1980). Assuming that the only information
elicited from the expert is the predictive QPT {p, q}n , the
quantiles q vector can be combined with a uniform Dirich-
let prior, allowing the data alone to define the posterior for
the simplex 	. Given that the Dirichlet distribution is a gen-
eralization of the Beta distribution to higher dimensions, a
weakly informative prior can be specified with a unit vector,
i.e. Dirichlet(1, 1, . . . 1). We discuss inference using weakly
informative priors in Appendix B in SupplementalMaterials.

123



Statistics and Computing (2024) 34 :11 Page 13 of 15 11

Fig. 9 Prior elicitation hypercube

Parametric elicitation aims to describe the epistemic
uncertainty contained in the parameters of the model with
the help of experts. On the other hand, predictive elicitation
aims to describe the uncertainty in the next observationwith-
out distinguishing between the randomness in the model and
the lack of knowledge about the model parameters.

Mikkola et al. (2023) proposed the prior elicitation
hypercube with 7 dimensions related to the elicitation of
prior distributions (Fig. 9). Following this classification, the
proposed hybrid elicitation falls under the category of a
univariate, parametric, prior-specific (D1), model-specific
(D2) elicitation method, conducted in the observable space
(D3). Hybrid elicitation leverages the approach proposed
by Elfadaly and Garthwaite (2013) to derive the parame-
ter vector(s) of the (Generalized) Dirichlet distribution (D4).
This process relies on the simple arithmetic computations
(D5) to transform the parameters of the conditional marginal
beta distributions into the (Generalized) Dirichlet parameter
vector(s). Furthermore, hybrid elicitation adopts an active,
iterative elicitation approach (D6), requiring minal assump-
tions about the expert’s familiarity with statistical concepts,
such a detailed understanding of the underlying generative
model (D7).

Hybrid elicitation begins by describing the next observa-
tion, but subsequently shifts to characterizing the uncertainty
inherent in the predictive assessment itself. This is achieved
by describing a hypothetical sample from the target popu-
lation corresponding to the cumulative probabilities. These
probabilities, in conjunction with a set of quantile val-
ues, serve as parameters within the quantile-parameterized
model. Hybrid elicitation, similar to predictive elicitation,
deals with observable quantities. However, like parametric
(structural) elicitation, it ultimately results in characterizing
the uncertainty in themodel parameters. Thus, hybrid elicita-
tion can be seen as an observation-level parametric elicitation
specifically designed for for quantile-parameterized models.

Supplemental materials
Supplemental materials contain the R and Stan code for all
examples used in the article. Appendix A includes the details
of metalog distribution. Appendix B provides the details of
theQDirichlet-metalogmodelwithweakly informative prior.
Appendix C includes the results of Simulation-Based Cali-
bration for both models discussed in the paper.
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tary material available at https://doi.org/10.1007/s11222-023-10325-
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