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Abstract

In multi-agent search planning for a randomly moving and camouflaging target, we
examine heterogeneous searchers that differ in terms of their endurance level, travel
speed, and detection ability. This leads to a convex mixed-integer nonlinear program,
which we reformulate using three linearization techniques. We develop preprocess-
ing steps, outer approximations via lazy constraints, and bundle-based cutting plane
methods to address large-scale instances. Further specializations emerge when the
target moves according to a Markov chain. We carry out an extensive numerical
study to show the computational efficiency of our methods and to derive insights
regarding which approach should be favored for which type of problem instance.
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1 | INTRODUCTION

Search for a randomly moving target in a discrete environment
is challenging because the probability for detecting the target
during a look at a particular location depends on the time of
the look and the allocation of earlier looks. Thus, the opti-
mization of searcher paths through discrete time and space
results in difficult nonlinear problems with integer variables.
Operational constraints on the searchers related to travel
speed, endurance, and deconfliction further complicate the
problem. In this paper, we formulate a mixed-integer nonlin-
ear program (MINLP) that accounts for these factors. Given
a planning horizon, it prescribes an optimal path for each
searcher that maximizes the probability of detecting a ran-
domly moving target that might camouflage, or not, and thus
is even less predictable. We present a new linearized model
and extend two others to account for operational constraints
and heterogenous searchers. In an effort to reduce comput-
ing times, we develop a preprocessing technique, implement
a lazy-constraint scheme within an outer-approximation solu-
tion method, and construct three cutting plane algorithms.
Extensive numerical simulations demonstrate some of the
modeling possibilities and indicate the most effective compu-
tational strategies in various settings.

Problems of the kind modeled in this paper arise in
search-and-detection operations (see Abi-Zeid et al., 2019;

camouflage, linearization methods, moving target, outer approximations, search

Washburn, 2002, Chap. 7 for a discussion of tools used by
the US Coast Guard and the US Navy), in counter-drug inter-
diction (Pietz & Royset, 2013, 2015; Zhang et al., 2020),
and in counter-piracy operations (Bourque, 2019). It is also
increasingly likely that planners in the near future will need
algorithms for guiding large groups of autonomous systems
as they carry out various search tasks, for example in under-
ground environments (DARPA, 2023).

The literature on search problems is extensive; see the
reviews Ding (2018) and Raap et al. (2019) as well as the
monographs Stone (2004), Stone et al. (2016), and Wash-
burn (2002). We assume a randomly moving target and
not one that reacts or adapts to the searchers as seen, for
example, in Pfeiff (2009), Washburn and Wood (1995), and
Stone et al. (2016, Chap. 7). Thus, we broadly face the
problem of optimizing a parameterized Markov decision pro-
cess (Dimitrov & Morton, 2009), but can still avoid the
formulation of a dynamic program and associated computa-
tional intractability as long as false-positive detections are not
considered. This fact is well-known and, at least, can be traced
back to Stewart (1979).

Specialized branch-and-bound algorithms using expected
number of detections in bound calculations (Lau et al., 2008;
Sato & Royset, 2010; Washburn, 1998) are effective
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when optimizing for a single searcher. Recently, this
has been extended to multiple homogeneous searchers
using minimum-cost flow computations to generate bounds
(Bourque, 2019). In the case of multiple searchers, cutting
planes (constructed using either tangent or secant lines) fur-
nish linear approximations that can be refined adaptively and
lead to exact algorithms (Royset & Sato, 2010). The com-
putational cost of identifying cuts tends to be significant if
the target path can be any one of a large number of pos-
sible paths. This is reduced significantly when the target
paths are governed by a Markov chain due to convenient
formulas developed in Brown (1980); see also Royset and
Sato (2010). Recent efforts toward developing cutting plane
methods include Delavernhe et al. (2021), but there exact-
ness is sacrificed to achieve shorter computing times. The
resulting algorithm uses a greedy heuristic to build the linear
approximations.

A cutting plane approach can be viewed as a linearization of
the actual problem when “all” cuts are included in the master
problem from the outset. At least conceptually, this produces
a direct solution approach: solve the master problem with all
cuts included as proposed in Royset and Sato (2010). When
the target moves according to a Markov chain, then one can
also achieve another linearization through direct modeling
of the evolution of the (posterior) probability of having the
target in a particular location (Royset & Sato, 2010). This lin-
earization approach is refined in Berger et al. (2021) under
the assumption that the travel times between locations are
always one time period and the searchers are homogeneous.
This effort includes path splitting mitigation strategies for the
continuous relaxation of the resulting mixed-integer model,
variable elimination by switching to a focus on the terminal
time period in the objective function, and implementation of
areceding horizon strategy.

The literature also includes branch-and-bound algorithms
that solve sequences of convex subproblems (Eagle &
Yee, 1990) and many heuristics (Abi-Zeid et al., 2019; Dell
etal., 1996; Grundel, 2005; Hollinger & Singh, 2008; Lanillos
etal.,2012; Riehl et al., 2007; Wong et al., 2005), but they lack
optimality guarantees. Routing of constrained searchers in
discrete time and space has similarities with (team) orienteer-
ing and related reward-collecting vehicle routing problems;
see, for example, Cho and Batta (2021), Moskal et al. (2023),
Pietz and Royset (2013), and Royset and Reber (2009). These
problems often emphasize operational constraints such as
time-windows for accomplishing tasks, limits on endurance
and capacity, and deconflication among multiple agents.

In this paper, we also include operational constraints about
endurance and deconflication, and hint to other possibil-
ities that can be added with relative ease. In contrast to
Berger et al. (2021), which numerically examines one and
two searchers, we study up to 50 searchers. We also allow
for different types of searchers; their sensors, endurance, and
travel speed can vary. The recent efforts Berger et al. (2021),
Bourque (2019) and, largely, Royset and Sato (2010) deal

with homogeneous searchers where all these characteristics
are identical across the searchers. We permit the target to cam-
ouflage according to a random process. Thus, the target not
only follows a random trajectory but its appearance along the
trajectory is also random. It might become undetectable for
some time periods and this adds variability to the searchers’
effective sensor performance at any point in time. To the best
of our knowledge, this feature has not been modeled earlier in
the literature.

We start in Section 2 by formulating the search problem
under consideration. Section 3 considers the most general
conditional target path models and presents two lineariza-
tions, a preprocessing technique, an outer-approximation
method based on lazy constraints, and numerical results.
Section 4 turns to the more special, Markovian target path
models and develops a linearization and three cutting plane
algorithms, with supporting numerical results. The paper ends
with conclusions in Section 5.

2 | PROBLEM FORMULATION

In this section, we describe the search problem and propose a
generic model formulation.

2.1 | Searchers and the target

We consider L classes of searchers with each class [ € L =
{1, ... , L} containing J; identical searchers. The set of time
periods is Tp = {0} U T with T = {1, ... ,T}. The search
for the target may take place during time periods r € 7. Dur-
ing a time period ¢ € 7y, each searcher occupies a state s €
S = {1, ... ,S} oris in transit between states. When occupy-
ing a state s, a searcher of class / may select to move to any
state adjacent to s as defined by the forward star Fi(s) C S.
We also let R;(s) C S denote the reverse star of state s, which
represents the set of states from which a searcher of class
[ can reach state s without transiting through any intermediate
state. A searcher of class / requires dj ;¢ > 1 time periods to
move from state s to state s’ € F)(s) and to carry out search
in state s’ for one time period. We refer to dj ;¢ as the travel
time even though it also includes the subsequent search time
and typically would have d;;; = 1 when the searcher remains
in state s.

We prefer the term “state” over “cell” despite the latter
being more common in the literature; see, for example, Berger
et al. (2021) and Royset and Sato (2010). “State” highlights
the vast number of modeling possibilities beyond searching
an area discretized into grid cells. For example, the search
may take place inside an underground mine, inside a ship,
in a building, or in an urban environment. In such situations,
it becomes especially important to allow for varying travel
times d; ;¢ that sometimes could be much greater than one
time period.
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We let X,y denote the number of searchers of class /
that occupy state s in time period + € 7; and that move
to state s’ next, and let X denote the vector with compo-
nents X5, [ € L, 5,8 € S,and ¢t € Ty. We refer to X
as a search plan. In addition to the conditions imposed by
the forward and reverse stars, a search plan is constrained in
three ways:

2.1.1 | [Initial state

There is a special, initial state s, € S from which all
searchers start at time period 0. It can abstractly represent geo-
graphically distinct bases for the different classes of searchers
as the travel time dj;, s from s, to any other state s may
depend on [. (Further fidelity regarding starting states for
the various searchers is easily implemented, but omitted here
for notational simplicity.) The reverse star R;(s+) = {s+},
indicating that a searcher cannot return to the initial state
after it departs. However, since F;(s;) may contain s;, a
searcher could remain in the initial state for a number of
periods.

2.1.2 | Deconfliction

We permit at most 7, searchers to be in state s at time period
t. This constraint is motivated by safety concerns related to
collisions, but could also be helpful in preventing search plans
that overly concentrate on a few states. Our modeling frame-
work easily accommodates a variety of other deconflication
constraints as well, but we omit the details.

2.1.3 | Endurance and terminal state

For each class [, there is an endurance level t; which is the
number of periods a searcher of that class can be absent from
s+ and s_ € S, the latter being the terminal state. It has the
forward star F;(s_) = {s_}, which means that a searcher in the
terminal state will remain there indefinitely. As we see in the
below formulation, travel time from s.. to the first state looked
at and travel time from the last state to s_ are not counted
against 7;. For example, suppose that S = {1, ... ,5}, s+ =1,
s_ = 5, and consider the forward stars Fi(1) = {1,2},
Fi1(2) ={2,3}, Fi(s) = {s — 1,s,s + 1} fors = 3,4, F1(5) =
{5} and the reverse stars R1(1) = {1}, R1(s) = {s—1,s,5+1}
fors = 2,3, R1(4) = {3,4}, Ri(5) = {4,5}.If T = 6 and
71 = 3, then a feasible plan for searcher 1 is to sequentially
visit the states 1, 1,2, 3, 4,5 because the searcher is outside
of the initial and terminal states for no more than 7; = 3
time periods.

We consider one target. During a time period r € T, the
target is in a state s, € S \ {s4,s_} while operating in one
of two modes: it might be camouflaged at that time as indi-
cated by ¢; = 1 or it might not be camouflaged specified by
¢; = 0. We observe that the target is barred from the initial
and terminal states of the searchers. A target path is the vector

= (@1, ... ,or) With @, = (s,,¢;) € (S \ {s4,5-}) % {0, 1}

specifying the state s, and mode c, for the target in time period
t. The probability that the target follows path w is g(w). We
denote by Q C (S \ {s4,5_}) x {0, 1})T the set of all target
paths with positive probability. Thus, } ., q(@w) = 1. We
assume that these target paths and probabilities are known.
Since we adopt a stochastic model for target movement, it
becomes immaterial whether the target wants to be detected
or not. The target simply selects one target path according
to the probabilities g(w), w € Q and follows it without any
“intelligent” behavior.

While we only explicitly consider a single target, it is
conceptually straightforward to extend the following for-
mulations to multiple targets by adopting expected number
of unique targets detected or related metrics as objective
function. Since this only affects the objective function with
the decision variables remaining the same, we conjecture
that computing times will largely be unchanged compared
to the single-target case. We omit a detailed discussion
and refer to Royset and Sato (2010) for ideas in this
direction.

2.2 | Sensors

We assume that each searcher is equipped with one imperfect
sensor. Each time period + € 7 in which a searcher occu-
pies a state, the searcher’s sensor takes one look at its current
state. When a searcher is in transit between states, the sen-
sor is inactive. If a searcher of class / occupies state s in time
period 7 and s’ is the searcher’s previous state, then the prob-
ability that the searcher’s look at the state during time period
t detects the target, given it is in that state and is not camou-
flaged, is g1y € [0,1). We refer to this probability as the
glimpse-detection probability. We assume that the searchers’
looks can be viewed as statistically independent attempts at
detecting the target. Hence, given a search plan X and tar-
get path w, the probability that no searcher detects the target
during 7 becomes:

H H H H (1 - gl,sl,s,t)CM(w)X]'A’~*-’*41,.,-,“Y

leL seS teT R
t=dj 57,520

= exp _Z Z Z Z - ln(l - gl,s/,s,t)Cs,t(w)Xl,sl,s,t—dLS,J 5

IEL SES teT R
t=dj g7 s>0

where (s (w) = 1 if o = (w1, ... ,or) has o, = (s,0),
and ¢ ,(w) = 0 otherwise. For given L, s, s, t, there are four
possible reasons why

(@)X ¢
(1 _ gl,S/,S,l)ghr(w) 1.5/,.Lr7d,vs,;’

would become 1 and thus causing this particular factor
to not reducing the probability of nondetection: (i) the
glimpse-detection probability g; ¢, could be O represent-
ing an ineffective sensor under these circumstances. For
example, ¢ might represent nighttime or a time period with
poor weather. (ii) No searchers of class [ are present in state s
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at time period ¢, while previously in s’, that is, Xis si-d,y, = 0.
(ii1) The target is not in state s at time #, which causes {; ,(») =
0. (iv) The target is in state s at time 7 but is camouflaged, that
is, w; = (s, 1), which again causes {; (@) = 0.

We refer to the term — In(1 — g, ¢ 5,) as the detection rate for
a searcher of class / in state s at time 7 when it previously occu-
pied state s’. Generally, these detection rates can vary with
I,s',s,t but we assume that one can identify a positive num-
ber « and nonnegative integers iy 5., L € L,s,8' €S, t €T,
such that

afryss=—In(l — gy, forallle L,s€S,teT,
s’ € Ry(s) with £ — dyy, > 0. 2.2)

This is a minor assumption as each number in a finite col-
lection of rational numbers can be written as the product of
a common scalar and an integer. We refer to a as the base
detection rate, while v, is the rate modification factor.
The motivation for the assumption stems from the lineariza-
tion approaches below; see also Royset and Sato (2010) which
mentions this possibility while leaving out the details. The
complexity of a problem instance turns out to be closely
related to the size of the integers f; ¢ ;.. If the sensors are iden-
tical across classes, states, and time periods, then one can set
all rate modification factors to 1. To take advantage of this
particular structure in the formulation below, we leverage the
auxiliary decision variable
Zl,s,t = Z ﬂl,s’,s,tXI,s’,s,t—d,d\./'A’

sTeR(s)
Hrmr_xzo

which represents the search effort allocated to state s at time
period ¢ by class 1.

2.3 | SP model

We next state an MINLP that models the search problem
under consideration. It goes beyond the formulations in
Bergeretal. (2021) and Bourque (2019) by considering differ-
ent classes of searchers, varying travel times, deconflication
constraints, and endurance limits. It is motivated by a model
in Royset and Sato (2010), but extends it by accounting for
a camouflaging target and limited search endurance. Table 1
provides a summary of the notation used.
The MINLP takes the following form:

SP: ml}I(I,IZI’IAI/IlZE @

(2.3a)
= Yaexp[-, Y Diu@aZyl,
weQ leL &S teT
SE{sy.s_}
subject to z X s—dyy
s'eRy(s)
1=d} ¢ 20 (2.3b)
= ) Xuvnl€LsESIET,
s'E€F(s)

Y Xisso=Jnl€L,

(2.3¢)
s€F(sy)
Y Xis,si =My l€LIET, 2.3d)
SEF(54)
SE{s4.5-)
YD Xiwa< ) My leLiteTy (23e)
s€S s'eFy(s) t—1+1<t'<t

SE(s4.5_)

> BivsiXivsi-dy, =Zunl €ELIET,SES, (23D

s'ERy(s)
=4 520
Z Xl,S/,S,l—dI'Y/J S nS,lvt € T,S € S’ (23g)
leL s'erys)

r—d,ﬂ\./ 5 >0

X €{0,1,2, ... ,min{J;,ng,}},I € L,s,s €S,1 €T,
(2.3h)

M, €{0,1,2, ... ,min{Jy,n, }}, I € LIE T, (2.30)
Zis;€{0,1,2, ... ,m,},l€LiteT,seS. 2.3)

The objective function (2.3a), denoted by f(Z), gives the
probability of not detecting the target during 7 and is obtained
from the derivations in Section 2.2 by applying the total prob-
ability theorem. It leverages the auxiliary decision vector Z
assigned in (2.3f). In view of (2.2), exp(aZ, ) gives the prob-
ability that class / fails to detect the target in state s at time
period ¢, given the target is there and it is not camouflaging.

Constraints (2.3b) and (2.3c) enforce route continuity and
define initial conditions for the searchers, respectively. The
constraints (2.3d) ensure that M;, represents the number of
searchers of class / that moves away from the initial state
in time period ¢, that is, start their mission. The constraints
(2.3e) prevent searchers from being outside the initial and ter-
minal states for more than 7; time periods. Specifically, the
right-hand side of (2.3e) sums up the number of searchers
of class [ that has started their mission during time periods
t,t—1, ... ,t—7;+ 1. This number cannot be exceeded by the
left-hand side of (2.3e), which gives the number of searchers
of class [ on mission at time period z. Thus, searchers of class
[ that started their mission prior to t — 7; + 1 cannot be in any
other state than s_. To the best of our knowledge, endurance
constraints of this kind have not been considered earlier in
the search theory literature. Deconfliction constraints (2.3g)
limit the number of searchers that can occupy a state in any
time period. It can be adjusted in various ways such as being
implemented for each class / individually.

We can reduce the size of SP by defining Z;, = Y rer Zisis
but the present formulation affords some simplifications. If
each fivs; = 1, then every X,y , can be relaxed to a
continuous variable. This is not the case in a formulation with
the aggregated variables Z;,.
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TABLE 1  Notation for model SP.

Indices

5,8, 8, State: s,5',5, € S = {1, ... ,S}

1t Time period: t,#’ € Ty = {0} U T, T ={1, ... ,T}

[ Searcherclass: [ € £ = {1, ... ,L}

GRGING Mode: ¢ = 1 means camouflage; ¢ = 0 means no camouflage

w Target path: @ = (@1, ... ,07) € Q, with w, = (s;,¢;) € (S \ {s4,5_}) x {0, 1}

Sets

Fi(s)CS Forward star of state s for searchers of class [

Ri(s)C S Reverse star of state s for searchers of class [

Parameters

a Base detection rate; positive real number

Bls si Rate modification factor for a searcher of class / while it occupies state s in time period 7 and s’ is its previous state; nonnegative
integer

Ly i(w) lifw = (wy, ... ,wr) has @, = (s,0); zero otherwise

s, €S Initial state; R;(s;) = {s,}

sS_ES Terminal state; F;(s_) = {s_}

J; Number of searchers of class /; positive integer

q(w) Probability of target path w; positive value with Y’ g(@) = 1

disy Number of time periods needed for a searcher of class / to move directly from state s to state s’ and search in s; positive integer

ng, Maximum number of searchers in state s at time period #; nonnegative integer

7 Endurance of searchers of class /; positive integer

m, Maximum search effort from class / in state s at time period #; m;, = Y., eRy(5):1~dyy , Prstsa Min{Jp, 15, }

Decision variables

Xyt Number of searchers of class [ in state s at time period 7 and that move to state s" next; X denotes the vector with components
Xiso lEL,s,s €S,1 €T

Zis Search effort from class / in s at time period ¢,/ € L,s € S,t € T; Z denotes the vector with components Z,,,/ € L,s € S,t €T

M, Number of searchers of class / that start their mission at time period 7; M denotes the vector with components M;,, [ € L,t € T

SP is a convex MINLP because its continuous relaxation
has a convex nonlinear objective function and a polyhdedral
feasible set. The difficulty of solving SP depends on various
parameters as examined below. The movement of the target
between states and the switch in and out of camouflaging
mode enter SP only through the set of target paths Q, which
are weighted according to the probabilities g(w), @ € Q.
Our formulation has the advantage that any (complicated) tar-
get path model can be considered, including non-Markovian
models. It suffices to generate, ex ante, the parameters (@)
for each path ® € Q. We refer to this most general set-
ting as a conditional target path model and address it in
Section 3.

While conceptually simple, a conditional target path model
might be computationally challenging to implement when
the number of possible paths is large, that is, the cardinal-
ity of Q is large. A Markovian target path model affords a
means to handle a massive number of target paths as we see
in Section 4.

3 | CONDITIONAL TARGET PATHS

In this section, we consider conditional target paths and thus
make no assumptions about the stochastic model generat-
ing these paths beyond being able to compute ex ante the

parameters ;,(@). Section 3.1 develops two equivalent linear
models, a supporting preprocessing technique, and numerical
results. Section 3.2 presents an outer-approximation method
based on lazy constraints, which improves computing times
on difficult instances. Section 3.3 discusses operational
insights emerging from solving SP in various settings.

3.1 | Linearization

The objective function (2.3a) in SP is a finite sum of the
exponential function with arguments in the form of a sum
of products of a nonnegative parameter by a bounded inte-
ger variable. It can therefore be linearized using additional
variables and constraints (Royset & Sato, 2010). In addition
to extending the linearization from Royset and Sato (2010),
which deals with homogeneous searchers and no operational
constraints, to the present setting, we also develop a novel
linearization and a preprocessing technique.

The maximum search effort that the searchers collectively
can muster across all time periods is

N = Z Z max myg,.
el zeTses\{S*’S‘}

Thus, the power in (2.3a) cannot exceed aN. A linearization
of the exponential function needs to only cover the arguments
0, a 2a, ..., aN.
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We start by developing a new linearization by lever-
aging the fact that minimizing exp(—aY) over ¥ €
{0,1,2, ... ,N}nY, where ) represents constraints, is equiv-
alent to the problem.

N N
Yglyi,lvl‘;or’r}i‘z’%N;Wie_i“ subject to ;i W=7,
N
ZW;:l, w,e[0,1],i=0,1,2, ... ,N. (3.1)
i=0

At optimality, each W; must take value O or 1 because the
exponential function is strictly convex, which means that one
can restrict W; to be binary from the outset. Replicating the
process for each w € Q in the context of SP, we reformulate
SP as the following mixed-integer linear program (MILP):

N
CSP-U: m)}gw%e%q(w);ww)e

subject to (2.3b)-(2.3j)
N

Zi Wi(w) = Z Z ZCs,t(m)Zl,s,z, w € Q

i=1 leL ses teT
SE{sy.s_}
N
dWio)=1, weQ,
i=0 (3.2)

Wiw) € [0,1], we®, i=0,1,2,...,N. (3.3)

Here, we denote by W the vector with components W;(w),
we Q,i=1{0,1,...,N}. The first letter in CSP-U refers to
the conditional target model, while the last letter hints to the
upper approximation of the exponential function underpin-
ning (3.1). Note that there is no approximation in the present
setting; CSP-U is equivalent to SP.

We also extend a linearization from Royset and Sato (2010),
which gives the following MILP reformulation of SP:

CSP-L: m}lglyl’rzr’li[zewezﬂq(w) Y(w)

subject to (2.3b)-(2.3j)
el +i—ie™®)

—et =) D D@ < V),

leL seS  (eT
SE(s 4.5}

weQ, i=012,..,N-1 34

The vector Y consists of the free variables Y(w),w € Q
introduced in the reformulation. As explained in Royset and
Sato (2010), the constraints (3.4) represent N secant cuts that
are valid at integer points of the exponential function; this is
replicated for each w € Q. The last letter in the name CSP-L
recalls that each cut represents a lower approximation of the
objective function in SP. CSP-L amounts to an improvement
over the model SP1-L in Royset and Sato (2010) by consid-
ering multiple searcher classes, eliminating |Q2| unnecessary
secant cuts (effectively replacing N by N — 1 in (3.4)), and
accounting for endurance and deconfliction.
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The linearizations CSP-U and CSP-L are both equivalent
to SP. The former adds |Q|(/V + 1) variables and (2N + 4)|Q|
constraints, while the latter adds only |Q| variables and |Q|N
constraints. However, the added constraints in CSP-U are
relatively simple; either variable bounds or equality con-
straints. In contrast, all the new constraints in CSP-L are
more challenging inequality constraints. Regardless, the role
of N is central, with lower values affording significant sav-
ings in model size. The planning horizon 7" and the number of
searchers drive up N. The same holds for situations with vary-
ing detection rates, which produce rate modification factors
Py s+ larger than one.

As is the case for SP, if each gy, = 1 in CSP-U and
CSP-L, then every X, ¢, can be relaxed to a continuous vari-
able. When possible, we take advantage of this fact. (Testing
not reported here indicates significant reduction in comput-
ing time when using this relaxation. The alternative relaxation
with Z continuous and X integer is significantly slower, which
probably stems from the fact that X is a much larger vector
than Z.)

3.1.1 | Computational tests

We compare CSP-U and CSP-L in a preliminary computa-
tional study based on instances from Royset and Sato (2010).
For reference, we also examined Baron, Bonmin, and Knitro,
three leading solvers (Kronqvist et al. 2019). There is a sin-
gle class of searchers with unlimited endurance looking for a
target that cannot go into camouflage mode. We also omit the
deconfliction restrictions (2.3g). This implies that the variable
vector M and the constraints (2.3d) and (2.3e) are superfluous.
The state space is built as a square grid of cells, with an addi-
tional state s, representing the initial location of the searchers.
(A terminal state s_ is unnecessary when the searchers have
unlimited endurance.) For example, a 9-by-9 grid of cells pro-
duces 81 + 1 = 82 states. At any time period #, a searcher in
state s, corresponding to a particular grid cell, can move to
the cell above, below, right, or left to s in the grid and this
becomes its next state. We call these four states as well as s
itself the adjacent states of s. Diagonal moves are not allowed.
On the boundary of the square grid of cells some of these
options are eliminated as needed. The adjacent states define
the forward star set F;(s). The reverse star of s is defined anal-
ogously. The travel times d; ;¢ are always set to 1. The initial
state s has the three boundary cells in the upper-left corner as
its forward star. The glimpse detection probabilities are invari-
ant so that gy, = 1 forall I, s,s, t, with « = =31n(0.4)/J;;
here J; is the number of searchers of the first (and only)
class. This calibration of a follows Royset and Sato (2010)
and allows for comparison as the number of searchers
varies.

The target paths are generated ex-ante as follows. The num-
ber of cells along each edge of the square grid of cells is an odd
number, so the center cell in the square grid is well defined.
This center cell is the initial position of the target. From one
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time period to the next, the target can stay idle or move to
any of the adjacent cells according to a transition matrix with
probabilities defined as follows. The probability that the tar-
get remains in the same state is 0.6, with the probability of
moving to any of the adjacent states is equal (i.e., usually 0.1
except if the target is on the boundary of the square grid of
cells). We randomly generate |Q| target paths according to
these probabilities and set g(w) = 1/]|Q].

These model instances and those in the following are not
constructed in response to a particular application, but rather
designed to challenge the algorithms. Current and future
applications might involve many searchers in the form of
inexpensive drones or a few manned aircraft. The number
of states can also vary greatly. The search for smugglers
in the Eastern Tropical Pacific Ocean might involve thou-
sands of states, two aircraft, 72 hourly time periods, and
half-a-dozen targets (Riley, 2023). However, after prepro-
cessing and decoupling the various targets we obtain a state
space and planning horizon aligned with what is considered in
this paper.

All the models in this paper are coded in Python 3.7
and solved with Gurobi 9.1 on a Linux machine, with Intel
Core i7-6700 CPU 3.40GHz processors and 64 GB installed
physical memory. For each instance, the relative optimality
tolerance is 0.0001, and we use one thread only. If this tol-
erance is not achieved after 900 s, we report the optimality
gap at 900 s in brackets in the tables below. The relative opti-
mality gap is calculated as the ratio of the difference between
the best integer solution and the best lower bound to the best
lower bound.

Table 2 compares the Bonmin, Knitro, and Baron solvers
with CSP-L and CSP-U. Direct solution of SP using Bon-
min, Knitro, and Baron appears less competitive: CSP-L is
faster than all the three solvers on 14 out of 18 instances;
CSP-U is faster than all the three solvers on 17 out of 18
instances and solves all of them within the 900-second time
limit. Baron, Bonmin, and Knitro solve only 10, 9, and 14
out of 18 instances, respectively. Their failures often involve

having found no feasible integer solution as indicated by [oo]
in the table. A comparison between our linearizations shows
that the new version CSP-U tends to outperform CSP-L,
which in the present setting essentially coincides with a lin-
earization proposed in Royset and Sato (2010). On 16 or 17
of the 18 instances, CSP-U solves quicker than CSP-L. The
tolerance is reached in no more than 279 s with CSP-U, while
two instances cannot be solved in 900 s with CSP-L. The
advantage of CSP-U over CSP-L is more pronounced for
instances with more searchers (J; = 15) compared to fewer
searchers (J; = 3). We obtain similar results (not reported
in detail) for instances with up to 32000 targets paths and
226 states in seconds. Interestingly, the solution time is not
consistently increasing with the number of target paths and
states.

In some cases a binary restriction on Wj(w) in (3.3) can
be beneficial from a computational point of view. (Recall
from the discussion after (3.1) that these variables indeed are
binary at optimality.) For example, the instance with 7 = 10
solves in 17 s with W;(w) € {0,1} and in 63 seconds with
Wi(w) € [0, 1].

The solution time appears to be an increasing function of
the length of the planning horizon as seen in Table 3, and
this is also largely consistent with Table 2. The effect of more
searchers on the computing time is less clear. Instances with
many searchers in Table 3 solve surprisingly quickly. The
superiority of the new linearization CSP-U becomes increas-
ingly visible as the number of searchers and the length of
the planning horizon increase. For the largest instances with
Ji > 30 and T = 15, Table 3 shows solution times for
CSP-U in tens of seconds while CSP-L fails to produce the
required optimality gap in 900 s. CSP-U can also be solved
with binary restrictions for W;(w), which is usually slower, but
for 10 out of 52 instances in Tables 2 and 3 binary restrictions
are slightly faster. The tables ignore such potential further
improvements for CSP-U unless the times become less than
half in which case the instances are marked with asterisk and
dagger in the tables.

TABLE2 For S = 82 states, |Q| = 1000 target paths, and varying numbers of searchers and time periods: Solution time (sec) to relative optimality gap of
0.0001 or, if not reached in 900 s, relative optimality gap in brackets after 900 s.

Ji=3 Ji=15
T Baron Bonmin Knitro CSP-L CSP-U Baron Bonmin Khnitro CSP-L CSP-U
7 113 9 17 0.1 0.2 2 9 5 0.9 0.6
8 3 14 23 0.3 0.3 3 15 2 1 1
9 48 64 49 2 1 10 81 12 5 3
10 120 285 140 5 3 23 147 8 25 63°
11 [0.0153] [0.0040] 200 12 6 273 461 263 436 220
12 [0.0482] [0.0789] 451 37 7 877 [0.4342] 161 82 24
13 [0.0367] [oo] [o0] 22 10 [0.0124] [5.3512] 284 [0.0023] 104
14 [0.0577] [oo] [oo] 79 18 [0.0090] [9.1903] 797 [0.0108] 98
15 [0.3043] [oo] [oo] 110 90 [oo] [oo] [oo] 582 279

2Runtime is reduced to 17 s if W;(w) is restricted to binary in CSP-U; oo indicates that no bound is available.
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TABLE 3 For S = 82 states, |Q| = 1000 target paths, and varying time
periods and numbers of searchers: Solution time (sec) to relative
optimality gap of 0.0001 or, if not reached in 900 s, relative optimality gap
in brackets after 900 s.

T=10 T=15

J1 CSP-L CSP-U CSP-L CSP-U
3 5 3 110 89
4 6 2 537 21
5 9 4 33 42
6 9 3 312 149
8 15 4 124 152
10 16 14 266 209
15 26 63 594 379
20 34 39 [0.0030] 503
30 49 52 [0.0021] 42
50 51 15 [0.0012] 57°

Note: Letters a and b indicate that runtime is reduced to 17 seconds and 23
seconds, respectively, if W;(w) is restricted to binary in CSP-U.

3.1.2 | Preprocessing

The linearizations of SP involve a significant lifting of the
decision space; it grows linearly in the number of target
paths |Q|. The additional |Q|N constraints in CSP-L are also
problematic. As a result, CSP-U and CSP-L can become pro-
hibitively large for instances with many target paths, time
periods, searchers, and/or varying rate modification factors.
This motivates us to derive a preprocessing techniques to
eliminate integer variables that can be proven to take value 0
at an optimal solution of CSP-U or CSP-L and to eliminate
constraints that can be proven to be redundant.

If it can be determined a priori that no detection is possi-
ble in state s during time period ¢, then some of the decision
variables corresponding to the tuple (s, f) can be fixed and/or
removed. For this purpose we define the set D that includes
all tuples (s, r) for which detection is possible:

D=L (0ESXT ] > i) > 0
we
Let D¢ denote the complement of D. It follows that, if (s, 7) €
D¢, having Z;;; > 0 will not reduce the probability of
nondetection compared to having Z;;, = 0. Therefore, the
corresponding integer variables Z;,, (s,t) € D¢, ] € L can
be removed from the formulation. Using this preprocessing
approach, we obtain the following reduced-size formula-
tions CSP-U-Pre and CSP-L-Pre for CSP-U and CSP-L,

respectively:
N

CSP-U-Pre: m;g&g%eaézq(w);‘ Wi(w)e
subject to (2.3b)-(2.3e); (2.3g)-(2.31); (3.2) and (3.3),
N

Siw@=Y ¥ i@z, weo

= IeL (s.ED (3.5a)

> BosiXissi-dy, =Zise €L (s, ED (3.5b)

s'ER ()
1=d) g 520

Zis;€1{0,1,2, ... ,mys}, leLl,(s,t)€D. (3.5¢)

CSP-L-Pre: m}l(n)}rzn}{/[ze Z qg(@)Y(w) (3.62)

wEQ

subject to (2.3b)-(2.3e); (2.3g)-(2.31); (2.3¢)-(2.3d)
e (1 +i—ie™)
—e (=Y Y L) 2 < V()

€L (s,)ED
weQi=1{0,1,..,N—1}. (3.6b)

The preprocessing potentially reduces the size of the
decision and constraint spaces in both CSP-U-Pre and
CSP-L-Pre, and eliminates many vacuous constraints that
otherwise would have entered (3.6b). Numerical results com-
paring the efficiency of the formulations are provided next.

3.2 | Outer-approximation method

In this subsection, we develop an outer-approximation
method OA for solving large-scale instances of CSP-L-Pre
(and CSP-L). An analogous approach for CSP-U and
CSP-U-Pre is not possible. While the preprocessing tech-
nique presented above provides a more compact reformula-
tion, it remains nonetheless that the number of constraints
(3.6b) can be extremely large. However, the vast majority of
these constraints are not binding at an optimal solution.

The outer approximation outlined next builds on this obser-
vation and identifies a priori a vast set of constraints (3.6b)
that are unlikely to impact the optimal solution, and can be
viewed as lazy constraints (Kleinert et al., 2021; Lundell &
Krongvist, 2019) and are defined as such in our algorithmic
approach. They are at first removed from the formulation, giv-
ing a mixed-integer linear outer approximation (relaxation)
OA° of problem CSP-L-Pre (or CSP-L) at the root node 0
of the branch-and-bound (B&B) tree. Subsequently, at each
node of the B&B tree, we check whether the optimal solu-
tion at the current node violates any such constraints. If so,
the current optimal solution is discarded and the violated con-
straints are introduced in the updated outer approximation
of all open nodes. In short, the lazy constraints are moved
to a pool and are initially removed from the constraint set
before being (possibly) iteratively reinstated on an as-needed
basis. Caution must be exerted when selecting the lazy con-
straints and one should not be too aggressive. Indeed, the
verification of whether a lazy constraint is violated is carried
out each time a new incumbent solution is found and the
overhead consecutive to the reinsertion of lazy constraints in
the constraint set can be significant.

The challenge is to identify the constraints that can be
removed so that (i) the size of the constraint set is reduced
as much as possible and (ii) that few, if any, of the removed
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constraints will need to be reincorporated. For (3.6b), we
identify the levels of search effort that can be expected and
this leads to an initial set of lazy constraints £°:

£% ={(3.6b) : i € {0, ... ,b}
U{b, + 1,00 +2, ... ,N} ,w € Q}. 3.7

The set £° includes the constraints (3.6b) associated with
an unlikely low and high number of looks as defined by the
positive constants b; < by < N.

We adopt the following notation. Let (@ denote the set of
open nodes in the tree. Let F be the entire constraint set of
problem CSP-L-Pre, £* be the set of lazy constraints at node
k, Vé be the set of violated lazy constraints at k, and Ak =
F\ L¥ be the set of active constraints at &, that is, constraints
included in the outer approximation considered at node k.

This leads to the outer-approximation method OA: At the
root node (k = 0), we have £° as defined in (3.7), A° :=
F\ £9 and V2 := @. At any node k, we solve the outer
approximation

OAFX : minimize (3.6a) subjectto (X,Y,Z,M) e A-.

Two cases exist for the optimal solution Z** of the continuous
relaxation of OA*:

1. If Z¥ is fractional, we introduce branching linear
inequalities to cut off the fractional nodal optimal
solution and continue the B&B process.

2. If Z¥ is integral and improves upon the incumbent
solution, we check for possible violation of any lazy
constraints. If any constraint in £* is violated by Z*",
we insert each constraint violated in V’L‘ C £k and
discard Z¥. We update the lazy and active constraint
sets of each open node o by letting L° « E"\V’L< and
A% «~ A°U Vf. On the other hand, if no lazy con-
straint in £* is violated, Z** becomes the incumbent
solution and the node is pruned.

In summary, the OA method solves a reduced-size relax-
ation of CSP-L-Pre at each node of the tree. Each time OA*
provides an integral solution with better objective value than
the incumbent solution, a verification is made if any lazy
constraint is violated. If it is the case, the incumbent inte-
ger solution is discarded and the violated lazy constraints are
(re)introduced in the constraint set of all unprocessed nodes
of the tree, thereby cutting off the current solution. The above
process terminates when all nodes are pruned. We note that
the callback verification is not performed at each node of the
tree, but only when a better integer-valued feasible solution is
found at a node.

3.2.1 | Computational tests

We next examine the efficiency of the OA method and
the effect of preprocessing as specified by CSP-U-Pre
and CSP-L-Pre. Table 4 shows computing times for large
instances generated as described in Section 3.1. (The table

TABLE 4 For S = 82 states, 7 = 15 time periods, |Q| = 1000 target
paths, and varying numbers of searchers: Solution time (sec) to relative
optimality gap of 0.0001 or, if not reached in 900 s, relative optimality
gap in brackets after 900 s.

Ji CSP-L  CSP-L-Pre CSP-U CSP-U-Pre OA Method
3110 60 89 89 54
4 537 20 21 30 11
5 33 20 42 27 9

6 312 95 149 83 39
8 124 28 152 30 11
10 266 83 209 108 28
15 5% 313 379 [0.0002] 112
20 [0.0030] 553 503 421 156
30 [0.0021]  [0.0002] 42 206 271
50 [0.0012]  [0.0001] 57 695 831

2Runtime is reduced to 23 s if W;(w) is restricted to binary in CSP-U.

has occasional overlap with earlier tables and any discrepancy
in the reported times are due to differences among randomly
generated instances.) The preprocessing technique is typi-
cally beneficial, especially CSP-L-Pre is an improvement
over CSP-L. CSP-U-Pre is less consistent and might even
add computing time compared to CSP-U for instances when
there are many searchers. In part, this is caused by the remark-
able efficiency of CSP-U on such instances. Generally, the
best solution method appears to be the OA method, which
solves to optimality all instances in the allotted time and is the
fastest on all but two instances. On the instances in Table 4,
CSP-L is essentially identical to the approach proposed in
Royset and Sato (2010) but here falls behind with an order
of magnitude longer computing times compared to the new
approaches develop in the present paper.

Next, we consider more complex instances with a camou-
flaging target and searchers from two classes varying in their
endurance level, which then activates constraints (2.3d) and
(2.3e). (We still omit deconflication constraints (2.3g), which
can be operationally important but produce simpler instances
as many suboptimal search plans are immediately ruled out.)
The states are generated from a square grid of cells with an
additional initial state as earlier, but now there is also a ter-
minal state s_. The reverse star of s_ consists all the states
corresponding to the bottom row of cells in the grid. The
searchers otherwise move as earlier. The endurance of the
searchers in class 1 and 2 is |0.87| and |0.6T |, respectively.
For a total number of searchers J, the number of searchers
in class 2 is J, = |0.7J], while the number of searchers in
class 1 is J1 = J — J,. From a current state s, the target
can opt to move to an adjacent state as before or to stay idle
and transition into camouflage model. Once the target enters
camouflage mode, it must stay in the same state in the next
period, either camouflaged or not. The target transition prob-
abilities between states are as follows. If occupying a state
s in noncamouflage mode, the target moves into camouflage
mode (in the same state) with probability 0.1. Otherwise, the
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TABLES For S = 83 states, T = 15 time periods, || = 1000 target paths,
camouflaging target, and varying numbers of searchers J split between
two classes: Solution time (sec) to relative optimality gap of 0.0001 or, if
not reached in 900 s, relative optimality gap in brackets after 900 s.

J CSP-L  CSP-L-Pre CSP-U CSP-U-Pre  OA Method
3 62 125 45 46 10
4 239 169 129 167 19
5 105 224 72 63 19
6 156 232 59 111 46
8 258 397 308 318 105
10 56 39 76 76 36
15 209 203 275 183 43
20 177 142 230 369 103
30 590 398 [0.0002]  [0.0002] 125
50 155 173 234 144 64

target stays in s in noncamouflage mode with probability 0.5
or moves to an adjacent state with equal probability. When
camouflaged, regardless of state, the target remains in cam-
ouflage mode with probability 1/6 and comes out of it with
probability 5/6. Following these probabilities, we generate ex
ante |Q| target paths.

Table 5 summarizes the computing times for these
instances across the various approaches. CSP-U retains
an edge over CSP-L for instances involving less that 10
searchers. Interesting, the preprocessing technique delivers
inconsistently on these instances, possibly due to the added
complexity caused by the endurance constraints. The best
solution method appears to be the OA method, which solves
to optimality all instances in the allotted time and is always
the fastest. The solution time with the OA method is not
adversely affected by an increase in the number of searchers.
The instance with 50 searchers can, for example, be solved
about 40% quicker than the one comprising eight searchers.

3.3 | Operational insights

SP enables an analyst or autonomous system to consider many
different factors during the planning of a search mission. Next,
we discuss the operational impact of limited endurance and
varying travel times. We also quantify the difference between
having many poor searchers compared to a few good ones.

3.3.1 | Endurance and travel time

In an instance with five searchers, two in class 1 with
endurance 12 and three in class 2 with endurance 9, we con-
sider a 9-by-9 grid producing S = 83 states including the
initial and terminal states as earlier. The planning horizon
is T = 15. We construct |Q| = 1000 target paths without
using the camouflage options as described in Section 3.1. The
detection rate is the same for both classes, so f gy, = 1
and « = —31In(0.4)/J, where / = 2+ 3 = 5. Table 6
shows an optimal search plan with objective function value
0.4244 using row-column notation to specify the state of each
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searcher during a time period. For example, the first searcher
in class 1 stays in the initial state s, for three periods before
moving to row 4, column 1 in the 9-by-9 grid as indicated
by the pair (4, 1) in Table 6. In fact, s; has only this state in
its forward star as hinted to in the table where every searcher
moves to (4, 1) after departing s,. We recall that the target
starts in the middle of the grid: row 5, column 5. The search
plan is thus meaningful with the searchers starting on the left
rim and moving right as time progresses. In the absence of
endurance constraints, all the searchers would obviously pre-
fer to initialize their mission immediately. However, Table 6
shows the interesting effect that under endurance limitations
it is better for most of the searchers to wait a number of time
periods and let the target “come to them.” The first time a
searcher can encounter the target is in state (4,3) in time
period 3. But in periods 4 and 5, the target might have reached
as far west as columns 2 and 1, respectively. Thus, a searcher
starting its mission in period 5 or later may detect the tar-
get on its first look. The endurance constraints (2.3d) and
(2.3e) introduce a delicate trade-off between searching early
while the target is “concentrated” in the center of the grid
cells but facing more “wasted” travel time versus searching
late with the target being closer but more dispersed. For the
present instance, the reverse star of s_ consists all the states
corresponding to the bottom row of cells in the grid, which
we see the second searcher from class 1 moves toward as
the time progresses. The other searchers remain on mission
as we reach the planning horizon thus avoid having to enter
s_. This end-of-planning-horizon effect can be adjusted as
needed with slight modification of constraints in SP.

To illustrate the effect of other forward/reverse stars and
travel times, which up to now has consisted of one-cell steps
with d;; ¢ = 1, we slightly modify the instance by splitting
class 1 into two classes: 1A and 1B, each with one searcher.
The searcher in class 1A has augmented forward and reverse
stars. In addition to the five states (stay, one cell up, one cell
down, one cell left, one cell right) presently considered, we
add the four states two cells up, two cells down, two cells
left, and two cells right, again omitting nonexisting states out-
side the 9-by-9 grid of cells. Regardless, the travel time is
d;s» = 1. This means that the searcher is (potentially) faster
than the searcher of class 1B, which retains the earlier for-
ward/reverse star. We split class 2 into three classes: 2A, 2B,
and 2C, each with one searcher. The searcher in class 2A has
augmented forward and reverse stars as class 1 A. The searcher
in class 1B has the augmented forward and reverse stars as
1A, but the travel time is d; ;¢ = 2 if the searcher moves two
cells, and otherwise d; s ¢ = 1. The searcher in class 2C is reg-
ular as for class 1B. Table 7 shows an optimal search plan with
objective function value 0.4067. The improvement in proba-
bility of detection as compared to the search plan in Table 6
stems from the faster searchers of class 1A and 2A; they move
quickly toward the center of the grid cells. The searcher of
class 2B has additional flexibility compared to Table 6, but
does not leverage it because moving two cells in two periods
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TABLE 6 Optimal search plan for S = 83 states, 7 = 15 time periods, || = 1000 target paths, and five endurance-constrained searchers.

Time period ¢

Class [ 1 2 3 4 5 6 7

1 Sy Sy Sy 4,1 4,2 43 44
1 4,1 42 43 4,4 54 5,5 5,5
2 Sy Sy i Sy Sy Sy 4,1
2 Sy Sy Sy Sy Sy S 4,1
2 Sy Sy Sy Sy Sy Sy 4,1

8 9 10 11 12 13 14 15
45 5.5 56 55 56 6,6 6,7 6,6
6,5 75 8,5 9,5 9.4 s s s

42 43 44 45 46 56 5.7 5.8
42 43 44 45 55 55 55 56
42 43 53 54 54 44 45 46

TABLE 7 Optimal search plan for § = 83 states, T = 15 time periods, |©2| = 1000 target paths, and five endurance-constrained searchers with varying

forward/reverse stars and travel times.

Time period ¢

Class I 1 2 3 4 5 6 7

1A Sy S4 Sy 4,1 4,3 4,5 55
1B 4,1 4,2 43 4,4 54 5,5 5,5
2A sS4 S4 S4 sS4 sS4 S4 4,1
2B e Sy Sy She IS Sy 4,1
2C Sy S4 Sy Sy Sy Sp 4,1

8 9 10 11 12 13 14 15
54 5,6 5,5 6,5 6,4 6,6 6,5 6,6
6,5 7,5 8.5 9,5 9.4 S_ S_ S_
43 4,5 5,5 5,6 54 5,5 57 5.8
4,2 43 4.4 54 5,5 5,5 5,6 5,6
4,2 43 53 54 5,5 45 45 4,6

TABLE 8 For S = 83 states, T = 15 time periods, |€2| = 1000 target paths, and varying numbers of searchers and camouflaging capability: Min-value
and solution time (sec.) to relative optimality gap of 0.0001 or, if not reached in 900 s, relative optimality gap in brackets after 900 s.

Camouflage
J min-value CSP-L-Pre OA method
5 0.4561 77 42
10 0.4639 78 31
20 0.4613 509 315
50 0.4600 482 244

without a look in the first cell cannot be better than moving
one cell in one time period and then moving another cell in
another time period while looking in both.

3.3.2 | Camouflage and sensor quality

We return to the setting at the end of Section 3.2 and Table 5:
there are two classes of searchers subject to endurance con-
straints and a target with camouflaging capability. As before,
we use fiy¢, =1 and a = —=31n(0.4)/J, where J = J| + J,.
We examine the choice between acquiring many inexpensive
but poor searchers or adopting few effective searchers at a
higher cost. Our model of & as a function of the number of
searchers J has the consequence that aJ is a constant. Thus,
the power that can be mustered in the objective (2.3a) is the
same regardless of J. This means that having 10 searchers
is in this sense equivalent to have 20 searchers because the
former has an « twice as large as that of the latter. If each
of the 10 more capable searchers are twice as expensive as
each of the 20 less capable ones, then one might be indif-
ferent between choosing 10 good versus choosing 20 poor
searchers. The middle two rows, second column, in Table 8
show that the objective value for the optimal search plans in
these cases are indeed close: 0.4639 versus 0.4613. However,

No camouflage

min-value CSP-L-Pre OA method
0.3500 [0.0016] 321

0.3419 229 76

0.3404 [0.0003] 513
0.3399 [0.0001] 134

the slight detection improvement in the case of 20 searchers
is not a coincidence. The case with 20 poor searchers pro-
duces a relaxation of SP compared to the case with 10
good searchers because, in the absence of the deconflication
constraint (2.3g), the 20 poor searchers can always pair up
to make a “double-searcher” of the same quality as any of
the 10 good searchers. Going from 10 to 20 searchers, the
change is minor but becomes more prevalent when we con-
sider 50 searchers; see last row of Table 8. The effect appears
to be reversed when we compare 5 and 10 searchers. However,
the 10-searcher case is not a relaxation of the five-searcher
case because the latter has two searchers with 12-time-period
endurance searchers and three searchers with 9-time-period
endurance, while the former has three and seven searchers
for the two classes. Thus, the 10-searcher case has a slight
endurance disadvantage and this causes the objective function
value to increase. We also report the computing times for two
methods in columns 3 and 4 of Table 8.

We repeat the above calculations for a target that moves
without camouflaging as described in Section 3.1; see the
last three columns of Table 8. The probability of detecting
the target improves with 0.10-0.13 because now the target
can be detected everywhere along its path. We observe that
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FIGURE 1  With camouflage. For class 1 (blue): 4 and 11 searcher in state
(row, column) (6,6) and s_, respectively. For class 2 (green): 4, 3, 2, 5, 4, 6,
3, 6, and 2 searchers in state (4,5), (4,6), (5,5), (5,6), (5,8), (6,6), (6,7),
(7,5), and s_. Period 15: Optimal searcher location at period ¢ = 15 with

J = 50 searchers.

the computing times for both the OA method and CSP-L-Pre
tends to be less when the target can use camouflage. This
is caused by a tighter concentration of likely target locations
in the case of camouflage; it becomes less mobile with our
parameter settings and the searchers’ have fewer meaning-
ful choices. Figures 1 and 2 illustrate the location of the 50
searchers from the last row of Table 8 at time period 15. Here,
the radius of a circle is proportional to the number of searchers
occupying the corresponding state. The diamond indicates
initial location for the moving target. Blue and green circles
represent class 1 and class 2, respectively. Figure 2 shows a
wider spread of the searchers in the absence of camouflaging
as compared to searchers concentrating on a less mobile, cam-
ouflaging target in Figure 1. At time period 15, the searchers
tend to be on the eastern side as they have “cleared” the
western side after entering at row 4, column 1.

4 | MARKOVIAN TARGET PATHS

We next present results for SP under the assumption that
the target moves according to a Markov chain, which thus
defines the target paths Q and the associated probabilities
g(w) by Markov transition matrices. Section 4.1 presents a lin-
ear reformulation and Section 4.2 develops three cutting plane
methods. Numerical results appear in Section 4.3.

4.1 | Linearization

While the linearizations CSP-U and CSP-L remain valid for
Markovian target paths, they tend to become prohibitively

FIGURE 2 Without camouflage. For class 1 (blue): 4, 1, and 10 searchers
in state (row, column) (6,6), (7,6), and s_, respectively. For class 2 (green):
1,3,2,2,3,7,1,1,2,1,7, and 5 searchers in state (3,7), (4,5), (4,6), (4,7),
(5,5), (5,6), (5,7), (6,4), (6,5), (6,7), (7,6), and s_.

large unless the underlying state transition matrices are sparse
or one adopts a sample average approximation with few sam-
pled target paths. As noted by Royset and Sato (2010) and
refined in Berger et al. (2021), the Markov structure affords an
alternative linearization approach. These earlier studies focus
on homogeneous searchers whereas we extend the lineariza-
tion approach to multiple classes of searchers, a camouflaging
target, and explicitly include operational constraints about
endurance and deconfliction.

Atany time ¢t € T, the target moves according to a transition
matrix I, whose element y, . ~, represents the probability
that a target occupying (s, ¢) in period ¢ will be in (s', ¢’) dur-
ing time period ¢ + 1. Contrary to CSP-U and CSP-L, the a
priori enumeration of all possible target paths is not neces-
sary in the following linearization. We adopt the additional
notation in Table 9.

We derive the linearization by introducing an “information
state” P; ., which represents the probability that the target
occupies (s, c) in period ¢ and that it has not been detected
prior to 7. We recall from SP that }’,_. Z;, is the total search
effort in state s at period ¢. It is a nonnegative integer and can
be represented equivalently by the binary variables Vi, ;, each
of which equals to 1 if there is j search effort in state s in
period ¢, and equals to O otherwise. This allows us to calculate
the probability of detection over the entire time horizon as

Px,c,t 1- EXp| — &, ZJ Vs,l,j ) (41)
teT (s,0)eSx{0,1} jegk

where a, = a if ¢ = 0 and a, = 0 otherwise and J* =
{1, ... ,my,}, with mg, = 3, my,. The information state
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TABLE 9 Additional notation for model MSP.

Indices

j Total search effortj € {0,1,2, ... }

Sets

T = {1 .my)

Parameters

a, a. = aif c = 0and @, = 0 otherwise

Taasds Probability that a target in state (s, ¢) in period ¢ will be in state (s’, ') in period 7 + 1

P Probability that the target is in state (s, ¢) in period 1

G5t Probability that the target is in state (s, ¢) in period ¢, that is, g, ., = ZM, Gy o 1=1Ys o sen=1> = 2,3, oo, T3 Gse1 = Py
my, Maximum search effort possible in state s at : m, = .., my,

Decision variables

Visj Binary variable = 1 if state s receives j search effort in period #, and = 0 otherwise
P.; Probability that target is in (s, ¢) in ¢ and was not detected prior to ¢

Oscrj Auxiliary variable = P, . (1 — e V%) if V,, j = 1 and = 0 otherwise

Wies Auxiliary variable = P, . ,e™* if V,,; = 1 and = P, ., otherwise

P, ., depends on the search plan as follows. The probability
that the target occupies (s, ¢) initially is Py, = ps., which is
an input parameter; see Table 9. Moreover, it follows from the
definition of P, and the Markov assumption that

Py = z s s.caPst et €XP | — Z ag j Vs’,t,/' ,
(s",¢)esSx{0,1} je.]fft
N 4.2)
fors,candt=1,2, ... ,T —1.

We shall linearize the nonlinear expressions (4.1) and
(4.2). First, we linearize the probability of non-detection
(i.e., the complement of (4.1)) via the introduction of the
auxiliary variable Qy,; which takes value P, ;(1 — %) if
Vssj = 1 and takes value O otherwise. This linearization is
accomplished using constraints (4.3b) and (4.3c) below. The
inequality (4.3b) is a “big-M” constraint where any constant
at least as large as P, is needed to multiply (1 — e7%). Since
Py ., is the probability that the target is in (s, ¢) in period ¢ and
that the target is not detected prior to ¢ and g, is the proba-
bility that the target is in (s, ¢) in period ¢ as defined in Table 9,
we must have g,., > Ps., forall (s,c) € Sx {0,1},r € T.
Consequently, each “big-M” parameter in (4.3b) is set to
gs.c+- Using the same rationale, we let g, ., furnish the bound
on Py, in (4.3h) below. Second, the evolution of the infor-
mation state is also nonlinear as it can be seen from (4.2). We
linearize that expression by means of the auxiliary variable
W, and constraints (4.3d)—(4.3f) below. Note that W, is
equal to Ps,g,te‘f“v if Vi;; = 1 and is equal to P, otherwise.
Compiling these derivations, we obtain the following equiv-
alent MILP reformulation of SP under the Markovian target
path model.

MSP:

minimize 1 —
X,P,Q,V.W

Z Z Qs‘,c,t,/" (433)

(5,0)€SX{0,1} teT jejxﬁ

SUbjeCt to Qs,c,tJ < QS,C,Z(I - e_jar)Vs,t,j

(s,0) € Sx{0,1},teT,je IR,

Qs,c,tJ < (1 - e_jaf)Ps,C,t
(s,0) € Sx{0,1},teT,je Ik,

ys’,c’,s,c,th’ it
(s',c")esSx{0,1}

(s,0) e Sx{0,1},r e T\ {T},

Ps,c,t+l =

Wv,c,l S Px,c,t
(s,0) e Sx{0,1},teT,

Wv,c,t < e_jaCPs,c,t + q‘r,c,l(l - e_ja()(l - Vs,t,j)
(s,c) € Sx{0,1},teT,je Ik,

Ps,c,l = Ds,c
(s,0) € Sx{0,1},

Ps,c,t S q.t,c,t
(s,0)eSx{0,1}, teT,

Z Z ﬂl,s’,x,tXl,s’,x,t—dy/J = Z.] Vx,t,/'

leL s'erys) JE‘YJRI
1=d) o 20
sESteT.
Z Vx,t,j =1
€T
s € S,t S Ts

(4.3b)

(4.3¢)

(4.3d)

(4.3e)

(4.3)

(4.3g)

(4.3h)

(4.3i)

(4.3))
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(2.3b)-(2.3¢); (2.32)-(2.31)
PSC,I, WSL.J Z 0

(s,¢c) € Sx{0,1},teT, (4.3k)
Q‘vr,t,j > 0
(s,0)€Sx{0,1},teT,je Ik, 4.31)
Viij € {0, 1}
seES,teT,jeJk. (4.3m)

The objective function (4.3a) gives the probability of nonde-
tection; its correctness follows from (4.1). The binary variable
Vs, 1s linked to Xj ¢, in (4.31). The remaining constraints
follow from the discussion above.

4.1.1 | Computational tests

We consider two instances of MSP of the kind described in
Section 3.1, but now with the Markovian target path model
obtained from the transition probabilities described there.
This produces the last row of Table 10 for the two instances
that only differ in the number of searchers (J;) and the plan-
ning horizon (7). Neither instance of MSP can be solved
directly using Gurobi within 900 s. While an optimal solution
is eventually achieved in the instance with J; = 3, T = 12,
the gap is sizable in the other instance after 900 s; the lower
bound is 0.4043 and the upper bound 0.4659 at that time. We
conclude that MSP is computationally challenging and this
motivates the derivation of cutting plane algorithms in the
next subsection.

Table 10 also illustrates how the Markovian target path
model can be viewed as the limit of the conditional tar-
get path models when the latter are obtained by sam-
pling according to the Markov transition matrices. With
a planning horizon of T = 12 and the present Marko-
vian target path model with typically five possible moves
per time period, we obtain that the model produces about
Q] = 52 ~ 2 .10 target paths. Thus, the sample
sizes ranging from 100 to 5000 in Table 10 are relatively
small. Nevertheless, the sample average approximations have

minimum objective function values close to those for the
Markovian target path model when the sample size is at least
1000. (This motivates in part our focus on conditional tar-
get path models with 1000 paths in Section 3.) There is
a significant computational advantage of considering sam-
ple averages; Section 3 provides extensive evidence that
conditional target path models are tractable. Table 10 pro-
vides a direct comparison using CSP-L-Pre as the approach
for solving the sample average approximations. Further
speed-up might be possible with CSP-U-Pre or the OA
method.

4.2 | Cutting plane algorithms

In this subsection, we extend the cutting plane methods of
Royset and Sato (2010) to the present setting with a camou-
flaging target and heterogenous searchers. A direct extension
yields SCA in Section 4.2.1. Further refinements leveraging
bundles and outer approximations follow in Sections 4.2.2
and 4.2.3.

42.1 | Secant cutting plane algorithm

Adaptively constructed piecewise-linear approximations of
the objective function in SP lead to a cutting plane method
SCA (secant cutting plane algorithm), which in each iteration
i solves the MILP:

i . e
Py, © minimize &

subject to & > f(Z5) + 2 Z Z(f(Zk +A)

leL seS teT

—f(ZN)Zys, — va,r)’ k=1, ..,i (4.4a)
(2.3b)-(2.3)),

where f(Z) denotes the objective function of SP and Z is the
allocation of search effort from a previous iteration. The nota-
tion Ay, € {0, 1}5%5%7 refers to a Boolean parameter vector
in which all elements are O except the (/,s,?)-component
equals to 1 and is used to measure the impact of varying one
single variable Z; ;, on the value of the objective function. A
new secant cut (4.4a) is added at each iteration i and problem

TABLE 10  For S = 82 states and varying numbers of sampled target paths: Min-value and solution time (sec.) to relative optimality gap of 0.0001 or, if not

reached in 900 s, relative optimality gap in brackets after 900 s.

J1=3T=12 J1=5T=10
Sample size Min-value Solution time Min-value Solution time
100 0.2931 0.6 0.3039 0.4
500 0.4048 0.5 0.4032 2
1000 0.5007 2 0.4180 22
2000 0.5031 6 0.4336 68
5000 0.4973 246 0.4266 16
Markovian 0.5036 *#[0.0332] 0.4043-0.4659 [0.0916]

Note: The case marked with asterisk solves to optimality in 1604 s.
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PiSC A Minimizes the resulting piecewise-linear approximation
of f(2).

Guided by Royset and Sato (2010), the calculation of a
secant cut proceeds in two steps: (i) compute the probability
rs.+(Z) that the target is in (s, ¢) at time ¢ and is not detected
before ¢, and (ii) compute the probability 7, .,(Z) that the tar-
get is not detected in the periods after ¢ given that the target is
in (s, ¢) at time 7. We define 7, 1(Z) = ps. and 75 7(Z) = 1 so
that all other r, . ,(Z) and 7, . ,(Z) can be calculated recursively
as follows:

- 2 ac/Zl,.r/,r—l
rs,c,l(Z) = Z Vst ,cr,0—1 (Z) Vst.cts,ci—1 € '€F (45&)
stcl
_ _ - 2 ac/ZI,.\-/‘r+l
Foed @) = Y Foerint@) Vsewrerse & (4.5b)

stc!

This allows us in turn to calculate, for any ¢ € T, the objective
function

acZ/,.v./ -

-2
f@) = Y redZ) e & Foi(2), (4.6)
which is the product of the probability of not being detected
before ¢, the nondetection probability at ¢, and the probabil-
ity of not being detected after 7. A secant cut can then be

computed via
fZ+A)-f2) =
- 2 a(Z, .s,z+1) - Z aZ, 8.t -
m@GHl wﬂ’»ma

This derivation deviates from that of Royset and Sato (2010)
by accounting for a camouflaging target and heterogeneous
searchers.

We can now present the formal structure of SCA. Let 6, §; >
0,i = 0,1,2, ... ,N denote optimality tolerances while &
and & are lower and the upper bounds on the optimal value
of SP.

Initialization:
Step0:Set: £ =0;¢=1;i=1, Z' = 0 (zero vector).

Iterative process — Iteration i: B
Step 1: Calculate f(Z%). If f(Z') < &, then set & = f(Z').

Step 2: If E — & < 6¢, then stop: tolerance satisfied.

Step 3: Solve problem PiSC 4 to tolerance &;, achieve solution
Z*! and lower bound &',

Step 4: If £ > £, then set & = £,

Step 5: If E — & < 6&, then stop: tolerance satisfied. Else,
replace i with i 4+ 1 and go to Step 1.

In the numerical tests of Section 4.3, we set 6 = 0 and
6; = min{0.03,g,/3} for i > 2, where g; = (E - &/¢E is
computed after Step 1 of iteration i. However, we use 6; =
min{0.03, g;/3,6;—1/2} if Z; is a repetition of a previously
obtained solution.

4.2.2 | Bundle-based cutting plane algorithm

We refine SCA by incorporating bundles as well as prepro-
cessing techniques. As a preliminary step, we partition the set
T into two mutually exclusive subsets

Tod = {t eT : Z qs0; Bsi = 0}» 4.7)

SES

that includes all periods (and only those) at which no detection
can occur, and its complement 7; = T \ 7,4 which includes
the periods at which detection is possible. The notation f,
in (4.7) specifies a Boolean parameter with value O if no
searchers can reach state s by time ¢ and value 1 otherwise.
For each 1 € T, we build the set

vrlzdz {S €S qs0s Pos =0} , tE Ty,

that contains all states s for which no detection can occur at
t. We use the notation V; to refer to the complement of Vy’l 4
V[‘I =S\ Vr’l 0

The above sets are used via a bundling approach to reduce
the size of the decision and constraint spaces. First, we elim-
inate the integer decision variables Z; ;, at any period ¢t € T4
when no detection can occur across all states. Since no detec-
tion can occur at these periods, we do not need to keep track
of how many searchers are in s at ¢. Second, at the remain-
ing periods t € T, we further remove the integer decision
variable Z;, for any (s,7) € Vr’l st € T4 corresponding to
any state s at which detection is impossible. More precisely,
for any t € T;, we combine all tuples (s,1),s € Vrfld,l e L
in a so-called bundle B' and do not include any variable Z;
for any tuple (s,7) included in one of the bundles B',t €
T4. This produces the algorithm B-SCA (bundle-based cut-
ting plane algorithm), which in each iteration i solves
the MILP:

PL_SCA : minimize &
subject to & > f(ZH + Y (F(ZF + AL

€Ty leL,
sev!
d

— k - k = [
f(Z ))(Zl,s,t Zl,s,t)’ k=1, ... (4.8a)

2 ﬂl,s’,s,tXl,s’,s,t—dI_S/yx = Zl,s,t,

s'eR ()
rfd,' s >0

teTyseV,IeL

(4.8b)

(2.3b)-(2.3e); (2.32)-(2.31)
Zist €{0,1,2, ... ,mygl, teTynseV,.leL.

(4.8¢c)

Due to the smaller number of variables Z,,s € Vi,t €
T, used by B-SCA, we can simplify (4.5a) and (4.5b) as
follows:

ASUAOIT SUOWILIO)) dA1EaI) d[qeorjdde oy Aq PaUIdAOT Al SA[OILIE () SN JO SI[MI J0J AIRIQIT dUI[UQ AJ[IA) UO (SUOHIPUOD-PUB-SULI}/W0D K[1mM " Areiqi[our{uo//:sdpy) suonipuoy) pue suua [, oy 89S “[$70z/40/10] uo Areiqry auruQ £3[1p\ ‘1) PAN Alup) uojdurysepy 951000 £q (0977 ARU/Z00] 0 [/10p/wod Ko[1m* Kreqrjaut[uo//:sdpy woly papeojumod ‘v ‘70T ‘0SL90TS |



LEJEUNE ET AL.

WILEY— %

Fsei(Z)
(
0 if qs01 = 0
Z rs/,c/,l—l(Z) Vs.c,st,crt—1 if ﬂs,t =0
= stc!
and qs5,0,t 7é 0
- Z a('/ZI,.v/,t—l .
2 Isreri-1(Z) Vsesreri—1€ 1<t otherwise
stc!
Fsed(Z)
0 if guos = 0
Z;s/,c/,t+l(z) Vseustot if ﬂs,t =0
= 4 sl
and qs,0,t 75 O
_ -X U2y 59 141 .
z r sl,cl,t+1(Z) Vs.estert € 1€F otherwise.
sl

4.2.3 | Bundle-based cutting plane algorithm with outer
approximation

We next adjust B-SCA by replacing the feasible sets of
each subproblem by an outer approximation. While the outer
approximation remains mixed-integer, it can be described by
fewer integer variables and constraints. The expectation is that
the size reduction of the decision and constraint spaces will
allow for a quicker solution of the subproblems. The trade-off
is that the feasible sets of the subproblems are relaxations
and will therefore provide looser lower bounds on the optimal
value of the actual problem.

The resulting algorithm OA-B-SCA (bundle-based cutting
plane algorithm with outer approximation) rests on the fol-
lowing rationale. We observe that the probability ¢, of a tar-
get being in (s, 0) at 7 can significantly vary across pairs (s, 7).
Even if positive, some ¢, can be extremely low making it
ineffective to place a searcher in s at ¢. Building on this, each
subproblem in the proposed outer-approximation algorithm
OA-B-SCA leverages integer decision variables Z; ;; only for
tuples (s, #) with the largest g0, across all states s at 7, that
is, the states where a target is most likely to be at 7. As for
B-SCA, we first drop the integer variables Z; 5, for any tuple
(1, s, 1) with t € T,4. We then remove the integer variables Z; ;,
corresponding to the tuples (/, s, ) for any (s, 7) pairs at which
detection is impossible and those at which probability of the
target being in state s at time 7 is not one of the highest.

We denote by W,, the set of tuples (s, ) associated with
the v most likely states for the target to be in and not be cam-
ouflaging at time 7. Let Wy, be its complement. For each
(s,1) € W;U,l € L, we relax the integrality condition on
the variables Z;;,. This produces the algorithm OA-B-SCA,
which in each iteration i solves the subproblem:

PiOA-B-SC A . Minimize &
subject to (2.3b)-(2.3e);
(2.32)-(2.31); (4.82)-(4.8b)

Zis: €10,1,2, ... ,my,},
t€ Ty (s,0) EW,,leL
Ziss € [0,my5,],
t€ T, (s,0) €W, lEL.

The feasible set of each subproblem PiO A.B.sCA 18 & relaxation
of the actual feasible set of SP. As with SCA and B-SCA, the
feasible set of OA-B-SCA is defined by mixed-integer linear
constraints, but it contains (many) fewer integer variables than
the feasible sets of SCA and B-SCA.

The structure of OA-B-SCA is similar to that of B-SCA.
However, the stopping criterion differs. Due to the relaxation
of the integrality restrictions of a subset of the variables Z ;,,
the solution obtained by solving the subproblems Pi0 A-B-SCA
is not necessarily feasible for MSP and a postoptimization
step must be carried out to restore feasibility and allow for the
computation of a valid upper bound.

If the solution of Pio A-B-sCa 18 fractional, we do not have a
valid upper bound. To obtain one, we must first restore inte-
grality, which can be done in a heuristic manner, by using
a basic rounding procedure, or by solving a reduced-size
integrality restoration problem. The integrality restoration
problem is a much simplified variant of Pi0 A-B-sca and con-
tains many less integer variables so that it can be solved to
optimality extremely quickly (typically in less than 1 s). Actu-
ally, we do not need to solve it to optimality since any feasible
solution provides a valid upper bound for the true problem.

Let Z be the solution produced by Pi) A-B-SCA at iterati(lr} i
We fix all variables Z;;, which have an integer value in Z;,
and they become fixed parameters. Denoting by Z, the set of
nonnegative integers, we define

Al = {(l,s,t) ELXV XT;: Z,M € Z+},
AF = {(l,s,t) ELXV XT, : Z,M ¢ Z+}.
The sets Af and Af include the tuples (/, s, f) whose corre-

sponding variables Z;,, respectively, take integer and frac-

— .
tional values Z;;, in the obtained solution of PIOA-B-SCA'
The sets Al{ and Af are updated at each iteration i. The
reduced-size MILP integrality restoration subproblem IR' at
i then reads:

IR' : minimize &
subject to (2.3b)-(2.3¢); (2.32)-(2.31); (4.82)-(4.8b)

—i
Zl,s,t = Zl,s,z‘
Zl,s,t € {0’ 1’ 2, cee s ml,s,t}

(,s,1) € Al
(,s,1) € A
The algorithm OA-B-SCA is structured as follows:

Initialization:
Step 0: Set: £ = 0; £ = 1;i = 1; Z' = 0 (zero vector).

Iterative process — Iteration i: B
Step 1: Calculate f(Z9). If f(Z') < &, then set & = f(Z).

Step 2: If E — & < 6¢, then stop: tolerance satisfied.
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Step 3: Solve problem PiOA_B_SCA to tolerance 6;, achieve

solution ?, and lower bound &,
Step 4: If £ > £ then set £ = &L,
Step 5: If E — & < 6¢, then stop: tolerance satisfied.

Step 6: If 7 is integer, set Zi*! = Z. Else, solve IR! to restore
integrality and obtain Z*'.

Step 7: Replace i with i + 1 and go to Step 1.

4.3 | Numerical tests

We compare the three cutting plane methods SCA, B-SCA,
and OA-B-SCA with a direct solution of MSP across two
groups of instances.

4.3.1 | Homogenous searchers

We first consider problem instances of the kind described in
Section 3.1, except that we consider here a Markovian target
path model. These instances do not allow for the camouflage
option and there is no endurance limit. Table 11 reports the
computational time for three searchers, 82 states, and vary-
ing planning horizon 7. For instances with few time periods
(T < 11), the direct solution of MSP is faster than the
cutting plane methods SCA, B-SCA, and OA-B-SCA. As T
increases beyond 11, the optimality gap with the three cut-
ting plane methods is smaller. In particular, for all instances
with 12 or more periods, the outer-approximation algorithm
OA-B-SCA performs best and reduces the optimality gap the
most. For T = 13 (resp., 14 and 15), OA-B-SCA produces a
gap of 0.0161 (resp., 0.0239 and 0.0183) less than SCA. These
results highlight the efficiency of OA-B-SCA in solving the
most challenging instances of this type.

Table 12 considers instances with J; = 15 searchers. As
observed in Table 11, solving MSP directly is the most com-
putationally efficient approach for small instances (7 = 7 and
possible 8) but the three cutting plane algorithms dominate

MSP when the planning horizon increases and the instances
become more challenging. Among the three, B- SCA is the
most efficient on most instances, but is closely followed by
OA-B-SCA. On average, for the challenging instances (T >
9), the optimality gap with B- SCA is on average 0.0022 lower
than for SCA, which highlights the computational benefits of
the bundle-based cutting plane B-SCA.

Table 13 examines the effect of the number of searchers on
the solution time. For J; < 4, the direct solution of MSP dom-
inates the cutting plane approaches. However, SCA, B-SCA,
and OA-B-SCA have a clear advantage when the number of
searchers exceeds 4. The algorithm B-SCA is the best of the
three on all instances, but the differences are modest.

Table 14 examines the effect of the size of the square grid
of cells and thus the number of states. For small grid sizes
(i.e., less than 7-by-7 cells producing S < 50), the cutting-plan
approaches dominate the direct solution of MSP. However,
the direct solution of MSP is by far the fastest approach to
prove optimality for larger grid sizes, such as S > 82, which
turns out to be the simplest instances. The approach solves
all those instances with an average solution time of 2.3 s
whereas the three cutting plane methods struggle to solve the
82-state instance and are slower to prove optimality for the
three instances with S = 122, 170, and 226. Among the cutting
plane methods, OA-B- SCA has the lowest average optimality
gap when optimality cannot be proven and has the smallest
average solution time for the other instances.

To sum up, the results reported in Tables 11-14 demon-
strate that while the linear reformulation MSP tends to be
quicker for the smallest and least challenging instances, the
two proposed bundle-based cutting plane algorithms B-SCA
and OA-B-SCA are superior for the challenging ones. They
also improve on SCA, which in the present setting with
homogenous searchers, no endurance constraints, and no
camouflaging is essentially equivalent to an algorithm from
Royset and Sato (2010). It appears that, depending on the type
of instances, it is preferable to derive stronger lower bounds
(as allowed by B-SCA) while, for others, a quicker solution

TABLE 11  For Markovian target model, S = 82 states, J; = 3 searchers, and varying numbers of time periods: Solution time (sec) to relative optimality
gap of 0.0001 or, if not reached in 900 s, relative optimality gap in brackets after 900 s.

T MSP

7 0.1

8 0.3

9 0.8

10 9

11 278

12 [0.1693]
13 [0.3151]
14 [0.4257]
15 [0.5357]
Average optimality gap 0.1606

SCA B-SCA OA-B-SCA
5 5 5

46 37 37

87 66 64
[0.0186] [0.0175] [0.0198]
[0.0590] [0.0574] [0.0581]
[0.0983] [0.1006] [0.0916]
[0.1410] [0.1316] [0.1249]
[0.1742] [0.1742] [0.1503]
[0.1915] [0.1969] [0.1732]
0.0758 0.0753 0.0686

Abbreviations: B-SCA, bundle-based cutting plane algorithm; OA-B-SCA, bundle-based cutting plane algorithm with outer approximation; SCA, secant cutting plane

algorithm.
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TABLE 12 For Markovian target model, S = 82 states, J; = 15 searchers, and varying numbers of time periods: Solution time (sec) to relative optimality
gap of 0.0001 or, if not reached in 900 s, relative optimality gap in brackets after 900 s.

T MSP

7 2

8 95

9 [0.0624]
10 [0.2039]
11 [0.3502]
12 [0.5144]
13 [0.7010]
14 [0.8783]
15 [1.1006]
Average optimality gap 0.4211

SCA B-SCA OA-B-SCA
8 7 8

204 83 75
[0.0015] [0.0005] [0.0007]
[0.0035] [0.0032] [0.0032]
[0.0054] [0.0048] [0.0047]
[0.0092] [0.0078] [0.0065]
[0.0146] [0.0135] [0.0203]
[0.0259] [0.0220] [0.0258]
[0.0443] [0.0332] [0.0377]
0.0116 0.0094 0.0109

Abbreviations: B-SCA, bundle-based cutting plane algorithm; OA-B-SCA, bundle-based cutting plane algorithm with outer approximation; SCA, secant cutting plane

algorithm.

TABLE 13 For Markovian target model, S = 82 states, 7 = 10 time periods, and varying numbers of searchers: Solution time (sec) to relative optimality
gap of 0.0001 or, if not reached in 900 s, relative optimality gap in brackets after 900 s.

J1 MSP

1 0.3

2 1

3 9

4 70

5 [0.0340]
10 [0.1400]
15 [0.2000]
Average optimality gap 0.0534

SCA B-SCA OA-B-SCA
34 34 [0.0363]
[0.0017] 581 [0.0159]
[0.0186] [0.0175] [0.0213]
[0.0236] [0.0213] [0.0245]
[0.0163] [0.0161] [0.0184]
[0.0060] [0.0052] [0.0057]
[0.0035] [0.0032] [0.0032]
0.0099 0.0090 0.0179

Abbreviations: B-SCA, bundle-based cutting plane algorithm; OA-B-SCA, bundle-based cutting plane algorithm with outer approximation; SCA, secant cutting plane

algorithm.

TABLE 14  For Markovian target model, J = 3 searchers, 7 = 10 time periods, and varying numbers of states: Solution time (sec) to relative optimality
gap of 0.0001 or, if not reached in 900 s, relative optimality gap in brackets after 900 s.

S MSP

26 [0.8314]
50 [0.1521]
82 8

122 0.6

170 0.4

226 0.3
Average optimality gap 0.1633

SCA B-SCA OA-B-SCA
[0.2355] [0.2372] [0.2290]
[0.1070] [0.1041] [0.0995]
[0.0186] [0.0174] [0.0168]

86 80 75

24 28 30

15 18 16

0.0602 0.0598 0.0575

Abbreviations: B-SCA, bundle-based cutting plane algorithm; OA-B-SCA, bundle-based cutting plane algorithm with outer approximation; SCA, secant cutting plane

algorithm.

time of the subproblems (as allowed by OA-B-SCA) and thus
the execution of more iterations within a given allowed time
is more beneficial.

4.3.2 | Heterogeneous searchers and camouflaging

We next consider instances of the kind associated with
Table 5, which involves camouflaging, endurance constraints,
and two classes of searchers. Table 15 presents the results for
instances with J = J;+J, = 3and J = J,+J, = 15 searchers.

When J = 3, we consider two searchers of class 1 and one
searcher of class 2. When J = 15, we consider ten searchers
of class 1 and five of class 2. The classes only differ in terms
of endurance.

The results displayed in Table 15 show unequivocally
that the three cutting plane approaches SCA, B-SCA, and
OA-B-SCA dominate a direct solution of MSP. For instances
with three searchers, the average optimality gap of each
cutting plane method is below 10% while the one obtained
by solving directly MSP exceeds 50%. Comparing the cutting
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TABLE 15 For Markovian target model, S = 83 states, and varying numbers of time periods and searchers across two classes with varying endurance:
Solution time (sec) to relative optimality gap of 0.0001 or, if not reached in 900 s, relative optimality gap in brackets after 900 s.

J T MSP
3 10 4
3 12 78
3 14 [0.0953]
3 15 [0.2510]
3 16 [0.2183]
3 17 [0.4995]
3 18 [0.6250]
3 20 [2.6835]
Average 0.5466
15 10 [0.0977]
15 12 [0.2298]
15 14 [0.6535]
15 15 [1.4129]
15 16 [1.1820]
15 17 [4.0515]
15 18 [6.4008]
15 20 [8.8120]
Average 2.8550

SCA B-SCA OA-B-SCA
58 73 64
[0.0111] [0.0114] [0.0200]
[0.0630] [0.0696] [0.0219]
[0.0814] [0.0809] [0.0557]
[0.0726] [0.0655] [0.0209]
[0.1222] [0.1470] [0.0360]
[0.1292] [0.1483] [0.0330]
[0.1992] [0.2426] [0.1681]
0.0848 0.0957 0.0444
2 23 13

174 89 98
[0.0048] [0.0032] [0.0077]
[0.0073] [0.0084] [0.0102]
[0.0125] [0.0121] [0.0136]
[0.0119] [0.0115] [0.0139]
[0.0115] [0.0096] [0.0096]
[0.0111] [0.0158] [0.0095]
0.0074 0.0076 0.0081

Abbreviations: B-SCA, bundle-based cutting plane algorithm; OA-B-SCA, bundle-based cutting plane algorithm with outer approximation; SCA, secant cutting plane

algorithm.

TABLE 16  For Markovian target model, S = 83 states, and varying numbers of time periods and searchers across two classes with varying endurance and
detection ability: Upper bound (UB) and solution time (sec) to relative optimality gap of 0.0001 or, if not reached in 900 s, relative optimality gap in brackets

after 900 s (oo indicates that no bound is available).

MSP

J T Time UB

3 10 [0.1552] 0.4245
3 12 [0.4067] 0.3742
3 14 [0.8468] 0.3178
3 16 [1.0000] 0.5263
3 18 [1.2159] 0.7555
15 10 [0.5524] 0.3900
15 12 [0.9791] 0.3455
15 14 [1.4006] 0.6878
15 16 [1.4425] 0.8953
15 18 [1.9703] 0.8542

B-SCA OA-B-SCA

Time UB Time UB
[0.1195] 0.4369 [0.0001] 0.3779
[0.6347] 0.4534 [0.0024] 0.3230
[3.3363] 0.4380 [0.0913] 0.2331
[115.65] 0.4229 [0.1983] 0.2094
[o0] 0.3557 [0.2767] 0.1649
[0.0286] 0.3885 112 0.3791
[0.0726] 0.3336 [0.0272] 0.3314
[0.5835] 0.2639 [0.3494] 0.2778
[1.9474] 0.2673 [1.0097] 0.2727
[269.44] 0.2236 [1.9238] 0.2378

Abbreviations: B-SCA, bundle-based cutting plane algorithm; OA-B-SCA, bundle-based cutting plane algorithm with outer approximation; SCA, secant cutting plane

algorithm.

plane algorithms, we see that SCA, B-SCA, and OA-B-SCA
exhibit similar performance levels for the relatively easy
instances (i.e., J = 15). For challenging cases involving J = 3
searchers, OA-B - SCA performs much better, on average SCA
and B-SCA produce twice as large optimality gaps. The
results in Table 15 demonstrate that the proposed OA-B-SCA
is most effective for the most challenging instances.

Next, we consider Table 16 where the searchers vary
in both endurance and detection ability, and thus the rate
modification factors f; ¢, cannot all be 1. The detection
ability of class-two searchers is equal to 80% of that of
class-one searchers. The resulting instances are exceptionally

challenging, in particular when the numbers of periods and
searchers increase. The cutting plane method OA-B-SCA is
the most efficient approach as it provides by far the smallest
optimality gap for each instance, and is the only method that
can solve one instance to optimality within 900 s. It provides
practically reasonable optimality gaps for planning horizon
T < 12. Analysis of each instance reveals that the high opti-
mality gap for MSP is usually due to the weakness of its lower
bound. For example, the best lower bound for the J = 15,
T = 12 instance—obtained by OA-B-SCA—confirms that
the best integer solution (i.e., with objective value of 0.3455)
from MSP actually has an optimality gap of 7%. This is
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dramatically better than the 98% reported in Table 16. Thus,
MSP cannot be ruled out as a viable approach for generating
good feasible solutions.

5 | CONCLUSION

Search planning for a randomly moving target in discrete time
and space should account for operationally important con-
cerns such as the employment of heterogeneous searchers
with distinct endurance level, detection ability, and travel
speed, the need for deconfliction among the searchers, and
the ability for the target to camouflage and thus making any
sensor ineffective. We account for all these concerns within
a convex MINLP, while taking advantage of homogeneous
sensors and Markovian target path models when present.

Since the objective function is a weighted sum of expo-
nential functions with integer arguments, it can be linearized.
We propose a new linearization technique and extend two
existing ones to account for heterogeneous searchers and oper-
ational constraints. While equivalent to the actual problem,
the linearizations tend to be large-scaled but reducible via
customized preprocessing and lazy-constraint techniques. We
also develop three cutting plane methods for challenging
instances. The most suitable approach for a particular problem
instance depends on the number of searchers, the length of the
planning horizon, and, maybe primarily, on the characteristics
of the target movement.

When the target follows any one of a moderately large
number of paths (e.g., 1000 paths), it turns out that a
direct solution of a linearization (after preprocessing) by a
standard mixed-integer linear programming solver is viable
and in fact computationally most effective as long as the
searchers are essentially homogeneous and the planning
horizon is no longer than 15 time periods. For example,
an instance with 82 states, 15 time periods, 50 homoge-
neous searchers, no endurance constraints, and no camou-
flaging solves to optimality in less than one minute using
Gurobi. For more complex instances involving heterogeneous
searchers, our lazy-constraint-based outer-approximation
algorithm becomes the most efficient approach. When the
target moves according to a Markov chain, which tends to pro-
duce a massive number of possible paths, the linearizations
become inefficient and we rely on three cutting plane meth-
ods. Two of these are complemented with a bundle approach
and the last one is embedded in an outer-approximation
algorithm. The latter performs best on instances with hetero-
geneous searchers. For example, we achieve an optimality gap
of 2.7% after 900 s for an instance with 83 states, 12 time
periods, a camouflaging target, and 15 searchers across two
classes of varying sensor capabilities and endurance.

Our extensive numerical study also provides some insights
for practitioners regarding the impact of endurance, detection
ability, and camouflage. Searchers facing endurance limi-
tations tend to delay the search and wait for the target to

WILEY— %

approach them to avoid wasting time in transit to the tar-
get’s likely location. Increased travel speed for the searchers
improves the probability of detecting the target, but possi-
bly only with a moderate amount. A camouflaging target is
less mobile and results in a concentrated search plan near the
target’s initial position.
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