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We develop stochastic programming models for project portfolio sclection under the plan-driven waterfall
approach and the more flexible agile approach. The models account for the requirement to earn return fast and
10 generate 2 certain returm with high probability. The models take the form of static (waterfall) and dynamic
{agile}) disjunctive integer nonconvex chance-constrained problems. To make the medels computationally
tractable, we devise model strengthening approaches and decomposition methods. We also develop an
algorithm o cbtain an ideal investment plan that provides the targetsd probabilistic return as quickly as
possible whilst maximizing the excess return, Using a representative US-based software company data, we
show the significance of the benefits given by the ideal plan. Our results show that the probabilistic return
can be reached faster under the aglle, as compared to the waterfall, approach, This can partially explain why
agile approaches are popular in new product development, Counterintuitively, the results show that the agile
approach, which includes more stochasticity sources than the waterfall approach, leads to less uncertainty
regarding the time 1o reach a certain retun than the waterfall approach. The reason for this ouicome s the
dynamic abandoning and re-starting of new projects protecting from downside risks, and hence, from outcomes
that would result in longer time to reach the required return level, Furthermore, we introduce a visualization
ol to guide a venture capitalist’s investment. The visualization tool highlights the company’s performance
regions derived with the proposed medels, The numerical tests show that the developed maodels are robust
and computationally tractable and can be used for larger problems, with more prajects, time periods, and
uncertainties.

1. Introduction performing companies employ an NPD process, such as the concurrent
portfolio review stage gate approach. The benefits of the periodic
concurrent portfolio selection approach include accounting for diver-
sification via the correlations among project returns and accounting
for the flexibility to reallocate resources if better development projects
become available (Chien, 2002; Kavadias and Chao, 2008; Hall et al.,
2015). Therefore, the periadic concurrent portfolio selection allows [or
a more efficient use of resources than the one that could be achieved

by evaluating and deciding about each project independently and by

We [ocus on one of the most important problems in project man-
agement, namely the sclection of the projects to work on Cooper
et al. (2000) and Hall et al. (2015). This problem is prominent in the
new product development (NPD) context (Kavadias and Chao, 2008)
where about $2 trillion are spent on new development projects each
year (Indusirial Research Institute, 2006). The selection of the portfolio
of NPD projects occurs perindically (Federal Aviation Administration,
2012). The selections are made from the pool of available projects that

include the ongoing development projects and new ones (Cooper et al.,
2000).

A common periodic project portfolio selection approach, where
the selection decisions are made concurrently for all projects, is the
stage gate approach with mass gates for all projects (Cooper et al,
2000), Cooper and Edgett (2012) found that about 90% of the best
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making the selection decision only once for each project, without
periodic review.,

In this study, we consider both the waterfall and agile project man-
agement processes and account for their impact on the project se-
lection. The waterfall process relies on the traditional plan-driven
approach (Hass, 2007; Larson and Gray, 2014). Under this approach,
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the projects are selected here-and-now for the entire planning horizon.
The agile process is dynamic, emploving the wait-and-see project se-
lection approach (Blank, 2013; Yoo et al., 2017). Under this approach,
projects are selected only [or one period at a time after which recourse
decisions are made accounting for how the projects” development has
succeeded. Consequently, it may be benelicial to abandon some of the
ongoing projects whose development has not progressed well and to
initiate the development of new projects. In fact, the best performing
companies are reported to abandon about 25% of their ongoing devel-
opment projects during the periodic project portfolio selection (Edgetr,
20101).

1.1, Literafre review

Our study is related to the project management, especially in project
portfolio selection, and stochastic programming felds. Next, we review
the relevant literature in these two fields.

The literature on project portfolio selection emphasizes the chal-
lenges caused by uncertainties in projects’ returns (Kavadias and Chao,
2008). Kleywegt and Papastavron [1998) model the project selection
with uncertainty in their retumn. They consider that the projects arrive
individually according to a Poisson process and that the decision to
invest or not has to be made for each project at the time of its arrival.
They formulate the problem as a stochastic knapsack problem and
propose recursive algorithms to solve it Lu et al. (1999) consider a
similar kind of problem where individual project proposals arrive at
random time intervals and the problem is to decide upon arrival of
the project whether to invest or not, given a fixed available budget
over the planning horizon. They solve the problem using dynamic
programming and determine time intervals when projects should be
invested in to maximize the expected return obtained within a certain
time horizon. Hall et al. (2015) develop a project portfolio selection
approach where the portfolio of projects is selected concurrently under
uncertainty in projects’ return characterized by the moments of their
distribution. The goal is to minimize the risk of not attaining a specific
targel refurn.

Our review of the stochastic programming literature (Birge and Lou-
veats, 2011) is focused on chance-constrained problems (see reviews in
Pritkopa, 2003; Lejeune and Prékopa, 2021). In particular, we review
chance-constrained problems with joint probabilistic constraints and
random technology matrix where random variables follow a distribu-
tion with finite support. The review focuses on these types of problems,
since the models proposed in this siudy share the same characteristics.
To solve these types of problems, Prikopa (1990) introduces the p-
efficiency concept. In addition, there are two main families of reformu-
lation and solution methods that have been employed, which we refer
to as scenario-based and Boolean-based methods, To our knowledge,
the first scenario-based approach is due to Ruszezyviski (2002) who
constructs a partial order on the set of scenarios and proposes a family
of cutting planes used within a branch-and-cut algorithm. Tanner and
Mtaimo (2010) derive a mixed-integer lincar programming formulation
in which they incorporate irreducibly infeasible (II) optimality cuts.
An extension of this approach was recently proposed by Canessa et al,
(20149) for pure binary chance-constrained problems, in which decision
variables are binary and joint chance constraints can be handled. The
IT cuns reduce the number of nodes visited and accelerate convergenee
to the optimal solution. Within the Boolean-based approach, Kogan
and Lejeune (2014) extend the Boolean framework initially proposed
for chance constraints with random right-hand sides (Lejeune, 2012)
and reformulate or inner-approximate problems with joint probabilistic
constraints in which the elements of a multi-row random technology
matrix follow a joint probability distribution. Lejeune and Margor
(2016) extend the Boolean reformulation framework to joint probabilis-
tic constraints in which quadratic, nonconvex stochastic inequalities are
required to hold jointly with some large probability. They design spatial
branch-and-bound algorithms and identify conditions under which the
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reformulated problem is equivalent 1w the original formulation. The
Boolean framework has recently been applied to a forestry-motivated
hinary stochastic programming problem including both classical and
integrated joint chance constraints (Lejeune and Kettunen, 2017} We
refer the reader to recent and in-depth reviews of the literature about
chance-constrained models under finite (Ahmed and Xie, 2018) or
continuous (Lejeune and Prékopa, 2021) distributions.

The proposed models differ in two fundamental ways from the
above models. First, they take the form of disjunctive stochastic opti-
mization models. Second, one of the two models includes a dynamic
joint chance constraint while the above siudies consider a static de-
cision context, in which decisions are made once at the beginning of
the horizon and are not updated as uncertainty is revealed. We now
review the even scanter literature on this very complex and specific
type of dynamic chance-constrained problem. Lulli and Sen (2004)
consider a probabilistic batch-sizing problem under a finite discrete
demand distribution. In their model, nonanticipativity of decisions is
enforeed only for the scenarios that meet the desired service constraint,
Andriew et al, (2010) study chance constraints with dynamic (multi-
stage) decisions that appear in hydro power reservoir management,
The authors assume a continuous probability distribution and give a
finite dimensional approximation of the infinite-dimensional chanece
constraint by discretizing the continuous decision variables. Relying
upon its mixing and continuous mixing substructures, Fhang et al.
(2014) derive valid inequalities for the dvnamic chance-constrained
model and illustrate the computational benefits on an inventory man-
agement problem. Ono et al. (2015) propose an algorithmic method
for joint chance-constrained dynamic programming (control) problems
that restrict the probability of violating state constraints, They solve
conservative inner approximations derived with the Boole-Bonferroni
bounding scheme and test their method on several optimal contral
problems.

In comparison to the extant literature, the proposed models have
an additional major source of complexity as they belong to the family
of disjunctive programming problems (Balas, 1979, 2018), and takes
the form of a disjunctive chance programming problems. The disjunc-
tive form of the models is due to the presence of decision-dependent
uncertainty of Type 2 in which decisions affect the time at which
information is revealed and uncertainty gets resolved (Jonsbraten et al.,
1998), Stochastic problems with Tyvpe 2 decision-dependent uncertainty
are usually formulated as risk-neutral multi-stage stochastic program-
ming problems (see, e.g., Apap and Grossmann, 2017; Colvin and
Maravelias, 2010; Goel and Grossmann, 2006; Jonsbraten et al., 1995;
Tarhan et al,, 2009) in which the non-anticipativity conditions are
decision-dependent, In contrast to these earlier studies, the models pro-
posed here are risk-averse chance-constrained stochastic programming
problems with decision-dependent uncertainty. We refer the inter-
ested reader to Hellemo et al. (2018) for a recent review and tax-
onomy of stochastic programming problems with decision-dependent
uncertainty.

To our knowledge, disjunctive chance constraints have been studied
for the first time in the recent study by Kettunen and Lejeune (2020)
which we extend here in the following way, As detailed in Section 3,
the proposed chance-constrained problems involve a number of periods
at which investment decisions are taken. The number of periods to
reach the pursued return objective and at which decisions are aken
is unknown ex-ante. The chance constraint is a joint one in which
the number of stochastic inequalities that must hold jointly with a
prescribed probability level is equal to the number of periods, At each
period, one will check if the targeted return level is attained. If ves,
the investment plan is successful and interrupted. If not attained, one
must consider an additional period. This gives the disjunctive nature to
the proposed formulations = hence the name disjunctive stochastic pro-
gramming — since one must reach the targeted return level at (any) one
of the periods (the carlier the better) in the planning horizon. We design
a modeling and algorithmic framework that (i) defines the fastest time
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t* by which the targeted return can be anained (as done in Kettunen
and Lejeune (20200) and (i) determines the ideal plan that provides
the highest excess return that can be reached by ©* (not considered
in Kettunen and Lejeune (20200). In addition to using a decomposition
method similar to the one proposed by Kettunen and Lejeune (20:20) for
(i), we (1) propose new valid inequalities and tightening procedures
to supplement the decomposition method and improve the solution
process; (2) develop a new biseetion-type algorithm to elicit the ideal
plan; (3) carry out a computational study to evaluate the efficiency of
the proposed modeling and algorithmic developments; (4) assess the
robusrness of the models and their resulis with respect 1o the number of
scenarios used o represent uncertainty; and (5) employ the framework
to derive insights for a US-hased software start-up company in a project
portiolio selection problem,

1.2, Contributions and paper structure

We contribute to the stochastic programming and project manage-
ment literature in the following two main ways:

1. We make methodological and algorithmic contributions, Cur key
methodological contributions are 10 develop optimization models for
the static (waterfall) and dynamic (agile) project portfolio selection
approaches of the software start-up company's project selection prob-
lem. Qur algorithmic contributions invalve two major extensions to the
solution framework proposed by Kettunen and Lejeune (20200, First,
we develop model tightening procedures o support the decomposition
method and to accelerate the solution process. Second, we formulate a
bisection algorithm to obtain an ideal investment plan that provides the
targeted probabilistic retuwm as quickly as possible whilst maximizing
the excess return (over the targeted one). We show that the developed
algorithms allow for the quick and optimal solution of realistic-size
problem instances. Furthermore, our computational experiments show
that the developed models are robust and can be conveniently used o
solve even larger problems (e, with more projects, time periods, and
uncertaintics) than those considered in this study, since the decisions
are stable and converge to the same outcome with different sizes of the
scenario set.

2, Our contributions to practice relate to data-driven insights based
on a Us-based software company and a possible approach to visualize
and benchmark venture’s profitability over time in order to support
venture capitalises’ investment decisions. First, our results show that
the ideal investment plan can lead to significantly higher probabilistic
return than an approach that solely focuses on the time at which the
targeted return is reached, such as the one developed by Eettunen and
Lejeune (20200, In particular, our results show that the ideal investment
plan can provide a 13% excess return. Second, our results show that
there is less uncertainty to attain a pre-specified return under the agile
development approach than under the waterfall one. This additional
benefit of the agile approach can make a difference on receiving
funding from a venture capitalist with limited time window for the
investment, Third, we propose and demonstrate how to visualize the
vienture's profitability over time vis-A-vis three regions that characterize
the company’s performance. This type of visualization can be used to
guide a venture capitalist's investment on a company over tme. Specif-
ically, depending on the region corresponding to the company’s actual
performance, the guidelines suggest the veniure capitalist o either
(i) intervene on company's operations, (i) support the operations, or
(iii) retain the company and let it run independently. The regions are
derived so that they are company-specific and account for the tvpe of
projects a company is expected to have in the future and for the project
management approach used, i.e., waterfall or agile,

The paper is structured as follows. Section 2 describes the project
selection problem in the multi-period NPD context and its main char-
acteristics. In Section 3, we develop mathematical formulations for the
waterfall and agile product development approaches. In Section 4, we
propose several model strengthening approaches that facilitate solving
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the models, develop an algorithmic method that solves exactly and
efficiently the proposed optimization problems, and desizn a bisection-
type algorithm to determine the ideal investment plan that provides
the largest probabilistic excess return. Section 5 describes the data,
analyzes the scalability and efficiency of the algorithmic method, and
presents managerial implications. In Section 6, we provide conclusions,

2. Problem description

We consider one of the essential operational decisions of compa-
nies with research and development capabilities, namely which new
products to develop. The development of new products is a muld-
period problem. In other words, the progress of the products under
development is evalvared periodically (eg., quarterly or annually)
when also new development projects are proposed, At each period,
companies face the project portfolio selection problem (Linton et al,
2002; Heidenberger and Stummer, 2003; Hassanzadeh et al,, 2014;
Hall, 2016), i.e., each proposed project has to be either selected, and
its development fully funded for the following period, or abandoned.
The selection decisions are constrained so that only a certain number
of projects can be developed concurrently.

The mult-periodicity in the NPD selection process incorporates
several key characteristics. First, the retumns of the projects, which were
chosen for development in the last review period, evolve stochastically
depending on the progress of the development efforts (Sommer et al.,
2007). Second, the returns and risks of the new development projects
are not known until at the period when they are proposed and evalu-
ated (Kleywegt and Papastavrou, 1998; Lu et al.,, 1999), Third, during
each period the company occurs development costs, regardless whether
a project is completed. These costs are fixed and consist mainly from
the salaries of the developers as is exemplified in [T, electronics, and
software industries (Sommerville, 2016; OECD, 20017).

In our study, we focus on the NPD selection decisions made by start-
up companies, One of the most important goals of start-up companies
is the speed to get the products on market and eam retwmn fast to
the company and its investors (Kamuriwo and Baden-Fuller, 2013;
Blank, 2013; Yoo et al., 2017), This goal is especially relevant to
keep the company in business and to secure additional funding for
growth (Bodily, 2016). The second goal relates to the requirement to
generate a certain return with some guarantee or probability level,
which represents the goals of decision makers (DMs) in the NPD and
several other contexts (Hall et al.,, 2015), Therefore, the ohjective of
DS can be viewed as minimizing the time (o atain a return target with
a specified probabilistic guarantee or reliability level (Thrahim, 2008;
Kamuriwo and Baden-Fuller, 2013).

The same problem can be also considered from the venture capital-
ists’ point of view, who must assess whether the start-up company is
worth investing in, fe., will the start-up company attain carly enough
the required return with a certain reliability level (Zider, 1998). Con-
sequently, the models developed [or this problem serve as decision
support tools for both start-up’s DMs and venture capitalists.

We consider two distinet product development processes, namely
(i) warterfall and (ii} agile. The waterfall approach employs the tradi-
tional plan-driven product development process [Hass, 2007; Larson
and Gray, 2014), Under this process, the projects’ returns are uncertain
and the project selection decisions are irreversible, The agile approach
accounts for the dynamic decision making (Blank, 2013; Yoo et al,,
2017}, The dynamic decision making implics that DMs can during
each evaluation period abandon previously initiated projects, if their
development seems to fail or better projects become available, and start
new projects. The dynamic decision making implies also that the overall
development path is uncertain. As a result, the type of projects that will
become available in the future periods are uncertain as well as their
duration. Thereby, under the agile development process, the projects”
returns and durations are uncertain and the project selection decisions
are made dynamically.
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Table 1

Matations.
Parameaters
@ Earliest time at which a project con be completed
o Duration of project i
5 Earliest starting time for project i
£ Earliest completion time for project i
[ Vector of ones
F Fized development cost per period
w Upper boand on number of projects that can be developed at any period
R Targeted return Level
Sets
I Sel of projects
T Bel of time periods
T, = {85, .-a i} Sel of periods during which project § can be developed
C=lel:fi=1} Set of projects that can be completed at period @
L=liel: =1 Set of projects that can be developed at period r
T =, |7} Set of periods when a project can be developed
E Set of real numbers
Z. Set of nonnegative integer numbers
B=(01) Set of binary variables

Derision variables

x, &8
rek,

Uncertainty related notations

Binary variable egqual to 1 if project § is developed in period ¢ and to 0 otherwise
Time at which targeted return level is attained

Random revense generated at period & by project |
Realization of revemse for project § in period ¢ in scenario k

Sel of joinl scenarios for randam revenue vector £

Sis

ik

Sia

K Scenario index get
D=8 ek}

i Frobability of scenario &
r Prescribed reliability level

3. Models and reformulations

This section consists of two subsections. In Section 3.1, we focus
on the waterfall model and derive s stochastic and deterministic
reformulations. Section 3.2 focuses on the stochastic agile model and its
reformulation, These models are similar to those presented by Kettunen
and Lejeune (20200 in terms of defining the fastest time by which the
targeted return can be attained.

2.1, Stochastic waterfall profect selection model and deterministic reformu-
lation

We present now the formulation of the chance-constrained waterfall
project selection problem that accounts for the key features of the wa-
terfall selection approach and for uncertainty in the generated revenue,
The uncertainty in the projects” revenue is modeled with a finite ser
of joint, multi-dimensional scenarios 2 e BYPT g & K with each
component £ of 2 representing the revenue generated by project i at
time ;1 in scenario &. The sum of the probabilitics of the scenarios is
equal to 1: ¥, . g" = LTable | summarizes the notations used in the
formulation of the waterfall model,

The waterfall project selection model is the following disjunctive
chance-constrained nonconvex integer programming problem:

W-M :min ¢ (1a)

sto(s, 71 N\ M, (1b)
=fa,....r|

e X 1c)

reTcE, (1d)

where the deterministic integer linear feasible set ¥ is given by
A={xe 0 'y, sUIET: 3y =x, e lieT (1] (2

with h = ¥ ., |T;| denoting the number of binary variables. Each N,
corresponds  to the feasible set of the chance constraint

P{E:-‘—u Ziec, Xipse —1F 2 RJI > pattimet € {a,...,7) ST

[
Ho=qxe (0116 Bl Y B x 2, —FzR[zpt . (3
r’=n'-'=f|-’

The expression (x, 1) € V-’Elu. e Hin(lc)isa disjunction and requires
the finding of a feasible solution (x, r) that provides the targeted return
level R in at least one of the periods in the planning horizon. In
Boalean mathematics terms [Crama and Hammer, 2011), the expression
Ve o ¢y Mo is called a disfunctive normal form over a set of literals H,
with each literal defining the set of conditions required to reach the
targeted return at period ¢ with a reliability level at least equal to p.
The number (r —«) of literals H, in the disjunction is unknown ex-ante
and iself a decision variable since ¢ is a decision variable determined
via the solution of problem W-M. The constraint included in M, is a
chance constraint with random technology matrix (1h] that requires to
generate a return R with probability at least p at . The term ¢ F is the
cumulative cost until period .

The objective function (1a) minimizes the time r needed to pro-
vide the argeted revenue level ® with the set reliability level po The
knapsack constraints in & do not allow for more than {7 projects to be
concurrently developed at each period and result from the tightness of
the available resources, The precedence constraints x,, = ., in ¥
ensure first that the initiated projects must not be abandoned and must
be completed, and second that projects not initiated at the period they
became available cannot be started later. This means that the benefits of
a project can only be collected if the project is supported from inception
to completion and without interruption: x, = Li=s5..... (.

The above deceptively simple-looking nonconvex optimization
problem is extremely challenging to solve and includes several sources
of nonconvexity stemming from the integrality restrictions on the
decision variables and the fact that the number of literals M, in the
disjunction is itself a decision variable. Problem W-M is not, in this
form, amenable to an analyvtical solution, nor to a numerical solution
by any off-the-shell optimization solvers. Therefore, we need to [irst
derive a deterministic equivalent reformulation of problem W-M (ses
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Theorem 1) and then o devise an algorithmic method allowing for s
numerical solution of practice-sized problem instances (see Section 47,

We shall now derive in Theorem 1 a deterministic, equivalent, and
computationally tractable reformulation W-BM of the waterfall project
selection model W-M. We denote by 7.1 € T a binary variable taking
value 1 if the retumn level R can be attained at period ¢ and taking
value 0 otherwise. Additionally, the binary variable ,ﬁl}',k ekKiteT
is defined in such a way that it can take value 1 if all conditions
defined by scenarlo £* in time ¢ hold jointly and is forced to be 0
otherwise. The notation .fl’.*J refers (o the series of realized revenues
sorted in increasing order while M & BE=T=I® j5 a vector of fixed
parameters. The components of the vector M are set up ex-ante to the
smallest possible value that does not eliminate any feasible solution of
the problem.

Theorem 1. The disjunctive integer nonlinear chance-constrained problem
W-M can be equivalently reformulated as the following deterministic infeger
linear programming problem W-RM:

W.RM - min Zm (4a)

=T
iio E Z xg_r-ffl,. —tF = Rpl‘c
t'=aieCy ’
+1-g0 Y My keKieT  (4b)
=l

qlﬂl EN reT (4c)
er=1 (4d)
e, 17Kl (4e)
v (o, 1Tl (40
xEA.

Any feasible solution of the above problem guarantees that the tar-
geted return & can be attained in admissible time and with probability
p. Any optimal solution of the above problem indicates the minimum
time needed to reach R. Constraint (1h) is a disjunctive constraing
and defines a nonconvex feasible area. The problem is further com-
pounded here as the number r of terms or literals in the disjunction
of (1b) is itsell a (general integer) decision variable, Besides providing
a deterministic equivalent reformulation for the disjunctive chance-
constrained problem W-M, the decisive contribution from Theorem 1
is to remove altogether the variable © (and the associated nonconvex-
ities) and w derive an exact lincadzatdon of the nonlinear expression
involving r. The proofs for theorems are given in Appendix A1 in the
supplement document.

3.2, Stochastic agile project selecrion model and deterministic reformulation

We propose in this section the formulation of a chance-constrained
problem that is representative of the dynamic and more flexible of
agile project selection approach and accounts for the uncertainty in the
generated revenue and in the time needed to complete the projects.
The dynamic nature of the agile approach and the resulting additional
layer of stochasticity translates into a setting where: (i) DMs can
abandon projects previously initiated and (ii) both projects’ returns and
durations are stochastic. The notations presented in Table 2 are used in
the formulation of the agile model and are explained in details in the
next paragraphs.

The random duration of projects has multiple modeling conse-
quences, First, it implies that the completion date of a project is itself
a stochastic variable. We respectively denote by © £ HL” and y =
IAL“ the random project duration and completion time vectors, which
connect as follows:

S T (5
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Their respective realizations in scenario & £ K are referred 1o as JF
and w*. k & K. The vector «* = [£, 0% §*) & 42 concatenates the
realizations in scenario & of the three sources of uncertainties £,£,
and w. Second, the random project duration implies the construction
of random sets (Cressic and Laslett, 1986; Nguyen, 2006) since the
elements included in the sets £, C,.f € T, and T, i € I defined above are
unknown ex-ante and stochastic, This has in turn a major effect on the
chance-constrained problem sinee we will have to use dynamic chance
constraints (Lulli and Sen, 2004) in the formulation instead of using the
traditional static ones. Investment decisions in the waterfall model W-M
are taken ex-ante, before the realization of the random variables, for the
whole planning horizon and are not subsequently modified. It ensues
that the decision to invest in project | in @ applies in all scenarios. This
contrasts with the agile model since, under the corresponding random
project duration assumption, investing in a certain project ¢ at 1 may
not be implementable in all scenarios provided that in some of them
project { might be completed at an earlier period < 1. In order to
accurately model the higher flexibility and the inereased stochasticity
level induced by the agile mode, we adjust our modeling approach and
propose a multistage model with dynamic chance constraints in which
decisions are adaptive to the realizations of the random variahles.

In this setting, the decisional space is lifted and the decision vector
is now given by

¥ = pabem b yslagd o pprylen o )

in which each component v, | < ¢ < |T|, is a function of previously
observed values a, .., w,_y of the random process for a given time
i. The first-stage decisions y; are taken at the start of the first period
before observing the realization of the random events taking place in
period 1 and then taking the recourse second-stage decisions y, on
the basis of the observed outcomes . The same process carries on
until reaching the end of the planning horizon. Besides introducing
the parameters ¥, = maxg., &'/ € J equal to the longest possible
duration of project i, the dynamic feature of the agile project selection
model requires to adjust the definition of the sets T,,i & [, I, and
.t & T whose random counterparts T(0) = {5..... K] C T, e I,
ligyr=liel creTiNclreT,and Cifd=liel ¥, =1l c
.1 & T o represent that the composition of those sets is stochastic and
varies across scenarios. Similarly, the notations for the binary decisions
variables y,,({) reflect that they are scenario-dependent and that the
periods at which the DM can invest in project § depends on its random
duration { y, (£)i € [t € T is equal to 1 if the DM supportls project
i in ¢ and is 0 otherwise.

The disjunctive integer nonlinear and dynamic chance-constrained
problem for the agile project selection mode reads:

A-M: minr
sto(y 7l E V G, [Ga)
tEl @)
yey¥ (&)
reTCci, . [6c)

where the deterministic integer linear feasible set ¥ is given by
Y= dve o c dp s U eT; 3,40
= FoehiE Lre TAON TS (7

with h, = ¥.or ITHE)| denoting the uncertain number of binary vari-
ables that varies across scenarios. The integer linear feasible set ¥
is the counterpart of X in the dynamic setting and is defined in a
lifted decision space due to the dynamic nature of the agile mode,
The constraings in ¥ are stochastic inequalities since they must hold
for each component of the random sets T,0) whose compesition is
stochastic, The constraints y, () = ¥, (Chi € T € TN T
are the non-anticipativity constraints which force the decision variables
_Ff_l to take identical values for each scenario sharing the same history
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Table 2

Additional netations for agile model.
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Parameters

¥

Longest possible duration of project |

Uncertainty related notations

&
W
7

vl

ot = [E
T

i

LAY

o
&

Random project duration of project i

Random completion time of project i

Realization of project duration for project ¢ in scenarlo &
Realization of completion time for project § in scenario &

Joint realization vector for scenario &

Random set of periods during which project 5 can be developed
Random set of projects that can be completed at period 1

Random set of projects that can be developed at period ¢

Bat of scenarios with kbentical history with scenario & wuntil periad 1

Decision variahles

nelB
sl =B
CE (2T

First-stage decisions taken before amy uncertainty is revealed
Decigion to invest in project + &t time 1 in scenario &
taken after observing the outcomes o, in previous periods ¢ < ¢

until r = 1, = 1,...,|T|. The notation &, refers to the rth literal of the
disjunctive normal form V., | €. The literal &

I

Goi= O e (01O B YN e —tF 2 R| 2 pp (8)

=g e, (L)

is said o be mwe if the dynamic chance consiraint [P
[Ej,q e Vup(E)e —tF 2 R) 2 pat time ¢ € [a,.... } holds. As
in the waterfall model, the number of literals ¢, is a decision variable,

We shall now propose in Theorem 2 a deterministic and equivalent
reformulation for the dynamic chance-constrained problem A-M cor-
responding to the agile project selection mode. We denote by y;'_r.& [=
K.i e I,y € T the binary decision variable taking value 1 if the DM
invests in project ¢ in period ¢ and seenario «* ans taking value 0
otherwise, The size of the vectors rl'.'. k £ K fluctuates since the realized
duration rfl.* of project i can differ across scenarios, which in turn implies
that we must define a scenario-specific version of the sets T, 1, and C,
(see Table 2). In particular, Cr* =il : irf =tlt e T.k € K refers
to the set ©, specilfic to scenario «f. We also introduce the new sets
SI" that include the scenarios that have identical history with scenario
F until period ¢ and that are needed to define the non-anticipativity
constraints. To ease the notations, we drop (£ in y, ({

Theorem 2. The disjunctive integer nonlinear dynamic chance-constrained
problem A-M can be equivalenty reformuloted as the following deterministic
integer linear programming problem A-RM:

A-RM : min ¥ 1y, (9a)
=T

]
sdo E Z -":.«’Ea*.r' —iF = R

f=aeck

i
+(1= g Y My kekKoel  (gb)
=1

'8 = py, ref (9¢)
dr=1 (9d)
g e o, 1|T1=Kl (9e)
refn1yf (9f)
yEY. 9g)

The dynamic nature of the formulation A-M and the resulting non-
anticipativity constraints lead to a significant increase in the number
of decision variables and constraints, which should further complexify
the solution of the reformulation A-RM.

4. Solution methods

This section is decomposed into three main subsections. Section 4.1
presents specific valid inequalities and strengthening technigques that
tighten the deterministic reformulations W-REM and A-RM. Section 4.2
proposes a decomposition method to solve the reformulation problems
W-RM and A-RM. Section 4.3 devises a bisection algorithm that deter-
mines — among the typically many project selection plans that provides
the targeted return level as quickly as possible — the ideal plan that
generates the highest excess return in the minimal time needed to obtain
a return at least equal to R.

4.1, Model strengthening

We derive several specific valid inequalities and fixing approaches
that strengthen the continuous relaxations of the integer linear prob-
lems W-RM and A-BM. The computational benefits of the tightening
techniques proposed in this section will be evaluated numerically in
Section 5.2.2, The valid inequalities will tizghten the continuous relax-
ation of the problem solved at each node of the branch-and-bound tree.
They will eliminate solutions feasible for the continuous relaxations but
infeasible for the true integer problem, provide a tighter lower bound
on the optimal value of the problem, reduce the number of nodes in
the branch-and-bound tree, which results into faster salution times.

Theorem 3. The linear (nequalities

I,f

xSl Y. =a T - Ligl,
r=a

e T f =) For W-RM {a)

rood ; (10)
yfl_,,ﬂ5l—zy,,.r"=l,....|T|—I,jELkEK.
=1
edTh i e Fer ARM ih)
l—méﬂﬁ.l=a+l.....|fl.
f=a ... .1=1, For W-RM ()
i Ziex Ziepr 7 . (L)
T:—"ﬂﬁ yi=1+1,....|T],
F=1...0—-1LKeEK  forA-RM ih)
" nef kek,  1eT jfor W-RM and (12)
1eT for A-RM
are violid.
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The next set of inequalities apply 1o the waterfall approach exclu-
sively.

Theorem 4. [ The linear inegualities

Y oxy=dixy i€l (13)
IET;
are valid for W-RM.

11 If for any arbitrary tuple ¢, k8 e T K s (K k)L

2 'if:‘:,,iEE}.r‘:a,....r. (14}

e =%

then the following inequalitics
Bt e (15)
are valid for W-RM.

Theorems 3 and 4 tighten the reformulations W-RM and A-RM
which should make them easier and quicker to solve.

4.2, Decomposition method

The reformulated problems W-RM and A-RM are large-scale integer
problems and pose computational challenges, We use a decomposition
method similar o the one proposed by Kettunen and Lejeune (2020).
The decomposition method does not deal directly with the large-size
integer problems W-RM and A-RM, but converges [initely to [ind the
provably optimal solution of W-REM and A-BRM. The certificate of opti-
mality is obtained in a simple manner that iteratively checks whether
a finite set of integer lincar inequalities admits a feasible solution. In
what follows, we illustrate the method for the reformulation A-RM that
is transferable to W-RM with minor modifications.

Central to the method and to its finite convergence property is
the system of integer linear inequalities presented in Theorem 5, This
system of inequalities is used to deliver certificates of feasibility and
optimality and is obtained by dropping the binary variables y, and
adjusting the constraints in the feasible set of A-RM in which the
variables y, appear. Let 7% = {s,....{flie k€ Kand I} = [i €
I:re Ti‘":,: £ T,k € K be the scenario-specific versions of the sets T,
and T

Theorem 5. Conmsider v & [a, ..., |T|}. The system of integer lnear
inequalities
r
I
|'=I?r-E(-I\
=REL (-0 E,_ M, kek ia)
Zfl‘:’g[f i=1,....nkek i)
ield
J"ffrz-l'r:"‘m-l kEK'IE;f‘
rETENL =1} (0
FA, ], ) X (16)
Vi 00} ke K iell.
reTHIL ... rl (d)
o= ielfkek
Ke SR
f=4,....r (e}
Yddze i
frry
B e {01} ke K (gl

admits a feasible solution i and only i the return level B in A-M can be
reached by time r.

As explained next in Corollaries 6 and 7, the system of inequalities
(16)al=(g) can be conveniently used to check the feasibility of A-RM,
to bound the optimal value of A-RM (Corcllary 6), and to deliver a
certificate of optimality (Corollary 7).
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Corollary 6. If (3, §) = FA_, then

= (i 7 s feasible for A-RM and (7. ¢ = r) is feasible for A-M.
_ . 1 ifr= . .
= (7 L7 with 7, = {u :;:Lm:m is feasible for A-RM and (7.7 = r}
is feasible for A-M.

Corollary 7. Letr e [a,....|T| =1} and «* be the optimal value of A-M
and A-BNL

« IFFA_ =W, then * > r.
«IfFA £0, * = r
« IFFA, = # and FA,# W, the optimal value of A-M is t° = r+ 1,

The finite convergence of the decomposition method follows.
Corollary 8. The algorithm converges finitely in at most [T - a + |
) )

We present the pseudo-code of the decomposition method in Ap-
pendix A.2 in the supplementary document.

4.3, Algorithmic method for ideal investment plan with maximal excess
Feturm

As the objective is to uncover the earliest period at which a specified
return level can be achieved, problems W-M and A-M admit multiple
optimal solutions prescribing possibly quite different investment poli-
cies. It is therefore of interest o discriminate among those optimal
solutions. In this section, we introduce the concept of ideal investment
plan and design an algorithm that permits to identify it.

Definition 9 (Ideal Investrment Plan). Let & be any targeted return level
and r* be the earliest period at which it can be obtained., The ideal
solution or investment plan is the optimal plan that maximizes the
probabilistic exeess return over K obtained in period o with probabilicy

P

The ideal investment plan is the optimal plan (i.e., providing the tar-
eeted returm R as quickly as possible with probability p) that maximizes
the excess retum over .

The proposed method relies on the decomposition approach pre-
sented in Section 3 and is supplemented by the incorporation of a
bisection algorithm. The method is exact and converges finitely to the
optimal solution. A biscction algorithm is an iterative method that
splits the search interval on the value of the objective function into
two (usually equal) pares at each ieration. Consider a maximization
problem with an objective function taking value in the interval [i". "]
A bisection algorithm divides at each iteration ¢ the incumbent interval
[I¥. "] in two equal parts and calculates the objective function value at
the midpoint 8 = (" +4*)/2 of the interval. If the problem is feasible
for & = R, we discard the sub-interval [1*, 8) and the search goes on
[&, u”]. If the problem is infeasible for & = R, we discard the sub-
interval [ R, u”] and the search is then focused on [19, B). The search
continues until the interval becomes smaller than the required precision
level.

We now design a bisection algorithm with the objective of finding
the ideal investment plan for any given targeted return level 8 We
present a detailed description of the bisection algorithm for mode] A-M,
The algorithm can be used in the same way for model W-M.

The first step is to determine the (smallest possible) interval [°, 4"]
of the objective function on which the search is carried out. While it is
obvious that the lower bound /" is R, we need to find out a valid value
for the upper bound. To do so, we solve the expected value problem
EAM. .

EAM,. :max ¥ ¥ ¢l 8L - o'F {17a)

et LER
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g.mz}irgu f=1... " EEK
i
(17
oz, keKiel e eT e -1
(17¢)
o= (ET ke KK ES \ [klt=5....¢"
(17d)
woeln) kekdelaeT [l ).
(17e)

that maximizes the expected return level &}, that can be obtained by
period o, Clearly, the optimal value of EAM_. is at least equal o the
optimal value of the problem maximizing the return level that can be
obtained with a high probability level p by . Hence, R} is a valid
upper bound and we set o = Ry.

The algorithm proceeds as follows. For any given R, we determine
+* wsing our decomposition method, calenlate Ry by solving EAM..,
and construct the search interval [1°,4") by setting 1" = R and " = R}..
At each iteration ¢, we check whether the set of inequalities

[(170)-(17¢)
E f:‘_;l E:._:ri -*F > Ri‘ﬁ:;
.lnr_-:,
EWe )y v 3 om keK (a) (18)
=1
WY (b)
ke K
FL e 0] kek (o).

admits a feasible solution by solving a feasibility optimization problem
(see Bauschlke and Borwein (1996)) in which R is fixed to the midpoint
Y of the incumbent interval [1%,07]. The only objective is w check
whether FW', admits a feasible solution. The tolerance level for the
stopping criterion is £, The iterative procedure stops if o' = = £,

Mote that the size of the interval [, #'] shrinks at each iteration by a
factor of (4" =i1"1/2, and the algorithm therefore converges to the optimal
value as formalized in Proposition 10,

Proposition 10. R* & |i*, "), The standard bisection algorithm finds the
optimal selution R in finitely many (i.e., at most boga({(a” —1"}/e)) iterations
with precision level .

We give the pseudo-code of the algorithm in Appendix A2 of the
supplement document.

Instead of using the developed bisection algorithm we could have
formulated an integer problem to define the optimal investment plan.
Preliminary tests however have shown that solving a few [easibility
problems as requested by the proposed bisection algorithm is quicker
than solving to optimality such an (much larger) integer programming
problem,

5. Modeling and managerial insights
5.1, Experimental setup

We conduct experiments using illustrative data that is obtained from
a Us-based software start-up company, The company has three software
development teams, which each work on one project at a time. The
development decizsions, concerning which projects are worked on, are
made every three month. The development costs for each three month
period per project amount o $0.3 million and consist mainly of the
salaries of the software developers,

Expert elicitation is used to assess the required project parameters,
Table 3 lists the seven initially proposed projects with their (i) tme
to complete the development, (i) estimated expected revenues, and
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(iii) revenue standard deviations. The development team expects o
receive four proposals for new projects at each period. The durations
of the new projects depend on whether the waterfall or agile project
management approach is employved. Under the waterfall approach, two
of the projects are expected w take five periods o develop, one is
expected o take three periods, and one is expected to take two perinds,
Under the agile approach, the duration of the development projects is
stochastic with development lasting [5.4, 3] periods with probabilities
[01.5.0.25. 0.25].

The revenues of projects proposed in the future periods account for
two specific characteristics that are present in the analyeed setting. In
particular, the longer lasting projects are expected o (i) vield higher
revenues, such that the expected revenues in § millions are Ad, with
A = 065 as assessed by the DMs and o, referring to the number of
development periods of the project i € 7, and (ii) embed higher risk,
which is captured through the standard deviation of revenues denoted
wid;, i € [ with @ = 04 as assessed by the DMs. The DMs estimate
projects” revenues to be independent and normally distributed. The
time available to reach a specified probabilistic return is 5 vears and the
planning horizon is hence split into 20 perinds during which 87 projects
are available to invest (7 + 4 = 200, We represent the uncertainties
in the available projects by simulating scenarios. Under the waterfall
project management approach, each scenario is a 87-dimensional vec-
tor representing the randomness of the projects” revenues, Under the
agile project management approach each scenario is a 174-dimensional
(2 x 87) vector because both projects’ revenues and their duration are
defined as random variables, The data and codes for the developed
algorithms and optimization models are publicly available at an online
repository (Kettunen and Lejeune, 2021).

5.2, Modeling insights

5.2.1. Generation of reliable remim

To validate the importance of explicitly modeling the reliabilicy
constraints, we first assess the reliability of the project selection ap-
proach where the constraint is set on the expected return inswead of the
probabilistic return. This corresponds 1o the Ask-newrad projece selection
model. The variant of model W-M imposing a lower bound on the
expected return is obtained when (1h) is replaced by

VAE 3 8 v er|2ry

el i"=a rECy

Similarly, the variant of model A-M imposing a minimal expected
return threshold is obtained when (6a) is replaced by

3

VB X X nefdl(&y —ao) |2 R

el =1 J-;-.flw:._?]

We conduct experiments over five distinct simulated instances in which
2000 seenarios are accounted for using the risk-neutral model variants
of models W-M and A-M that require a8 minimum expected return
level (e, £ = 1.7, and 13) and derive the optimal project selection
strategies. The optimal project selection strategies obtained with the
risk-neutral variants of models W-M and A-M reached the target return
levels on average in 55% and 59% of the scenarios, respectively,
Apparently, the project selection strategies derived using the risk-
neutral project selection models fail to reach the arget return with
high reliability. By accounting for the reliability requirements, as in the
original risk-averse project selection models W-M and A-M, the reliabilicy
of the attainable return can be guaranteed with a high (i.e., 95%)
reliability level. Therefore, capturing the DMs' reliability requirements
necessitates the use of chance constraints.
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Table 3
Initially proposed projects.
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Project Development time Expected Standard deviation
(quarter of a vear periods) revenuas (M) (% of revenues)
Data analytics tools | 5 amn 30.5%,
Custormizable reports 5 134 27.5%
Compatibility with other software 5 317 27.4%
Data analytics tools 2 e 291 25.8%
Enhanced administrative tools 4 262 23.3%
Enhanced user interface 3 1.95 23.6%
Social media components 3 1.79 21.8%
Table 4
Average computational tmes.
Time i) Time (5
P |K| R W-RM  A-RM p | K| B W-RM  A-RM
0.9 00 1 0.0 0.6 095 500 1 LX) 0.7
(.9 00 T 1.4 77 (L4935 S0 7 158.2 6.4
(.9 00 13 G952 123.6 .95 S04} 13 1381.0 744
0.9 1000 1 0.0 2.0 095 1000 1 [IX)) 2.1
0.9 1000 T 0 o4 .95 1000 7 141.3 59.3
0.9 10060 13 232 342 0495 1000 13 1369.4 020
0.5 2000 | 0.1 5.0 0,95 2000 1 0.1 20
0.9 2000 7 024 2456 0,95 200M) 7 T96.4 165.6
09 2000 13 15254 11039 0,95 2000 13 1423.4 1087.3
Average 4279 2129 Average 585.5 1895

5,22, Computational efficiency

We first attempt to solve the original formulaton of W-M and A-M,
The models are coded with AMPL (Fourer el al, 2003) and solved
with the Gurobi 9.1.0 solver on a 64-bit computer with Intel Core i7-
6700 CPU 3.40GHZ. We note that none of the 180 problem instances
(p = [0.9.095), K] = {500, 1000, 2000}, & = [1.7.12]; cach run with 5
different scenario sets) can be solved in three hours of computing time
regardless of whether or not we use the valid inequalities presented
in section 4.1, and most resulted in running out of available memaory.
The reformulated versions of the models, wilizing the decomposition
method and incorporating the valid inequalities in Section 4.1, are
solved on average in 354 s In Table 4, we report for each tple
(p, | K|, &) the average (i.e., taken across the five scenarios sets consid-
ered for each of the 18 types of problem instances) total computational
times (Lo, including time for the decomposition method) necded o
solve W-KM and A-RM with the proposed decomposition algorithm
when the valid inequalities are utilized. These results highlight the
computational efficiency of the proposed method. The results in Ta-
ble 4 show that mode]l A-KM, which has more decision variables and
constraints than modeal W-RM, is faster to solve than model W-RM
for the instances with high probabilistic return requirement R, For
example, A-RM is [@ster o solve for complex problems with larger
required return level (e, & = 13), whereas A-RM is slower to solve
than model W-RM for problems in which the required return level is
low (i.e., B = 1) and can be achieved quickly. When & = 7, then
model A-RM is slower than model W-EM in two of the [ve cases,
i.e., when the reliability level is low, p = 0.9 and there are less seenarios,
|K] = 500, 1000, These correspond to problems that are smaller (less
constraints and decision variables).

Surprisingly, Table 4 shows that the average computational time
is about invariant with the reliability level p with model A-RM and
is an increasing function of p with W-RM. This is in stark contrast
with the results reported in most studies involving scenario-hased
reformulations of chance constraints. The average computational time
increases in both models when the targeted return level B increases,
which follows from the fact that a higher R value makes the associated

constraints more difficult to satisfy and hence finding a feasible solution
more time-consuming.

523 Convergence and stability

We next evaluate the number of scenarios needed to observe con-
vergence and stability in the optimal solution, i.e., the earliest time at
which the targeted return can be achieved. To conduct this analysis,
we employ two methods to generate and select scenarios and run
numerical experiments with each in which the number of selected
seenarios varies, ranging from 50 o 2000, The results with the seenario
selection methods are shown in Table 5 for both models W-RM and
A-RM.

The first scenario generation approach is a basic Monte Carlo sim-
ulation method. The second method employs a scenario reduction
algorithm (Dupafova et al., 2003; Heitsch and Rémisch, 2007) that
selects a representative subset (of given cardinality) of scenarios from
a larger scenario set. The construction of the subset of representative
scenarios is carried out in such a way that the distance between this
scenario subset and the original scenario set is minimal and the distance
is expressed in terms of a probability distance metric, We generate
initially 5000 scenarios via a Monte Carlo simulation (original seenario
set) and construct subsets of scenarios of cardinality 50, 500, 1000,
and 2000, To obtain the reduced set of scenarios, we wtilize the GAMS
software package “scenred2” (GAMS Development Corporation, 20187,
This package implements a backward reduction algorithm proposed
by Dupacovid et al, (2003), The backward algorithm works such that it
removes scenarios iteratively (Le, one at-a-time) by solving a scenario
deletion optimization problem, until the desired number of scenarios is
reached. The applied algorithm relies on the Wasserstein distance met-
ric of degree 1 to measure the distance between the reduced seenario
set and the original one, The intuition behind the Wasserstein distance
measure is that it minimizes the transportation cost of the probabilicy
mass distribution defined by the original scenario set to the probahility
distribution defined by the reduced set of scenarios.

Results in Table 5 show the convergence to a stable optimal solution
when 500 scenarios are considered. The conclusion applies to both
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Table 5

Stability results for &= 7, p= (LU5
Time peried when probabilistic return level 13 reached
Monte Carlo simulation Scenanos selected using

of scenarios scenario reduction algorithm
|K| W-RM A-RM W-RM A-RM
50 9 i 9 7
S 10 B 10 ]
1000 Lib f Liy &
200000 10 6 10 &

models and scenario generation methods, In particular, it can be scen
that, when 500 scenarios are considered, the earliest period ©* at
which the targeted return level & = 7 is reached (ie., optimal value)
with model W-RM (resp., A-RM] is 10 (resp., 6) periods. The optimal
value r* = 10 (resp., ¢ = A) with model W-RM (resp., A-REM)
remains unchanged when the number of scenarios increases and goes
to 1000 and 2000. Even when only 50 seenarios are considered, the
ohtained value «* is at most one period away from the stable optimal
value (ie., with 500 or more scenarins), We have confirmed these
stability results using four additional sets of seenarios for which similar
ohservations prevail, i.e., results remain stable when using only 50 or
500 scenarios and the earliest period ©* at which the targeted return
level R =7 is reached remains at most one period away from the stable
optimal value when the scenarios are reduced from 2000 to 50, Since
the models can be solved for a number of scenarios [our times larger
than the reduced set of 500 scenarios (see Table 4), the models are
scalable to deal with more projects and additional uncertaintics and
the results will still converge,

To confirm the robustness of the derived investment strategies,
we carried out an out-of-sample analysis. Considering a training set
comprising 2000 scenarios, we have solved the two models W-RM and
A-RM to derive investment strategies that we refer to as the training
sot optimal investment strategies, MNext, we have applied the W-RM
and A-RM training set optimal investment strategies to four 2000-
scenario testing tests (i.e., sets of scenarios that were not considered
in the training set optimal investment strategies). For each testing set
and with each model W-RM and A-RM, it turns out that the optimal
training set aptimal investment strategies permits to reach the required
return level.

5.3, Managerial insights

5.3.1. Comparizon of waterfall and agile development models
Based on the results shown in Table 6 and confirmed across all the
180 studied problem instances, we make the following ohservation.

Observation 1. The probabilistic remum is renched faster (or equally fast)
under the agile development approach than under the waterfoll developrent

approach.

This outcome is due to the capability to dynamically adjust the
project portfolio under the agile development approach. In particu-
lar, the company emploving the agile approach can pivol away from
projects, which development has not went well and start developing
new projects. This approach limits the risks, as compared to the wa-
terfall approach, where each committed project is completed even if it
ends up being a failed or nearly failed project, in terms of providing lit-
tle revenue, Observation 1 and the intuition behind it help understand
why the agile development approach has become popular among NPD
projects (Blank, 2013).

10
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532 Risk-seeking project selection ond assessment of NPD company's
performiance

The developed project selection framework is flexible to represent
a risk-seeking project selection, where the DM requires to reach the
targeted return with a low probability, such as p = 0.05, In the stochas-
tic programming and distributionally robust optimization literature,
(ambiguous) chance constraints in which the required reliability level
is low are referred to as optimistic chance constraints (Hanasusanto
et al,, 2017). They require the set of stochastic inequalities to hold in
the best 5% of the possible scenarios. Models with optimistic chance
constraints are enticing for a risk-seeking behavior, They can represent
the behavior of a venture capitalist with investments on many start-
ups, requiring that the companies pursue projects that can provide a
very high return even if with only a low probahility,

Fig. 1 illustrates the return trajectories at the p = 0,05 and p = 0,93
reliability levels, The figure is beneficial in illustrating three key results,
First, it shows that the same return can be achieved earlier under the
risk-secking project selection approach with a 5% reliability level than
under the risk-averse project selection approach with a 95% reliabilicy
level. This is as expected because the risk-seeking probabilistic return
focuses on the best 5% of the returns. These results hold across the
randomly generated scenario data sers.

Second, and more importantly, the probabilistic return trajectories
at p =005 and p = 095, shown in Fiz. 1, can be useful for the investors
to assist their decision on how to proceed with their investment on
the company. Particularly, the actual returns of the company over
time can be compared to these return trajectorics to assess whether
the company is likely to become a high-performing company with
return above the p = 005 trajectory, an average performing company
with return between the p = 005 and p = 095 trajectories, or a
low-performing company with return below the p = 095 trajectory.
Consequently, depending on whether the company is high-, average-,
or low-performing company, the investor can choose to intervene on
the company's development operations, provide additional support, or
wait longer. We summarize these guidelines in Observation 2,

Observation 2. The probabilistic return trajectories con be wsed to guide
a venture capiralist as follows (i) intervene on the operations or sell the
company, if the return is below the p = (.95 trajectory, (i) support the
company’s operations, if the retum is berween p = 095 and p = 003
trajectories, and (i) retain the company and let it operate independently,
if the return is above the p = (0L03 trajectory.

The derived thresholds are company specific and as such they
account for the type of projects the company is expected to have
and whether the waterfall or the agile development approach is used,
Therefore, comparing the company's actual performance over time
against the derived trajectories allows to assess how well the company
is operated. For example, if the company employs the waterfall devel-
opment approach and its return at period 10 is $5M, which is below
p = 083 frajectory, this puts the company's performance within the
waorst 5% of the initially estimated scenarios. Based on this information
and using Ohservation 2 guidelines, the venture capital can request
operational changes within the company to improve the performance
or let the company go by selling the ownership.

Third, Fig. 1 shows that under the agile development approach
the gap between p = 095 and p = 003 trajectories is narmower than
that under the waterfall development approach. For example, the gap
between p = 095 and p = 0,05 trajectorics in reaching $7M is under the
agile development approach 3 periods (8 — 3) and under the waterfall
development approach 5 periods (10—5), This leads us to Observation 3,

Observation 3. The agile, as compared to the waterfall, development
approach results in less uncertainty in fime to reach a certain refm.
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Table &
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Comparison of waterfall [W-RM)] and agile (A-RM) development models
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Fig. 1. Time io reach retarn under watecfall W-BRM (l=ft) and agile A-BRM (right) development approaches for po= 0095 (ling without markers] and for p = 005 (lne with markers).

This phenomenon is counterintuitive because the agile development
approach involves more stochasticity given that projects’ durations
are random, which is not the case under the waterfall development
approach. The reason for the phenomenon is the capability, under the
agile approach, to dynamically abandon projects that seem to fail, and
thereafter, start new projects. Thereby, the dynamic decision making
protects from failed ontcomes and allows the company to reach higher
probabilistic return levels faster. Consequently, the gap between p =
0.95 and p = (.05 trajectories is narrower under the agile, as compared
to the waterfall, approach implying less uncertainty regarding the time
when a certain return is reached. This is a further benefit of the agile
development approach and can make a difference whether a company
ohtains funding from a venture capitalist who prefers a more certain
time horizon for the investment.

533 Maximal excess probabilistic return
We show in this section that the benefit of taking decisions accord-

ing to the ideal investment plan (see Section 4.3) can be significant
for start-up companies. Fig. 2 displavs the largest excess return (dotted
line) that can be obtained with the ideal investment plan identified via
the proposed bisection algorithm. The results show for example that
when the goal is to reach a targeted return of $7 million with a 90%
reliability level as fast as possible, we could oltain, within the same
time [rame and an identical probability level, a return level of $7.9
million, which corresponds to a 13% excess retuwrn with respect to the
targeted $7 million.

Additdonally, the results for the waterfall development model W-
EM show that when the reliability level increases from p = 0.9 o
p = 1, whilst keeping the ideal return ar $4.4 million, the average
duration of completed projects increases from 3.5 to 4.3 periods (e, a
change from 10.5 months to 12.9 months). Consequently, increasing
the reliability level may promote investing in longer lasting projects
that have in our dataset higher risk and higher expected retum. The

11

Probahilistic
return at p=0.9 {55}
14

12

10

15

11
Time peried when probabilistic return reached

i 5

Fig. Z. Time to reach optimal retwm (solid line) and ideal return (dotted line) with
the waterfall development model W-RM.

reason for this result follows from the fact that is takes 11 periods o
reach the reliability target when p = | as compared to only 7 time
periods 1o reach the same reliability goal when p = 0.9, These additional
four development periods when p = 1 allow investments in longer
lasting projects, which, regardless of their risks, contribute to reaching
the reliability target earlier than if investments were made on projects
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with shorter development time. Similar results can be observed with
the agile development model (A-RM).

6. Conclusion

We develop optimization models for project portlolio selection un-
der two different tvpes of project management approaches, namely, the
plan-driven waterfall approach and the more flexible agile approach.
The models account for the (i) speed to get the products on market
and earn return fast and (ii) requirement to attain a certain return
with some probability level. Methodologically, our key contributions
include the introduction of the concept of an ideal investment plan and
the design of a bisection algorithm to determine the plan that provides
the targeted return as quickly as possible whilst maximizing the excess
return. We show that the algorithm enjovs finite convergence and that
the ideal plan ean provide a significantly higher return than an ap-
proach that only focuses on the time when a certain probabilistic return
is reached (see. e.g., Kettunen and Lejeune (2020)), We also develop
model sirengthening techniques and valid inequalities that speeds up
the solution of the static (waterfall) and dynamic (agile) disjunctive
integer nonconvex chance-constrained problems. Our computational
results show the efficiency of the proposed modeling and algorithmic
developments and the robustness of the models and their results with
respect (o the number of scenarios used to represent uncertainty,

Emploving the developed models, we provide three key managerial
insights in the project management domain. First, our results can
partially explain why the agile product development approaches are
popular in NPD (Hass, 2007; Blank, 2013). In particular, this is due
to reaching probabilistic return faster under the agile, as compared 1o
the waterfall, approach. The reason for this, in tumn, is the dynamic
capability 1o abandon projects which development has not succeeded
and Initiate new projects under the agile approach.

Second, we propose a visualization tool to guide a venture capital-
ist's investment on a company over Hme. The visualization tool uses the
developed models to derive three regions characterizing the company's
performance. These regions, along with the associated guidelines, are
as follows: (i) A low-performing region where the venture capitalist
should either intervene on the company’s operations (e.g., by making
structural changes or via strongly influencing decision making) or
sell the ownership of the company, (ii) An average-performing region
where the venture capitalist should support the company’s operations,
e.g., by providing advice, additional funding, or facilitating creation
of social capital. (iii) A high-performing region where the venture
capitalist should retain the company and let it operate independently.
These three regions are derived in such a way that they are company-
specific, and account for the chesen project management approach
(i.e., waterfall or agile) and the risk-retwm profile of the projects the
company is expected o consider.

Third, our results show thar there is less uncertainty 1o achieve a
target return level under the agile approach than under the waterfall
approach. This is a counterintuitive result since the agile development
approach includes also stochastieity in the projects’ duration, which is
not the case in the waterfall approach. The reason for this result is the
dynamic abandoning and re-starting of new projects, under the agile
approach, which protects from downside risks, and thereby, from worse
outcomes that would delay reaching the desired return level, This is
an additional benefit of the agile approach and can make a difference
whether a company obtains funding from a venture capitalist who has
a limited time window for the investment.

The developed models can incorporate several extensions. For exam-
ple, the models can be adjusted to account for the case when different
versions of the same development project are available representing
different resource loadings or technological approaches with associ-
ated expected return and risk levels, In such situations, set packing
constraints can be added to make sure that at most one of the dif-
ferent project versions can be chosen for development. These type of
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mutual exclusivity constraints on a subser of projects can be smoothly
included in the current formulation. Finally, whereas in the current
formulation the projects have homogeneous resource requirements, this
does not have to be the case. The inclusion of heterogeneous resource
requirements can be easily dealt with by adjusting the budget knapsack
constraint,

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at hitps:/Sdoi.org/10.1016/.cor. 2022, 105737,
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