
Received: 30 May 2023 Revised: 12 September 2023 Accepted: 9 October 2023

DOI: 10.1002/nav.22160

R E S E A R C H A R T I C L E

Multi-agent search for a moving and camouflaging target

Miguel Lejeune1 Johannes O. Royset2 Wenbo Ma1

1
School of Business, George Washington

University, Washington, DC, USA

2
Operations Research Department, Naval

Postgraduate School, Monterey, California, USA

Correspondence
Johannes O. Royset, Operations Research

Department, Naval Postgraduate School, Monterey,

CA, USA.

joroyset@nps.edu

Funding information
National Science Foundation, Grant/Award

Numbers: ECCS-2114100, RISE-2220626; Office

of Naval Research, Grant/Award Numbers:

N00014-22-1-2649, N0001423WX01316,

N0001423WX00403.

Handling Editor: Michael Atkinson

Abstract
In multi-agent search planning for a randomly moving and camouflaging target, we

examine heterogeneous searchers that differ in terms of their endurance level, travel

speed, and detection ability. This leads to a convex mixed-integer nonlinear program,

which we reformulate using three linearization techniques. We develop preprocess-

ing steps, outer approximations via lazy constraints, and bundle-based cutting plane

methods to address large-scale instances. Further specializations emerge when the

target moves according to a Markov chain. We carry out an extensive numerical

study to show the computational efficiency of our methods and to derive insights

regarding which approach should be favored for which type of problem instance.

KEYWORDS

camouflage, linearization methods, moving target, outer approximations, search

theory

1 INTRODUCTION

Search for a randomly moving target in a discrete environment

is challenging because the probability for detecting the target

during a look at a particular location depends on the time of

the look and the allocation of earlier looks. Thus, the opti-

mization of searcher paths through discrete time and space

results in difficult nonlinear problems with integer variables.

Operational constraints on the searchers related to travel

speed, endurance, and deconfliction further complicate the

problem. In this paper, we formulate a mixed-integer nonlin-

ear program (MINLP) that accounts for these factors. Given

a planning horizon, it prescribes an optimal path for each

searcher that maximizes the probability of detecting a ran-

domly moving target that might camouflage, or not, and thus

is even less predictable. We present a new linearized model

and extend two others to account for operational constraints

and heterogenous searchers. In an effort to reduce comput-

ing times, we develop a preprocessing technique, implement

a lazy-constraint scheme within an outer-approximation solu-

tion method, and construct three cutting plane algorithms.

Extensive numerical simulations demonstrate some of the

modeling possibilities and indicate the most effective compu-

tational strategies in various settings.

Problems of the kind modeled in this paper arise in

search-and-detection operations (see Abi-Zeid et al., 2019;

Washburn, 2002, Chap. 7 for a discussion of tools used by

the US Coast Guard and the US Navy), in counter-drug inter-

diction (Pietz & Royset, 2013, 2015; Zhang et al., 2020),

and in counter-piracy operations (Bourque, 2019). It is also

increasingly likely that planners in the near future will need

algorithms for guiding large groups of autonomous systems

as they carry out various search tasks, for example in under-

ground environments (DARPA, 2023).

The literature on search problems is extensive; see the

reviews Ding (2018) and Raap et al. (2019) as well as the

monographs Stone (2004), Stone et al. (2016), and Wash-

burn (2002). We assume a randomly moving target and

not one that reacts or adapts to the searchers as seen, for

example, in Pfeiff (2009), Washburn and Wood (1995), and

Stone et al. (2016, Chap. 7). Thus, we broadly face the

problem of optimizing a parameterized Markov decision pro-

cess (Dimitrov & Morton, 2009), but can still avoid the

formulation of a dynamic program and associated computa-

tional intractability as long as false-positive detections are not

considered. This fact is well-known and, at least, can be traced

back to Stewart (1979).

Specialized branch-and-bound algorithms using expected

number of detections in bound calculations (Lau et al., 2008;

Sato & Royset, 2010; Washburn, 1998) are effective

532

© 2023 Wiley Periodicals LLC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

wileyonlinelibrary.com/journal/nav Naval Res Logistics 2024;71:532–552

https://orcid.org/0000-0001-6952-7212
https://orcid.org/0009-0003-3554-7305
https://orcid.org/0000-0002-2047-8226
http:// wileyonlinelibrary.com/journal/NAV
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnav.22160&domain=pdf&date_stamp=2023-11-21

LEJEUNE ET AL. 533

when optimizing for a single searcher. Recently, this

has been extended to multiple homogeneous searchers

using minimum-cost flow computations to generate bounds

(Bourque, 2019). In the case of multiple searchers, cutting

planes (constructed using either tangent or secant lines) fur-

nish linear approximations that can be refined adaptively and

lead to exact algorithms (Royset & Sato, 2010). The com-

putational cost of identifying cuts tends to be significant if

the target path can be any one of a large number of pos-

sible paths. This is reduced significantly when the target

paths are governed by a Markov chain due to convenient

formulas developed in Brown (1980); see also Royset and

Sato (2010). Recent efforts toward developing cutting plane

methods include Delavernhe et al. (2021), but there exact-

ness is sacrificed to achieve shorter computing times. The

resulting algorithm uses a greedy heuristic to build the linear

approximations.

A cutting plane approach can be viewed as a linearization of

the actual problem when “all” cuts are included in the master

problem from the outset. At least conceptually, this produces

a direct solution approach: solve the master problem with all

cuts included as proposed in Royset and Sato (2010). When

the target moves according to a Markov chain, then one can

also achieve another linearization through direct modeling

of the evolution of the (posterior) probability of having the

target in a particular location (Royset & Sato, 2010). This lin-

earization approach is refined in Berger et al. (2021) under

the assumption that the travel times between locations are

always one time period and the searchers are homogeneous.

This effort includes path splitting mitigation strategies for the

continuous relaxation of the resulting mixed-integer model,

variable elimination by switching to a focus on the terminal

time period in the objective function, and implementation of

a receding horizon strategy.

The literature also includes branch-and-bound algorithms

that solve sequences of convex subproblems (Eagle &

Yee, 1990) and many heuristics (Abi-Zeid et al., 2019; Dell

et al., 1996; Grundel, 2005; Hollinger & Singh, 2008; Lanillos

et al., 2012; Riehl et al., 2007; Wong et al., 2005), but they lack

optimality guarantees. Routing of constrained searchers in

discrete time and space has similarities with (team) orienteer-

ing and related reward-collecting vehicle routing problems;

see, for example, Cho and Batta (2021), Moskal et al. (2023),

Pietz and Royset (2013), and Royset and Reber (2009). These

problems often emphasize operational constraints such as

time-windows for accomplishing tasks, limits on endurance

and capacity, and deconflication among multiple agents.

In this paper, we also include operational constraints about

endurance and deconflication, and hint to other possibil-

ities that can be added with relative ease. In contrast to

Berger et al. (2021), which numerically examines one and

two searchers, we study up to 50 searchers. We also allow

for different types of searchers; their sensors, endurance, and

travel speed can vary. The recent efforts Berger et al. (2021),

Bourque (2019) and, largely, Royset and Sato (2010) deal

with homogeneous searchers where all these characteristics

are identical across the searchers. We permit the target to cam-

ouflage according to a random process. Thus, the target not

only follows a random trajectory but its appearance along the

trajectory is also random. It might become undetectable for

some time periods and this adds variability to the searchers’

effective sensor performance at any point in time. To the best

of our knowledge, this feature has not been modeled earlier in

the literature.

We start in Section 2 by formulating the search problem

under consideration. Section 3 considers the most general

conditional target path models and presents two lineariza-

tions, a preprocessing technique, an outer-approximation

method based on lazy constraints, and numerical results.

Section 4 turns to the more special, Markovian target path

models and develops a linearization and three cutting plane

algorithms, with supporting numerical results. The paper ends

with conclusions in Section 5.

2 PROBLEM FORMULATION

In this section, we describe the search problem and propose a

generic model formulation.

2.1 Searchers and the target

We consider L classes of searchers with each class l ∈  =
{1, … , L} containing Jl identical searchers. The set of time

periods is 0 = {0} ∪  with  = {1, … , T}. The search

for the target may take place during time periods t ∈  . Dur-

ing a time period t ∈ 0, each searcher occupies a state s ∈
 = {1, … , S} or is in transit between states. When occupy-

ing a state s, a searcher of class l may select to move to any

state adjacent to s as defined by the forward star l(s) ⊂  .

We also let l(s) ⊂  denote the reverse star of state s, which

represents the set of states from which a searcher of class

l can reach state s without transiting through any intermediate

state. A searcher of class l requires dl,s,s′ ≥ 1 time periods to

move from state s to state s′ ∈ l(s) and to carry out search

in state s′ for one time period. We refer to dl,s,s′ as the travel
time even though it also includes the subsequent search time

and typically would have dl,s,s = 1 when the searcher remains

in state s.

We prefer the term “state” over “cell” despite the latter

being more common in the literature; see, for example, Berger

et al. (2021) and Royset and Sato (2010). “State” highlights

the vast number of modeling possibilities beyond searching

an area discretized into grid cells. For example, the search

may take place inside an underground mine, inside a ship,

in a building, or in an urban environment. In such situations,

it becomes especially important to allow for varying travel

times dl,s,s′ that sometimes could be much greater than one

time period.

 15206750, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.22160 by G

eorge W
ashington U

niv M
ed C

tr, W
iley O

nline Library on [01/04/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

534 LEJEUNE ET AL.

We let Xl,s,s′,t denote the number of searchers of class l
that occupy state s in time period t ∈ 0 and that move

to state s′ next, and let X denote the vector with compo-

nents Xl,s,s′,t, l ∈ , s, s′ ∈  , and t ∈ 0. We refer to X
as a search plan. In addition to the conditions imposed by

the forward and reverse stars, a search plan is constrained in

three ways:

2.1.1 Initial state

There is a special, initial state s+ ∈  from which all

searchers start at time period 0. It can abstractly represent geo-

graphically distinct bases for the different classes of searchers

as the travel time dl,s+,s from s+ to any other state s may

depend on l. (Further fidelity regarding starting states for

the various searchers is easily implemented, but omitted here

for notational simplicity.) The reverse star l(s+) = {s+},

indicating that a searcher cannot return to the initial state

after it departs. However, since l(s+) may contain s+, a

searcher could remain in the initial state for a number of

periods.

2.1.2 Deconfliction

We permit at most ns,t searchers to be in state s at time period

t. This constraint is motivated by safety concerns related to

collisions, but could also be helpful in preventing search plans

that overly concentrate on a few states. Our modeling frame-

work easily accommodates a variety of other deconflication

constraints as well, but we omit the details.

2.1.3 Endurance and terminal state

For each class l, there is an endurance level 𝜏l which is the

number of periods a searcher of that class can be absent from

s+ and s− ∈  , the latter being the terminal state. It has the

forward starl(s−) = {s−}, which means that a searcher in the

terminal state will remain there indefinitely. As we see in the

below formulation, travel time from s+ to the first state looked

at and travel time from the last state to s− are not counted

against 𝜏l. For example, suppose that  = {1, … , 5}, s+ = 1,

s− = 5, and consider the forward stars 1(1) = {1, 2},

1(2) = {2, 3}, 1(s) = {s − 1, s, s + 1} for s = 3, 4, 1(5) =
{5} and the reverse stars1(1) = {1},1(s) = {s−1, s, s+1}
for s = 2, 3, 1(4) = {3, 4}, 1(5) = {4, 5}. If T = 6 and

𝜏1 = 3, then a feasible plan for searcher 1 is to sequentially

visit the states 1, 1, 2, 3, 4, 5 because the searcher is outside

of the initial and terminal states for no more than 𝜏1 = 3

time periods.

We consider one target. During a time period t ∈  , the

target is in a state st ∈  ⧵ {s+, s−} while operating in one

of two modes: it might be camouflaged at that time as indi-

cated by ct = 1 or it might not be camouflaged specified by

ct = 0. We observe that the target is barred from the initial

and terminal states of the searchers. A target path is the vector

𝜔 = (𝜔1, … , 𝜔T) with 𝜔t = (st, ct) ∈ ( ⧵ {s+, s−}) × {0, 1}

specifying the state st and mode ct for the target in time period

t. The probability that the target follows path 𝜔 is q(𝜔). We

denote by Ω ⊂ (( ⧵ {s+, s−}) × {0, 1})T the set of all target

paths with positive probability. Thus,
∑

𝜔∈Ω q(𝜔) = 1. We

assume that these target paths and probabilities are known.

Since we adopt a stochastic model for target movement, it

becomes immaterial whether the target wants to be detected

or not. The target simply selects one target path according

to the probabilities q(𝜔), 𝜔 ∈ Ω and follows it without any

“intelligent” behavior.

While we only explicitly consider a single target, it is

conceptually straightforward to extend the following for-

mulations to multiple targets by adopting expected number

of unique targets detected or related metrics as objective

function. Since this only affects the objective function with

the decision variables remaining the same, we conjecture

that computing times will largely be unchanged compared

to the single-target case. We omit a detailed discussion

and refer to Royset and Sato (2010) for ideas in this

direction.

2.2 Sensors

We assume that each searcher is equipped with one imperfect

sensor. Each time period t ∈  in which a searcher occu-

pies a state, the searcher’s sensor takes one look at its current

state. When a searcher is in transit between states, the sen-

sor is inactive. If a searcher of class l occupies state s in time

period t and s′ is the searcher’s previous state, then the prob-

ability that the searcher’s look at the state during time period

t detects the target, given it is in that state and is not camou-

flaged, is gl,s′,s,t ∈ [0, 1). We refer to this probability as the

glimpse-detection probability. We assume that the searchers’

looks can be viewed as statistically independent attempts at

detecting the target. Hence, given a search plan X and tar-

get path 𝜔, the probability that no searcher detects the target

during  becomes:

∏

l∈

∏

s∈

∏

t∈

∏

s′∈l (s)
t−dl,s′,s≥0

(1 − gl,s′,s,t)𝜁s,t(𝜔)Xl,s′,s,t−dl,s′,s

= exp

⎛
⎜
⎜
⎜
⎝

−
∑

l∈

∑

s∈

∑

t∈

∑

s′∈l (s)
t−dl,s′,s≥0

− ln(1 − gl,s′,s,t)𝜁s,t(𝜔)Xl,s′,s,t−dl,s′,s

⎞
⎟
⎟
⎟
⎠

,

where 𝜁s,t(𝜔) = 1 if 𝜔 = (𝜔1, … , 𝜔T) has 𝜔t = (s, 0),
and 𝜁s,t(𝜔) = 0 otherwise. For given l, s′, s, t, there are four

possible reasons why

(1 − gl,s′,s,t)𝜁s,t(𝜔)Xl,s′,s,t−dl,s′,s
,

would become 1 and thus causing this particular factor

to not reducing the probability of nondetection: (i) the

glimpse-detection probability gl,s′,s,t could be 0 represent-

ing an ineffective sensor under these circumstances. For

example, t might represent nighttime or a time period with

poor weather. (ii) No searchers of class l are present in state s

 15206750, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.22160 by G

eorge W
ashington U

niv M
ed C

tr, W
iley O

nline Library on [01/04/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

LEJEUNE ET AL. 535

at time period t, while previously in s′, that is, Xl,s′,s,t−dl,s′ ,s = 0.

(iii) The target is not in state s at time t, which causes 𝜁s,t(𝜔) =
0. (iv) The target is in state s at time t but is camouflaged, that

is, 𝜔t = (s, 1), which again causes 𝜁s,t(𝜔) = 0.

We refer to the term − ln(1−gl,s′,s,t) as the detection rate for

a searcher of class l in state s at time t when it previously occu-

pied state s′. Generally, these detection rates can vary with

l, s′, s, t but we assume that one can identify a positive num-

ber 𝛼 and nonnegative integers 𝛽l,s′,s,t, l ∈ , s, s′ ∈  , t ∈  ,

such that

𝛼𝛽l,s′,s,t = − ln(1 − gl,s′,s,t) for all l ∈ , s ∈  , t ∈  ,

s′ ∈ l(s) with t − dl,s′,s ≥ 0. (2.2)

This is a minor assumption as each number in a finite col-

lection of rational numbers can be written as the product of

a common scalar and an integer. We refer to 𝛼 as the base
detection rate, while 𝛽l,s′,s,t is the rate modification factor.

The motivation for the assumption stems from the lineariza-

tion approaches below; see also Royset and Sato (2010) which

mentions this possibility while leaving out the details. The

complexity of a problem instance turns out to be closely

related to the size of the integers 𝛽l,s′,s,t. If the sensors are iden-

tical across classes, states, and time periods, then one can set

all rate modification factors to 1. To take advantage of this

particular structure in the formulation below, we leverage the

auxiliary decision variable

Zl,s,t =
∑

s′∈l (s)
t−dl,s′ ,s≥0

𝛽l,s′,s,tXl,s′,s,t−dl,s′ ,s ,

which represents the search effort allocated to state s at time

period t by class l.

2.3 SP model

We next state an MINLP that models the search problem

under consideration. It goes beyond the formulations in

Berger et al. (2021) and Bourque (2019) by considering differ-

ent classes of searchers, varying travel times, deconflication

constraints, and endurance limits. It is motivated by a model

in Royset and Sato (2010), but extends it by accounting for

a camouflaging target and limited search endurance. Table 1

provides a summary of the notation used.

The MINLP takes the following form:

SP: minimize
X,Z,M

f (Z)

=
∑

𝜔∈Ω
q(𝜔) exp

⎛
⎜
⎜
⎜
⎝

−
∑

l∈

∑

s∈
s∉{s+ ,s−}

∑

t∈
𝜁s,t(𝜔)𝛼Zl,s,t

⎞
⎟
⎟
⎟
⎠

,

(2.3a)

subject to

∑

s′∈l (s)
t−dl,s′ ,s≥0

Xl,s′,s,t−dl,s′ ,s

=
∑

s′∈l(s)
Xl,s,s′,t, l ∈ , s ∈  , t ∈  ,

(2.3b)

∑

s∈l(s+)
Xl,s+,s,0 = Jl, l ∈ ,

(2.3c)

∑

s∈l (s+)
s∉{s+ ,s−}

Xl,s+,s,t = Ml,t, l ∈ , t ∈ 0, (2.3d)

∑

s∈
s∉{s+ ,s−}

∑

s′∈l(s)
Xl,s,s′,t ≤

∑

t−𝜏l+1≤t′≤t
Ml,t′ , l ∈ , t ∈ 0, (2.3e)

∑

s′∈l (s)
t−dl,s′ ,s≥0

𝛽l,s′,s,tXl,s′,s,t−dl,s′ ,s = Zl,s,t, l ∈ , t ∈  , s ∈  , (2.3f)

∑

l∈

∑

s′∈l (s)
t−dl,s′ ,s≥0

Xl,s′,s,t−dl,s′ ,s ≤ ns,t, t ∈  , s ∈  , (2.3g)

Xl,s,s′,t ∈
{

0, 1, 2, … ,min{Jl, ns,t}
}
, l ∈ , s, s′ ∈  , t ∈ 0,

(2.3h)

Ml,t ∈
{

0, 1, 2, … ,min{Jl, ns+,t}
}
, l ∈ , t ∈ 0, (2.3i)

Zl,s,t ∈ {0, 1, 2, … ,ml,s,t}, l ∈ , t ∈  , s ∈  . (2.3j)

The objective function (2.3a), denoted by f (Z), gives the

probability of not detecting the target during  and is obtained

from the derivations in Section 2.2 by applying the total prob-

ability theorem. It leverages the auxiliary decision vector Z
assigned in (2.3f). In view of (2.2), exp(𝛼Zl,s,t) gives the prob-

ability that class l fails to detect the target in state s at time

period t, given the target is there and it is not camouflaging.

Constraints (2.3b) and (2.3c) enforce route continuity and

define initial conditions for the searchers, respectively. The

constraints (2.3d) ensure that Ml,t represents the number of

searchers of class l that moves away from the initial state

in time period t, that is, start their mission. The constraints

(2.3e) prevent searchers from being outside the initial and ter-

minal states for more than 𝜏l time periods. Specifically, the

right-hand side of (2.3e) sums up the number of searchers

of class l that has started their mission during time periods

t, t−1, … , t− 𝜏l +1. This number cannot be exceeded by the

left-hand side of (2.3e), which gives the number of searchers

of class l on mission at time period t. Thus, searchers of class

l that started their mission prior to t − 𝜏l + 1 cannot be in any

other state than s−. To the best of our knowledge, endurance

constraints of this kind have not been considered earlier in

the search theory literature. Deconfliction constraints (2.3g)

limit the number of searchers that can occupy a state in any

time period. It can be adjusted in various ways such as being

implemented for each class l individually.

We can reduce the size of SP by defining Zs,t =
∑

l∈ Zl,s,t,

but the present formulation affords some simplifications. If

each 𝛽l,s′,s,t = 1, then every Xl,s,s′,t can be relaxed to a

continuous variable. This is not the case in a formulation with

the aggregated variables Zs,t.

 15206750, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.22160 by G

eorge W
ashington U

niv M
ed C

tr, W
iley O

nline Library on [01/04/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

536 LEJEUNE ET AL.

TABLE 1 Notation for model SP.

Indices
s, s′, st State: s, s′, st ∈  = {1, … , S}
t, t′ Time period: t, t′ ∈ 0 = {0} ∪  ,  = {1, … ,T}
l Searcher class: l ∈  = {1, … ,L}
c, c′, ct Mode: c = 1 means camouflage; c = 0 means no camouflage

𝜔 Target path: 𝜔 = (𝜔1, … , 𝜔T) ∈ Ω, with 𝜔t = (st , ct) ∈ ( ⧵ {s+, s−}) × {0, 1}
Sets
l(s) ⊆  Forward star of state s for searchers of class l

l(s) ⊆  Reverse star of state s for searchers of class l

Parameters
𝛼 Base detection rate; positive real number

𝛽l,s′ ,s,t Rate modification factor for a searcher of class l while it occupies state s in time period t and s′ is its previous state; nonnegative

integer

𝜁s,t(𝜔) 1 if 𝜔 = (𝜔1, … , 𝜔T) has 𝜔t = (s, 0); zero otherwise

s+ ∈  Initial state; l(s+) = {s+}
s− ∈  Terminal state; l(s−) = {s−}
Jl Number of searchers of class l; positive integer

q(𝜔) Probability of target path 𝜔; positive value with
∑

𝜔∈Ω q(𝜔) = 1

dl,s,s′ Number of time periods needed for a searcher of class l to move directly from state s to state s′ and search in s′; positive integer

ns,t Maximum number of searchers in state s at time period t; nonnegative integer

𝜏l Endurance of searchers of class l; positive integer

ml,s,t Maximum search effort from class l in state s at time period t; ml,s,t =
∑

s′∈l(s)∶t−dl,s′ ,s
𝛽l,s′ ,s,t min{Jl, ns,t}

Decision variables
Xl,s,s′ ,t Number of searchers of class l in state s at time period t and that move to state s′ next; X denotes the vector with components

Xl,s,s′ ,t , l ∈ , s, s′ ∈  , t ∈ 0

Zl,s,t Search effort from class l in s at time period t, l ∈ , s ∈  , t ∈  ; Z denotes the vector with components Zl,s,t , l ∈ , s ∈  , t ∈ 

Ml,t Number of searchers of class l that start their mission at time period t; M denotes the vector with components Ml,t , l ∈ , t ∈ 

SP is a convex MINLP because its continuous relaxation

has a convex nonlinear objective function and a polyhdedral

feasible set. The difficulty of solving SP depends on various

parameters as examined below. The movement of the target

between states and the switch in and out of camouflaging

mode enter SP only through the set of target paths Ω, which

are weighted according to the probabilities q(𝜔), 𝜔 ∈ Ω.

Our formulation has the advantage that any (complicated) tar-

get path model can be considered, including non-Markovian

models. It suffices to generate, ex ante, the parameters 𝜁s,t(𝜔)
for each path 𝜔 ∈ Ω. We refer to this most general set-

ting as a conditional target path model and address it in

Section 3.

While conceptually simple, a conditional target path model

might be computationally challenging to implement when

the number of possible paths is large, that is, the cardinal-

ity of Ω is large. A Markovian target path model affords a

means to handle a massive number of target paths as we see

in Section 4.

3 CONDITIONAL TARGET PATHS

In this section, we consider conditional target paths and thus

make no assumptions about the stochastic model generat-

ing these paths beyond being able to compute ex ante the

parameters 𝜁s,t(𝜔). Section 3.1 develops two equivalent linear

models, a supporting preprocessing technique, and numerical

results. Section 3.2 presents an outer-approximation method

based on lazy constraints, which improves computing times

on difficult instances. Section 3.3 discusses operational

insights emerging from solving SP in various settings.

3.1 Linearization

The objective function (2.3a) in SP is a finite sum of the

exponential function with arguments in the form of a sum

of products of a nonnegative parameter by a bounded inte-

ger variable. It can therefore be linearized using additional

variables and constraints (Royset & Sato, 2010). In addition

to extending the linearization from Royset and Sato (2010),

which deals with homogeneous searchers and no operational

constraints, to the present setting, we also develop a novel

linearization and a preprocessing technique.

The maximum search effort that the searchers collectively

can muster across all time periods is

N =
∑

l∈

∑

t∈
max

s∈⧵{s+,s−}
ml,s,t.

Thus, the power in (2.3a) cannot exceed 𝛼N. A linearization

of the exponential function needs to only cover the arguments

0, 𝛼, 2𝛼, … , 𝛼N.

 15206750, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.22160 by G

eorge W
ashington U

niv M
ed C

tr, W
iley O

nline Library on [01/04/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

LEJEUNE ET AL. 537

We start by developing a new linearization by lever-

aging the fact that minimizing exp(−𝛼Y) over Y ∈
{0, 1, 2, … ,N}∩ , where represents constraints, is equiv-

alent to the problem.

minimize
Y∈ ,W

0
,… ,WN

N∑

i=0

Wie−i𝛼
subject to

N∑

i=1

i Wi = Y ,

N∑

i=0

Wi = 1, Wi ∈ [0, 1], i = 0, 1, 2, … ,N. (3.1)

At optimality, each Wi must take value 0 or 1 because the

exponential function is strictly convex, which means that one

can restrict Wi to be binary from the outset. Replicating the

process for each 𝜔 ∈ Ω in the context of SP, we reformulate

SP as the following mixed-integer linear program (MILP):

CSP-U: minimize
X,Z,W,M

∑

𝜔∈Ω
q(𝜔)

N∑

i=0

Wi(𝜔)e−i𝛼

subject to (2.3b)-(2.3j)

N∑

i=1

i Wi(𝜔) =
∑

l∈

∑

s∈
s∉{s+ ,s−}

∑

t∈
𝜁s,t(𝜔)Zl,s,t, 𝜔 ∈ Ω

N∑

i=0

Wi(𝜔) = 1, 𝜔 ∈ Ω,
(3.2)

Wi(𝜔) ∈ [0, 1], 𝜔 ∈ Ω, i = 0, 1, 2, … ,N. (3.3)

Here, we denote by W the vector with components Wi(𝜔),
𝜔 ∈ Ω, i = {0, 1, … ,N}. The first letter in CSP-U refers to

the conditional target model, while the last letter hints to the

upper approximation of the exponential function underpin-

ning (3.1). Note that there is no approximation in the present

setting; CSP-U is equivalent to SP.

We also extend a linearization from Royset and Sato (2010),

which gives the following MILP reformulation of SP:

CSP-L: minimize
X,Y ,Z,M

∑

𝜔∈Ω
q(𝜔)Y(𝜔)

subject to (2.3b)-(2.3j)

e−i𝛼(1 + i − ie−𝛼)

− e−i𝛼(1 − e−𝛼)
∑

l∈

∑

s∈
s∉{s+ ,s−}

∑

t∈
𝜁s,t(𝜔)Zl,s,t ≤ Y(𝜔),

𝜔 ∈ Ω, i = 0, 1, 2, … ,N − 1. (3.4)

The vector Y consists of the free variables Y(𝜔), 𝜔 ∈ Ω
introduced in the reformulation. As explained in Royset and

Sato (2010), the constraints (3.4) represent N secant cuts that

are valid at integer points of the exponential function; this is

replicated for each 𝜔 ∈ Ω. The last letter in the name CSP-L
recalls that each cut represents a lower approximation of the

objective function in SP. CSP-L amounts to an improvement

over the model SP1-L in Royset and Sato (2010) by consid-

ering multiple searcher classes, eliminating |Ω| unnecessary

secant cuts (effectively replacing N by N − 1 in (3.4)), and

accounting for endurance and deconfliction.

The linearizations CSP-U and CSP-L are both equivalent

to SP. The former adds |Ω|(N + 1) variables and (2N + 4)|Ω|
constraints, while the latter adds only |Ω| variables and |Ω|N
constraints. However, the added constraints in CSP-U are

relatively simple; either variable bounds or equality con-

straints. In contrast, all the new constraints in CSP-L are

more challenging inequality constraints. Regardless, the role

of N is central, with lower values affording significant sav-

ings in model size. The planning horizon T and the number of

searchers drive up N. The same holds for situations with vary-

ing detection rates, which produce rate modification factors

𝛽l,s′,s,t larger than one.

As is the case for SP, if each 𝛽l,s′,s,t = 1 in CSP-U and

CSP-L, then every Xl,s,s′,t can be relaxed to a continuous vari-

able. When possible, we take advantage of this fact. (Testing

not reported here indicates significant reduction in comput-

ing time when using this relaxation. The alternative relaxation

with Z continuous and X integer is significantly slower, which

probably stems from the fact that X is a much larger vector

than Z.)

3.1.1 Computational tests

We compare CSP-U and CSP-L in a preliminary computa-

tional study based on instances from Royset and Sato (2010).

For reference, we also examined Baron, Bonmin, and Knitro,

three leading solvers (Kronqvist et al. 2019). There is a sin-

gle class of searchers with unlimited endurance looking for a

target that cannot go into camouflage mode. We also omit the

deconfliction restrictions (2.3g). This implies that the variable

vector M and the constraints (2.3d) and (2.3e) are superfluous.

The state space is built as a square grid of cells, with an addi-

tional state s+ representing the initial location of the searchers.

(A terminal state s− is unnecessary when the searchers have

unlimited endurance.) For example, a 9-by-9 grid of cells pro-

duces 81 + 1 = 82 states. At any time period t, a searcher in

state s, corresponding to a particular grid cell, can move to

the cell above, below, right, or left to s in the grid and this

becomes its next state. We call these four states as well as s
itself the adjacent states of s. Diagonal moves are not allowed.

On the boundary of the square grid of cells some of these

options are eliminated as needed. The adjacent states define

the forward star set l(s). The reverse star of s is defined anal-

ogously. The travel times dl,s,s′ are always set to 1. The initial

state s+ has the three boundary cells in the upper-left corner as

its forward star. The glimpse detection probabilities are invari-

ant so that 𝛽l,s′,s,t = 1 for all l, s, s′, t, with 𝛼 = −3 ln(0.4)∕J1;

here J1 is the number of searchers of the first (and only)

class. This calibration of 𝛼 follows Royset and Sato (2010)

and allows for comparison as the number of searchers

varies.

The target paths are generated ex-ante as follows. The num-

ber of cells along each edge of the square grid of cells is an odd

number, so the center cell in the square grid is well defined.

This center cell is the initial position of the target. From one

 15206750, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.22160 by G

eorge W
ashington U

niv M
ed C

tr, W
iley O

nline Library on [01/04/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

538 LEJEUNE ET AL.

time period to the next, the target can stay idle or move to

any of the adjacent cells according to a transition matrix with

probabilities defined as follows. The probability that the tar-

get remains in the same state is 0.6, with the probability of

moving to any of the adjacent states is equal (i.e., usually 0.1

except if the target is on the boundary of the square grid of

cells). We randomly generate |Ω| target paths according to

these probabilities and set q(𝜔) = 1∕|Ω|.
These model instances and those in the following are not

constructed in response to a particular application, but rather

designed to challenge the algorithms. Current and future

applications might involve many searchers in the form of

inexpensive drones or a few manned aircraft. The number

of states can also vary greatly. The search for smugglers

in the Eastern Tropical Pacific Ocean might involve thou-

sands of states, two aircraft, 72 hourly time periods, and

half-a-dozen targets (Riley, 2023). However, after prepro-

cessing and decoupling the various targets we obtain a state

space and planning horizon aligned with what is considered in

this paper.

All the models in this paper are coded in Python 3.7

and solved with Gurobi 9.1 on a Linux machine, with Intel

Core i7-6700 CPU 3.40GHz processors and 64 GB installed

physical memory. For each instance, the relative optimality

tolerance is 0.0001, and we use one thread only. If this tol-

erance is not achieved after 900 s, we report the optimality

gap at 900 s in brackets in the tables below. The relative opti-

mality gap is calculated as the ratio of the difference between

the best integer solution and the best lower bound to the best

lower bound.

Table 2 compares the Bonmin, Knitro, and Baron solvers

with CSP-L and CSP-U. Direct solution of SP using Bon-

min, Knitro, and Baron appears less competitive: CSP-L is

faster than all the three solvers on 14 out of 18 instances;

CSP-U is faster than all the three solvers on 17 out of 18

instances and solves all of them within the 900-second time

limit. Baron, Bonmin, and Knitro solve only 10, 9, and 14

out of 18 instances, respectively. Their failures often involve

having found no feasible integer solution as indicated by [∞]
in the table. A comparison between our linearizations shows

that the new version CSP-U tends to outperform CSP-L,

which in the present setting essentially coincides with a lin-

earization proposed in Royset and Sato (2010). On 16 or 17

of the 18 instances, CSP-U solves quicker than CSP-L. The

tolerance is reached in no more than 279 s with CSP-U, while

two instances cannot be solved in 900 s with CSP-L. The

advantage of CSP-U over CSP-L is more pronounced for

instances with more searchers (J1 = 15) compared to fewer

searchers (J1 = 3). We obtain similar results (not reported

in detail) for instances with up to 32 000 targets paths and

226 states in seconds. Interestingly, the solution time is not
consistently increasing with the number of target paths and

states.

In some cases a binary restriction on Wi(𝜔) in (3.3) can

be beneficial from a computational point of view. (Recall

from the discussion after (3.1) that these variables indeed are

binary at optimality.) For example, the instance with T = 10

solves in 17 s with Wi(𝜔) ∈ {0, 1} and in 63 seconds with

Wi(𝜔) ∈ [0, 1].
The solution time appears to be an increasing function of

the length of the planning horizon as seen in Table 3, and

this is also largely consistent with Table 2. The effect of more

searchers on the computing time is less clear. Instances with

many searchers in Table 3 solve surprisingly quickly. The

superiority of the new linearization CSP-U becomes increas-

ingly visible as the number of searchers and the length of

the planning horizon increase. For the largest instances with

J1 ≥ 30 and T = 15, Table 3 shows solution times for

CSP-U in tens of seconds while CSP-L fails to produce the

required optimality gap in 900 s. CSP-U can also be solved

with binary restrictions for Wi(𝜔), which is usually slower, but

for 10 out of 52 instances in Tables 2 and 3 binary restrictions

are slightly faster. The tables ignore such potential further

improvements for CSP-U unless the times become less than

half in which case the instances are marked with asterisk and

dagger in the tables.

TABLE 2 For S = 82 states, |Ω| = 1000 target paths, and varying numbers of searchers and time periods: Solution time (sec) to relative optimality gap of

0.0001 or, if not reached in 900 s, relative optimality gap in brackets after 900 s.

J1 = 3 J1 = 15

T Baron Bonmin Knitro CSP-L CSP-U Baron Bonmin Knitro CSP-L CSP-U

7 113 9 17 0.1 0.2 2 9 5 0.9 0.6

8 3 14 23 0.3 0.3 3 15 2 1 1

9 48 64 49 2 1 10 81 12 5 3

10 120 285 140 5 3 23 147 8 25 63
a

11 [0.0153] [0.0040] 200 12 6 273 461 263 436 220

12 [0.0482] [0.0789] 451 37 7 877 [0.4342] 161 82 24

13 [0.0367] [∞] [∞] 22 10 [0.0124] [5.3512] 284 [0.0023] 104

14 [0.0577] [∞] [∞] 79 18 [0.0090] [9.1903] 797 [0.0108] 98

15 [0.3043] [∞] [∞] 110 90 [∞] [∞] [∞] 582 279

a
Runtime is reduced to 17 s if Wi(𝜔) is restricted to binary in CSP-U; ∞ indicates that no bound is available.

 15206750, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.22160 by G

eorge W
ashington U

niv M
ed C

tr, W
iley O

nline Library on [01/04/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

LEJEUNE ET AL. 539

TABLE 3 For S = 82 states, |Ω| = 1000 target paths, and varying time

periods and numbers of searchers: Solution time (sec) to relative

optimality gap of 0.0001 or, if not reached in 900 s, relative optimality gap

in brackets after 900 s.

T = 10 T = 15

J1 CSP-L CSP-U CSP-L CSP-U

3 5 3 110 89

4 6 2 537 21

5 9 4 33 42

6 9 3 312 149

8 15 4 124 152

10 16 14 266 209

15 26 63
a

594 379

20 34 39 [0.0030] 503

30 49 52 [0.0021] 42

50 51 15 [0.0012] 57
b

Note: Letters a and b indicate that runtime is reduced to 17 seconds and 23

seconds, respectively, if Wi(𝜔) is restricted to binary in CSP-U.

3.1.2 Preprocessing

The linearizations of SP involve a significant lifting of the

decision space; it grows linearly in the number of target

paths |Ω|. The additional |Ω|N constraints in CSP-L are also

problematic. As a result, CSP-U and CSP-L can become pro-

hibitively large for instances with many target paths, time

periods, searchers, and/or varying rate modification factors.

This motivates us to derive a preprocessing techniques to

eliminate integer variables that can be proven to take value 0

at an optimal solution of CSP-U or CSP-L and to eliminate

constraints that can be proven to be redundant.

If it can be determined a priori that no detection is possi-

ble in state s during time period t, then some of the decision

variables corresponding to the tuple (s, t) can be fixed and/or

removed. For this purpose we define the set  that includes

all tuples (s, t) for which detection is possible:

 =

{

(s, t) ∈  × 
|
|
|

∑

𝜔∈Ω
𝜁s,t(𝜔) > 0

}

.

Let 
c

denote the complement of . It follows that, if (s, t) ∈


c
, having Zl,s,t > 0 will not reduce the probability of

nondetection compared to having Zl,s,t = 0. Therefore, the

corresponding integer variables Zl,s,t, (s, t) ∈ 
c
, l ∈  can

be removed from the formulation. Using this preprocessing

approach, we obtain the following reduced-size formula-

tions CSP-U-Pre and CSP-L-Pre for CSP-U and CSP-L,

respectively:

CSP-U-Pre: minimize
X,W,Z,M

∑

𝜔∈Ω
q(𝜔)

N∑

i=0

Wi(𝜔)e−i𝛼

subject to (2.3b)-(2.3e); (2.3g)-(2.3i); (3.2) and (3.3),

N∑

i=1

i Wi(𝜔) =
∑

l∈

∑

(s,t)∈
𝜁s,t(𝜔)Zl,s,t, 𝜔 ∈ Ω

(3.5a)

∑

s′∈l (s)
t−dl,s′ ,s≥0

𝛽l,s′,s,tXl,s′,s,t−dl,s′ ,s = Zl,s,t, l ∈ , (s, t) ∈  (3.5b)

Zl,s,t ∈ {0, 1, 2, … ,ml,s,t}, l ∈ , (s, t) ∈ . (3.5c)

CSP-L-Pre: minimize
X,Y ,Z,M

∑

𝜔∈Ω
q(𝜔)Y(𝜔) (3.6a)

subject to (2.3b)-(2.3e); (2.3g)-(2.3i); (2.3c)-(2.3d)

e−i𝛼(1 + i − ie−𝛼)

− e−i𝛼(1 − e−𝛼)
∑

l∈

∑

(s,t)∈
𝜁s,t(𝜔)Zl,s,t ≤ Y(𝜔)

𝜔 ∈ Ω, i = {0, 1, … ,N − 1}. (3.6b)

The preprocessing potentially reduces the size of the

decision and constraint spaces in both CSP-U-Pre and

CSP-L-Pre, and eliminates many vacuous constraints that

otherwise would have entered (3.6b). Numerical results com-

paring the efficiency of the formulations are provided next.

3.2 Outer-approximation method

In this subsection, we develop an outer-approximation

method OA for solving large-scale instances of CSP-L-Pre
(and CSP-L). An analogous approach for CSP-U and

CSP-U-Pre is not possible. While the preprocessing tech-

nique presented above provides a more compact reformula-

tion, it remains nonetheless that the number of constraints

(3.6b) can be extremely large. However, the vast majority of

these constraints are not binding at an optimal solution.

The outer approximation outlined next builds on this obser-

vation and identifies a priori a vast set of constraints (3.6b)

that are unlikely to impact the optimal solution, and can be

viewed as lazy constraints (Kleinert et al., 2021; Lundell &

Kronqvist, 2019) and are defined as such in our algorithmic

approach. They are at first removed from the formulation, giv-

ing a mixed-integer linear outer approximation (relaxation)

OA0
of problem CSP-L-Pre (or CSP-L) at the root node 0

of the branch-and-bound (B&B) tree. Subsequently, at each

node of the B&B tree, we check whether the optimal solu-

tion at the current node violates any such constraints. If so,

the current optimal solution is discarded and the violated con-

straints are introduced in the updated outer approximation

of all open nodes. In short, the lazy constraints are moved

to a pool and are initially removed from the constraint set

before being (possibly) iteratively reinstated on an as-needed

basis. Caution must be exerted when selecting the lazy con-

straints and one should not be too aggressive. Indeed, the

verification of whether a lazy constraint is violated is carried

out each time a new incumbent solution is found and the

overhead consecutive to the reinsertion of lazy constraints in

the constraint set can be significant.

The challenge is to identify the constraints that can be

removed so that (i) the size of the constraint set is reduced

as much as possible and (ii) that few, if any, of the removed

 15206750, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.22160 by G

eorge W
ashington U

niv M
ed C

tr, W
iley O

nline Library on [01/04/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

540 LEJEUNE ET AL.

constraints will need to be reincorporated. For (3.6b), we

identify the levels of search effort that can be expected and

this leads to an initial set of lazy constraints 
0
:


0 ={(3.6b) ∶ i ∈ {0, … , b1}

∪{b2 + 1, b2 + 2, … ,N} , 𝜔 ∈ Ω}. (3.7)

The set 
0

includes the constraints (3.6b) associated with

an unlikely low and high number of looks as defined by the

positive constants b1 < b2 < N.

We adopt the following notation. Let  denote the set of

open nodes in the tree. Let  be the entire constraint set of

problem CSP-L-Pre, 
k

be the set of lazy constraints at node

k, 
k
L be the set of violated lazy constraints at k, and 

k ∶=
 ⧵k

be the set of active constraints at k, that is, constraints

included in the outer approximation considered at node k.

This leads to the outer-approximation method OA: At the

root node (k = 0), we have 
0

as defined in (3.7), 
0 ∶=

 ⧵ 
0
, and 

0

L ∶= ∅. At any node k, we solve the outer

approximation

OAk ∶ minimize (3.6a) subject to (X, Y , Z,M) ∈ 
k
.

Two cases exist for the optimal solution Zk∗
of the continuous

relaxation of OAk
:

1. If Zk∗
is fractional, we introduce branching linear

inequalities to cut off the fractional nodal optimal

solution and continue the B&B process.

2. If Zk∗
is integral and improves upon the incumbent

solution, we check for possible violation of any lazy

constraints. If any constraint in
k

is violated by Zk∗
,

we insert each constraint violated in 
k
L ⊆ 

k
and

discard Zk∗
. We update the lazy and active constraint

sets of each open node o by letting
o ← 

o⧵k
L and


o ← 

o ∪ 
k
L. On the other hand, if no lazy con-

straint in 
k

is violated, Zk∗
becomes the incumbent

solution and the node is pruned.

In summary, the OA method solves a reduced-size relax-

ation of CSP-L-Pre at each node of the tree. Each time OAk

provides an integral solution with better objective value than

the incumbent solution, a verification is made if any lazy

constraint is violated. If it is the case, the incumbent inte-

ger solution is discarded and the violated lazy constraints are

(re)introduced in the constraint set of all unprocessed nodes

of the tree, thereby cutting off the current solution. The above

process terminates when all nodes are pruned. We note that

the callback verification is not performed at each node of the

tree, but only when a better integer-valued feasible solution is

found at a node.

3.2.1 Computational tests

We next examine the efficiency of the OA method and

the effect of preprocessing as specified by CSP-U-Pre
and CSP-L-Pre. Table 4 shows computing times for large

instances generated as described in Section 3.1. (The table

TABLE 4 For S = 82 states, T = 15 time periods, |Ω| = 1000 target

paths, and varying numbers of searchers: Solution time (sec) to relative

optimality gap of 0.0001 or, if not reached in 900 s, relative optimality

gap in brackets after 900 s.

J1 CSP-L CSP-L-Pre CSP-U CSP-U-Pre OA Method

3 110 60 89 89 54

4 537 20 21 30 11

5 33 20 42 27 9

6 312 95 149 83 39

8 124 28 152 30 11

10 266 83 209 108 28

15 594 313 379 [0.0002] 112

20 [0.0030] 553 503 421 156

30 [0.0021] [0.0002] 42 206 271

50 [0.0012] [0.0001] 57
a

695 831

a
Runtime is reduced to 23 s if Wi(𝜔) is restricted to binary in CSP-U.

has occasional overlap with earlier tables and any discrepancy

in the reported times are due to differences among randomly

generated instances.) The preprocessing technique is typi-

cally beneficial, especially CSP-L-Pre is an improvement

over CSP-L. CSP-U-Pre is less consistent and might even

add computing time compared to CSP-U for instances when

there are many searchers. In part, this is caused by the remark-

able efficiency of CSP-U on such instances. Generally, the

best solution method appears to be the OA method, which

solves to optimality all instances in the allotted time and is the

fastest on all but two instances. On the instances in Table 4,

CSP-L is essentially identical to the approach proposed in

Royset and Sato (2010) but here falls behind with an order

of magnitude longer computing times compared to the new

approaches develop in the present paper.

Next, we consider more complex instances with a camou-

flaging target and searchers from two classes varying in their

endurance level, which then activates constraints (2.3d) and

(2.3e). (We still omit deconflication constraints (2.3g), which

can be operationally important but produce simpler instances

as many suboptimal search plans are immediately ruled out.)

The states are generated from a square grid of cells with an

additional initial state as earlier, but now there is also a ter-

minal state s−. The reverse star of s− consists all the states

corresponding to the bottom row of cells in the grid. The

searchers otherwise move as earlier. The endurance of the

searchers in class 1 and 2 is ⌊0.8T⌋ and ⌊0.6T⌋, respectively.

For a total number of searchers J, the number of searchers

in class 2 is J2 = ⌊0.7J⌋, while the number of searchers in

class 1 is J1 = J − J2. From a current state s, the target

can opt to move to an adjacent state as before or to stay idle

and transition into camouflage model. Once the target enters

camouflage mode, it must stay in the same state in the next

period, either camouflaged or not. The target transition prob-

abilities between states are as follows. If occupying a state

s in noncamouflage mode, the target moves into camouflage

mode (in the same state) with probability 0.1. Otherwise, the

 15206750, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.22160 by G

eorge W
ashington U

niv M
ed C

tr, W
iley O

nline Library on [01/04/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

LEJEUNE ET AL. 541

TABLE 5 For S = 83 states, T = 15 time periods, |Ω| = 1000 target paths,

camouflaging target, and varying numbers of searchers J split between

two classes: Solution time (sec) to relative optimality gap of 0.0001 or, if

not reached in 900 s, relative optimality gap in brackets after 900 s.

J CSP-L CSP-L-Pre CSP-U CSP-U-Pre OA Method

3 62 125 45 46 10

4 239 169 129 167 19

5 105 224 72 63 19

6 156 232 59 111 46

8 258 397 308 318 105

10 56 39 76 76 36

15 209 203 275 183 43

20 177 142 230 369 103

30 590 398 [0.0002] [0.0002] 125

50 155 173 234 144 64

target stays in s in noncamouflage mode with probability 0.5

or moves to an adjacent state with equal probability. When

camouflaged, regardless of state, the target remains in cam-

ouflage mode with probability 1∕6 and comes out of it with

probability 5∕6. Following these probabilities, we generate ex

ante |Ω| target paths.

Table 5 summarizes the computing times for these

instances across the various approaches. CSP-U retains

an edge over CSP-L for instances involving less that 10

searchers. Interesting, the preprocessing technique delivers

inconsistently on these instances, possibly due to the added

complexity caused by the endurance constraints. The best

solution method appears to be the OA method, which solves

to optimality all instances in the allotted time and is always

the fastest. The solution time with the OA method is not

adversely affected by an increase in the number of searchers.

The instance with 50 searchers can, for example, be solved

about 40% quicker than the one comprising eight searchers.

3.3 Operational insights

SP enables an analyst or autonomous system to consider many

different factors during the planning of a search mission. Next,

we discuss the operational impact of limited endurance and

varying travel times. We also quantify the difference between

having many poor searchers compared to a few good ones.

3.3.1 Endurance and travel time

In an instance with five searchers, two in class 1 with

endurance 12 and three in class 2 with endurance 9, we con-

sider a 9-by-9 grid producing S = 83 states including the

initial and terminal states as earlier. The planning horizon

is T = 15. We construct |Ω| = 1000 target paths without

using the camouflage options as described in Section 3.1. The

detection rate is the same for both classes, so 𝛽l,s′,s′,t = 1

and 𝛼 = −3 ln(0.4)∕J, where J = 2 + 3 = 5. Table 6

shows an optimal search plan with objective function value

0.4244 using row-column notation to specify the state of each

searcher during a time period. For example, the first searcher

in class 1 stays in the initial state s+ for three periods before

moving to row 4, column 1 in the 9-by-9 grid as indicated

by the pair (4, 1) in Table 6. In fact, s+ has only this state in

its forward star as hinted to in the table where every searcher

moves to (4, 1) after departing s+. We recall that the target

starts in the middle of the grid: row 5, column 5. The search

plan is thus meaningful with the searchers starting on the left

rim and moving right as time progresses. In the absence of

endurance constraints, all the searchers would obviously pre-

fer to initialize their mission immediately. However, Table 6

shows the interesting effect that under endurance limitations

it is better for most of the searchers to wait a number of time

periods and let the target “come to them.” The first time a

searcher can encounter the target is in state (4, 3) in time

period 3. But in periods 4 and 5, the target might have reached

as far west as columns 2 and 1, respectively. Thus, a searcher

starting its mission in period 5 or later may detect the tar-

get on its first look. The endurance constraints (2.3d) and

(2.3e) introduce a delicate trade-off between searching early

while the target is “concentrated” in the center of the grid

cells but facing more “wasted” travel time versus searching

late with the target being closer but more dispersed. For the

present instance, the reverse star of s− consists all the states

corresponding to the bottom row of cells in the grid, which

we see the second searcher from class 1 moves toward as

the time progresses. The other searchers remain on mission

as we reach the planning horizon thus avoid having to enter

s−. This end-of-planning-horizon effect can be adjusted as

needed with slight modification of constraints in SP.

To illustrate the effect of other forward/reverse stars and

travel times, which up to now has consisted of one-cell steps

with dl,s,s′ = 1, we slightly modify the instance by splitting

class 1 into two classes: 1A and 1B, each with one searcher.

The searcher in class 1A has augmented forward and reverse

stars. In addition to the five states (stay, one cell up, one cell

down, one cell left, one cell right) presently considered, we

add the four states two cells up, two cells down, two cells

left, and two cells right, again omitting nonexisting states out-

side the 9-by-9 grid of cells. Regardless, the travel time is

dl,s,s′ = 1. This means that the searcher is (potentially) faster

than the searcher of class 1B, which retains the earlier for-

ward/reverse star. We split class 2 into three classes: 2A, 2B,

and 2C, each with one searcher. The searcher in class 2A has

augmented forward and reverse stars as class 1A. The searcher

in class 1B has the augmented forward and reverse stars as

1A, but the travel time is dl,s,s′ = 2 if the searcher moves two

cells, and otherwise dl,s,s′ = 1. The searcher in class 2C is reg-

ular as for class 1B. Table 7 shows an optimal search plan with

objective function value 0.4067. The improvement in proba-

bility of detection as compared to the search plan in Table 6

stems from the faster searchers of class 1A and 2A; they move

quickly toward the center of the grid cells. The searcher of

class 2B has additional flexibility compared to Table 6, but

does not leverage it because moving two cells in two periods

 15206750, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.22160 by G

eorge W
ashington U

niv M
ed C

tr, W
iley O

nline Library on [01/04/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

542 LEJEUNE ET AL.

TABLE 6 Optimal search plan for S = 83 states, T = 15 time periods, |Ω| = 1000 target paths, and five endurance-constrained searchers.

Time period t

Class l 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 s+ s+ s+ 4,1 4,2 4,3 4,4 4,5 5,5 5,6 5,5 5,6 6,6 6,7 6,6

1 4,1 4,2 4,3 4,4 5,4 5,5 5,5 6,5 7,5 8,5 9,5 9,4 s− s− s−
2 s+ s+ s+ s+ s+ s+ 4,1 4,2 4,3 4,4 4,5 4,6 5,6 5,7 5,8

2 s+ s+ s+ s+ s+ s+ 4,1 4,2 4,3 4,4 4,5 5,5 5,5 5,5 5,6

2 s+ s+ s+ s+ s+ s+ 4,1 4,2 4,3 5,3 5,4 5,4 4,4 4,5 4,6

TABLE 7 Optimal search plan for S = 83 states, T = 15 time periods, |Ω| = 1000 target paths, and five endurance-constrained searchers with varying

forward/reverse stars and travel times.

Time period t

Class l 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1A s+ s+ s+ 4,1 4,3 4,5 5,5 5,4 5,6 5,5 6,5 6,4 6,6 6,5 6,6

1B 4,1 4,2 4,3 4,4 5,4 5,5 5,5 6,5 7,5 8,5 9,5 9,4 s− s− s−
2A s+ s+ s+ s+ s+ s+ 4,1 4,3 4,5 5,5 5,6 5,4 5,5 5,7 5,8

2B s+ s+ s+ s+ s+ s+ 4,1 4,2 4,3 4,4 5,4 5,5 5,5 5,6 5,6

2C s+ s+ s+ s+ s+ s+ 4,1 4,2 4,3 5,3 5,4 5,5 4,5 4,5 4,6

TABLE 8 For S = 83 states, T = 15 time periods, |Ω| = 1000 target paths, and varying numbers of searchers and camouflaging capability: Min-value

and solution time (sec.) to relative optimality gap of 0.0001 or, if not reached in 900 s, relative optimality gap in brackets after 900 s.

Camouflage No camouflage

J min-value CSP-L-Pre OA method min-value CSP-L-Pre OA method

5 0.4561 77 42 0.3500 [0.0016] 321

10 0.4639 78 31 0.3419 229 76

20 0.4613 509 315 0.3404 [0.0003] 513

50 0.4600 482 244 0.3399 [0.0001] 134

without a look in the first cell cannot be better than moving

one cell in one time period and then moving another cell in

another time period while looking in both.

3.3.2 Camouflage and sensor quality

We return to the setting at the end of Section 3.2 and Table 5:

there are two classes of searchers subject to endurance con-

straints and a target with camouflaging capability. As before,

we use 𝛽l,s′,s′,t = 1 and 𝛼 = −3 ln(0.4)∕J, where J = J1 + J2.

We examine the choice between acquiring many inexpensive

but poor searchers or adopting few effective searchers at a

higher cost. Our model of 𝛼 as a function of the number of

searchers J has the consequence that 𝛼J is a constant. Thus,

the power that can be mustered in the objective (2.3a) is the

same regardless of J. This means that having 10 searchers

is in this sense equivalent to have 20 searchers because the

former has an 𝛼 twice as large as that of the latter. If each

of the 10 more capable searchers are twice as expensive as

each of the 20 less capable ones, then one might be indif-

ferent between choosing 10 good versus choosing 20 poor

searchers. The middle two rows, second column, in Table 8

show that the objective value for the optimal search plans in

these cases are indeed close: 0.4639 versus 0.4613. However,

the slight detection improvement in the case of 20 searchers

is not a coincidence. The case with 20 poor searchers pro-

duces a relaxation of SP compared to the case with 10

good searchers because, in the absence of the deconflication

constraint (2.3g), the 20 poor searchers can always pair up

to make a “double-searcher” of the same quality as any of

the 10 good searchers. Going from 10 to 20 searchers, the

change is minor but becomes more prevalent when we con-

sider 50 searchers; see last row of Table 8. The effect appears

to be reversed when we compare 5 and 10 searchers. However,

the 10-searcher case is not a relaxation of the five-searcher

case because the latter has two searchers with 12-time-period

endurance searchers and three searchers with 9-time-period

endurance, while the former has three and seven searchers

for the two classes. Thus, the 10-searcher case has a slight

endurance disadvantage and this causes the objective function

value to increase. We also report the computing times for two

methods in columns 3 and 4 of Table 8.

We repeat the above calculations for a target that moves

without camouflaging as described in Section 3.1; see the

last three columns of Table 8. The probability of detecting

the target improves with 0.10–0.13 because now the target

can be detected everywhere along its path. We observe that

 15206750, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.22160 by G

eorge W
ashington U

niv M
ed C

tr, W
iley O

nline Library on [01/04/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

LEJEUNE ET AL. 543

FIGURE 1 With camouflage. For class 1 (blue): 4 and 11 searcher in state

(row, column) (6,6) and s−, respectively. For class 2 (green): 4, 3, 2, 5, 4, 6,

3, 6, and 2 searchers in state (4,5), (4,6), (5,5), (5,6), (5,8), (6,6), (6,7),

(7,5), and s−. Period 15: Optimal searcher location at period t = 15 with

J = 50 searchers.

the computing times for both the OA method and CSP-L-Pre
tends to be less when the target can use camouflage. This

is caused by a tighter concentration of likely target locations

in the case of camouflage; it becomes less mobile with our

parameter settings and the searchers’ have fewer meaning-

ful choices. Figures 1 and 2 illustrate the location of the 50

searchers from the last row of Table 8 at time period 15. Here,

the radius of a circle is proportional to the number of searchers

occupying the corresponding state. The diamond indicates

initial location for the moving target. Blue and green circles

represent class 1 and class 2, respectively. Figure 2 shows a

wider spread of the searchers in the absence of camouflaging

as compared to searchers concentrating on a less mobile, cam-

ouflaging target in Figure 1. At time period 15, the searchers

tend to be on the eastern side as they have “cleared” the

western side after entering at row 4, column 1.

4 MARKOVIAN TARGET PATHS

We next present results for SP under the assumption that

the target moves according to a Markov chain, which thus

defines the target paths Ω and the associated probabilities

q(𝜔) by Markov transition matrices. Section 4.1 presents a lin-

ear reformulation and Section 4.2 develops three cutting plane

methods. Numerical results appear in Section 4.3.

4.1 Linearization

While the linearizations CSP-U and CSP-L remain valid for

Markovian target paths, they tend to become prohibitively

FIGURE 2 Without camouflage. For class 1 (blue): 4, 1, and 10 searchers

in state (row, column) (6,6), (7,6), and s−, respectively. For class 2 (green):

1, 3, 2, 2, 3, 7, 1, 1, 2, 1, 7, and 5 searchers in state (3,7), (4,5), (4,6), (4,7),

(5,5), (5,6), (5,7), (6,4), (6,5), (6,7), (7,6), and s−.

large unless the underlying state transition matrices are sparse

or one adopts a sample average approximation with few sam-

pled target paths. As noted by Royset and Sato (2010) and

refined in Berger et al. (2021), the Markov structure affords an

alternative linearization approach. These earlier studies focus

on homogeneous searchers whereas we extend the lineariza-

tion approach to multiple classes of searchers, a camouflaging

target, and explicitly include operational constraints about

endurance and deconfliction.

At any time t ∈  , the target moves according to a transition

matrix Γt whose element 𝛾s,c,s′,c′,t represents the probability

that a target occupying (s, c) in period t will be in (s′, c′) dur-

ing time period t + 1. Contrary to CSP-U and CSP-L, the a

priori enumeration of all possible target paths is not neces-

sary in the following linearization. We adopt the additional

notation in Table 9.

We derive the linearization by introducing an “information

state” Ps,c,t which represents the probability that the target

occupies (s, c) in period t and that it has not been detected

prior to t. We recall from SP that
∑

l∈ Zl,s,t is the total search

effort in state s at period t. It is a nonnegative integer and can

be represented equivalently by the binary variables Vs,t,j, each

of which equals to 1 if there is j search effort in state s in

period t, and equals to 0 otherwise. This allows us to calculate

the probability of detection over the entire time horizon as

∑

t∈

∑

(s,c)∈×{0,1}
Ps,c,t

⎛
⎜
⎜
⎝

1 − exp

⎛
⎜
⎜
⎝

−𝛼c
∑

j∈ R
s,t

j Vs,t,j

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

, (4.1)

where 𝛼c = 𝛼 if c = 0 and 𝛼c = 0 otherwise and 
R

s,t =
{1, … ,ms,t}, with ms,t =

∑
l∈ ml,s,t. The information state

 15206750, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.22160 by G

eorge W
ashington U

niv M
ed C

tr, W
iley O

nline Library on [01/04/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

544 LEJEUNE ET AL.

TABLE 9 Additional notation for model MSP.

Indices

j Total search effort j ∈ {0, 1, 2, …}

Sets


R

s,t = {1, … ,ms,t}

Parameters

𝛼c 𝛼c = 𝛼 if c = 0 and 𝛼c = 0 otherwise

𝛾s,c,s′ ,c′ ,t Probability that a target in state (s, c) in period t will be in state (s′, t′) in period t + 1

ps,c Probability that the target is in state (s, c) in period 1

qs,c,t Probability that the target is in state (s, c) in period t, that is, qs,c,t =
∑

s′ ,c′ qs′ ,c′ ,t−1𝛾s′ ,c′ ,s,c,t−1, t = 2, 3, … ,T; qs,c,1 = ps,c

ms,t Maximum search effort possible in state s at t: ms,t =
∑

l∈ ml,s,t

Decision variables

Vs,t,j Binary variable = 1 if state s receives j search effort in period t, and = 0 otherwise

Ps,c,t Probability that target is in (s, c) in t and was not detected prior to t

Qs,c,t,j Auxiliary variable = Ps,c,t(1 − e−j𝛼c) if Vs,t,j = 1 and = 0 otherwise

Ws,c,t Auxiliary variable = Ps,c,te−j𝛼c if Vs,t,j = 1 and = Ps,c,t otherwise

Ps,c,t depends on the search plan as follows. The probability

that the target occupies (s, c) initially is Ps,c,1 = ps,c, which is

an input parameter; see Table 9. Moreover, it follows from the

definition of Ps,c,t and the Markov assumption that

Ps,c,t+1 =
∑

(s′,c′)∈×{0,1}
𝛾s′,c′,s,c,tPs′,c′,t exp

⎛
⎜
⎜
⎝

−
∑

j∈ R
s′ ,t

𝛼c′ j Vs′,t,j

⎞
⎟
⎟
⎠

,

(4.2)

for s, c and t = 1, 2, … , T − 1.

We shall linearize the nonlinear expressions (4.1) and

(4.2). First, we linearize the probability of non-detection

(i.e., the complement of (4.1)) via the introduction of the

auxiliary variable Qs,c,t,j which takes value Ps,c,t(1 − e−j𝛼c) if

Vs,t,j = 1 and takes value 0 otherwise. This linearization is

accomplished using constraints (4.3b) and (4.3c) below. The

inequality (4.3b) is a “big-M” constraint where any constant

at least as large as Ps,c,t is needed to multiply (1−e−j𝛼c). Since

Ps,c,t is the probability that the target is in (s, c) in period t and
that the target is not detected prior to t and qs,c,t is the proba-

bility that the target is in (s, c) in period t as defined in Table 9,

we must have qs,c,t ≥ Ps,c,t for all (s, c) ∈  × {0, 1}, t ∈  .

Consequently, each “big-M” parameter in (4.3b) is set to

qs,c,t. Using the same rationale, we let qs,c,t furnish the bound

on Ps,c,t in (4.3h) below. Second, the evolution of the infor-

mation state is also nonlinear as it can be seen from (4.2). We

linearize that expression by means of the auxiliary variable

Ws,c,t and constraints (4.3d)–(4.3f) below. Note that Ws,c,t is

equal to Ps,c,te−j𝛼c if Vs,t,j = 1 and is equal to Ps,c,t otherwise.

Compiling these derivations, we obtain the following equiv-

alent MILP reformulation of SP under the Markovian target

path model.

MSP:

minimize
X,P,Q,V ,W

1 −
∑

(s,c)∈×{0,1}

∑

t∈

∑

j∈ R
s,t

Qs,c,t,j, (4.3a)

subject to Qs,c,t,j ≤ qs,c,t(1 − e−j𝛼c)Vs,t,j

(s, c) ∈  × {0, 1}, t ∈  , j ∈ 
R

s,t, (4.3b)

Qs,c,t,j ≤ (1 − e−j𝛼c)Ps,c,t

(s, c) ∈  × {0, 1}, t ∈  , j ∈ 
R

s,t, (4.3c)

Ps,c,t+1 =
∑

(s′,c′)∈×{0,1}
𝛾s′,c′,s,c,tWs′,c′,t

(s, c) ∈  × {0, 1}, t ∈  ⧵ {T}, (4.3d)

Ws,c,t ≤ Ps,c,t

(s, c) ∈  × {0, 1}, t ∈  , (4.3e)

Ws,c,t ≤ e−j𝛼c Ps,c,t + qs,c,t(1 − e−j𝛼c)(1 − Vs,t,j)
(s, c) ∈  × {0, 1}, t ∈  , j ∈ 

R
s,t, (4.3f)

Ps,c,1 = ps,c

(s, c) ∈  × {0, 1}, (4.3g)

Ps,c,t ≤ qs,c,t

(s, c) ∈  × {0, 1}, t ∈  , (4.3h)

∑

l∈

∑

s′∈l (s)
t−dl,s′ ,s≥0

𝛽l,s′,s,tXl,s′,s,t−ds′ ,s =
∑

j∈ R
s,t

j Vs,t,j

s ∈  , t ∈  . (4.3i)

∑

j∈ R
s,t

Vs,t,j = 1

s ∈  , t ∈  , (4.3j)

 15206750, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.22160 by G

eorge W
ashington U

niv M
ed C

tr, W
iley O

nline Library on [01/04/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

LEJEUNE ET AL. 545

(2.3b)-(2.3e); (2.3g)-(2.3i)

Psc,t,Wsc,t ≥ 0

(s, c) ∈  × {0, 1}, t ∈  , (4.3k)

Qsc,t,j ≥ 0

(s, c) ∈  × {0, 1}, t ∈  , j ∈ 
R

s,t, (4.3l)

Vs,t,j ∈ {0, 1}
s ∈  , t ∈  , j ∈ 

R
s,t. (4.3m)

The objective function (4.3a) gives the probability of nonde-

tection; its correctness follows from (4.1). The binary variable

Vs,t,j is linked to Xl,s,s′,t in (4.3i). The remaining constraints

follow from the discussion above.

4.1.1 Computational tests

We consider two instances of MSP of the kind described in

Section 3.1, but now with the Markovian target path model

obtained from the transition probabilities described there.

This produces the last row of Table 10 for the two instances

that only differ in the number of searchers (J1) and the plan-

ning horizon (T). Neither instance of MSP can be solved

directly using Gurobi within 900 s. While an optimal solution

is eventually achieved in the instance with J1 = 3, T = 12,

the gap is sizable in the other instance after 900 s; the lower

bound is 0.4043 and the upper bound 0.4659 at that time. We

conclude that MSP is computationally challenging and this

motivates the derivation of cutting plane algorithms in the

next subsection.

Table 10 also illustrates how the Markovian target path

model can be viewed as the limit of the conditional tar-

get path models when the latter are obtained by sam-

pling according to the Markov transition matrices. With

a planning horizon of T = 12 and the present Marko-

vian target path model with typically five possible moves

per time period, we obtain that the model produces about

|Ω| = 5
12 ≈ 2 ⋅ 10

8
target paths. Thus, the sample

sizes ranging from 100 to 5000 in Table 10 are relatively

small. Nevertheless, the sample average approximations have

minimum objective function values close to those for the

Markovian target path model when the sample size is at least

1000. (This motivates in part our focus on conditional tar-

get path models with 1000 paths in Section 3.) There is

a significant computational advantage of considering sam-

ple averages; Section 3 provides extensive evidence that

conditional target path models are tractable. Table 10 pro-

vides a direct comparison using CSP-L-Pre as the approach

for solving the sample average approximations. Further

speed-up might be possible with CSP-U-Pre or the OA
method.

4.2 Cutting plane algorithms

In this subsection, we extend the cutting plane methods of

Royset and Sato (2010) to the present setting with a camou-

flaging target and heterogenous searchers. A direct extension

yields SCA in Section 4.2.1. Further refinements leveraging

bundles and outer approximations follow in Sections 4.2.2

and 4.2.3.

4.2.1 Secant cutting plane algorithm

Adaptively constructed piecewise-linear approximations of

the objective function in SP lead to a cutting plane method

SCA (secant cutting plane algorithm), which in each iteration

i solves the MILP:

Pi
SCA ∶ minimize 𝜉

subject to 𝜉 ≥ f (Zk) +
∑

l∈

∑

s∈

∑

t∈
(f (Zk + Δl,s,t)

− f (Zk))(Zl,s,t − Zk
l,s,t), k = 1, … , i (4.4a)

(2.3b)-(2.3j),

where f (Z) denotes the objective function of SP and Zk
is the

allocation of search effort from a previous iteration. The nota-

tion Δl,s,t ∈ {0, 1}×× refers to a Boolean parameter vector

in which all elements are 0 except the (l, s, t)-component

equals to 1 and is used to measure the impact of varying one

single variable Zl,s,t on the value of the objective function. A

new secant cut (4.4a) is added at each iteration i and problem

TABLE 10 For S = 82 states and varying numbers of sampled target paths: Min-value and solution time (sec.) to relative optimality gap of 0.0001 or, if not

reached in 900 s, relative optimality gap in brackets after 900 s.

J1 = 3, T = 12 J1 = 5, T = 10

Sample size Min-value Solution time Min-value Solution time

100 0.2931 0.6 0.3039 0.4

500 0.4048 0.5 0.4032 2

1000 0.5007 2 0.4180 22

2000 0.5031 6 0.4336 68

5000 0.4973 246 0.4266 16

Markovian 0.5036 *[0.0332] 0.4043-0.4659 [0.0916]

Note: The case marked with asterisk solves to optimality in 1604 s.

 15206750, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.22160 by G

eorge W
ashington U

niv M
ed C

tr, W
iley O

nline Library on [01/04/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

546 LEJEUNE ET AL.

Pi
SCA minimizes the resulting piecewise-linear approximation

of f (Z).
Guided by Royset and Sato (2010), the calculation of a

secant cut proceeds in two steps: (i) compute the probability

rs,c,t(Z) that the target is in (s, c) at time t and is not detected

before t, and (ii) compute the probability rs,c,t(Z) that the tar-

get is not detected in the periods after t given that the target is

in (s, c) at time t. We define rs,c,1(Z) = ps,c and rs,c,T (Z) = 1 so

that all other rs,c,t(Z) and rs,c,t(Z) can be calculated recursively

as follows:

rs,c,t(Z) =
∑

s′,c′
rs′,c′,t−1(Z) 𝛾s′,c′,s,c,t−1 e

−
∑

l∈
𝛼c′Zl,s′,t−1

(4.5a)

rs,c,t(Z) =
∑

s′,c′
rs′,c′,t+1(Z) 𝛾s,c,s′,c′,t e

−
∑

l∈
𝛼c′Zl,s′,t+1

. (4.5b)

This allows us in turn to calculate, for any t ∈  , the objective

function

f (Z) =
∑

s,c
rs,c,t(Z) e

−
∑

l∈
𝛼cZl,s,t rs,c,t(Z), (4.6)

which is the product of the probability of not being detected

before t, the nondetection probability at t, and the probabil-

ity of not being detected after t. A secant cut can then be

computed via

f (Z + Δl,s,t) − f (Z) =

rs,0,t(Z)
(

e
−
∑

l∈
𝛼(Zl,s,t+1)

− e
−
∑

l∈
𝛼Zl,s,t

)

rs,0,t(Z).

This derivation deviates from that of Royset and Sato (2010)

by accounting for a camouflaging target and heterogeneous

searchers.

We can now present the formal structure of SCA. Let 𝛿, 𝛿i ≥

0, i = 0, 1, 2, … ,N denote optimality tolerances while 𝜉

and 𝜉 are lower and the upper bounds on the optimal value

of SP.

Initialization:
Step 0: Set: 𝜉 = 0; 𝜉 = 1; i = 1; Z1 = 0 (zero vector).

Iterative process – Iteration i:
Step 1: Calculate f (Zi). If f (Zi) < 𝜉, then set 𝜉 = f (Zi).

Step 2: If 𝜉 − 𝜉 ≤ 𝛿𝜉, then stop: tolerance satisfied.

Step 3: Solve problem Pi
SCA to tolerance 𝛿i, achieve solution

Zi+1
, and lower bound 𝜉

i+1
.

Step 4: If 𝜉
i+1

> 𝜉, then set 𝜉 = 𝜉

i+1
.

Step 5: If 𝜉 − 𝜉 ≤ 𝛿𝜉, then stop: tolerance satisfied. Else,

replace i with i + 1 and go to Step 1.

In the numerical tests of Section 4.3, we set 𝛿1 = 0 and

𝛿i = min{0.03, gi∕3} for i ≥ 2, where gi = (𝜉 − 𝜉)∕𝜉 is

computed after Step 1 of iteration i. However, we use 𝛿i =
min{0.03, gi∕3, 𝛿i−1∕2} if Zi is a repetition of a previously

obtained solution.

4.2.2 Bundle-based cutting plane algorithm

We refine SCA by incorporating bundles as well as prepro-

cessing techniques. As a preliminary step, we partition the set

 into two mutually exclusive subsets

nd =

{

t ∈  ∶
∑

s∈
qs,0,t 𝛽s,t = 0

}

, (4.7)

that includes all periods (and only those) at which no detection

can occur, and its complement d =  ⧵ nd which includes

the periods at which detection is possible. The notation 𝛽s,t
in (4.7) specifies a Boolean parameter with value 0 if no

searchers can reach state s by time t and value 1 otherwise.

For each t ∈ d, we build the set


t
nd =

{
s ∈  ∶ qs,0,t 𝛽s,t = 0

}
, t ∈ d,

that contains all states s for which no detection can occur at

t. We use the notation 
t
d to refer to the complement of 

t
nd:


t
d =  ⧵  t

nd.

The above sets are used via a bundling approach to reduce

the size of the decision and constraint spaces. First, we elim-

inate the integer decision variables Zl,s,t at any period t ∈ nd
when no detection can occur across all states. Since no detec-

tion can occur at these periods, we do not need to keep track

of how many searchers are in s at t. Second, at the remain-
ing periods t ∈ d, we further remove the integer decision

variable Zl,s,t for any (s, t) ∈ 
t
nd, t ∈ d corresponding to

any state s at which detection is impossible. More precisely,

for any t ∈ d, we combine all tuples (s, t), s ∈ 
t
nd, l ∈ 

in a so-called bundle 
t

and do not include any variable Zl,s,t
for any tuple (s, t) included in one of the bundles 

t
, t ∈

d. This produces the algorithm B-SCA (bundle-based cut-

ting plane algorithm), which in each iteration i solves

the MILP:

Pi
B-SCA ∶ minimize 𝜉

subject to 𝜉 ≥ f (Zk) +
∑

t∈d ,l∈,
s∈ t

d

(f (Zk + Δl,s,t)

−f (Zk))
(

Zl,s,t − Zk
l,s,t

)
, k = 1, … , i

(4.8a)

∑

s′∈l (s)
t−dl,s′ ,s≥0

𝛽l,s′,s,tXl,s′,s,t−dl,s′ ,s = Zl,s,t, t ∈ d, s ∈ 
t
d, l ∈ 

(4.8b)

(2.3b)-(2.3e); (2.3g)-(2.3i)

Zl,s,t ∈ {0, 1, 2, … ,ml,s,t}, t ∈ d, s ∈ 
t
d, l ∈ .

(4.8c)

Due to the smaller number of variables Zl,s,t, s ∈ 
t
d, t ∈

d used by B-SCA, we can simplify (4.5a) and (4.5b) as

follows:

 15206750, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.22160 by G

eorge W
ashington U

niv M
ed C

tr, W
iley O

nline Library on [01/04/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

LEJEUNE ET AL. 547

rs,c,t(Z)

=

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

0 if qs,0,t = 0

∑

s′,c′
rs′,c′,t−1(Z) 𝛾s,c,s′,c′,t−1 if 𝛽s,t = 0

and qs,0,t ≠ 0

∑

s′,c′
rs′,c′,t−1(Z) 𝛾s,c,s′,c′,t−1e

−
∑

l∈
𝛼c′Zl,s′,t−1

otherwise

rs,c,t(Z)

=

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

0 if qs,0,t = 0

∑

s′,c′
rs′,c′,t+1(Z) 𝛾sc,s′c,t if 𝛽s,t = 0

and qs,0,t ≠ 0

∑

s′,c′
rs′,c′,t+1(Z) 𝛾s,c,s′,c′,t e

−
∑

l∈
𝛼c′Zl,s′,t+1

otherwise.

4.2.3 Bundle-based cutting plane algorithm with outer

approximation

We next adjust B-SCA by replacing the feasible sets of

each subproblem by an outer approximation. While the outer

approximation remains mixed-integer, it can be described by

fewer integer variables and constraints. The expectation is that

the size reduction of the decision and constraint spaces will

allow for a quicker solution of the subproblems. The trade-off

is that the feasible sets of the subproblems are relaxations

and will therefore provide looser lower bounds on the optimal

value of the actual problem.

The resulting algorithm OA-B-SCA (bundle-based cutting

plane algorithm with outer approximation) rests on the fol-

lowing rationale. We observe that the probability qs,0,t of a tar-

get being in (s, 0) at t can significantly vary across pairs (s, t).
Even if positive, some qs,0,t can be extremely low making it

ineffective to place a searcher in s at t. Building on this, each

subproblem in the proposed outer-approximation algorithm

OA-B-SCA leverages integer decision variables Zl,s,t only for

tuples (s, t) with the largest qs,0,t across all states s at t, that

is, the states where a target is most likely to be at t. As for

B-SCA, we first drop the integer variables Zl,s,t for any tuple

(l, s, t) with t ∈ nd. We then remove the integer variables Zl,s,t
corresponding to the tuples (l, s, t) for any (s, t) pairs at which

detection is impossible and those at which probability of the

target being in state s at time t is not one of the highest.

We denote by t,𝜐 the set of tuples (s, t) associated with

the 𝜐 most likely states for the target to be in and not be cam-

ouflaging at time t. Let 
c
t,𝜐 be its complement. For each

(s, t) ∈ 
c
t,𝜐, l ∈ , we relax the integrality condition on

the variables Zl,s,t. This produces the algorithm OA-B-SCA,

which in each iteration i solves the subproblem:

Pi
OA-B-SCA ∶ minimize 𝜉

subject to (2.3b)-(2.3e);
(2.3g)-(2.3i); (4.8a)-(4.8b)

Zl,s,t ∈ {0, 1, 2, … ,ml,s,t},
t ∈ d, (s, t) ∈ t,𝜐, l ∈ 

Zl,s,t ∈ [0,ml,s,t],
t ∈ d, (s, t) ∈ 

c
t,𝜐, l ∈ .

The feasible set of each subproblem Pi
OA-B-SCA is a relaxation

of the actual feasible set of SP. As with SCA and B-SCA, the

feasible set of OA-B-SCA is defined by mixed-integer linear

constraints, but it contains (many) fewer integer variables than

the feasible sets of SCA and B-SCA.

The structure of OA-B-SCA is similar to that of B-SCA.

However, the stopping criterion differs. Due to the relaxation

of the integrality restrictions of a subset of the variables Zl,s,t,

the solution obtained by solving the subproblems Pi
OA-B-SCA

is not necessarily feasible for MSP and a postoptimization

step must be carried out to restore feasibility and allow for the

computation of a valid upper bound.

If the solution of Pi
OA-B-SCA is fractional, we do not have a

valid upper bound. To obtain one, we must first restore inte-

grality, which can be done in a heuristic manner, by using

a basic rounding procedure, or by solving a reduced-size

integrality restoration problem. The integrality restoration

problem is a much simplified variant of Pi
OA-B-SCA and con-

tains many less integer variables so that it can be solved to

optimality extremely quickly (typically in less than 1 s). Actu-

ally, we do not need to solve it to optimality since any feasible

solution provides a valid upper bound for the true problem.

Let Z
i
be the solution produced by Pi

OA-B-SCA at iteration i.
We fix all variables Zl,s,t which have an integer value in Z

i
l,s,t

and they become fixed parameters. Denoting by Z+ the set of

nonnegative integers, we define


I
i =

{
(l, s, t) ∈  × 

t
d × d ∶ Z

i
l,s,t ∈ Z+

}
,


F
i =

{
(l, s, t) ∈  × 

t
d × d ∶ Z

i
l,s,t ∉ Z+

}
.

The sets 
I
i and 

F
i include the tuples (l, s, t) whose corre-

sponding variables Zl,s,t, respectively, take integer and frac-

tional values Z
i
l,s,t in the obtained solution of Pi

OA-B-SCA.

The sets 
I
i and 

F
i are updated at each iteration i. The

reduced-size MILP integrality restoration subproblem IRi
at

i then reads:

IRi ∶ minimize 𝜉

subject to (2.3b)-(2.3e); (2.3g)-(2.3i); (4.8a)-(4.8b)

Zl,s,t = Z
i
l,s,t (l, s, t) ∈ 

I
i

Zl,s,t ∈ {0, 1, 2, … ,ml,s,t} (l, s, t) ∈ 
F
i .

The algorithm OA-B-SCA is structured as follows:

Initialization:
Step 0: Set: 𝜉 = 0; 𝜉 = 1; i = 1; Z1 = 0 (zero vector).

Iterative process – Iteration i:
Step 1: Calculate f (Zi). If f (Zi) < 𝜉, then set 𝜉 = f (Zi).

Step 2: If 𝜉 − 𝜉 ≤ 𝛿𝜉, then stop: tolerance satisfied.

 15206750, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.22160 by G

eorge W
ashington U

niv M
ed C

tr, W
iley O

nline Library on [01/04/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

548 LEJEUNE ET AL.

Step 3: Solve problem Pi
OA-B-SCA to tolerance 𝛿i, achieve

solution Z
i
, and lower bound 𝜉

i+1
.

Step 4: If 𝜉
i+1

> 𝜉, then set 𝜉 = 𝜉

i+1
.

Step 5: If 𝜉 − 𝜉 ≤ 𝛿𝜉, then stop: tolerance satisfied.

Step 6: If Z
i
is integer, set Zi+1 = Z

i
. Else, solve IRi

to restore

integrality and obtain Zi+1
.

Step 7: Replace i with i + 1 and go to Step 1.

4.3 Numerical tests

We compare the three cutting plane methods SCA, B-SCA,

and OA-B-SCA with a direct solution of MSP across two

groups of instances.

4.3.1 Homogenous searchers

We first consider problem instances of the kind described in

Section 3.1, except that we consider here a Markovian target

path model. These instances do not allow for the camouflage

option and there is no endurance limit. Table 11 reports the

computational time for three searchers, 82 states, and vary-

ing planning horizon T . For instances with few time periods

(T ≤ 11), the direct solution of MSP is faster than the

cutting plane methods SCA, B-SCA, and OA-B-SCA. As T
increases beyond 11, the optimality gap with the three cut-

ting plane methods is smaller. In particular, for all instances

with 12 or more periods, the outer-approximation algorithm

OA-B-SCA performs best and reduces the optimality gap the

most. For T = 13 (resp., 14 and 15), OA-B-SCA produces a

gap of 0.0161 (resp., 0.0239 and 0.0183) less than SCA. These

results highlight the efficiency of OA-B-SCA in solving the

most challenging instances of this type.

Table 12 considers instances with J1 = 15 searchers. As

observed in Table 11, solving MSP directly is the most com-

putationally efficient approach for small instances (T = 7 and

possible 8) but the three cutting plane algorithms dominate

MSP when the planning horizon increases and the instances

become more challenging. Among the three, B-SCA is the

most efficient on most instances, but is closely followed by

OA-B-SCA. On average, for the challenging instances (T ≥

9), the optimality gap with B-SCA is on average 0.0022 lower

than for SCA, which highlights the computational benefits of

the bundle-based cutting plane B-SCA.

Table 13 examines the effect of the number of searchers on

the solution time. For J1 ≤ 4, the direct solution of MSP dom-

inates the cutting plane approaches. However, SCA, B-SCA,

and OA-B-SCA have a clear advantage when the number of

searchers exceeds 4. The algorithm B-SCA is the best of the

three on all instances, but the differences are modest.

Table 14 examines the effect of the size of the square grid

of cells and thus the number of states. For small grid sizes

(i.e., less than 7-by-7 cells producing S ≤ 50), the cutting-plan

approaches dominate the direct solution of MSP. However,

the direct solution of MSP is by far the fastest approach to

prove optimality for larger grid sizes, such as S ≥ 82, which

turns out to be the simplest instances. The approach solves

all those instances with an average solution time of 2.3 s

whereas the three cutting plane methods struggle to solve the

82-state instance and are slower to prove optimality for the

three instances with S= 122, 170, and 226. Among the cutting

plane methods, OA-B-SCA has the lowest average optimality

gap when optimality cannot be proven and has the smallest

average solution time for the other instances.

To sum up, the results reported in Tables 11–14 demon-

strate that while the linear reformulation MSP tends to be

quicker for the smallest and least challenging instances, the

two proposed bundle-based cutting plane algorithms B-SCA
and OA-B-SCA are superior for the challenging ones. They

also improve on SCA, which in the present setting with

homogenous searchers, no endurance constraints, and no

camouflaging is essentially equivalent to an algorithm from

Royset and Sato (2010). It appears that, depending on the type

of instances, it is preferable to derive stronger lower bounds

(as allowed by B-SCA) while, for others, a quicker solution

TABLE 11 For Markovian target model, S = 82 states, J1 = 3 searchers, and varying numbers of time periods: Solution time (sec) to relative optimality

gap of 0.0001 or, if not reached in 900 s, relative optimality gap in brackets after 900 s.

T MSP SCA B-SCA OA-B-SCA

7 0.1 5 5 5

8 0.3 46 37 37

9 0.8 87 66 64

10 9 [0.0186] [0.0175] [0.0198]

11 278 [0.0590] [0.0574] [0.0581]

12 [0.1693] [0.0983] [0.1006] [0.0916]

13 [0.3151] [0.1410] [0.1316] [0.1249]

14 [0.4257] [0.1742] [0.1742] [0.1503]

15 [0.5357] [0.1915] [0.1969] [0.1732]

Average optimality gap 0.1606 0.0758 0.0753 0.0686

Abbreviations: B-SCA, bundle-based cutting plane algorithm; OA-B-SCA, bundle-based cutting plane algorithm with outer approximation; SCA, secant cutting plane

algorithm.

 15206750, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.22160 by G

eorge W
ashington U

niv M
ed C

tr, W
iley O

nline Library on [01/04/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

LEJEUNE ET AL. 549

TABLE 12 For Markovian target model, S = 82 states, J1 = 15 searchers, and varying numbers of time periods: Solution time (sec) to relative optimality

gap of 0.0001 or, if not reached in 900 s, relative optimality gap in brackets after 900 s.

T MSP SCA B-SCA OA-B-SCA

7 2 8 7 8

8 95 204 83 75

9 [0.0624] [0.0015] [0.0005] [0.0007]

10 [0.2039] [0.0035] [0.0032] [0.0032]

11 [0.3502] [0.0054] [0.0048] [0.0047]

12 [0.5144] [0.0092] [0.0078] [0.0065]

13 [0.7010] [0.0146] [0.0135] [0.0203]

14 [0.8783] [0.0259] [0.0220] [0.0258]

15 [1.1006] [0.0443] [0.0332] [0.0377]

Average optimality gap 0.4211 0.0116 0.0094 0.0109

Abbreviations: B-SCA, bundle-based cutting plane algorithm; OA-B-SCA, bundle-based cutting plane algorithm with outer approximation; SCA, secant cutting plane

algorithm.

TABLE 13 For Markovian target model, S = 82 states, T = 10 time periods, and varying numbers of searchers: Solution time (sec) to relative optimality

gap of 0.0001 or, if not reached in 900 s, relative optimality gap in brackets after 900 s.

J1 MSP SCA B-SCA OA-B-SCA

1 0.3 34 34 [0.0363]

2 1 [0.0017] 581 [0.0159]

3 9 [0.0186] [0.0175] [0.0213]

4 70 [0.0236] [0.0213] [0.0245]

5 [0.0340] [0.0163] [0.0161] [0.0184]

10 [0.1400] [0.0060] [0.0052] [0.0057]

15 [0.2000] [0.0035] [0.0032] [0.0032]

Average optimality gap 0.0534 0.0099 0.0090 0.0179

Abbreviations: B-SCA, bundle-based cutting plane algorithm; OA-B-SCA, bundle-based cutting plane algorithm with outer approximation; SCA, secant cutting plane

algorithm.

TABLE 14 For Markovian target model, J = 3 searchers, T = 10 time periods, and varying numbers of states: Solution time (sec) to relative optimality

gap of 0.0001 or, if not reached in 900 s, relative optimality gap in brackets after 900 s.

S MSP SCA B-SCA OA-B-SCA

26 [0.8314] [0.2355] [0.2372] [0.2290]

50 [0.1521] [0.1070] [0.1041] [0.0995]

82 8 [0.0186] [0.0174] [0.0168]

122 0.6 86 80 75

170 0.4 24 28 30

226 0.3 15 18 16

Average optimality gap 0.1633 0.0602 0.0598 0.0575

Abbreviations: B-SCA, bundle-based cutting plane algorithm; OA-B-SCA, bundle-based cutting plane algorithm with outer approximation; SCA, secant cutting plane

algorithm.

time of the subproblems (as allowed by OA-B-SCA) and thus

the execution of more iterations within a given allowed time

is more beneficial.

4.3.2 Heterogeneous searchers and camouflaging

We next consider instances of the kind associated with

Table 5, which involves camouflaging, endurance constraints,

and two classes of searchers. Table 15 presents the results for

instances with J = J1+J2 = 3 and J = J1+J2 = 15 searchers.

When J = 3, we consider two searchers of class 1 and one

searcher of class 2. When J = 15, we consider ten searchers

of class 1 and five of class 2. The classes only differ in terms

of endurance.

The results displayed in Table 15 show unequivocally

that the three cutting plane approaches SCA, B-SCA, and

OA-B-SCA dominate a direct solution of MSP. For instances

with three searchers, the average optimality gap of each

cutting plane method is below 10% while the one obtained

by solving directly MSP exceeds 50%. Comparing the cutting

 15206750, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.22160 by G

eorge W
ashington U

niv M
ed C

tr, W
iley O

nline Library on [01/04/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

550 LEJEUNE ET AL.

TABLE 15 For Markovian target model, S = 83 states, and varying numbers of time periods and searchers across two classes with varying endurance:

Solution time (sec) to relative optimality gap of 0.0001 or, if not reached in 900 s, relative optimality gap in brackets after 900 s.

J T MSP SCA B-SCA OA-B-SCA

3 10 4 58 73 64

3 12 78 [0.0111] [0.0114] [0.0200]

3 14 [0.0953] [0.0630] [0.0696] [0.0219]

3 15 [0.2510] [0.0814] [0.0809] [0.0557]

3 16 [0.2183] [0.0726] [0.0655] [0.0209]

3 17 [0.4995] [0.1222] [0.1470] [0.0360]

3 18 [0.6250] [0.1292] [0.1483] [0.0330]

3 20 [2.6835] [0.1992] [0.2426] [0.1681]

Average 0.5466 0.0848 0.0957 0.0444

15 10 [0.0977] 22 23 13

15 12 [0.2298] 174 89 98

15 14 [0.6535] [0.0048] [0.0032] [0.0077]

15 15 [1.4129] [0.0073] [0.0084] [0.0102]

15 16 [1.1820] [0.0125] [0.0121] [0.0136]

15 17 [4.0515] [0.0119] [0.0115] [0.0139]

15 18 [6.4008] [0.0115] [0.0096] [0.0096]

15 20 [8.8120] [0.0111] [0.0158] [0.0095]

Average 2.8550 0.0074 0.0076 0.0081

Abbreviations: B-SCA, bundle-based cutting plane algorithm; OA-B-SCA, bundle-based cutting plane algorithm with outer approximation; SCA, secant cutting plane

algorithm.

TABLE 16 For Markovian target model, S = 83 states, and varying numbers of time periods and searchers across two classes with varying endurance and

detection ability: Upper bound (UB) and solution time (sec) to relative optimality gap of 0.0001 or, if not reached in 900 s, relative optimality gap in brackets

after 900 s (∞ indicates that no bound is available).

MSP B-SCA OA-B-SCA

J T Time UB Time UB Time UB

3 10 [0.1552] 0.4245 [0.1195] 0.4369 [0.0001] 0.3779

3 12 [0.4067] 0.3742 [0.6347] 0.4534 [0.0024] 0.3230

3 14 [0.8468] 0.3178 [3.3363] 0.4380 [0.0913] 0.2331

3 16 [1.0000] 0.5263 [115.65] 0.4229 [0.1983] 0.2094

3 18 [1.2159] 0.7555 [∞] 0.3557 [0.2767] 0.1649

15 10 [0.5524] 0.3900 [0.0286] 0.3885 112 0.3791

15 12 [0.9791] 0.3455 [0.0726] 0.3336 [0.0272] 0.3314

15 14 [1.4006] 0.6878 [0.5835] 0.2639 [0.3494] 0.2778

15 16 [1.4425] 0.8953 [1.9474] 0.2673 [1.0097] 0.2727

15 18 [1.9703] 0.8542 [269.44] 0.2236 [1.9238] 0.2378

Abbreviations: B-SCA, bundle-based cutting plane algorithm; OA-B-SCA, bundle-based cutting plane algorithm with outer approximation; SCA, secant cutting plane

algorithm.

plane algorithms, we see that SCA, B-SCA, and OA-B-SCA
exhibit similar performance levels for the relatively easy

instances (i.e., J = 15). For challenging cases involving J = 3

searchers, OA-B-SCA performs much better, on average SCA
and B-SCA produce twice as large optimality gaps. The

results in Table 15 demonstrate that the proposed OA-B-SCA
is most effective for the most challenging instances.

Next, we consider Table 16 where the searchers vary

in both endurance and detection ability, and thus the rate

modification factors 𝛽l,s′,s,t cannot all be 1. The detection

ability of class-two searchers is equal to 80% of that of

class-one searchers. The resulting instances are exceptionally

challenging, in particular when the numbers of periods and

searchers increase. The cutting plane method OA-B-SCA is

the most efficient approach as it provides by far the smallest

optimality gap for each instance, and is the only method that

can solve one instance to optimality within 900 s. It provides

practically reasonable optimality gaps for planning horizon

T ≤ 12. Analysis of each instance reveals that the high opti-

mality gap for MSP is usually due to the weakness of its lower

bound. For example, the best lower bound for the J = 15,

T = 12 instance—obtained by OA-B-SCA—confirms that

the best integer solution (i.e., with objective value of 0.3455)

from MSP actually has an optimality gap of 7%. This is

 15206750, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.22160 by G

eorge W
ashington U

niv M
ed C

tr, W
iley O

nline Library on [01/04/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

LEJEUNE ET AL. 551

dramatically better than the 98% reported in Table 16. Thus,

MSP cannot be ruled out as a viable approach for generating

good feasible solutions.

5 CONCLUSION

Search planning for a randomly moving target in discrete time

and space should account for operationally important con-

cerns such as the employment of heterogeneous searchers

with distinct endurance level, detection ability, and travel

speed, the need for deconfliction among the searchers, and

the ability for the target to camouflage and thus making any

sensor ineffective. We account for all these concerns within

a convex MINLP, while taking advantage of homogeneous

sensors and Markovian target path models when present.

Since the objective function is a weighted sum of expo-

nential functions with integer arguments, it can be linearized.

We propose a new linearization technique and extend two

existing ones to account for heterogeneous searchers and oper-

ational constraints. While equivalent to the actual problem,

the linearizations tend to be large-scaled but reducible via

customized preprocessing and lazy-constraint techniques. We

also develop three cutting plane methods for challenging

instances. The most suitable approach for a particular problem

instance depends on the number of searchers, the length of the

planning horizon, and, maybe primarily, on the characteristics

of the target movement.

When the target follows any one of a moderately large

number of paths (e.g., 1000 paths), it turns out that a

direct solution of a linearization (after preprocessing) by a

standard mixed-integer linear programming solver is viable

and in fact computationally most effective as long as the

searchers are essentially homogeneous and the planning

horizon is no longer than 15 time periods. For example,

an instance with 82 states, 15 time periods, 50 homoge-

neous searchers, no endurance constraints, and no camou-

flaging solves to optimality in less than one minute using

Gurobi. For more complex instances involving heterogeneous

searchers, our lazy-constraint-based outer-approximation

algorithm becomes the most efficient approach. When the

target moves according to a Markov chain, which tends to pro-

duce a massive number of possible paths, the linearizations

become inefficient and we rely on three cutting plane meth-

ods. Two of these are complemented with a bundle approach

and the last one is embedded in an outer-approximation

algorithm. The latter performs best on instances with hetero-

geneous searchers. For example, we achieve an optimality gap

of 2.7% after 900 s for an instance with 83 states, 12 time

periods, a camouflaging target, and 15 searchers across two

classes of varying sensor capabilities and endurance.

Our extensive numerical study also provides some insights

for practitioners regarding the impact of endurance, detection

ability, and camouflage. Searchers facing endurance limi-

tations tend to delay the search and wait for the target to

approach them to avoid wasting time in transit to the tar-

get’s likely location. Increased travel speed for the searchers

improves the probability of detecting the target, but possi-

bly only with a moderate amount. A camouflaging target is

less mobile and results in a concentrated search plan near the

target’s initial position.

ACKNOWLEDGMENTS
Lejeune acknowledges support from NSF (ECCS-2114100

and RISE-2220626) and ONR (N00014-22-1-2649); Royset

acknowledges support from ONR (N0001423WX01316 and

N0001423WX00403).

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available

from the corresponding author upon reasonable request.

ORCID

Miguel Lejeune https://orcid.org/0000-0001-6952-7212

Johannes O. Royset https://orcid.org/0009-0003-3554

-7305

Wenbo Ma https://orcid.org/0000-0002-2047-8226

REFERENCES

Abi-Zeid, I., Morin, M., & Nilo, O. (2019). Decision support for plan-
ning maritime search and rescue operations in Canada [Conference

presentation]. Proceedings of the 21st International Conference on

Enterprise Information Systems (ICEIS 2019), Heraklion, Crete,

Greece, 328–339.

Berger, J., Barkaoui, M., & Lo, N. (2021). Near-optimal

search-and-rescue path planning for a moving target. Journal of
Operational Research Society, 72(3), 688–700.

Bourque, F. (2019). Solving the moving target search problem

using indistinguishable searchers. European Journal of Operational
Research, 275(1), 45–52.

Brown, S. S. (1980). Optimal search for a moving target in discrete time

and space. Operations Research, 28, 1275–1289.

Cho, P. C., & Batta, R. (2021). UAV search path optimization for

recording emerging targets. Military Operations Research, 26(3),

27–48.

DARPA. (2023). DARPA subterranean challenge. https://www.darpa

.mil/program/darpa-subterranean-challenge

Delavernhe, F., Jaillet, P., Rossi, A., & Sevaux, M. (2021). Planning a

multi-sensors search for a moving target considering traveling costs.

European Journal of Operational Research, 292(2), 469–482.

Dell, R. F., Eagle, J. N., Martins, G. H. A., & Santos, A. G. (1996).

Using multiple searchers in constrained-path, moving-target search

problems. Naval Research Logistics (NRL), 43, 463–480.

Dimitrov, N., & Morton, D. (2009). Combinatorial design of a stochastic
Markov decision process. In N. Dimitrov & D. Morton (Eds.), Oper-

ations research and cyber-infrastructure (pp. 167–193). Springer.

Ding, H. (2018). Models and algorithms for multi-agent search problems
[Ph.D. thesis, Boston University].

Eagle, J. N., & Yee, J. R. (1990). An optimal branch and bound procedure

for the constrained path, moving target search problem. Operations
Research, 38, 110–114.

 15206750, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.22160 by G

eorge W
ashington U

niv M
ed C

tr, W
iley O

nline Library on [01/04/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://orcid.org/0000-0001-6952-7212
https://orcid.org/0000-0001-6952-7212
https://orcid.org/0009-0003-3554-7305
https://orcid.org/0009-0003-3554-7305
https://orcid.org/0009-0003-3554-7305
https://orcid.org/0000-0002-2047-8226
https://orcid.org/0000-0002-2047-8226
https://www.darpa.mil/program/darpa-subterranean-challenge
https://www.darpa.mil/program/darpa-subterranean-challenge

552 LEJEUNE ET AL.

Grundel, D. A. (2005). Constrained search for a moving target
[Conference presentation]. Proceedings of the 2005 International

Symposium on Collaborative Technologies and Systems, St. Louis,

MO, 327–332.

Hollinger, G., & Singh, S. (2008). Proofs and experiments in scalable,
near-optimal search by multiple robots [Conference presentation].

Proceedings of Robotics: Science and Systems Conference, Zurich,

Switzerland.

Kleinert, T., Grimm, V., & Schmidt, M. (2021). Outer approximation

for global optimization of mixed-integer quadratic bilevel problems.

Mathematical Programming, 188, 461–521.

Kronqvist, J., Bernal, D. E., Lundell, A., & Grossmann, I. E. (2019).

A review and comparison of solvers for convex minlp. Optimization
and Engineering, 20, 397–455.

Lanillos, P., Besada-Portas, E., Pajares, G., & Ruz, J. J. (2012). Minimum
time search for lost targets using cross entropy optimization [Con-

ference presentation]. 2012 IEEE/RSJ International Conference on

Intelligent Robots and Systems, 602–609.

Lau, H., Huang, S., & Dissanayake, G. (2008). Discounted mean bound

for the optimal searcher path problem with non-uniform travel times.

European Journal of Operational Research, 190(2), 383–397.

Lundell, A., & Kronqvist, J. (2019). Integration of polyhedral outer
approximation algorithms with MIP solvers through callbacks and
lazy constraints. In AIP conference proceedings (Vol. 2070, p.

20012). AIP Publishing LLC.

Moskal, M. D., Dasdemir, E., & Batta, R. (2023). Unmanned aerial vehi-

cle information collection missions with uncertain characteristics.

INFORMS Journal of Computing, 35(1), 120–137.

Pfeiff, D. M. (2009). Optimizing employment of search platforms to
counter self-propelled semi-submersibles [Master’s thesis, Naval

Postgraduate School].

Pietz, J., & Royset, J. O. (2013). Generalized orienteering problem with

resource dependent rewards. Naval Research Logistics (NRL), 60(4),

294–312.

Pietz, J., & Royset, J. O. (2015). Optimal search and interdiction plan-

ning. Military Operations Research, 20(4), 59–73.

Raap, M., Preuss, M., & Meyer-Nieberg, S. (2019). Moving target

search optimization – A literature review. Computers & Operations
Research, 105, 132–140.

Riehl, J. R., Collins, G. E., & Hespanha, J. P. (2007). Cooperative
graph-based model predictive search [Conference presentation].

Proceedings of 46th IEEE Conference on Decision and Control, New

Orleans, LA, 2998–3004.

Riley, K. F. (2023). Evaluation of courses of action simulation tool
[Master’s thesis, Naval Postgraduate School].

Royset, J. O., & Reber, D. N. (2009). Optimizing routing of unmanned

aerial systems for the interdiction of improvised explosive devices.

Military Operations Research, 14(4), 5–19.

Royset, J. O., & Sato, H. (2010). Route optimization for multiple

searchers. Naval Research Logistics (NRL), 57(8), 701–717.

Sato, H., & Royset, J. O. (2010). Path optimization for the

resource-constrained searcher. Naval Research Logistics (NRL),
57(5), 422–440.

Stewart, T. J. (1979). Search for a moving target when searcher motion

is restricted. Computers & Operations Research, 6(3), 129–140.

Stone, L. D. (2004). Theory of optimal search (2nd ed.). INFORMS.

Stone, L. D., Royset, J. O., & Washburn, A. R. (2016). Search for moving

targets. Springer.

Washburn, A. R. (1998). Branch and bound methods for a search

problem. Naval Research Logistics (NRL), 45, 243–257.

Washburn, A. R. (2002). Search and detection (4th ed.). INFORMS.

Washburn, A. R., & Wood, R. K. (1995). Two-person zero-sum

games for network interdiction. Operations Research, 43(2),

243–251.

Wong, E., Bourgault, F., & Furukawa, T. (2005). Multi-vehicle Bayesian
search for multiple lost targets [Conference presentation]. Proceed-

ings of the 2005 IEEE International Conference on Robotics and

Automation, Barcelona, Spain, 3169–3174.

Zhang, L., Sidoti, D., Avvari, G. V., Ayala, D. F. M., Mishra, M.,

Kellmeyer, D. L., Hansen, J. A., & Pattipati, K. R. (2020).

Context-aware dynamic asset allocation for maritime surveillance

operations. ISIF Journal of Advances in Information Fusion, 15(1),

3–23.

How to cite this article: Lejeune, M., Royset, J. O.,

& Ma, W. (2024). Multi-agent search for a moving and

camouflaging target. Naval Research Logistics (NRL),
71(4), 532–552. https://doi.org/10.1002/nav.22160

 15206750, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nav.22160 by G

eorge W
ashington U

niv M
ed C

tr, W
iley O

nline Library on [01/04/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

	Multi-agent search for a moving and camouflaging target
	1 INTRODUCTION
	2 PROBLEM FORMULATION
	2.1 Searchers and the target
	Initial state
	Deconfliction
	Endurance and terminal state

	2.2 Sensors
	2.3 SP model

	3 CONDITIONAL TARGET PATHS
	3.1 Linearization
	Computational tests
	Preprocessing

	3.2 Outer-approximation method
	Computational tests

	3.3 Operational insights
	Endurance and travel time
	Camouflage and sensor quality

	4 MARKOVIAN TARGET PATHS
	4.1 Linearization
	Computational tests

	4.2 Cutting plane algorithms
	Secant cutting plane algorithm
	Bundle-based cutting plane algorithm
	Bundle-based cutting plane algorithm with outer approximation

	4.3 Numerical tests
	Homogenous searchers
	Heterogeneous searchers and camouflaging

	5 CONCLUSION

	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT
	ORCIDvskip -6pt
	REFERENCES

