
Time-Optimal Paths for Simple Cars with Moving Obstacles in the
Hamilton-Jacobi Formulation

Christian Parkinson1 and Madeline Ceccia2

Abstract— We consider the problem of time-optimal path
planning for simple nonholonomic vehicles. In previous similar
work, the vehicle has been simplified to a point mass and
the obstacles have been stationary. Our formulation accounts
for a rectangular vehicle, and involves the dynamic program-
ming principle and a time-dependent Hamilton-Jacobi-Bellman
(HJB) formulation which allows for moving obstacles. To our
knowledge, this is the first HJB formulation of the problem
which allows for moving obstacles. We design an upwind finite
difference scheme to approximate the equation and demonstrate
the efficacy of our model with a few synthetic examples.

I. INTRODUCTION

As automated driving technology becomes more prevalent,
it is ever more important to develop interpretable trajectory
planning algorithms. In this manuscript, we address the
problem of trajectory planning for simple self-driving cars
using a method rooted in optimal control theory and dynamic
programming. We consider the vehicle pictured in fig. 1.
The configuration space for the car is (x, y, θ) where (x, y)
denotes the coordinate for the center of mass of the car,
and θ ∈ [0, 2π) denotes the angle of inclination from the
horizontal. The rear axle has length 2R and the distance
from the rear axle to the center of mass is d. Such cars
are typically propelled using actuators which supply torque

Fig. 1. A simple rectangular car.

1Christian Parkinson is a postdoctoral research associate with the
Department of Mathematics, University of Arizona, 617 N. Santa Rita Ave,
Tucson, AZ, 85721 chparkin@math.arizona.edu

2Madeline Ceccia is a student in the Department of Mathematics,
California State University - Fullerton, 800 North State College Blvd.
Fullerton, CA 92831 madelinececcia@csu.fullerton.edu

to either of the rear wheels [1]. The motion is subject to a
nonholonomic constraint

ẏ cos θ − ẋ sin θ = dθ̇. (1)

This ensures motion (approximately) tangential to the rear
wheels; indeed, in the case that d = 0, the constraint reduces
to dy/dx = tan θ. We also assume the car has a minimum
turning radius, or equivalently, a maximum angular velocity
so that |θ̇| ≤ W , for some W > 0. LaValle [2, Chap.
13] includes an extended discussion of models for this and
similar vehicles.

Trajectory planning for simple cars goes back to Dubins
[3] who considered that case that d = R = 0 (so that
the car is simplified to a point mass) and only allowed
unidirectional (“foward”) movement. Reeds and Shepp [4]
considered forward and backward motion, and proved that
in the absence of obstacles, the optimal trajectories are
combinations of straight lines and arcs of circles of minimum
radius, and that optimal trajectories have at most two kinks
where the car changes from moving forward to backward or
vice versa. Later effort was devoted toward adding obstacles
[5], and developing an algorithm for near-optimal trajectories
which are robust to perturbation [6]. All of this work was
carried out in a discrete and combinatorial fashion, breaking
the paths into “turning” or “straight” segments and proving
results regarding the possible combinations of these pieces.

To the authors’ knowledge, this problem was first analyzed
in the context of optimal control theory by Boissonnat et
al. [7], [8], [9] who gave shorter proofs and extensions of
results of [3] and [4]. Later, Takei and Tsai et al. [10], [11]
used dynamic programming to derive a partial differential
equation (PDE) which is solved by the optimal travel time
function. Through all this work, the car was still simplified
to a point mass. Later, the same approach was applied while
considering the rectangular vehicle pictured in fig. 1 [12].
PDE-based optimal path planning algorithms have also been
developed for a number of applications besides simple self-
driving cars, including underwater path planning in dynamic
currents [13], human navigation in a number of contexts,
[14], [15], [16] and recent models for environmental crime
[17], [18], [19].

Other recent work has been devoted to machine learning
and variatial approaches to the problem; for example, [20],
[21], [22]. Such approaches often rely on a hierarchical algo-
rithms with global trajectory generation and local collision
avoidance as in [23], [24].

2022 American Control Conference (ACC)
Atlanta, USA, June 8-10, 2022

978-1-6654-5196-3/$31.00 ©2022 AACC 2944

Authorized licensed use limited to: The University of Arizona. Downloaded on July 10,2024 at 06:05:18 UTC from IEEE Xplore. Restrictions apply.

A. Our Contribution

We present a PDE based optimal path planning algorithm
for simple self-driving vehicles. Our method is in the same
spirit as [10], [11], [12]. We use dynamic programming to
derive a Hamilton-Jacobi-Bellman (HJB) equation which is
satisfied by the optimal travel time function. The optimal
steering plan is generated using the solution to the HJB
equation. To the authors’ knowledge, in all previous HJB
formulations of optimal trajectory planning for simple self-
driving cars, the obstacles are stationary. We present a time-
dependent formulation in which obstacles are allowed to
move, which is a significant step in adding realism to this
formulation.

In general, the time depedent HJB equation has the form

ut +H(x,∇u(x)) = r(x). (2)

Because the equation is nonlinear and solutions develop
kinks [25], some care is needed when solving HJB equations
numerically; for example, they are not amenable to the
simplest finite difference methods. Accordingly, we present
an upwind finite difference scheme to solve our equation.

The HJB formulation of minimal time path planning has
a number of natural advantages. Because it is rooted in
optimal control theory, there are some theoretical guarantees
and there are no “black box” components, so the results are
interpretable. It is also a very robust modeling framework,
wherein one can easily account for a number of other realistic
concerns such as energy minimization. Finally, it eschews
the need for hierarchical algorithms, and after a single PDE
solve, this formuation can resolve optimal paths from any
initial configuration to the desired ending configuration.

II. MATHEMATICAL FORMULATION

Our algorithm is based on a control theoretic formula-
tion. Generally, to analyze control problems using dynamic
programming, one derives a Hamilton-Jacobi-Bellman (HJB)
equation which is satisfied by the value function. In our
case, solving the HJB equation provides the optimal travel
time from any given starting configuration to a fixed ending
configuration, and the derivatives of the travel time function
determine the optimal steering plan. For general treatment of
this approach (in both theory and practice), see [26], [27].

A. Equations of Motion & Control Problem

We consider a kinematic model of a self driving car which
moves about a domain Ω ⊂ R2 in the presence of moving
obstacles. Fix a horizon time T > 0. At any time t ∈ [0, T],
the obstacles occupy a set Ωobs(t) ⊂ Ω, so that the free space
is given by Ωfree(t) = Ω \ Ωobs(t).

As described above, we track the current configuration of
the car using variables (x,y,θ) : [0, T]→ Ω×[0, 2π), which
obey the kinematic equations

ẋ = v cosθ − ωWd sin θ,

ẏ = v sin θ + ωWd cosθ,

θ̇ = ωW.

(3)

Here W > 0 is a bound on the angular velocity of the
vehicle which enforces bounded curvature of the trajectory.
The control variables are v(·),ω(·) ∈ [−1, 1], representing
the tangential and angular velocity respectively. By taking
velocities to be control variables, we are neglecting some
of the ambient dynamics. In a more complete dynamic
model, the control variables would be the torques applied
to the rear wheels by the actuators. For a derivation of
both this kinematic model and a dynamic model, see [28],
and for generalizations of the kinematic model, see [29]. In
particular, when d = 0, our kinematics revert to that of the
Dubins car with forward and backward motion [3], [4]. We
opt to include d so as to more accurately model the car’s
interaction with obstacles.

For configurations (x, y, θ) ∈ Ω × [0, 2π), define
C(x, y, θ) ⊂ Ω to be the space occupied by the car. In gen-
eral, this could be any shape but for our purposes it will be
a rectangle as pictured in fig. 1. Then given a desired ending
configuration (xf , yf , θf), a trajectory (x(t),y(t), θ(t)) is
referred to as admissable if each of the following is true:
(1) it obeys (3) for t ∈ [0, T],
(2) C(x(t),y(t), θ(t)) ∩ Ωobs(t) = ∅ for all t ∈ [0, T],
(3) (x(T),y(T),θ(T)) = (xf , yf , θf).
Here (2) signifies that the car does not collide with obstacles,
and (3) signifies that the trajectory ends at the desired ending
configuration.

Given an initial configuration (x, y, θ), the goal is then
to resolve the steering plan v(t),ω(t) that determines the
minimal time required to traverse an admissable trajectory
from (x, y, θ) to (xf , yf , θf).

B. The Dynamic Programming Approach

We resolve the optimal steering plan using dynamic pro-
gramming and a Hamilton-Jacobi-Bellman (HJB) equation.
To analyze the problem in the dynamic programming frame-
work, we first define the travel-time function. For a given
configuration (x, y, θ) ∈ Ω × [0, 2π) and time t ∈ [0, T],
we restrict ourselves to trajectories (x(·),y(·), θ(·)) such
that (x(t),y(t), θ(t)) = (x, y, θ). For such trajectories, if
v(·),ω(·) is the corresponding steering plan, we define the
first arrival time

t∗v,ω = inf{s : (x(s),y(s), θ(s)) = (xf , yf , θf)}. (4)

The cost functional for the control problem is then

T (x, y, θ, t, v(·),ω(·)) =

{
t∗v,ω, if t∗v,ω ≤ T,
+∞, otherwise. (5)

The optimal travel time function is then defined

u(x, y, θ, t) = inf
v(·),ω(·)

T (x, y, θ, t, v(·),ω(·)). (6)

Intuitively, u(x, y, θ, t) is the minimal time required to steer
the car to (xf , yf , θf), given that the car is at (x, y, θ) at time
t. Note that if (x, y, θ) is far from (xf , yf , θf) and t is close
to T , there may be no way to steer the car to the ending
configuration in the allotted time. If this is the case, then
u(x, y, θ, t) = +∞. However, if there are any admissable

2945

Authorized licensed use limited to: The University of Arizona. Downloaded on July 10,2024 at 06:05:18 UTC from IEEE Xplore. Restrictions apply.

trajectories (x(·),y(·), θ(·)) such that (x(t),y(t), θ(t)) =
(x, y, θ), then u(x, y, θ, t) ≤ T .

We want to derive a partial differental equation satisfied by
the optimal travel time function. The dynamic programming
principle [30] for this control problem is

u(x, y, θ, t) =

δ + inf
v(·),ω(·)

{u(x(t+ δ),y(t+ δ),θ(t+ δ), t+ δ)} (7)

where (x(t),y(t), θ(t)) = (x, y, θ) and the infimum is taken
with respect to the values v(s),ω(s) for s ∈ (t, t+ δ).

Supposing that u(x, y, θ, t) is smooth, we can divide by δ
and send δ → 0. Doing so, the chain rule gives

inf
v,ω

{
ut + ẋux + ẏuy + θ̇uθ

}
= −1, (8)

whereupon inserting (3) yields

ut+inf
v,ω

{
(ux cos θ + uy sin θ)v +

W (−dux sin θ + duy cos θ + uθ)ω

}
= −1. (9)

Notice the minimization is linear in the variables v, ω ∈
[−1, 1], and thus the minimizing values can be resolved
explicitly. We see that

v = −sign(ux cos θ + uy sin θ),

ω = −sign(−d sin θux + d cos θuy + uθ),
(10)

where u(x, y, θ, t) solves the HJB equation

ut − |ux cos θ + uy sin θ|
−W |−dux sin θ + duy cos θ + uθ|

= −1. (11)

This derivation is only valid when u(x, y, θ, t) is smooth,
which is not expected to be the case. However, under very
general conditions, the travel time function is the unique
viscosity solution of (11) [31]. For a fully rigorous derivation
of the Hamilton-Jacobi-Bellman equation, see [32].

There are a few natural conditions appended to (11). At
the terminal time T , the cost functional (5) assigns a value of
either 0 or +∞, depending on whether car is at the ending
configuration or not. Thus, we have the terminal condition

u(x, y, θ, T) =

{
0, (x, y, θ) = (xf , yf , θf),

+∞, otherwise, (12)

and we want to resolve u(x, y, θ, t) for preceding times t ∈
[0, T). So the equation runs “backwards” in time.

Likewise, if the trajectory has already arrived at the ending
configuration, the remaining travel time is 0, so we have the
boundary condition

u(xf , yf , θf , t) = 0, t ∈ [0, T]. (13)

Lastly, to ensure the car does not collide with obstacles,
we assign u(x, y, θ, t) = +∞ for any (x, y, θ, t) such that
C(x, y, θ) ∩ Ωobs(t) 6= ∅.

By (10), the only possible values of the control variables
are v, ω ∈ {−1, 0, 1}, resulting in a bang-bang controller
which has a “no bang” option. This makes intuitive sense
because there is never incentive to drive or turn slower than
the maximum possible speed, unless one needs to wait for an

obstacle to move out of the way (whereupon v = 0) or one
needs to drive in a straight line (whereupon ω = 0). When
no obstacles are present, one can eliminate the v = 0 option
and the path will consist of straight lines and arcs of circles
of minimum radius, which agrees with early analysis of the
problem [3], [4].

As a final note, this derivation is very similar to that
in [12]. However, when the obstacles are stationary, as in
[10], [11], [12], the optimal travel time function does not
depend on t, since the optimal trajectory depends only
upon the current configuration, not upon the time t when
the car occupies that configuration. In that case, one can
eliminate the time horizon T , and opt instead for a stationary
HJB equation. One can than visualize solving the stationary
HJB equation by evolving a front outward from the final
configuration, and recording the time as the front passes
through other configurations, terminating when each point in
the domain Ω× [0, 2π) has been assigned a value. This is the
philosophy behind level-set inspired optimal path planning
[15], [16], and numerical implementations like fast sweeping
[33], [34], [35] and fast marching methods [36], [37]. In
theory, something similar is possible here. If one does not
care to enforce a finite time horizon, then making the
substitution τ = T −t and taking T →∞ will do away with
it. However, in practice, we will want to discretize the HJB
equation in order to solve computationally, which will require
choosing a fixed time horizon. Thus we cannot do away
with T , but to minimize its effect, we set it large enough
that the travel time u(x, y, θ, 0) is finite for all (x, y, θ) ∈
Ω × [0, 2π). In this manner, any initial configuration (not
overlapping the obstacles) will have admissable paths which
reach (xf , yf , θf) within time T .

III. NUMERICAL METHODS
In this section, we design a numerical scheme to ap-

proximate (11). Since Hamilton-Jacobi equation admit non-
smooth solutions which cannot be approximated by simple
finite difference schemes, effort has been expended to de-
velop schemes which resolve the viscosity solution. For a
survey of numerical methods for Hamilton-Jacobi equations,
see [25], [38].

A. An Upwind, Monotone Scheme for (11)
For simplicity, we confine ourselves to a rectangular

spatial domain Ω = [xmin, xmax] × [ymin, ymax]. Choosing
I, J,K,N ∈ N, let (xi)

I
i=0, (yj)

J
j=0, (θk)Kk=0, (tn)Nn=0 be

uniform discretizations of their respective domains with grid
parameters ∆x,∆y,∆θ,∆t, and let unijk be our approxima-
tion to u(xi, yj , θk, tn). For each v, ω ∈ {−1, 0, 1}, define

Ak(v, ω) = v cos θk − ωWd sin θk,

ak(v, ω) = sign(v cos θk − ωWd sin θk),

Bk(v, ω) = v sin θk + ωWd cos θk,

bk(v, ω) = sign(v sin θk + ωWd cos θk).

(14)

Then (8) can be rewritten

ut+ min
v,ω
{Ak(v, ω)ux+Bk(v, ω)uy +ωWuθ} = −1. (15)

2946

Authorized licensed use limited to: The University of Arizona. Downloaded on July 10,2024 at 06:05:18 UTC from IEEE Xplore. Restrictions apply.

Recall, the terminal values uNijk are supplied here, and we
need to integrate this equation backwards in time. Thus at
time step tn, we need to resolve unijk given known values
un+1
ijk . This suggests backward Euler time integration

(ut)
n
ijk =

un+1
ijk − unijk

∆t
. (16)

The upwind approximations to the other derivatives in (15)
using un+1

ijk are given by

(Ak(v, ω)ux)n+1
ijk = |Ak(v, ω)|

(
un+1
i+ak(v,ω),j,k

− un+1
ijk

∆x

)
,

(Bk(v, ω)uy)n+1
ijk = |Bk(v, ω)|

(
un+1
i,j+bk(v,ω),k

− un+1
ijk

∆y

)
,

(ωWuθ)
n+1
ijk = |ω|W

(
un+1
i,j,k+sign(ω) − u

n+1
ijk

∆θ

)
.

(17)

We insert these approximations in (15) to arrive at

unijk = un+1
ijk + ∆t

(
1 + min

v,w
{(Ak(v, ω)ux)n+1

ijk

+ (Bk(v, ω)uy)n+1
ijk + (ωWuθ)

n+1
ijk }

)
.

(18)

Since there are only finitely many pairs (v, ω), we can com-
pute the right hand side for each pair and explicity choose
the pair which suggests the minimum possible value. Using
this formula and stepping through n = N−1, N−2, . . . , 1, 0,
we arrive at our approximation of the travel time function.

To initialize, we set unijk = +∞ (or some very large
number) for all i, j, k, n except at the node (if , jf , kf)
respresenting the configuration nearest to (xf , yf , θf) where
we set unif ,jf ,kf = 0 for all n. We then only update the
node unijk if the value suggested by (18) is smaller than the
value already stored at unijk. This ensures that the scheme is
monotone so long as the Courant-Friedrichs-Lewy condition

∆t

(
1 +Wd

∆x
+

1 +Wd

∆y
+
W

∆θ

)
≤ 1 (19)

is satisfied [25], [38]. In this case, since the scheme is
also consistent, the approximation converges to the viscosity
solution of (11) as ∆x,∆y,∆θ,∆t→ 0.

We include a few implementation notes. First, to account
for obstacles, at each time step n, we first need to find the
illegal nodes (i.e. those which correspond to configurations
wherein the car collides with an obstacle). At these nodes
(i∗, j∗, k∗), we do not use (18), but rather set uni∗,j∗,k∗ =
+∞. In previous work, this could be done in pre-processing
since the obstacles were stationary and illegal configurations
only needed to be resolved once. In this work, since the
obstacles move, this must be repeated at every time step.
We note that a node may be illegal at one time step (hence
given a large value) and free at the next. This causes no
issues: when the node becomes free again, its value will be
re-computed from nearby nodes as described above. Second,
we use (18) for i = 2, . . . , I − 1, j = 2, . . . , J − 1. The

values unijk at nodes corresponding to the spatial boundary
are never updated, but should be given the value +∞. This
will ensure that the car never leaves the domain. Because
we enforce the correct causality, the boundary nodes have
no effect on interior nodes. Third, one needs to enforce
periodic boundary conditions in θ by identifyting the nodes
at k = 0 and k = K. Lastly, above it is stated that
v, ω ∈ {−1, 0, 1}. However, because it is impossible to
turn a car without moving backward or forward, one should
eliminate the cases (v, ω) = (0,±1). So there are seven
possible pairs of (v, ω) to consider in total; in short, (v, ω) =
(±1,±1), (±1, 0), (0, 0).

B. Generating Optimal Trajectories

There are a few different manners in which one can obtain
optimal control values and generate optimal trajectories. It is
possible to resolve control values vnijk, ω

n
ijk while evaluating

(18). One can define them to be the pair that achieves the
minimum in (18) at any node (i, j, k, n). Alternatively, after
resolving unijk, one can interpolate to off-grid values and
use (10) to resolve the optimal steering plan at any point
(x, y, θ, t). In either case, after choosing an initial point, one
can insert the optimal control values into (3) and integrate the
equations of motion until the trajectory reaches (xf , yf , θf).
This is the approach taken by [12].

In a different approach, we opt for a semi-Lagrangian
path-planner as in [11], [14]. Specifically, we first interpolate
unijk to off grid values, so we have an approximate travel
time function u(x, y, θ, t). Then, choosing an initial point
(x0,y0,θ0) and a time step δ > 0, and rewriting (3) as
(ẋ, ẏ, θ̇) = F (x,y,θ,v,ω), we set

(v∗, ω∗) = argmin
v,ω

u((x`,y`,θ`) + δF (x`,y`,θ`, v, ω), `δ),

(x`+1,y`+1,θ`+1) = (x`,y`,θ`) + δF (x`,y`,θ`, v
∗, ω∗),

(20)

for ` = 0, 1, 2, . . ., halting when (x`,y`,θ`) is within some
tolerance of (xf , yf , θf).

IV. RESULTS & EXAMPLES
We present results of our algorithm in three examples. In

all cases, we use the spatial domain Ω = [−1, 1] × [−1, 1].
We take the car to be a rectangles as pictured in fig. 1 with
d = 0.07 and R = 0.04 and we take the maximum angular
velocity to be W = 4. These are dimensionaless variables
used for testing purposes. In each of the following pictures
the final configuration (xf , yf , θf) will be marked with a
red star and the initial configurations of the various cars
will be marked with green stars. We use a 101× 101× 101
discretization of Ω × [0, 2π) and then choose ∆t according
to (19). We choose the time horizon T = 10. As mentioned
before, this simply needs to be chosen so that there are
admissable paths from every point on the domain to the final
configuration which take time less than T to traverse. In some
of the examples it could likely be smaller, but T = 10 was
sufficiently large for all of them.

In the first example, the final configuration is
(xf , yf , θf) = (0, 0, π) meaning the cars will end at

2947

Authorized licensed use limited to: The University of Arizona. Downloaded on July 10,2024 at 06:05:18 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. In the first example, we have several cars starting in the corners and ending in the center facing due west. The obstacles (black and blue sectors)
rotate counterclockwise with black obstacles rotating at three times the speed of the blue ones.

the center of the domain, facing due west. In this case, the
obstacles Ωobs(t) are 4 annular sectors which will rotate
about the origin in the counterclockwise direction. These
are represented in black and blue in fig. 2. The black
obstacles rotate with 3 times the speed of the blue obstacles.
Notice that in the second panel, the green and blue cars
(respectively bottom right and top left corners) need to stop
and wait to let the obstacles pass before completing their
path. The grey and pink cars are essentially unoccluded and
can travel directly to the destination. We note that these
paths are generated individually, and simply plotted over
each other. There is no competition between the cars.

In the second example, the final configuration is
(xf , yf , θf) = (0.8, 0.8, π/4) so that the car needs to end
near the top right corner of the domain facing northeast. The
car begins in the bottom left corner of the domain as seen
in fig. 3, and must navigate through three moving doorways.
The black bars represent the obstacles and they oscillate as
indicated by the arrows. The car is able to navigate through
the domain without stopping to wait for the doors.

In the third example, we consider the more realistic
scenario of a car changing lanes in between two other cars
as seen in fig. 4. In this case the two blue cars are treated
as obstacles and the orange car must slide in between them.

V. CONCLUSION & DISCUSSION

We present a Hamilton-Jacobi-Bellman formulation for
time-optimal paths of simple vehicles in the presence of
moving obstacles. This is distinguished from previous similar
formulations which could only handle stationary obstacles.

There are many ways in which this work could be ex-
tended. Some simple improvements would be to account
for other realistic concerns such as energy minimization or
instrumentation noise, which can be added to the model in
a straightforward manner, but may complicate the numerics.

Perhaps the biggest drawback of this method is that
it is currently too computationally intensive for real-time
applications. The simulations for each of the examples in
section IV required several minutes of CPU time (on the
authors’ home computers). However, one may be able to
apply recent methods for high-dimensional Hamilton-Jacobi
equations [39], [40]. These methods are based on Hopf-Lax
type formulas and trade finite differences for optimization

problems. It may be difficult to account for crucial boundary
conditions in our model when using such schemes, so some
care would be required. However, if they could be applied to
this problem, it would also provide an opportunity to extend
the model to higher dimensions where finite difference
methods are infeasible.

ACKNOWLEDGMENT
The authors were supported in part by NSF DMS-1937229

through the Data Driven Discovery Research Training Group
at the University of Arizona.

REFERENCES

[1] K. K. Leung, C. H. Hsieh, Y. R. Huang, A. Joshi, V. Voroninski,
and A. L. Bertozzi, “A second generation micro-vehicle testbed for
cooperative control and sensing strategies,” in 2007 American Control
Conference, pp. 1900–1907, 2007.

[2] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.
[3] L. E. Dubins, “On curves of minimal length with a constraint on

average curvature, and with prescribed initial and terminal positions
and tangents,” American Journal of Mathematics, vol. 79, no. 3,
pp. 497–516, 1957.

[4] J. A. Reeds and L. A. Shepp, “Optimal paths for a car that goes both
forwards and backwards.,” Pacific J. Math., vol. 145, no. 2, pp. 367–
393, 1990.

[5] J. Barraquand and J.-C. Latombe, “Nonholonomic multibody mobile
robots: Controllability and motion planning in the presence of obsta-
cles,” Algorithmica, vol. 10, no. 2-4, p. 121, 1993.

[6] P. K. Agarwal and H. Wang, “Approximation algorithms for curvature-
constrained shortest paths,” SIAM Journal on Computing, vol. 30,
no. 6, pp. 1739–1772, 2001.

[7] J.-D. Boissonnat, A. Cérézo, and J. Leblond, “Shortest paths of
bounded curvature in the plane,” Journal of Intelligent and Robotic
Systems, vol. 11, no. 1, pp. 5–20, 1994.

[8] X.-N. Bui, J.-D. Boissonnat, P. Soueres, and J.-P. Laumond, “Shortest
path synthesis for Dubins non-holonomic robot,” in Proceedings of
the 1994 IEEE International Conference on Robotics and Automation,
pp. 2–7, IEEE, 1994.

[9] X.-N. Bui and J.-D. Boissonnat, “Accessibility region for a car that
only moves forwards along optimal paths,” tech. rep., 1994.

[10] R. Takei, R. Tsai, H. Shen, and Y. Landa, “A practical path-planning
algorithm for a simple car: a Hamilton-Jacobi approach,” in Proceed-
ings of the 2010 American Control Conference, pp. 6175–6180, June
2010.

[11] R. Takei and R. Tsai, “Optimal trajectories of curvature constrained
motion in the Hamilton-Jacobi formulation,” Journal of Scientific
Computing, vol. 54, pp. 622–644, Feb 2013.

[12] C. Parkinson, A. L. Bertozzi, and S. J. Osher, “A Hamilton-Jacobi
formulation for time-optimal paths of rectangular nonholonomic vehi-
cles,” in 2020 59th IEEE Conference on Decision and Control (CDC),
pp. 4073–4078, IEEE, 2020.

[13] T. Lolla, M. P. Ueckermann, K. Yiğit, P. J. Haley, and P. F. Lermusiaux,
“Path planning in time dependent flow fields using level set methods,”
in 2012 IEEE International Conference on Robotics and Automation,
pp. 166–173, IEEE, 2012.

2948

Authorized licensed use limited to: The University of Arizona. Downloaded on July 10,2024 at 06:05:18 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. In the second example, one care attempts to navigate through moving doorways. The black obstacles oscillate up and down as indicated by the
arrows in each panel.

Fig. 4. A car (orange) changing lanes between two other cars (blue). Here
the blue cars are the obstacles.

[14] E. Cartee, L. Lai, Q. Song, and A. Vladimirsky, “Time-dependent
surveillance-evasion games,” in 2019 IEEE 58th Conference on Deci-
sion and Control (CDC), pp. 7128–7133, IEEE, 2019.

[15] C. Parkinson, D. Arnold, A. L. Bertozzi, Y. T. Chow, and S. Os-
her, “Optimal human navigation in steep terrain: a Hamilton-
Jacobi-Bellman approach,” Communications in Mathematical Sci-
ences, vol. 17, no. 1, pp. 227–242, 2019.

[16] C. Parkinson, D. Arnold, A. Bertozzi, and S. Osher, “A model for
optimal human navigation with stochastic effects,” SIAM Journal on
Applied Mathematics, vol. 80, no. 4, pp. 1862–1881, 2020.

[17] D. J. Arnold, D. Fernandez, R. Jia, C. Parkinson, D. Tonne, Y. Yaniv,
A. L. Bertozzi, and S. J. Osher, “Modeling environmental crime in
protected areas using the level set method,” SIAM Journal on Applied
Mathematics, vol. 79, no. 3, pp. 802–821, 2019.

[18] E. Cartee and A. Vladimirsky, “Control-theoretic models of environ-
mental crime,” SIAM Journal on Applied Mathematics, vol. 80, no. 3,
pp. 1441–1466, 2020.

[19] B. Chen, K. Peng, C. Parkinson, A. L. Bertozzi, T. L. Slough, and
J. Urpelainen, “Modeling illegal logging in Brazil,” Research in the
Mathematical Sciences, vol. 8, no. 2, pp. 1–21, 2021.

[20] A. Shukla, E. Singla, P. Wahi, and B. Dasgupta, “A direct varia-
tional method for planning monotonically optimal paths for redundant
manipulators in constrained workspaces,” Robotics and Autonomous
Systems, vol. 61, no. 2, pp. 209–220, 2013.

[21] R. Gao, X. Gao, P. Liang, F. Han, B. Lan, J. Li, J. Li, and S. Li, “Mo-
tion control of non-holonomic constrained mobile robot using deep
reinforcement learning,” in 2019 IEEE 4th International Conference on
Advanced Robotics and Mechatronics (ICARM), pp. 348–353, IEEE,
2019.

[22] J. J. Johnson, L. Li, F. Liu, A. H. Qureshi, and M. C. Yip, “Dy-
namically constrained motion planning networks for non-holonomic
robots,” in 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 6937–6943, IEEE, 2020.

[23] E. J. Rodrı́guez-Seda, C. Tang, M. W. Spong, and D. M. Stipanović,
“Trajectory tracking with collision avoidance for nonholonomic vehi-
cles with acceleration constraints and limited sensing,” The Interna-
tional Journal of Robotics Research, vol. 33, no. 12, pp. 1569–1592,
2014.

[24] R. Mao, H. Gao, and L. Guo, “A novel collision-free navigation
approach for multiple nonholonomic robots based on ORCA and linear
MPC,” Mathematical Problems in Engineering, vol. 2020, 2020.

[25] M. Falcone and R. Ferretti, “Numerical methods for Hamilton–Jacobi
type equations,” in Handbook of Numerical Methods for Hyperbolic
Problems (R. Abgrall and C.-W. Shu, eds.), vol. 17 of Handbook of
Numerical Analysis, pp. 603 – 626, Elsevier, 2016.

[26] W. H. Fleming and R. W. Rishel, Deterministic and stochastic optimal
control, vol. 1. Springer Science & Business Media, 2012.

[27] D. P. Bertsekas, “Dynamic programming and optimal control 3rd
edition, volume ii,” Belmont, MA: Athena Scientific, 2011.

[28] E. N. Moret, Dynamic modeling and control of a car-like robot. PhD
thesis, Virginia Tech, 2003.

[29] B. Triggs, “Motion planning for nonholonomic vehicles: An introduc-
tion,” 1993.

[30] R. Bellman, Dynamic Programming. RAND Corporation research
study, Princeton University Press, 1957.

[31] M. G. Crandall and P.-L. Lions, “Viscosity solutions of Hamilton-
Jacobi equations,” Transactions of the American Mathematical Society,
vol. 277, no. 1, pp. 1–42, 1983.

[32] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity
Solutions of Hamilton-Jacobi-Bellman Equations. Modern Birkhäuser
Classics, Birkhäuser Boston, 2008.

[33] Y.-H. R. Tsai, L.-T. Cheng, S. Osher, and H.-K. Zhao, “Fast sweeping
algorithms for a class of Hamilton–Jacobi equations,” SIAM journal
on numerical analysis, vol. 41, no. 2, pp. 673–694, 2003.

[34] C. Y. Kao, S. Osher, and J. Qian, “Lax–Friedrichs sweeping scheme for
static Hamilton–Jacobi equations,” Journal of Computational Physics,
vol. 196, no. 1, pp. 367–391, 2004.

[35] C. Parkinson, “A rotating-grid upwind fast sweeping scheme for a
class of Hamilton-Jacobi equations,” Journal of Scientific Computing,
vol. 88, no. 1, pp. 1–36, 2021.

[36] J. N. Tsitsiklis, “Efficient algorithms for globally optimal trajectories,”
IEEE Transactions on Automatic Control, vol. 40, pp. 1528–1538, Sep
1995.

[37] J. A. Sethian, “A fast marching level set method for monotonically
advancing fronts,” Proceedings of the National Academy of Sciences,
vol. 93, no. 4, pp. 1591–1595, 1996.

[38] S. Osher and R. P. Fedkiw, Level set methods and dynamic implicit
surfaces, vol. 153 of Applied Mathematical Sciences. Springer–Verlag,
2003.

[39] J. Darbon and S. Osher, “Algorithms for overcoming the curse of di-
mensionality for certain Hamilton–Jacobi equations arising in control
theory and elsewhere,” Research in the Mathematical Sciences, vol. 3,
no. 1, pp. 1–26, 2016.

[40] A. T. Lin, Y. T. Chow, and S. J. Osher, “A splitting method for
overcoming the curse of dimensionality in Hamilton–Jacobi equations
arising from nonlinear optimal control and differential games with ap-
plications to trajectory generation,” Communications in Mathematical
Sciences, vol. 16, 1 2018.

2949

Authorized licensed use limited to: The University of Arizona. Downloaded on July 10,2024 at 06:05:18 UTC from IEEE Xplore. Restrictions apply.

