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Abstract. Recent work by public health experts suggests that incorporating human behavior
is crucial in faithfully modeling an epidemic. We present a reaction-diffusion partial differential
equation SIR-type population model for an epidemic including behavioral concerns. In our model,
the disease spreads via mass action, as is customary in compartmental models. However, drawing
from social contagion theory, we assume that as the disease spreads and prevention measures are
enacted, noncompliance with prevention measures also spreads throughout the population. We prove
global existence of classical solutions of our model, and then perform Ro-type analysis and determine
asymptotic behavior of the model in different parameter regimes. Finally, we simulate the model
and discuss the new facets which distinguish our model from basic SIR-type models.
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1. Introduction. In the early days of the COVID-19 pandemic, many nations
implemented intervention methods in an attempt to slow the spread of the disease.
In the absence of vaccines, some common intervention strategies are mandated social-
distancing, mask wearing, and self-quarantine. However, studies by public health
experts suggest that nontrivial portions of the population may not comply with pre-
vention measures like these, and that this noncompliance affects the spread of the
disease [36, 20, 13, 7, 27]. Accordingly, there has been recent interest in incorporating
human behavior and noncompliance with governmental interventions into mathemat-
ical models of epidemiology [8, 28, 12, 16, 33].

Social contagion theory hypothesizes that behaviors, attitudes, sentiments, and
mental states can spread within social groups analogously to the manner in which
a disease spreads [14, 9, 21]. Among other things, social contagion theory has been
used to model adolescent sexual behavior [32], illicit drug use [1], depression [11, 4],
and violent crime [23].

Motivated by social contagion theory, the authors of [8] present a SIR-type or-
dinary differential equation model for epidemics wherein governmental protocols are
enacted, but noncompliant behavior evolves as a parallel disease at the same time as
the actual disease. In this paper, we propose a similar model using reaction-diffusion
partial differential equations. Several authors have analyzed diffusive extensions of
basic ordinary differential equation epidemic models [37, 15, 22, 6, 10]. However, TO
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the authors’ knowledge, none of these have attempted to incorporate human behav-
ioral effects.

A basic reaction-diffusion epidemic model considers three subpopulations: the
susceptible population (5), the infected or infectious population (I), and the recovered
or removed population (R). The populations evolve in an open, bounded, connected
domain Q C R™ with Lipschitz boundary (typically n = 2, though this is not usually
important for the analysis). We assume a constant birth rate b € C(Q) into the
susceptible population, and that deaths occur proportional to population sizes with
rate § > 0. Finally, if populations diffuse at constant rates dg,d;,dg > 0 and infection
spreads via a nonlinear mass-action term, we arrive at a simple reaction-diffusion
epidemic model:

(9, — dsA)S = b(x) — BSI — 58,
(1.1) (9, — d;A) = BSI — (y+8)I,  (x,t) €Q x (0,00),
(9, — drA)R=~I — 6R,

where 8 > 0 is the infection rate and v > 0 is the recovery rate. This is typically
accompanied by zero-flux boundary conditions

(1.2) VS -n=VI-n=VR-n=0 for (z,t) € 90 x (0,00),

and nonnegative initial conditions S(-,0) = Sp, I(-,0) = Iy, R(-,0) = Ro, where Sy, Iy,
Ry € C(ﬁ)

We append (1.1) by assuming prevention measures have been implemented to slow
the spread of the disease, and including populations S*, I*, R* consisting of those who
do not comply with the measures. Henceforth, the asterisk will denote noncompliance
with prevention measures, while populations S, I, R with no asterisk denote compliant
populations. In particular, we let N* = S5* + I* + R* denote the total noncompliant
population. Among compliant populations, we reduce the infectivity by a factor of
a € [0,1]. Again, infection spreads via nonlinear mass-action terms, but to account
for the reduction in infectivity, in any such terms, S and I are replaced with (1 —«)S
and (1 — a1, respectively. Treating noncompliance as a social contagion, we include
additional mass-action terms which facilitate transfer from compliant to noncompliant
behavior with “infectivity” rate p > 0. Likewise, we assume noncompliant populations
become compliant proportional to the sizes of the populations with rate v > 0. With
these assumptions, we propose the model

(0 —dsA)S=¢b(x) — B(1—a)S(1—a) I+ T*) — pSN* +vS* =4S,
(O —diAN)I=1-a)S(1—a)[+TI")—~] — pIN* +vI* —0I,
(0 —drA)R=~I — uRN* +vR* — }R,
(O —dg+A)S* = (1 - &b(z) — BS* (1 — )] + I*) + uSN* —vS* — §5%,
(O —dp- A" =pS*" (1 =) +I") =~yI" + pIN* —vI* — 01",
(O —dp=A)R* =~I" + uRN* —vR* — 0R",

(1.3)

where, to reiterate, N* = §* + I + R* is the total noncompliant population. One
final parameter is € € [0, 1]: the portion of the newly introduced susceptible population
which is compliant. For several of the results below, we will be interested in the cases
& =1 or & =0 so that alternately everyone is born compliant or everyone is born
noncompliant. As with the basic model, we consider zero-flux boundary conditions
and continuous initial data. This paper is devoted to analysis of (1.3) in different

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/09/24 to 128.196.226.62 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

REACTION-DIFFUSION SIR MODEL WITH NONCOMPLIANCE 1971

parameter regimes. To contextualize the analysis, we briefly mention results regarding
(1.1).

The rest of the paper is organized as follows. In section 2, we introduce prelim-
inaries and notation. In section 3, we state our main results on the global existence
of solutions. In section 4, we investigate the basic reproduction number Ry and its
relation to asymptotic behavior of the model. In section 5, we present and discuss
some simulations of the model. We conclude with a brief discussion of our results and
avenues for future work in section 6.

2. Preliminaries. In this section, we prove some basic results and establish
some lemmas that will be useful moving forward.

Under the assumptions listed above (specifically, Q is open, bounded, connected
with Lipschitz boundary, and zero-flux boundary conditions), one easily establishes
bounds on the total population as long as classical solutions exist. Indeed, for (1.1)
we define

(2.1) Neowal(t) = / (S(2,8) + I(2,8) + R(x,1))dz,
Q
or for (1.3) we define
(2.2) N () = / (S(2,t) + I, £) + Rz, £) + S (2,8) + I (2,1) + B, 1)),
Q

In either case, one checks that

t/otal(t) = ||b||L1(Q) - 5Ntotal(t);
whereupon

(2.3) Niotal (t) < Ntotal(o)e_ét + HZ)HL%, t>0.

As we will see shortly, given nonnegative initial conditions, the populations remain
nonnegative as long as they exist, so this establishes a bound on the total population:
the L'-norm of the sum of all compartments. This will be useful in section 4.2.
However, to establish global existence, we need stronger L bounds.

Supposing that initial profiles are continuous, local existence and continuity of
solutions to (1.1) and (1.3) follow since the nonlinearities are locally Lipschitz [35,
Theorem 11.12]. We use some lemmas to prove that as long as solutions exist and
remain nonnegative, they remain bounded. This is sufficient for global existence (see,
for example, [29, Lemma 1.1]).

LEMMA 2.1. Suppose that d >0 and u € C([0,T]; C%(Q) N C(Q)) satisfies

Opu — dAu = f(z,t,u) >0, (z,t)€Qx[0,T],

(24) u(z,0) = up(z) >0, €,

along with the zero-flux boundary condition. Then u(xz,t) >0 for all (z,t) € Q2 x[0,T).

Proof. This lemma follows directly from the comparison principle since the zero
function is a subsolution. 0
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LEMMA 2.2. Suppose that u € C([0,T];C*(Q)NC(Y)) satisfies
2.5) Ou— dAu < f(z,t), (z,t)€Qx[0,T],
u(z,0) =up(x), =€
Then for any t >0,

t
[u(®)l[oc < lluoll +/0 1/ (s)llocds,
where ||u(t)]|co = sup,cq |u(z,t)].

Proof. Define v(z,t) = |Jug|loo + fot I f(s)]|oods — u(zx,t). Then

vy — dAV = || f(t)]|oo — (ur — dAu) >0

and v(x,0) = |Jugl|co — uo(z) > 0 so applying Lemma 2.1 implies that v is nonnegative
and the claim follows. |

With these alone, we can establish global-in-time existence for (1.1). This is a
classical result. We repeat the proof because it is quite short and provides contrast
for the relative difficulty in proving global existence for (1.3).

The basic outline of the argument is as follows. Let T be the supremum of
all 7 > 0 such that classical solutions to (1.1) exist on [0,7). First, note that since
the initial data Sy, Iy, Ry are nonnegative functions, the solutions remain nonnegative
as long as they exist. This follows by quasi-positivity of the right-hand side and a
comparison principle as in [18, Theorem 11, p. 29]. Thus by [29, Lemma 1.1], to prove
global existence (i.e., to prove that T* = +00), it suffices to prove that if T* < oo,
then [|S()]loos 1 (E)]|oos || R()|loc are bounded in [0,7*). We prove this in the next
theorem.

THEOREM 2.3. Suppose that S(-,t),I(-,t), R(-,t) are a classical solution of (1.1)
on [0,T*) with nonnegative initial data So, Iy, Ro € L*°(QY). If T* is finite, then there
exists a constant M >0 (depending on T™* ) such that ||S(t)]lcos [|[1()||cos | R(t)[|co < M
forte[0,T7).

Proof. As stated above, the solution remains nonnegative as long as it exists. In
particular, this means that

(0 — dsA)S < b(z),
whereupon Lemma 2.2 immediately yields

1S@ o < [[Solloc + T(Ibl| > (0) := Ms, t€[0,T7).

Next, using an integrating factor in the I equation, we have

(€0 — dy A (€T = BS(OH) < BM (0O,
Thus by Lemma 2.2,

t
VNI ]|oo < Holloo + 5Ms/ 0% 1(s) ]| sods.
0
By Gronwall’s inequality, we conclude that

YT < olle™ = [Tl < Iolle?™sT = My, t€[0,T7).
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Finally,

(0 —drA)R=~I <yM;

so Lemma 2 gives
t
[R()]loe < [ Rolloo +/ YMiyds < || Rolleo + yMT" := Mp, t€[0,77).
0

Thus the theorem holds with M = max{Mg, M;, Mg}. d

With this, we commence with the analysis of (1.3), with the goal of establishing
global-in-time existence and long time asymptotic behavior in the ensuing sections.

3. Global existence. In this section we establish global existence for (1.3). To
reiterate some of the discussion above, since each piece of initial data is nonnegative
and continuous, local existence follows since the nonlinearity is locally Lipschitz. Note
that the nonlinearity is still quasi-positive, so nonnegativity is preserved as long as
solutions exist. Equation (2.3) also establishes a bound on total population that holds
for (1.3).

With these notes, the proof of global existence for (1.3) is much simpler if the
diffusion coefficients do not depend on compliant /noncompliant status. In this case,
we can easily adapt the proof of Theorem 2.3.

THEOREM 3.1. Suppose that S(-,t),I(-,t),R(-,t),S*(-,t), I*(-,t), R*(-,t) are clas-
sical solutions of (1.3) on [0,T™*) with nonnegative initial data Sy, Iy, Ro, S, I, Ry €
L (Q) and that ds =dg+, dy =dj~, and dgr =dg~. If T* is finite, then there exists a
constant M >0 (depending on T™) such that

IS@ oo ITE oo BB oos 157 () [oos 17 (#)lloos [12* () loo < M
forte[0,T7).

Proof. Since dx = dx- for X € {S,I, R}, we drop the asterisk in the diffusion
coefficients. Since nonnegativity is preserved, we have

0<8,5"<S+S5" 0<I,L["<I+I", 0<R,R*<R+ R".
Thus it suffices to prove that
Y=85+8% ®&=I+I", T=R+R"

remain bounded. Since the diffusion coefficients are the same, we can add the first
and fourth equations of (1.3) to see that

(0 —dsA)E =b(z) — (1 —a)S+ S*) (1 —a) I+ I*) — 06X < b(z) — 0%.
Using an integrating factor, we have
(9 — dsA)('S) < b(a)e’
so by Lemma 2.2,

t
S * b o0
9Ol < ol + [ Wl < ol + 15511 + 4 (e~ 1)

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/09/24 to 128.196.226.62 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1974 CHRISTIAN PARKINSON AND WEINAN WANG

and thus

IS0l < o0l -+ 155 e + 102 (1 &0 < 1Sl -+ 15 e + 102 = sy,

This provides a bound for ¥ which is actually independent of 7. Next, adding the
second and fifth equations of (1.3), we have

(0 —d;A)® = B((1 —a)S + S (1 — )]+ I*) —y® — 5
<BED — (v+4)®
< (BMs — (y+0))®.

This leads to
(0 — dIA)(q)e((eré)—BMz)t) <0
so by Lemma 2.2,
lOFD=PMR (1) | oo < [|Bolloo < [Holloo + (145 [loo
and thus
12()loo < (Holloo + 115 | oo Jmax{L, e PME= DTy - Mg,
Finally, adding the third and sixth equations in (1.3), we have
(0 —drA)YT =P — 6T
and so
(0 — drA)(Ye’) = y®e® < yMgedt,

which yields

t
" M.
()0 < [ olloo +7 Mo / s < [ Rollo + IR loe + 252 (e ~ 1),
0
whereupon
* A/M'i>
||T(t)||oo§HROHOO"‘”RoHOO‘F 5 = M.

This proves the theorem with M = max{ My, Mg, My }. 0

We include the above result only to emphasize that in certain cases, the behavior
of the actual epidemic described by (1.3) should be somewhat akin to that of (1.1),
under the association (3, ®,T) > (S,I, R) in the respective models. In the case that
all diffusion coefficients are different, we can still achieve global existence, though the
proof is no longer nearly so elementary, since we can no longer simply add equations
to eliminate the second mass-action nonlinearity which describes transmission of non-
compliance. In order to establish global existence with arbitrary positive diffusion
coefficients, we first prove two more lemmas, the first of which is an L? version of
Lemma 2.2.
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LEMMA 3.2. Fiz f : Q x [0,T] — R and suppose that v : Q x [0,T] = R is a
solution of

(3.1) (0, — dAyv=f

for (x,t) € Qx (0,T] with initial data v(-,0) =vg € L=(Q) and %”n =0 0on 00N x[0,T].
Then for any p € (1,00) and t € (0,7,

t
[o@)llr @) < llvollLr () +/0 1 (T Le () dr.

Proof. This is proven with elementary a priori bounds. We multiply the equation
by p \v\piz v, integrate in space, and use Hélder’s inequality to see

62) [ @)~ ool vav)de =p [ o ofde <ol 17O (o)

where ¢ is the dual exponent of p. On the left-hand side, we integrate by parts in the
latter term (and use the zero-flux boundary condition) to see

/ — P2 vAvdz = (p — 1)/ IVol? 0P~ da > 0.
) Q
Thus putting G(t) = ||v(t)|\ip(m, (3.2) reads

G'(6) <plf W)l GV = G(O)"V9G (1) <p|lf(B) 1o )-

Integrating gives

1 _ B t
(G- GO < / LF () ooy dr,
q
and since 1 — % = %, we arrive at
t
||U(f)HLp(Q) < ||UO||LP(Q) +/0 ||f(T)||LP(Q)dT
as desired. 0

LEMMA 3.3. Suppose that v,w:Q x [0,T] — R are such that
(33) (6t — dA)U S clﬁtw + CQAU}

for (z,t) € 2 x (0,T] and that v,w have the same bounded initial data and each satisfy
a homogeneous Neumann boundary condition. Then for any p € (1,00), there is C >0
such that for all t € (0,T],

[0l e (@) < CA +[[wllLe,)),

where Qy =Q x [0,t), and C depends on the ambient parameters as well as the initial
data.

Remark. Lemma 3.3 is a key lemma for us. Roughly speaking, for a function
satisfying a reaction-diffusion equation, this lemma allows us to modify the diffusion
coeflicient while still maintaining L? control of the function.
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Proof. The proof is by duality. Fix p € (1,00) and ¢ € (0,T] and let ¢ be the dual
exponent to p. For any nonnegative g € C*°(£);), let ¢ be the nonnegative smooth
solution of

—(0y +dA)p=g

on Q x [0,t) with ¢(-,t) =0 and % =0 on 0f). It is classical from the theory of linear
parabolic equations (see [17, 19, 40]) that

104l La(a,) + 1Al Lage,) + sup [6(s)llLa() < CligllLq)$2e-
s€|0,t
Multiplying (3.3) by ¢ and integrating gives

/ v(—8t¢—dA¢)dxdt+—/¢Ovodx§/ w(—clatqﬁ—i—cQAgb)dmdt—i—cl/¢0w0dac,
Q T Q o Q

=9

where the boundary terms have vanished due to the homogeneous Neumann boundary
data, and we have used ¢(-,t) = 0. Since the initial data for v,w is the same, we
combine those terms to arrive at

/ vgdmdtf/ w(—018t¢+czA¢)da:dt—|—(c1—1)/¢ovodx.
Q Q¢ Q

Then applying Holder’s inequality gives

/Q vg dwdt‘ <Nwll (e, (e1ll8edllLaga,) + c2llAdl Laga,)) + Cllwoll Lo o) ldoll L1 (e

< C(1+H|wl Ly 2e) <Cl||at¢”Lq(Qt)+02”A¢|LLI(Qt)"" Sgép)] ¢>(S)|Lq(a)>
s€|0,t

<CA+Jwlle@)NgllLa@,)-

Since this holds for all g € C*°(Q), we conclude that

[0l 2 < O+ w1 ) $2)

as desired. 0

Using these lemmas, we first prove LP boundedness for the solution (5,1, R, S*,
I*,R*) of (1.3) as long as it exists. While this theorem does not establish global
existence, the bulk of the work toward proving global existence is in the proof of this
theorem.

THEOREM 3.4. Suppose that S, I, R,S*, 1", R* are classical solutions of (1.3) on
Q x [0,7%) with nonnegative initial data Sy, Sg, Lo, I3, Ro, Ry € C(Q) and let Q; =
Q x [0,¢t). If T* is finite, then for any p € (1,00), there is M > 0 such that for all
telo,T%),

151 e 0> Il o0y 1Rl Lo 0ys 1™ o (00)s 1 ¥ Lo (@05 1R Lo () < M.

Proof. Fix p € (1,00) and ¢ € [0,7*). In the course of the proof, we will invent
auxiliary functions zx for X € {S,I, R, S*,I*, R*}. For all such functions, we assume
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homogeneous initial data zx(-,0) =0 and zero-flux boundary data. Also C' will be a
positive constant that changes from line to line and depends on the data including T*.
Let zg be the solution of

(O — dgA)zg =Eb(z) + vS™.
Note that
(0 —dsA)(S—2z5)=—B(1—a)S((1 —a) I +T") — uSN* —65* <0
from which Lemma 3.2 yields
1S() = zs(O)llr) < 1Sollr) = [ISOllrr@) <CA+ lzs(t)lLr(@))-

Taking the pth power and integrating in time gives
(3.4) 18120y < OO+ 251200
Now let z; be the solution of

(0y —drA)zr =&b(x) + vS* + vI*.
Then

(0 —ds)S+ (O —dA)I — z1)=—p(SH+I)N* —~I —06(S+1) <0

so that

(8t — d[A)(I — Z]) S 7(at — dsA)S
Hence, applying Lemma 3.3, we have

1 = 21llLe(0,) < C(L+[IS]|L(p) <)
and thus (3.4) leads to
(3.5) ||I||IL),P(Qt) <C@+ ||ZS||I£p(Qt) + ||ZI||IL),P(Qt))'
Next, let zg be the solution of

(0y —drA)zp =&b(x) +vS* +vI*+vR".
Then
(0r —dsA)S+(0y —di A + (0 —drA)(R—zg) = —p(S+I+R)N*—§(S+I1+R) <0
and so
(0 —drA)(R— zg) < —(0r — dgA)S — (0 — drA)I.

From here, an obvious extension of Lemma 3.3 (to allow for multiple functions on the
right-hand side) yields

IR = zrllzr2) < COL+[1SLey Qe + 1L ) 2)-

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/09/24 to 128.196.226.62 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1978 CHRISTIAN PARKINSON AND WEINAN WANG

Then (3.4) and (3.5) lead to

(3.6) HR”LP(Q ) < cQ+ ||ZS||I[),p(Qt) + ||ZI||1[),p(Qt) + ||ZR||I[),p(Qt))'
Continuing, define zg+ to be the solution of

(875 — ds*A)ZS* = b(x) +vI*+vR*.

Then
(0 — ds) S+, — dyA)I + (9, — dpA)R + (9; — dg- A)(S* — zg+)
= —55*((1 — Q)+ 1) — (I + R)N* —5(S+1+R) <0.
Thus
(0 — dg-A)(S* — 25-) < —[(0 — dsA)S + (8, — d; A)I + (8, — drA)R],
whereupon

8% — 25+

o) SCA+ ISR + 11 Lp) 2 + 1 Rl L ) 2e)-

Equations (3.4)—(3.6) then give

(3.7) HS*Hip(Qt) <C(1+ ||ZS||1£p(Qt) + ||ZI||Z£p(Qt) + ||ZR||1[),P(Qt) + |25 IL),:D(Qt))'

Next we let zy« solve
(8t — d[* A)Z[* = b(.’L’) + VR*,
so that

(9 — dsA)S + (8 — d; AT 4 (8; — dRA)R + (9, — dg+ A)S* + (8, — dp- A)(I* — z1+)
=—pRN*—§(S+I+R+S"+1")<0.

Hence, applying Lemma 3.3 and (3.4)—(3.7), we arrive at

(3.8)
HI*” P(Q) < C(H‘HZS” )"‘HZIH]Zp(gt)"‘”ZRHip(Qt) + |25+ ||Z[),P(Qt) + ||z ||Z£P(Qt))'

Last, if zg« satisfies
(Or — dp~A)zgr- =b(),

then

(0 —dsA)S + (0y — drA) + (0, — drA)R
+ (at*ds* A)S*+(at7d]* A)I*+(6t*dR*A)(R**ZR*)
= —0(S+I+R+S*+I"*+R*) <0,

so that Lemma 3.3 and (3.4)—(3.8) lead to

1+||ZS||Z£p(ggt) + ||ZI||}£P(Qt) + ||ZRHip(Qt)
+ HZS*” ry) T ||ZI*||LP(Qt) +||2R- ip(g )

(39) IR [%uq, <C (
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Now we need to “close the loop” by establishing bounds on the auxiliary functions
zx in terms of our original functions. To do so, define

Z(t)= ||ZS||Lp @) T ||ZI||Z£P(Qt) + ||ZRH€/P(Qt) +[|zs+ ||I[),P(Qt) + |21+ ||Z[),P(Qt) + ||z R~ ip(gt)

and
PO =810y + 11120y + IRy + 157 aany + 1T agary + 1R e
Then (3.4)—(3.9) show that
(3.10) P(t)<C(1+ Z(t)).
On the other hand, each of the functions zx satisfies an equation of the form
(O —dxA)zx =Cb(x) +£(S,I,R,S*, I*,R"),

where ¢ is a linear function of (S,I,R,S*,I*,R*). Thus by Lemma 3.2, each zx
satisfies a bound of the form

t
lzx (B)llzr (o) < C(l +/O (ISE)zr) + () Lo () + IR Lo
15" (Dllzr@) + 17 (7) | e o) + IIR*(T)IILP(Q))dT)

Taking the p'" power, using Jensen’s inequality, and integrating in ¢ yields

t
l2x|lLr (o) < C <1+/ P(s)ds),
0

whereupon summing all these bounds gives

(3.11) 2 <C (1 + /OtP(s)ds> .

Inserting (3.11) into (3.10), we see that

P(t)<C (1 + /O tP(s)ds) .

Finally, an application of Gronwall’s inequality shows that P(¢) remains bounded,
and thus the p-norms of each of S, I, R, S*, I*, R* remain bounded. 0

We note in particular that this result holds for every p € (1,00). Using this and a
classical result on parabolic regularity, we can prove boundedness of solutions to (1.3)
using the Sobolev embedding theorem.

THEOREM 3.5. Suppose that S(-,t),I(-,t), R(-,t),S*(-,t),I*(-,t), R*(-,t) are clas-
sical solutions of (1.3) on [0,T™) with nonnegative initial data Sy, Iy, Ro, S, I, R €
C(Q). If T* is finite, then there exists a constant M >0 (depending on T*) such that

151 zoe () 1l oo 20y s 1Rl o (2005 117 L oe 20 7 | o 200 [ | o 20) < M

for all t € [0,T*). In particular, this implies global existence of classical solutions of

(1.3).
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Proof. Using results on parabolic regularity (see [17, Chapter 2, section 4], [19,
Chapter 4, section 9], [40, Chapter 9, section 2]), for any X € {S,I, R, S*, I*, R*}, we
can achieve the following bound for any ¢ € [0,T*]:

(3.12) [0:X]|Lr (00 + IV XlLo() < CUIXol o) + [1F(S, 1, R, S*, 1", R) || Lr(02,))
where F' is the right-hand side of the corresponding equation. In particular, F' satisfies

|F(S,I,R,S*, I",R")|<C(1+S+I+R+S*"+I"+R"
—|—52—|—12+R2+(S*)2+(1*)2+(R*)2),

so that

|F(S,1, B, S, I, R 1) < CA+[S () + 11320
+ Ml zr ) + ||I||%2pmt) 0.

Thus Theorem 3.4 and (3.12) show that each of S,I,R,S* I*, R* remain bounded
in W1P(Q,) uniformly in ¢ € [0,7*) for any p € (1,00). Taking p large enough, the
Sobolev embedding theorem provides the same bounds in L>°(£);). |

Remark. In fact, similar methods are used to achieve global existence for systems
of parabolic equations in [25], where the author achieves bounds which are uniform
in time, as opposed to the above bounds which depend on 7. We will need uniform
bounds on certain populations when we prove Theorem 4.4 later. However, because
we would like bounds which are partially quantitative, we derive the bounds using
Green’s functions.

With this, we move on to analysis of long time behavior and stability of steady-
state solutions.

4. Basic reproduction number and stability of the disease-free steady
states. In this section, we would like to establish long term behavior of (1.3) in
different parameter regimes. Following [38], for the steady-state analysis, we define
u=(u1,us,us, uq,us,ug) = (I, 1*,5,5* R, R*) and rewrite (1.3) in the form

(4.1) (0 — DAYu = F(z,u) =V (x,u) + VT (x,u),

where D is a diagonal matrix containing the diffusion coefficients, and the functions
F, V=, V7t account for (respectively) the introduction of new infections into compart-
ments, the transfer out of compartments due to infection, death, recovery, or infection
with noncompliance, and the transfer into compartments due to birth or infection with
noncompliance. Specifically, for our model,

B(1— @)us((1 — a)uy + ug) Fi(x,u)
Bua((1 — a)ug + uz) Fo(x,u)
(4.2) Flau) = X = 0 |
0 0
0 0
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(v 4+ 0)ug + puq (ug + ug + ug)
(y+ 6+ v)us
B(1 — a)uz((1 — a)ug + ug) + pus(us + ug + ug) + dus
Bua((1 — a)uy +ug) + (v + §)uy
pus (ug + ug + ug) + dus

(4.3) V™ (z,u)=

(v + d)ug
Vi (2,u)
Vy (z,u)
| V5 (z,uw)
| Vi (@) |
Vs (z,u)
Ve (z,u)
and
rug Vf(x,u)
pa (ug 4 ug + ug) Vy (w,u)
N _ &b(x) + vuy _ | Vi)
D V@O0 ) + pus(us + s +ug) | | Vi ()
Yui + VUug V;_ (‘/Ea u)
Yug + pus (UQ +uq + U6) VJ (‘Ta u)

We reiterate that (u1,us, us, uq, us,ug) = (I,1*,5,5*, R, R*) so that the equations
are rearranged from (1.3) to include the infected compartments first. Also, since ¥V~
is subtracted from the right-hand side in (4.1), each of F,V~, VT are component-
wise nonnegative functions. In what follows, inequalities with vectors will always be
interpreted componentwise.

With this, [38] provides a general framework for local asymptotic stability of
disease-free steady-state solutions, those in which 7 = I* = 0 (or u; = ug = 0 in
the new notation). Using the framework of [38], we define U to be the set of all
disease-free states:

(4.5) Us:={u>0:u;=0,i=1,2}.

The following assumptions from [38] are easily verified for our system.
(A1) For i = 1,2, functions F;(x,u),V; (z,u), V; (z,u) are nonnegative, continu-
ous, and continuously differential with respect to wu.
(A2) If u; =0, then V; =0 for i =1,...,6. In particular, if u € Uy, then V; =0
fori=1,2.
(A3) F; =0 for i>2.
(A4) If u € Uy (so that ug =ug =0), then F; =V;" =0 for i =1,2.

Along with these four general properties regarding the system, one must consider
two more properties regarding linearization about the specific steady state one wishes
to analyze. Specifically, suppose that @(z) is a disease-free steady-state solution of
(4.1), that is,

(4.6) —DAG=F(z,a) -V (z,a) + V7 (z,a).
Now, once again following the notation of [38], we linearize (4.1) around the disease-

free steady state 4(x). Due to assumptions (A2)—(A4), since u takes values in Uy, we
have
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f/(m) ‘ 0
J(x) | —M(x)

[Du (VT =V7)|(w, ) =

Thus we arrive at the linearized system

(8t — Dl:gA)ul:Q = (F(ZE) — V(I))ULQ,

@7) ! )
(0r — D3.6A)uz.e = —J (x)ur.2 + M(x)use.

Here F and V are 2 x 2 matrices corresponding to transfer in and out of the infected
compartments, respectively, M is a 4 x 4 matrix corresponding to movement within
noninfected compartments, and .J (z) is a 4 x 2 matrix corresponding to transfer from
noninfected to the infected compartments. The matrix .J () turns out to be less
important for the analysis since its effects are also captured by F (x). Specifically,

~ [0V (z, u(x e alz)]
(4.8) V() = o (&ZJ( S (3U,J( ! L<ii<o
and
~ OV (2, u(x “(z,u(x))]
(19) P LG )]
J J 13<i,j<6

With all this, the final two assumptions are

(A5) M (z) is cooperative, and all eigenvalues of M(x) have negative real part,

(A6) —V (x) is cooperative, and all eigenvalues of —V (z) have negative real part.
Recall, a matrix is called cooperative if all off-diagonal elements are nonnegative.

Assuming we can verify that disease-free steady states for our system verify these

properties, we can invoke [38, Theorem 3.1] to prove local asymptotic stability under
the further condition that the basic reproductive number R corresponding to the
steady state (which we will define in the ensuing subsections) is sufficiently small.
With this, we move on to consider disease-free steady states for our system. The
local stability analysis fits in to the general framework presented above. However, the
global stability analysis is quite delicate, relying nontrivially on different parameter
values.

4.1. Noncompliant disease-free equilibrium. In this section, we consider
stability analysis of the disease-free model and determine the reproduction number
‘R§ in the case that all new individuals introduced are noncompliant with prevention
measures. That is, we set £ =0, so that our model reads

(0 —dsA)S=—B1—-a)S(1—a)[+I*) — uSN* +vS5* - 48,
(0 —d NI =p1-a)S(1—a)]+T")—~I — pIN* +vI*—4I,
(0 —drA)R=~I — uRN* +vR* — §R,
(0y —ds=A)S* =b(z) — BS* (1 —a) I+ I")+ uSN* —vS* —05™,
(O —dp N =8S"(1—a) [+ 1) —~I" + pIN* —vI* = §I",
(0 —dp=A)R* =~vI"+ uRN* —vR* — 6R".

(4.10)

Since we are considering a disease-free equilibrium, we set S=I=R=I*"=R* =0
in (4.10) to arrive at
(0y —ds«A)S* =b(x) — (v +6)S*,
(4.11) 0S5*
on

=0on 0f).
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We let S *(x) be the unique, positive, steady-state solution of (4.11). We call E* =
(0,0,0,5%,0,0) the noncompliant disease-free state of (1.3). Linearizing the I* equa-
tion in (4.10) around E* yields

(0 — dj A" = (BS™ — (y+v+ )7,
4.12 *
( ) or =0on 0.
on

Note that if we linearize the I equation from (4.10) around E*, we immediately
see exponential decay of I, so in the linearized regime, the only appearance of new
infections comes from (4.12). To arrive at the eigenvalue problem for (4.12), we use
the ansatz I*(z,t) = eMp*(x) and we have

(4.13) Ap* = djAp* + (BS™ — (v +v+6))p".

By the Krein-Rutman theorem, (4.13) has a principal eigenvalue A*(S*) given by the
variational formula

A*(S**):—inf{/Q (d,*

e, [ lppar=1f.

Vo |2 + ((’y—|— v+90)— 65*) \<p*|2> dzx
(4.14)

Intuitively, the sign of this eigenvalue will determine whether I* is locally increasing
or decreasing in time. For standard SIR-type analysis, this same property is often
phrased in terms of the basic reproduction number R{, which we define by

Ri=  sup Jo P5°1¢" " da
O osprem@) | Jodi-IVe* 2+ (v + v +0)|p*[2dx

The classical interpretation of Rf is that it represents the average number of new
infections which result from a single infection near the outset of the epidemic. Ac-
cordingly, we expect the total number of infections to increase if R§ > 1 and decrease
if R§ <1, so given the above comment regarding A* (5’*), we expect some connection
between the size of R} relative to 1 and the sign of )\*(5' *). Indeed, this connection is
provided by [38, Theorem 3.1].

As stated above, assumptions (Al)—(A4) are easily seen to hold for our system,
regardless of the value of ¢. Linearizing around E* and writing in the notation of
(4.7), we have

(4.15)

—pS* =4 v 0 0
~ e N wS* —v—9 0 0
M*(z) = 0 0 p§ -6 . and
0 0 1S* —v—4,
Sy (VO pST v
V(x)_< —uS* 7+5+y>'

These matrices satisfy (A5) and (A6): both M(x) and —V (z) are clearly cooperative,
and their eigenvalues have negative real part by Gershgorin’s theorem since they are
(columnwise) diagonally dominant with negative diagonal entries. Thus we have the
following local stabiliy result as a consequence of [38, Theorem 3.1].
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LEMMA 4.1. As defined above, R —1 has the same sign as A*(S*). Furthermore,
if R <1, then E* is locally asymptotically stable.

We emphasize that this is only a local result, in the sense that if the solution
(S,I,R,S*,I*, R*) begins near enough to E* = (0,0,0,5'*,0,0)7 then it will return to
E*. We also note that, by all appearances, this result does not depend significantly
on the assumption £ =0 (meaning that any new members of the population are non-
compliant). However, this assumption is necessary in achieving a more quantitative
description of the leading eigenvalue A*(S*) in (4.14) and the reproductive ratio R in
(4.15). If £ € (0,1), the equilibrium solution is a system of coupled nonlinear elliptic
equations, whereupon it is more difficult to determine conditions for convergence to
steady state. We comment more on this in section 6.

Next, we state our main result concerning the stability of E* = (0,0,0,5*,0,0).
For global stability analysis, we assume that the diffusion coefficients do not depend
on compliant status so that dx = dx+ for X € {S,I, R}. We also assume that v =0,
meaning that individuals who become noncompliant will remain noncompliant for all
ensuing time. The first assumption allows us to control the nonlinear growth due to
noncompliance by analyzing the sums S+.5*, I+I*, and R+ R* as in the proof of 2.3.
The latter ensures that the system does not stray from the equilibrium due to large
portions of the population becoming compliant. Within the context of this model,
the population becoming compliant again would actually be helpful in slowing the
progression of the disease, so this can be seen as a worst case scenario assumption.

THEOREM 4.2. Under the conditions that dx =dx~+ for X € {S,I,R} and v =0,
the following statements hold regarding (4.10).
(i) If Ry < 1, then the disease-free steady state E* = (070,0,5'*70,0) is globally
asymptotically stable.
(ii) If Ry > 1, then there exists a constant €9 > 0 such that any positive solution
of (4.10) satisfies

(4.16) liirisup 1(S,1,R,S*, I*,R*) — (0,0,0,5*,0,0)|| (o) > €0.
Proof. First note that
(O —dsA)S=—p(1—a)S(1 —a)I+I") —puSN* —05 < —04S.
Upon using an integrating factor, Lemma 2.2 immediately yields

1S ()] @) < 1S(0)[| Lo (ye ™"

so that S — 0 uniformly as ¢ — co. With this, define ¥* = §* — S* . the difference
between S*(z,t) and the steady-state solution S*(x). Then

(O —dsA)X* =—BS" (1 —a)I +I") — 6% + uSN*.
Adding the S equation from (4.10) then yields

(0 — dsA)(Z* +8) = —B((1 — a)S + S*) (1 — a)I + I*) — §(S* + 5)
<52 +9),

whereupon, by the same reasoning as above,

I+ ) ()L () < N(E* +8)(0)]| oo (e~
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so that X* + .5 — 0 uniformly as t — co. But then we use

IZ* Ol @) S NG+ ) @)oo @) + 1S O] Lo ()

to see that X* also converges uniformly to zero as ¢t — oo, that is, S* — S* uniformly
as t — oo.

In particular, since S* — S* and S — 0 uniformly, for any e > 0, we can find 7 > 0
such that for all x € Q,

(4.17) S*(x,t) < S*(x)+e and S(x,t)<e fort>rT.

Next consider ® =1 + I*. For t > 7, this function satisfies

(8, —d; A =B((1—a)S +5")(1 — )+ I*) — (§ +~) (I +I*)
=(B1-a)’S+B(1—a)S* — (6 +) + (B(L—a)S+B5* — (6 +7)I*
<(BA-a)S+BS" = (6+7))®
<(BL—a)e+B(S* +¢e)— (0+7))®

Using an integrating factor we see that
(418) (9 —drA)[@e U] < (B(S* +2) — (§+ 7)) [@e ],

Note that (4.18) is akin to (4.12), but with the extra arbitrarily small e. By Lemma
4.1, Ry < 1 implies that the principle eigenvalue for (4.13) satisfies A*(S*) < 0
Reducing ¢ if necessary, by continuity, we have A\*(S* +¢) < 0. Let ¢% be the strongly
positive eigenfunction corresponding to \*(S*+¢), and take a constant A large enough
that ®(x,7)e P17 < A¢*(x). Then by the comparison principle,
(4.19) Bz, t)e PU=0 < Ag* ()N o)1) —  P(x,¢)

< A¢: (x)e()\*(g*Jrs)jLB(lfa)e)t’ t>r.
Again, reducing ¢ if necessary, we can achieve \*(S* 4 ¢) + 5(1 — a)e < 0, whereupon

(4.19) shows that I,I* — 0 uniformly as ¢t — co. Using this result, the equation for
T =R+ R* is asymptotic to

(0, — drA)Y = -6,

which implies that T — 0 uniformly as well. Thus (S, I, R, S*,I*R*) — (0,0,0,55,0,0)
uniformly as ¢t — co. This proves (i).

Next we prove (ii). Let R§ > 1 and assume toward a contradiction that for any
€0 > 0, there is a positive solution of (4.10) satisfying

limsupH(S,I,R,S*,[*,R*) - (anaOaSSaO7O)H < €.

t—o0

In this case, for any 9 > 0, we can find 7 > 0 such that
(4.20) 0<|S(x,t)|,|I(z,t)], | (z,t)],|R(z,t)|,|R*(x,t)|<ego forallzeQ, t>r.
Then for t > 7, ¥*(x,t) = S*(x,t) — S§(x) satisfies

(0 —dsA)X* = —B((1 —a)S 4 S*) — 6X* + uSN* < (g9 — 0)X* 4 2ues.
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This yields

IZ*(t)lloc < €072 Z(0)|oc +2uehte ", t> .

However, since this holds for any fixed g9 > 0, we can take eg <4 and this shows that
S*(x,t) = S*(z) uniformly as t — co. In particular, increasing 7 if necessary, we have

S*(x,t) > S*(x) —eo, t>T.

But then for t > 7,

(0 —dr A" > B((S* —20) — (Y + 0"

Since R > 1, the principle eigenvalue for (4.13) satisfies A*(5*) > 0 and thus by
continuity, there is €9 > 0 small enough that )\*(5* —gp) > 0. Fixing this ¢ (and the
corresponding 7 > 0), we let ¢ () be the positive solution of (4.13) corresponding to
A*(S* — g¢), and take 7 > 0 small enough that I*(z,7) > ne:, () for all z € Q. Then
by the comparison principle,

T* (J?,t) > 77¢ZO (x)e)\*(g*—Eo)(t—T)’

proving that I*(z,t) grows without bound as t — oo, which contradicts (4.20). The
contradiction implies that when R > 1, there is €9 > 0 such that any positive solution
of (4.10) satisfies

limsup |(S,I,R,S*,I*, R*) — (0,0,0,55,0,0)| > eo
t—o0

as desired. O

Remark. We include a brief interpretation of Theorem 4.2. The interpretation of
result (i) is fairly straightforward: under the condition R < 1, the disease dies out as
time increases. Result (ii) establishes a condition under which (S,I, R, S*, I*, R*) /4
(0,0,0, 5.0, 0) as time increases. Since the proof is by contradiction, it does not spec-
ify which of (S, I, R, S*,I*, R*) fails to converge to its corresponding equilibrium value.
However, with some additional reasoning, it is easy to see that one of || I(t)||so, [[I*lco
does not tend to zero. Indeed, if both of these tended to zero, then reasoning as in the
proof of (i), we would have [|S(t)]|co = 0,]|(S* — S*)()]lco, | R(®)|loos | R* (t)||cc — O,
whereupon we would return to the equilibrium point, which cannot occur. Thus (ii)
implies that when R{ > 1, the disease persists in the sense that I + I* /4 0 for large
time.

4.2. Compliant disease-free equilibrium. In this section, we consider an
equilibrium in which the entire population is compliant with prevention measures,
and in which all newly introduced members are compliant (§ = 1). That is, we
consider the system of equations

(0 —dsA)S=b(z)—B1l—a)S(1—a)[+I")—pSN*+vS5* -4,
O —diA)I=81-a)S(L—a)I+1I")—~] —pIN* +vI* -0,
(0 —drA)R=~I — uRN* 4+ VvR* — 0R,
(0 —ds+A)S*=—-BS"(1— )l + I*)+ pSN* —vS* — 657,
(O —dr-A)I"=BS" (1 =)l +17) =~I" + pIN* —vI™ =617,
(8 — dg-A)R* =~AT* + uRN* — vR* — 6R".

(4.21)
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As above, we would like to establish stability for a disease-free equilibrium solution
of this model. Specifically, setting I = R=5* =I* = R* =0, we arrive at the equation

(O —dgA)S =b(x) — 68,
4.22 P
( ) —S =0ondf.
on
Let 5’(96) be the unique, positive, steady-state solution of (4.22), so that E= (5’,0707
0,0,0) is the disease- and noncompliance-free equilibrium solution of (4.21). Lineariz-
ing the I equation from (4.21) around F gives

(0 — dr AT = (B(1 — )28 — (y+ 0)) 4 vI*,
4.23 I
( ) 8— =0on dN.
on
In this case, the linearization of the I* equation from (4.21) around E yields expo-
nential decay, so (4.23) is asymptotic to

(0r — di A = (B(1 = )*S — (v + 0))I,

4.24
( ) g =0on 0.
on

Accordingly, using the ansatz I(z,t) = eMp(x), we arrive at the eigenvalue problem
(4.25) Ap=diAp + (B(1— )’S — (v+0))e.

By the Krein—Rutman theorem, (4.25) has a principal eigenvalue )\(S') and it is
given by the variational formula

(4.26)
A(S)

:—inf{/Q (d1|Vg0\2+ ((74—5)—/3(1—04)25) |<p|2) dx: o€ HY(Q), /Q|g02dx:1}.

Again, in the linearized regime about E, I'* will decay exponentially, so the only new
infections are accounted for by I, which we expect to be locally increasing in time if

A(S) > 0 and locally decreasing in time if A(S) < 0. To capture this same behavior in
the language of SIR-type models, we define the basic reproduction number

Jo 81— )28l do
4.27 Ro=  sup .
(427) P PN { Todi VP + (3 + 0ol d

~With all this, we once again have local stability (and the relationship between

A(S) and Ry) as a consequence of [38, Theorem 3.1]. The verification of hypotheses
(A1)—(A6) is essentially identical to that presented in section 4.1.

LEMMA 4.3. As defined above, Ro — 1 has the same sign as )\(5*) Furthermore,
if Ro <1, then E is locally asymptotically stable.

We would like to establish global stability, but as in section 4.1, this is much more
delicate. In this case, the most interesting (and complicating) facet of the analysis
is the nonlinear growth of the noncompliant populations, which could potentially
cause instability of the equilibrium solution E = (S ,0,0,0,0,0), even in the case that
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Ry < 1. If a large portion of the population becomes noncompliant, we are reverted
to a situation similar to section 4.1, where we have a larger reproductive number Rj.
Thus, our global stability result in this case depends on first understanding the total
size of the noncompliant population N* = S* 4+ I* + R* and then ensuring that the
noncompliance transmission and recovery parameters p and v are such that N* does
not grow too rapidly.

By (2.3) and nonnegativity, we have the following L!-bound on N*:

_st . bl
+ 7(5 .

Using this bound for N*, we can state and prove our global stability result.

THEOREM 4.4. Under the conditions that dg =d; =dgr =d, dg+ =dj+ = dg+ = d*,
the following statements hold.
(i) There is a constant ¢ > 0 depending on d,§ and the domain Q such that if
Ro<1,

(4.28) IN* ()] 21 (@) < Niotal (t) < Niotar(0)e

5° cpd ||l 1 (o)
(4.29) p< ———, and v> ——,
10l 21(02) 6% — pllbll 1 ()
then the disease-free steady state E= (5’,0, 0,0,0,0) is globally asymptotically
stable for (4.21).
(ii) If Ro > 1, then there exists a constant ey >0 such that any positive solution
of (4.21) satisfies

(4.30) limsup ||(S,1, R, S*, I*, R*) — (S0,0,0,0,0,0)|| o< (c2) > €0-
t—o0

Remark. Before the proof, we reiterate some interpretation, explain the as-
sumptions, and describe the strategy. In this case, there are two manners in which
E = (5’,0,0,0,070) could be unstable: (1) the number of infections could grow and
persist, as will happen when Ry > 1 in result (ii), or (2) noncompliance could grow in
the case that y—the noncompliance “infectivity” rate—is too large relative to v—the
noncompliance “recovery” rate. This latter case could then further be broken down
into two types on instability: (2a) the noncompliance could persist, so that N* /4 0,
or (2b) the growth of the noncompliant population could increase the effective repro-
ductive ratio, meaning that infections surge and perhaps persist, so that I,I* 4 0.
For result (i), the assumptions on the diffusion coefficients allow us to focus the first
part of the analysis on N =S5+ 14 R and N* = 5" + I* + R*. These satisfy an SIS
(susceptible-infected-susceptible) system of equations. To circumvent the possibility
of N* growing, we use the assumptions about the smallness of p and largeness of v.
This will ensure that the population returns to a fully compliant state, whereupon we
can use the assumption Ry < 1 to prove that infections die out.

Proof. To prove (i), define the total compliant population N =S+1+ R. Because
we assume dg =d; =dr =d and dg~ = dj» = dg+ = d*, from (4.21), we see that the
compliant population N and the noncompliant population N* = S* 4+ I'* + R* satisfy
the pair of reaction-diffusion equations
(4.31) N =dAN +b(z) — (uN —v)N* — 6N,

(4.32) ON*=d*AN* 4+ (uN —v)N* —§N*.
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From here, we bound NN so that our assumptions regarding p and v ensure that
the first term in (4.32) is negative. In doing so, (4.32) will yield exponential decay of
N*, whereupon arguments similar to those in section 4.1 will ensure global stability

of E.

To this end, we follow the strategy of [3, 24, 31]. Let I'(t): C(Q) — C(£2) denote
the Cy semigroup associated with the operator (dA — §) with Neumann boundary
conditions. That is,

(o)) = / G,y o(y)dy, 10, 2,

where G denotes the Green’s function corresponding to (dA—J) with Neumann bound-
ary conditions on 0f). In particular, there is M > 0 such that

(4.33) IT(t)]| < Me*, t>0,

where « < 0 is the principle eigenvalue of (dA—¢) with Neumann boundary conditions.
Then for any t > t,

(4.34)
N(z,t)=T(t —to)N(x,t0) + / L(t —s)[b(x) — uN(z,s)N*(x,8) + vN*(z, s)]|ds

to

t
< Me“(t_t°)|\N(~7t0)||Loo(9) + / T(t —s)[b(z) + vN*(x,s)]ds

to
t

= M=) [N (-, £0) | pe(e + / /Q G(z,u,t - 5)[b(y) + vN"(y, 5)]dyds,
to

where the bound of the integral follows because I'(¢) is strongly positive for ¢ > 0 [34,
Corollary 7.2.3] and N, N* are nonnegative. Next, performing a spectral expansion
as in [3, 24, 31] and using uniform boundedness of the eigenfunctions of (dA —§), one
achieves

G(x,y,t) <ce™®, t>0,

for some constant ¢ > 0 which depends on the eigenvalues and eigenfunctions of the
operator, which in turn depend on d,d and the domain . Applying this in (4.34),
we have

(4.35)
t
N(z,t) < Mea(tfto)HN('vto)”Lm(Q) + C/ 675(t78)(||b“L1(Q) +V[|[N*(t)][ 21 (e))ds

to
c(llbllr @) +VIIN* ()1 (o)) (1 — e—8(t=to))
0
(bl @) +VIN* ()l (@)
3 .
Now for any 7 > 0, taking to > 0 large enough, we see from (4.28) that

_ Mea(t—to)HN(.7tO)||Lm(Q) +

< M) |IN (- t0) || oo () +

6]l 21 (22)
5 )
Fixing this o, we can take t; large enough that Me®t=1)|IN (- to)|| 1= () < 1 as
well. Inserting both of these bounds in (4.35), we have
cllbllzr ) +v(lbllLr@)/0 +n)
- 5

IN* ()l 1) <n+ t>to.

(4.36) N(z,t)<n , t>1.
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This provides a uniform bound on N(z,t) which holds when ¢ > ¢;. Note also that
we can take 1 > 0 as small as desired, at the cost of increasing t;.
Thus, to ensure uN — v <0 for large t, it suffices to require that

b + b 0+
l/>,u(7]+ c ||L1(Q) V(! HLl(Q)/ 77))

or equivalently

[0[21 0 wel|bll Lo
(4.37) u(l—u<62(>+z Zun+%.

If 1 is too large, this will be impossible since the left-hand side above will be negative.
However, supposing, as in the hypotheses of the theorem, that u < §2/||b||p1, we
can take 7 small enough that p < 1/(||b]|1(0)/6* +1/d). Next, supposing that v >
ped||bll 1) /(6% — pllbllLr()), We can decrease n again if necessary to ensure that
(4.37) holds, and thus uN(x,t) — v <0 when ¢ > ¢;. Then from (4.32), for t > ¢, we
have

(4.38) ON* <d*AN* —5— N*,

so that, by Lemma 2.2, N* decays uniformly to zero at an exponential rate as t — oc.
By positivity of solutions, this implies exponential decay of S*,I*, R* for large time.

The uniform bound on N(z,t) given by (4.36) also provides a uniform bound on
S, I, R, meaning that all terms involving S*, I*, R* in (4.21) decay exponentially for
large time. Thus (4.21) is asymptotic to

(0r — dA)S < b(x) — B(1 — a)?ST — 458,
(4.39) (0 —dA) < B(1 —)*ST — (v + )1,
(0 —dA)R<~I —0R.
Analyzing this system, it is straightforward to prove convergence of the solution to

(5,0,0) under the condition that Ry < 1, using methods similar to those in section
4.1. Indeed, we see

(0 —dA)(S — S) < —B(1 —a)2ST — (S — 8) < —d(S - S).

Using an integrating factor and applying Lemma 2.2, this shows that S(z,t) — S’(x)
uniformly as ¢ — co. In particular, for arbitrary ¢ > 0, we can find t5 > ¢; large
enough that

|S(m,t)|§‘5’(x)’+s7 >ty

Then for t > to,

(0 — dA)T < (B(L —a)*(S+e) )1

By Lemma 4.3, since we are assuming R < 1, we have that A(S) < 0, where A(S) is the
leading eigenvalue for (4.25). By continuity, for sufficiently small & >0, A(S 4 ¢) < 0.
Allowing ¢ to be the positive eigenfunction corresponding to A(S + &), and taking
A >0 large enough that I(z,t2) < Ap(x), an application of the comparison principle
shows that

I(z,t) < Ap(z)STIE0) - p >,
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whereupon I(z,t) — 0 uniformly as t — co. Finally, this shows that the R equation
is asymptotic to

(9, — dAR) = —6R,

which gives exponential decay of R as well. Thus (S,1,R,S*,I*, R*) — (S,0,0,0,0,0)
uniformly as ¢ tooo, which concludes the proof of (i).

Next we prove (ii). Let Rg > 1 and assume toward a contradiction that for any
€0 > 0, there is a positive solution of (4.21) satisfying

(4.40) limsup||(S,1, R, S*,I*, R*) — (5,0,0,0,0,0)|| (o) < 0.
t—o00

Then in particular, S(z,t) — S(z) and I*(x,t),I(x,t), N*(x,t) — 0 uniformly as
t — 0o, which means that the I equation in (4.21) is asymptotic to

(0y —dA) = B(1 — a)?ST —~I.

From here, the proof proceeds exactly as the proof of (i) in Theorem 4.2: Ry > 1
implies A\(S — g¢) > 0 for sufficiently small o, which implies exponential growth of
I(x,t) for large time, contradicting our assumption.

We conclude that when Rg > 1, there exists €y > 0 such that any positive solution

of (4.21) satisfies

(4.41) limsup [|(S,1, R, S*,I*, R*) — (5,0,0,0,0,0)|| o< (0) > €0- q
t—o0
Remark. In the proof of Theorem 4.4(i), the condition on v in (4.29) can be
relaxed slightly to instead read

cpd||bll (o) — 02

4.42
(4.42) 52— b2

for some d, € [0,0). Following the proof through, this results in the bound uN —v < §*,
and we achieve exponential decay of N* from (4.38), with decay rate § — §.. We
note that if u is sufficiently small, the numerator on the right-hand side of (4.42) is
negative. In this case, the condition is automatically satisfied, and we arrive at the
result with no constraint on v. That is, if p is small enough and £ = 1 so that all newly
introduced members of the population are compliant, then there is no possibility of
endemic noncompliance, even in the absence of recovery from noncompliance.

5. Simulation and discussion. In this final section, we simulate our model
using MATLAB and discuss results with emphasis on how the behavior of our model
differs from that of vanilla SIR-type models. We note that the theorems above address
the cases where either (1) the population is almost entirely noncompliant, wherein the
effective reproductive ratio of the disease is closer to Rf, or (2) the population remains
almost entirely compliant, wherein the effective reproductive ratio of the disease is
closer to the smaller value Ry. However, over the course of the epidemic, the effec-
tive reproductive ratio will be changing: it should be some sort of weighted average
of Ry and R, depending on the portion of the population that is noncompliant.
These effects are very difficult to capture analytically because they depend on the
intermediate-time dynamics of the model. However, we can demonstrate the effects
through simulation.

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/09/24 to 128.196.226.62 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1992 CHRISTIAN PARKINSON AND WEINAN WANG

To simulate the model, we use a semi-implicit finite difference scheme, wherein
the diffusion is resolved implicitly, but the nonlinear terms are resolved explicitly. We
perform simulations in several parameter regimes to demonstrate different features of
the model. For simplicity, we use a square domain = (—5,5)? for all simulations.
In all cases, we set the natural birthrate to be constant b(x) =b. In Figures 1-6, all
diffusion coefficients are set to be equal (we denote the mutual value d); we experi-
ment with varying the diffusion coefficient for the infectious populations in Figures 7
and 8. The parameters corresponding to the simulation which produced each of the
below figures are listed in Table 1. The other key pieces of data are the initial con-
ditions. Figures 1 and 2 correspond to the same simulation and have a unique initial

Portion infected population Portion noncompliant population

0.08

0.06

0.04

0.02

0 50 100 150 200 0 50 100 150 200
Time — Time —

F1G. 1. The infections initially decay, and then spike once the susceptible populations and in-
fectious populations diffuse enough that they overlap. After the initial spike, the moncompliant
population is large enough to increase the effective reproductive ratio and cause another spike. The
infectious population for this simulation is plotted in Figure 2.

t=0.00 t=14.00 t = 28.00

1417
|
+

Fic. 2. Snapshots of the infectious population I + I* as time t increases. The infections are
initially concentrated near (3,3). They decline since there is very little susceptible population in
this area. The infections then “migrate” toward the origin, where the susceptible population is more
concentrated, and increase once they are close enough.
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Portion infected population Portion noncompliant population

0.01 1

0.008

0.006

0.004

0.002

0 50 100 150 200 0 50 100 150 200
Time — Time —

Fic. 3. If the infection rate B is small enough, the effective reproductive ratio will stay small
even when the entire population becomes noncompliant, so that no outbreak occurs. This demon-
strates Theorem 4.2(i).

Portion infected population Portion noncompliant population
0.3
0.25 1
0.2
0.15
0.5
0.1
0.05
0 0
0 50 100 150 200 0 50 100 150 200
Time — Time —

Fic. 4. If the infection rate B is large enough, the effective reproductive ratio is large even when
the vast majority of the population is compliant, and the reproductive ratio only increases from there,
so there is no hope of containing the disease and trending toward o disease-free state. Note that the
this demonstrates Theorem 4.2(ii).

condition, whereas each of Figures 3-6 corresponds to different simulations, but each
of Figures 3-6 has the same initial condition. We specify these below as well. In all
cases, we choose Ry = Ry =0 so that initially, there is no recovered population. Addi-
tionally, we only specify Sy and Iy and then set S§ = Sy/20 and I = Iy/20. In doing
so, we are assuming that initially, roughly 5% of the population is noncompliant. We
emphasize that all of these parameter values and initial conditions are synthetic and
were chosen simply to demonstrate the behavior of the model in different regimes.
While Figures 1 and 2 demonstrate general observations regarding our model, it
is of particular interest in Figures 3—6 to demonstrate the results of Theorems 4.2
and 4.4, which make assumptions on the reproductive ratios Ry and . Because
of this, it is convenient to quantify these reproductive ratios given the parameter
values in those figures. Note that if the birth rate b(z) = b is constant (as in all of
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Portion infected population Portion noncompliant population

0.01 1

0.008

0.006

0.004

0.002

0 50 100 150 200 0 50 100 150 200
Time — Time —

Fic. 5. When p is small and v is large, the portion of the noncompliant population remains
small for all time, meaning that the effective reproductive ratio of the disease remains small and no
outbreak occurs.

Portion infected population Portion noncompliant population
0.025

0.02

0.015

0.01 0.5

0.005

0 50 100 150 200 0 50 100 150 200
Time — Time —

Fic. 6. When p is large and v is small, the portion of the noncompliant populations grows,
which increases the effective reproductive ratio of the disease so that an outbreak occurs.

our simulations), the steady-state solutions of (4.11) and (4.22) are constant. For
example, S* satisfies

along with Neumann boundary conditions, which has the unique solution S* = #‘r&,
and likewise one finds that S* = £ is the unique steady-state solution of (4.22).
Because of this, the eigenvalue problems given by (4.14) and (4.25) are constant
coefficient and thus can be solved explicitly in the square domain 2 = (—5,5) x (—5,5).
Specifically, due to the Neumann boundary conditions, the eigenfunctions for each
equation have the form ¢y, ¢(x,y) = cos(kmz/5) cos(¢my/5). The principle eigenvalues

then correspond to kK =/¢=0. These are given by

(5.1) )\*:Vb—f&—('y—ké), )\:M—(v—ké)
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Portion infected population

0.08
0.06
0.04

0.02

| K

0 50 100 150 200
Time —

Portion infected population

0.08
0.06
0.04

0.02

0 J

0 50 100 150 200
Time —

Portion noncompliant population

0 50 100 150 200
Time —
Portion noncompliant population

0 50 100 150 200
Time —

FiG. 7. Simulations with the same parameter values in Figure 6, except that df =dy+ =1 (top)
or dy =dy= =3 (bottom). Empirically, when the diffusion coefficients for the infectious populations
are increased, the initial outbreak is forestalled, and the infection peaks become sharper.

Portion infected population

0.01

0.008

0.006

0.004

0.002

0 50 100 150 200
Time —

Portion noncompliant population

0 50 100 150 200
Time —

Fic. 8. Simulation with the same parameter values in Figure 6, except that df = dy= = 0.0004.
Decreasing the diffusion coefficients for the infectious population causes the infection peaks to blur
together. The initial outbreak occurs at roughly the same time as in Figure 6, because the noncom-

pliant population must become sufficiently large for an outbreak to occur.
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TABLE 1
Parameter values used for simulations displayed in each figure below.

Parameter Figures 1-2 Figure 3 Figure 4 Figure 5 Figure 6

8 6 0.05 50 1 1

~ 1 1 1 1 1

b 0.02 0.02 0.02 0.02 0.02
5 0.001 0.001 0.001 0.001 0.001
o 0.5 0.1 0.8 0.8 0.8

1 1 1 1 0.01 2

v 1 0 0 0.015 0.015
3 0.95 0 0 1 1

d 0.02 0.02 0.02 0.02 0.02

for (4.14) and (4.25), respectively. Recall, by Lemmas 4.1 and 4.3, R > 1 if and
only if \* > 0, and likewise for Ry and A. Thus these eigenvalues give us a manner
of ensuring that we fall into the correct parameter regimes in order to demonstrate
Theorems 4.2 and 4.4.

The first simulation demonstrates something that is not necessarily unique to
our model, but is unique to spatial models, and is accented even further by our
model. In this case, we set Sy(z) = exp(—5|z|°) for = € (—5,5)% so that the initial
susceptible population is concentrated very strongly at the origin, whereas Iy(z) =
exp(—5 |z — (3,3)]?) for & € (—5,5)2, meaning that the initial infections are very
strongly concentrated at (3,3), and comprise roughly 5% of the total population.
Because of this, for small ¢ >0, S(al + I*) and S*(al + I*) are approximately zero,
meaning very few new infections occur, and initially the total number of infections
decreases. However, after enough time, the populations have diffused enough that
there is more overlap causing more infections to occur, which results in a later spike
in the total number of infections. We see this in Figure 1, where we plot the total
portion of the infected population

Ligtar(t) = [[(T + 1) ()| 1) /I (S + 1 + R4S+ I* + R*) (1) .1 ()

as a function of time. Also plotted in Figure 1 is the total portion of the noncompliant
population:

total (1) = (8™ + I + BR) ()1 /1S + T+ R+ 5"+ I" + R*) ()| 22 (0)-

Note that for this simulation, the initial spike in infections occurs before a signifi-
cant portion of the population becomes noncompliant. The first spike in infections
then declines due to the decline in the susceptible population, which causes a de-
cline in the effective reproductive ratio of the disease. However, when enough of the
population becomes noncompliant, the effective reproductive ratio increases because
noncompliant populations have a higher infection rate, which causes a second wave.
This behavior then repeats. In Figure 2, we display snapshots of the infectious popu-
lation I(z,t) 4+ I*(x,t) at different times ¢ > 0, where we see that the initial profile is
concentrated near the point (3,3). The infectious population then “migrates” toward
the origin where the susceptible population is concentrated, and increases when it is
sufficiently close.

In the ensuing figures, we let Sy be a sum of four Gaussians, centered at different
points around (—5,5) and having different variances. These could be thought of as
population centers like urban areas, which are much more densely populated than
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the rural areas surrounding them. Here Iy = Sp/100, meaning that the infectious
population is distributed identically to the susceptible population, but comprises only
about 1% of the population.

Figure 3 demonstrates Theorem 4.2(i). In this simulation, the parameters ensure
that \* = Vb—fé —(y+9)=—-0 <0, so that R§ < 1. In this case, even when nearly
the entire population is noncompliant, the infection rate is still too low to cause an
outbreak. Note that in this case, £ = 0, so all newly introduced members of the
population are noncompliant. As far as noncompliance goes, this is somewhat of a
worst case scenario, and driving the infection rate down is the only means of preventing
an infection.

In Figure 4, we demonstrate Theorem 4.2(ii). In this simulation, the infection
rate 8 =50 is very large, so that \* = Vb—fé — (y+6) ~ 1000 > 0, meaning that R > 1.
In fact, even with an 80% reduction in infectivity due to compliance (o = 0.8), we
have \ = M — (y+0)~ 40> 0 so that Ry > 1. Thus, even at the outset of the
simulation when a majority of the population is compliant, the infection still grows.
Due to this, we see a swift increase in infections. The total portion of the infected
population also does not tend to zero, but rather settles at some nonzero constant:
approximately 1% of the total population is infected in the asymptotic regime.

Figures 5 and 6 demonstrate the dependence of the outcome of the epidemic on
the noncompliance infection rate and recovery rate (p and v, respectively), which is
encode(g in Theorem 4.4. In these simulations, parameters are chosen so that A =
bﬁ(%a) —(y+9) =~ —% < 0, and thus Rg < 1. However, \* = Vb—fé —(y+90) = %,
so Ry > 1. In this case, preventing an outbreak of the disease would hinge upon
the population remaining compliant. This is seen in Figures 5 and 6. Note that the
simulations for these figures hold all parameters constant except for g and v. In
Figure 5, p is small relative to v, meaning that individuals become noncompliant at
a slower rate, and once they become noncompliant, they transfer back to compliance
very quickly. In this case, the portion of the noncompliant population remains small
for all time, and no outbreak occurs. However, in Figure 6, the roles are reversed: u is
large relative to v, meaning that the noncompliant populations grow more rapidly, and
become compliant again more slowly. In this case, while there is initial decrease in
the total portion of the infected population, after a large enough portion becomes
noncompliant, there is an outbreak of the disease, as effective reproductive ratio
approaches R§. This demonstrates the crucial dependence of Theorem 4.4(i) on
and v. If one can guarantee that the population remains compliant (i.e., if p is small
enough and v is large enough), one can achieve asymptotic stability of the disease-
free state, but this also demonstrates that with no such guarantee, an outbreak can
occur.

Finally, for technical reasons, our theorems require assumptions regarding the
diffusion coefficients, and to satisfy all of these assumptions simultaneously, it is sim-
plest to consider the case where all diffusion coeflicients are the same. However, in
simulations we can vary these to empirically observe the behavior. Specifically, it is
interesting to observe the behavior as d; and d;- are alternately made very large or
very small, since these are the coefficients that appear in (4.26), (4.27) and (4.14),
(4.15), respectively. For all the ensuing simulations, we use the same parameter val-
ues as in Figure 6, except that in Figures 7 and 8 we vary the value of d; and dj«
while leaving all other diffusion coefficients fixed at d =0.02, and in Figure 9, we vary
the value of dg+,d;~, and dr~ while leaving the other diffusion coefficients fixed at
d=0.02.
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Portion noncompliant population
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FI1G. 9. Parameters are the same as in Figure 6 except dg+,dr«,dg+ increase to 0.05 (top), 0.1
(second), 1 (third), 5 (bottom). As these coefficients increase, the total noncompliant population
settles at a smaller value, which agrees with intuition provided by [2].
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In Figure 6, we note that the first outbreak occurs at roughly time ¢t = 50. In
Figure 7, when dj,d« are increased to 1 (representing a fiftyfold increase), the first
outbreak does not occur until roughly time ¢ = 100, and when dj,d;« are increased
to 3, the first outbreak does not occur until roughly ¢t = 150. The peaks also become
much sharper when dj,d;- are larger. By contrast, in Figure 8, when d;,d;- are
decreased to 0.0004 (representing a fiftyfold decrease), the first peak again occurs at
roughly ¢ = 50; it may be impossible for the first outbreak to occur before this time,
since this calibration requires a large portion of the population to be noncompliant
in order to produce an outbreak. However, in this case, the peaks are mollified to
the point that they bleed together, and peaks occur in more rapid succession. Thus
empirical evidence seems to imply that increasing the diffusion coefficients for the
infectious populations while leaving others fixed forestalls the epidemic while making
infection peaks sharper. These observations could be of interest to policymakers, and
speak somewhat to the interesting intermediate-time dynamics displayed by reaction-
diffusion systems which can be very difficult to quantify.

Our last set of simulations in Figure 9 demonstrate the effects of increasing the
diffusion coefficients for the noncompliant populations (dg«,d+,dg«) while leaving
others fixed. Recall that if dg = d; = dr and dg+ = dj~ = dg+, then the compliant
population N =S 4 I + R and noncompliant population N* = S* 4+ I'* + R* satisfy
an SIS style system given by (4.31), (4.32), where N is viewed as the “susceptible”
population and N* is viewed as the “infectious” population. With this interpretation,
we have heuristics provided by the SIS literature. For example, the authors of [2]
analyze the behavior of the steady-state endemic solution to a similar SIS system in
the limit as the diffusion coefficient of the susceptible population goes to zero while
the diffusion coefficient of the infectious population remains fixed (or equivalently,
the limit as the infectious diffusion coefficient goes to infinity while the susceptible
diffusion coefficient remains fixed). They prove that in this limit, the steady-state
endemic solution for the infectious population tends to zero. Their system is slightly
different so the result does not directly apply to (4.31), (4.32), but it gives reason to
expect that as dg«,d«,dg+~ grow, the large time limit of N* should go to zero. The
simulations support this conclusion. In Figure 9, we use the same parameters as in
Figure 6, except successively increase dg«,dy~,dg+~ from 0.02 to 0.05, then 0.1, then
1, then 5. Because the increase is small at first (top images in Figure 9), the effect
to the total noncompliant population is subtle, but one can discern the effect because
the slight decrease in noncompliant population causes the epidemic to progress more
slowly. In the bottom two images of Figure 9, the effect of enlarging the diffusion
coeflicient is more pronounced: when dg« = d;« = dgr+« =1 or 5, the total noncompliant
population appears to settle at a much smaller value, and because of this, no epidemic
occurs within the displayed time frame.

6. Conclusion and future directions. In this work, we present a reaction-
diffusion SIR-type epidemic model, wherein noncompliance with prevention measures
spreads via mass-action parallel to a disease. A key assumption is that the disease
spreads more quickly among populations which are not compliant with prevention
measures. We present proofs of global existence for our system, as well as R analysis
and asymptotic behavior in different parameter regimes.

We propose four future directions for work along these lines. First, in Theo-
rems 4.2 and 4.4, we prove global stability of disease-free states under the alternate
assumptions that £ =0 or £ =1 (so that any newly introduced members to the pop-
ulation are noncompliant or compliant, respectively). It would be very interesting to
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prove similar results in the case that £ € (0,1), whereupon the steady-state system is
the following coupled nonlinear elliptic equations:

—dsAS = €b(z) — pSS* +vS* — 48,

(1 s AS" = (1 Ob(x) + uS5" — vE" — 85"
In this case, if dg # dg=, it is unclear whether solutions even exist. However, if
ds = dg-, then one can solve by first considering ¥ = S + S* (which satisfies a
simple linear elliptic equation), and having resolved 3, each of S and S* satisfies its
own decoupled nonlinear elliptic equation, for which we have existence of solutions.
However, in this case, the derivation of the principle eigenvalue and reproductive ratio
is no longer so simple. One could still define the reproductive ratio as the spectral
radius of a certain elliptic operator as in [38], and achieve local stability, but the
definition is then less quantitative (that is, it is more difficult to see precisely how the
reproductive ratio depends on relevant parameters), and it is less clear how to arrive
at conditions for global stability. A full exploration of these questions could prove
very interesting and illuminating.

Second, work similar to this is carried out in a network-theoretic setting in [28].
It may be of interest to develop other types of epidemic models—for example, agent-
based or self-exciting point process models—which incorporate human behavior in
similar ways. Analysis and synthesis of these different types of models could elucidate
the different implications of social contagion theory in epidemiology. Third, there
has been recent interest (even before the onset of COVID-19) in coupling within-host
and between-host models for infectious diseases [26, 5, 30, 39]. Incorporating human
behavior into these models in a manner similar to what we suggest here may result
in very high fidelity modeling of a pandemic. Finally, our work elucidates different
facets of an epidemic given our assumptions regarding the manner in which human
behavior is incorporated. However, this work is entirely qualitative. To push toward
real-world utility, a more data-driven study which incorporates parameter estimation
would likely be necessary.
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