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Abstract
Currently, theory of ray transforms of vector and tensor fields is well developed,
but the Radon transforms of such fields have not been fully analyzed. We thus
consider linearly weighted and unweighted longitudinal and transversal Radon
transforms of vector fields. As usual, we use the standard Helmholtz decom-
position of smooth and fast decreasing vector fields over the whole space. We
show that such a decomposition produces potential and solenoidal components
decreasing at infinity fast enough to guarantee the existence of the unweighted
longitudinal and transversal Radon transforms of these components. It is known
that reconstruction of an arbitrary vector field from only longitudinal or only
transversal transforms is impossible. However, for the cases when both linearly
weighted and unweighted transforms of either one of the types are known, we
derive explicit inversion formulas for the full reconstruction of the field. Our
interest in the inversion of such transforms stems from a certain inverse prob-
lem arising in magnetoacoustoelectric tomography (MAET). The connection
between the weighted Radon transforms and MAET is exhibited in the paper.
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Finally, we demonstrate performance and noise sensitivity of the new inversion
formulas in numerical simulations.

Keywords: vector tomography, longitudinal Radon transform,
transversal Radon transform, weighted Radon transform,
explicit inversion formula

1. Introduction

In this paper we study unweighted and linearly weighted Radon transforms of vector fields.
There is a significant body of work on ray transforms (that involve integration over straight
lines) of vector and tensor fields [1–5]. In particular, exponential and attenuated ray transforms
were studied in [6–9], and momentum ray transforms were investigated in [10, 11]. However,
when it comes to the Radon transforms of vector fields (with integration over hyperplanes),
there are very few publications [12, 13]; moreover, the consideration is usually restricted to
unweighted transforms of potential fields with finitely supported potentials. In the present
paper we consider general vector fields (i.e. not purely potential or solenoidal), and we study
both unweighted and linearly weighted Radon transforms.

As in the case of ray transforms, when studying the Radon transforms one finds it convenient
to use the Helmholtz decomposition. In other words, one splits a general vector field F into
the potential and solenoidal parts Fp and Fs, and considers transversal and longitudinal Radon
transforms of both Fp and Fs. However, even for a finitely supported field F components Fp

and Fs are defined in the whole space Rd and they are known to have only a polynomial decay
at infinity. Thus, in order to analyze the Radon transforms of Fp and Fs one first needs to
prove that such transforms do exist (i.e. integrals over hyperplanes in Rd converge). This is
not completely trivial. In particular, the estimate given in the foundational book [5] on ray
transforms does not guarantee the convergence of the Radon transforms. Thus, first we obtain
an improved estimate for the rate of decay at infinity of the potential and solenoidal parts Fp

and Fs of a fast decaying field F. This estimate guarantees the existence of the unweighted
longitudinal and transversal Radon transforms of Fp and Fs.

Similarly to the case of ray transforms, the longitudinal Radon transforms of a potential
field vanish. The same is true for the transversal transform of a solenoidal field. Therefore,
reconstructing a general vector field from only the longitudinal or only the transversal trans-
form(s) is not possible. However, it is not unusual in practice [6] that one of the transform types
(either longitudinal or transversal) cannot be measured. In order to replace missing informa-
tion one may consider measuring weighted transforms of the available type. For example, our
interest in this problem stems from a certain measurement scheme in the magnetoacoustoelec-
tric tomography (MAET). This scheme does not permit measuring a transversal transform
of a certain vector field, but, in addition to longitudinal transforms one can measure linearly
weighted longitudinal transforms of that field.

Below we present explicit formulas for solving two distinct problems. The first problem is
that of reconstructing a general vector field from known values of its transversal transform, and
from d− 1 weighted transversal transforms with various linear weights. The second problem
(motivated by MAET) is the reconstruction of a general vector field from d− 1 of its longit-
udinal transforms and one weighted longitudinal transform (again, with a linear weight). The
reader may want to compare our solutions of these problems to the results of [11], where a full
vector field is reconstructed from a ray transform and a first-moment ray transform.

The rest of the paper is organized as follows. We define all the needed transforms in
section 2.1 below, and we present explicit solutions to the above two problems in section 2.2. In
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sections 3 and 4 we provide proofs of the theorems formulated in section 2. Section 5 exhibits
a potential application of the Radon transforms of vector fields to a problem arising in MAET.
We further validate our theoretical results by numerical simulations, see section 6. Finally, the
proof of theorem 1 (on the rates of decay of Fp and Fs) is relegated into the appendix.

2. Formulation of the main results

2.1. Definitions and technical estimates

Consider a continuous function f (x) defined in Rd, subject to the condition f(x) =O
(
|x|−d

)
at

infinity. Define a hyperplane Π(ω,p) by the equation ω · x= p, where Sd−1 is the unit sphere
in Rd, and (ω,p) ∈ Sd−1 ×R. The Radon transform Rf is defined as the set of integrals of f
over all the hyperplanes:

[Rf ] (ω,p)≡
ˆ

Π(ω,p)

f(x)dAΠ(x), (ω,p) ∈ Sd−1 ×R,

where dAΠ(x) is the standard area element on Π(ω,p). Properties of the Radon transform
are traditionally studied for functions f (x) from the Schwartz class S(Rd). We recall that this
class consists of all C∞(Rd) functions f (x) whose derivatives decay at infinity faster than any
rational function:

sup
x∈Rd

|xβDαf(x)|<∞, |α|= 0,1,2, . . . , |β|= 0,1,2, . . . , (1)

where α and β are multi-indices, α= (α1, . . . ,αd),β = (β1, . . . ,βd),αj’s and βi’s are non-
negative integers, |α|=

∑d
j=1 |αj|, |β|=

∑d
i=1 |βj|, and

Dαf(x) =
∂|α|

∂α1x1∂α2x2 . . .∂αdxd
f(x), xβ = xβ1

1 x
β2
2 . . .xβdd .

A function f(x) ∈ S(Rd) can be reconstructed from its projections g=Rf using the well-
known filtered backprojection inversion formula [14]:

f=R−1(g)≡ 1
2
(2π)1−dI−αR#Iα−d+1g, (2)

where R# is the dual Radon transform that acts on a function g(ω,p) defined on Sd−1 ×R
according to the formula

[R#g](x) =
ˆ

Sd−1

g(ω,ω · x)dω,

and where the Riesz potential Iαf of a function f is expressed through the direct and inverse
Fourier transforms F and F−1 as follows

[Iαf](x) = [F−1(|ξ|−α[F f](ξ))](x).

Let us consider now a continuous vector field F(x) = (F1(x), . . . ,Fd(x)) defined on Rd,d⩾
2, whose components decay fast enough for the existence of integrals over each hyperplane
(e.g. |F(x)|=O

(
|x|−d

)
). Below we define several types of Radon transforms of such a field.

The componentwise Radon transform RF of F is defined in the obvious way:

[RF] (ω,p)≡ (RF1, ..,RFd)(ω,p), (ω,p) ∈ Sd−1 ×R.

3
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The transversal Radon transform D⊥F is the Radon transform of the projection of F onto
the normal ω to the plane Π(ω,p):[
D⊥F

]
(ω,p)≡

ˆ

Π(ω,p)

ω ·F(x)dAΠ(x) = [R(ω ·F(x))] (ω,p), (ω,p) ∈ Sd−1 ×R. (3)

For each fixed direction ω ∈ Sd−1, let us arbitrarily extend ω to an orthonormal basis
B= (ω,ω1, . . . ,ωd−1) of Rd, where ωj = ωj(ω), j = 1, . . . ,d− 1. To simplify the notation,
below we will suppress the dependence of ωj’s on ω. Define the longitudinal Radon trans-
forms Dq

kF of F,k= 1, . . .d− 1, as follows:[
Dq
kF

]
(ω,p)≡

ˆ

Π(ω,p)

ωk ·F(x)dAΠ(x) = [R(ωk ·F(x))] (ω,p), (4)

with (ω,p) ∈ Sd−1 ×R. For a faster decaying vector field F(x) (e.g. satisfying |F(x)|=
O
(
|x|−d−1

)
), one can define the weighted transversal transformsW⊥

k and longitudinal trans-
formsWq

k with linear weights ωk · x, by the following expressions:[
W⊥

k F
]
(ω,p)≡

ˆ

Π(ω,p)

(ωk · x)F(x) ·ωdAΠ(x) =
[
D⊥((ωk · x)F(x))

]
(ω,p), (5)

[
Wq

kF
]
(ω,p)≡

ˆ

Π(ω,p)

(ωk · x)F(x) ·ωk dAΠ(x) =
[
Dq
k((ωk · x)F(x))

]
(ω,p), (6)

with (ω,p) ∈ Sd−1 ×R, k= 1, . . . ,d− 1.
The present definitions of the unweighted longitudinal and transversal Radon transforms

coincide with those given in [4, 6] (where they are mentioned under the names of ‘probe’
and ‘normal’ transforms, respectively). Our definitions of the weighted transforms appear to
be new; they naturally extend the notion of ‘moments ray transforms’ [6, 11] to the case of
Radon transforms.

It is well known that the Radon transform of a scalar function considered on Sd−1 ×
R is redundant. Indeed, since Π(ω,p) = Π(−ω,−p), one concludes that [Rf ] (ω,p) =
[Rf ] (−ω,−p). Similarly, by inspecting equation (3) one can see that

[
D⊥F

]
(ω,p) =

−
[
D⊥F

]
(−ω,−p), where the change of sign occurs due to the factor ω· under the integ-

ral. The definitions of transforms Dq
k , W⊥

k , and Wq
k depend on two vectors, ω and ωk. In

general, our definition of basis B permits a significant freedom in choosing the dependence
ωk = ωk(ω). However, if we restrict consideration to the case ωk(ω) =−ωk(−ω), the follow-
ing redundancies will arise[

Dq
kF

]
(ω,p) =−

[
Dq
kF

]
(−ω,−p), (ω,p) ∈ Sd−1 ×R, k= 1, . . .d− 1,[

W⊥
k F

]
(ω,p) =

[
W⊥

k F
]
(−ω,−p), (ω,p) ∈ Sd−1 ×R, k= 1, . . .d− 1,[

Wq
kF

]
(ω,p) =

[
Wq

kF
]
(−ω,−p), (ω,p) ∈ Sd−1 ×R, k= 1, . . .d− 1.

Such redundancies can be exploited in practice, to reduce the number of required meas-
urements and to halve the number of floating point operations when implementing inversion
formulas, both known and the ones presented below. (For example, operator R# in (2) can
be computed by integration over a half of a sphere.) However, since the focus of this paper
is mostly theoretical, for simplicity of presentation we will work with projections defined on
Sd−1 ×R.
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For the future reference we note the obvious relations[
D⊥F

]
(ω,p) = ω · [RF] (ω,p),

[
Dq
kF

]
(ω,p) = ωk · [RF] (ω,p), (7)

with (ω,p) ∈ Sd−1 ×R.
Let us now consider a smooth and fast decaying vector field F(x) such that each component

Fm(x) of F(x) is a function from the Schwartz space S(Rd). We define the potential φ as the
convolution of the divergence Φ of F with the fundamental solution G of the Laplace equation
in Rd:

φ(x) = (Φ ∗G)(x) =
ˆ

Rd

Φ(y)G(x− y)dy, Φ(x) = divF(x), x ∈ Rd, (8)

where explicit expressions for G(x) are well known:

G(x) =
1
2π

ln |x| for d= 2, G(x) =−Γ(d/2− 1)
4π2

|x|2−d for d⩾ 3.

Now the potential part Fp of the field F is the gradient of φ:

Fp(x) =∇φ(x), x ∈ Rd, (9)

and the solenoidal part Fs is just the difference

Fs(x) = F(x)−Fp(x), x ∈ Rd. (10)

The following theorem is a technical result that is an important tool in our investigation.

Theorem 1. Suppose that each component Fk(x), k= 1, . . . ,d of a vector field F(x) is a function
from the Schwartz class S(Rd). Then potential φ and fields Fp and Fs given by equations (8)–
(10) have the following decay rates at infinity

|φ(x)|=O
(

1
|x|d−1

)
, (11)

|Fp(x)|=O
(

1
|x|d

)
, |Fs(x)|=O

(
1
|x|d

)
, (12)∣∣∣∣ ∂

∂xj
Fp(x)

∣∣∣∣ =O
(

1
|x|d+1

)
,

∣∣∣∣ ∂

∂xj
Fs(x)

∣∣∣∣=O
(

1
|x|d+1

)
, (13)∣∣∣∣ ∂2

∂xj∂xk
Fp(x)

∣∣∣∣ =O
(

1
|x|d+2

)
,

∣∣∣∣ ∂2

∂xj∂xk
Fs(x)

∣∣∣∣=O
(

1
|x|d+2

)
, (14)

where j,k= 1,2, . . . ,d.

The estimates (11)–(14) are a refinement of the well-known estimate on the rate of decay
of Fp and Fs given by theorem 2.6.2 of [5]:

|Fs(x)|⩽ C(1+ |x|)1−d, (15)

with the similar bound on Fp. The importance of estimates (11)–(14) for the present work is
in that they guarantee existence of the transversal, longitudinal, and component-wise Radon
transforms of Fp and Fs, so that

RF=RFp +RFs, D⊥F=D⊥Fp +D⊥Fs, Dq
kF=Dq

kF
p +Dq

kF
s, (16)

with k= 1,2, . . . ,d− 1. Transforms Wq
kF

p, Wq
kF

s, W⊥
k F

p, and W⊥
k F

s cannot be defined, in
general. Indeed, according to definitions (5) and (6), such transformswould require integration
of fields Fs and Fp multiplied by linear functions in x, over hyperplanes in Rd. Such products

5
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decay at infinity at the rate O(|x|1−d). Such decay is not sufficient for the existence of the
integrals.

2.2. Main theorems

The main results of this paper are the following two theorems:

Theorem 2. If an infinitely differentiable vector field F(x) = (F1(x), . . . ,Fd(x)) satisfies decay
conditions (1), its divergence Φ can be reconstructed from the transversal transform D⊥F by
applying the inversion formula (2) as follows

Φ(x) =

[
R−1

(
∂

∂p
D⊥F

)]
(x), x ∈ Rd. (17)

Further, the componentwise Radon transform of F can be reconstructed from D⊥F and
weighted transversal transforms with linear weightsW⊥

k F, k= 1, . . . .,d− 1, as follows:

[RF](ω,p) = ω[D⊥F](ω,p)+
d−1∑
k=1

ωk

(
∂

∂p
[W⊥

k F](ω,p)− [R{(ωk · x)Φ(x)}](ω,p)
)
, (18)

where (ω,p) ∈ Sd−1 ×R, j = 1,2, . . . ,d. Finally, field F can be recovered by inverting RF
componentwise:

Fj(x) =R−1 (ej ·RF)(x), x ∈ Rd, j= 1,2, . . . ,d, (19)

where vectors e1,e2, . . . ,ed form the canonical orthonormal basis in Rd, and where R−1 is
understood as the filtration/backprojection formula (2).

In order to formulate the next theorem, let us denote byΨ the componentwise LaplacianΨ
of the solenoidal part of the field Fs:

Ψ(x)≡ (Ψ1(x),Ψ2(x), . . . ,Ψd(x)), Ψj(x) = ∆Fsj (x), x ∈ Rd, j= 1, ..,d.

Theorem 3. If an infinitely differentiable vector field F(x) = (F1(x), . . . ,Fd(x)) satisfies decay
conditions (1), the componentwise LaplacianΨ of its solenoidal part Fs and the Radon trans-
form of Ψ can be reconstructed from longitudinal transforms Dq

j F, j = 1, . . . ,d− 1, using the
following formulas:

[RΨ](ω,p) =
∂2

∂p2

d−1∑
j=1

ωj[Dj
qF](ω,p),

Ψj(x) =
[
R−1 (ej ·RΨ)

]
(x), x ∈ Rd, j= 1,2, . . . ,d. (20)

Further, the divergence Φ of the field can be reconstructed from the linearly weighted lon-
gitudinal transformWq

1F and previously found Ψ as follows:

Φ(x) =R−1

{
R((x ·ω1)ω1 ·Ψ(x))− ∂2

∂p2
Wq

1F

}
, x ∈ Rd, (21)

whereR−1 is understood as the filtration/backprojection formula (2). Finally, filed F is recon-
structed from Φ and Ψ by convolving these functions with G and its gradient:

F(x) = (Φ ∗∇G)(x)+
d∑
j=1

ej(Ψj ∗G)(x), x ∈ Rd. (22)

6
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We provide the proofs of theorems (2) and (3) in sections 3 and 4, respectively. The proof
of theorem (1) can be found in appendix.

3. Properties of the transversal transforms and proof of theorem 2

3.1. Reconstructing the potential part of the field

Most of the material reviewed in the present section 3.1 is known. However, to make the
presentation self-contained, we provide elementary proofs.

Proposition 4. Suppose Fs(x) is a differentiable solenoidal vector field decreasing at infinity
at the rate Fs(x) =O

(
|x|−d

)
. Then the transversal Radon transform D⊥Fs of Fs vanishes:

[D⊥Fs](ω,p) = ω · [RFs] (ω,p) = 0, (ω,p) ∈ Sd−1 ×R. (23)

Proof. Fix an arbitrary pair (ω,p) ∈ Sd−1 ×R and the corresponding hyperplane Π(ω,p).
Consider a sphere S(0,R) of radiusR centered at the origin. Further, consider the regionΥ(R,p)
bounded by a part of S(0,R) and Π(ω,p), and such that the interior normal to the boundary of
Υ(R,p) on Π(ω,p) coincides with ω.

Let us denote by ∂Υ1(R,p) the spherical part of the boundary Υ(R,p), i.e. ∂Υ1(R,p)≡
∂Υ(R,p)∩ S(0,R). Since divFs = 0, the following integrals are equal

ˆ

B(0,R)∩Π(ω,p)

Fs(x) ·ωdAΠ(x) =
ˆ

∂Υ1(R,p)

Fs(x) · n(x)dS(x),

where dS(x) is the standard area element on S(0,R) and n(x) is the exterior normal to the
sphere. Now, let us take the limit R→∞. Due to the fast decrease of Fs(x) at infinity,
the right hand side in the above equation converges to 0. The left hand side converges to´
Π(ω,p)F(x) ·ωdAΠ(x), proving that this integral is equal to 0. Since this is true for arbitrary
(ω,p), equation (23) follows.

The corollary below follows immediately from proposition 4 and theorem 1.

Corollary 5. Suppose F(x) is a C∞ vector field defined on Rd and decaying at infinity at rates
given by equation (1), and Fp +Fs are defined by equations (8)–(10). Then

D⊥F=D⊥(Fp +Fs) =D⊥Fp. (24)

Suppose h is a Radon integrable function with a Radon integrable derivative ∂
∂xk
h. Then the

following relation holds [15]:

R
[

∂

∂xk
h

]
= (ek ·ω)

∂

∂p
Rh.

This leads to the following Lemma.

Lemma 6. Suppose vector field H(x) = (H1(x), . . . ,Hd(x)) is differentiable and decays at
infinity at the rate |H(x)|=O

(
|x|−d

)
or faster, with ∂Hk

∂xk
=O

(
|x|−d

)
, k= 1, . . . ,d. Then

[R(divH)] (ω,p) =
∂

∂p

[
D⊥H

]
(ω,p), (ω,p) ∈ Sd−1 ×R.

7
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Proof. The divergence divH(x) has the rate of decay O
(
|x|−d

)
, justifying the following:

R(divH) =
d∑

k=1

R
(
∂Hk

∂xk

)
=

d∑
k=1

(ek ·ω)
∂

∂p
RHk =

∂

∂p
R

d∑
k=1

(ek ·ω)Hk

=
∂

∂p
R(ω ·H) = ∂

∂p
(ω ·R(H)) =

∂

∂p
D⊥H,

where equation (7) is used on the second line of equalities.

In particular for a C∞ field F satisfying the rates of decay (1) we obtain

RΦ=
∂

∂p
D⊥F. (25)

SinceΦ is a function from the Schwartz classS(Rd) it can be reconstructed from projections
using the filtered backprojection formula (2), which yields equation (17). The potential part of
the field Fp(x) can now be computed by combining (8) and (9):

Fp(x) =∇(G ∗Φ)(x) = (Φ ∗∇G)(x). (26)

3.2. Reconstructing the whole filed

Due to proposition 4, the solenoidal part Fs of the field F lies in the null space of the transversal
Radon transform D⊥, and therefore, cannot be reconstructed from the knowledge of D⊥F.
Thus, in addition toD⊥F, in this section we assume the knowledge of the transversal weighted
transformsW⊥

k F,k= 1, . . . ,d− 1, defined by (5). This information will allow us to reconstruct
the whole field F and thus to complete the proof of theorem 2

First, for the future use we would like to find projections ofRF on the vectors of the basis
B. By combining equations (7) and (24) one observes:

ω · [RF] (ω,p) =
[
D⊥Fp

]
(ω,p), (ω,p) ∈ Sd−1 ×R. (27)

Let us find projections of RF on vectors ω1, . . . ,ωd−1 of the basisB. Note that, due to (4)

ωk · [RF] =Dq
kF, , k= 1, . . . ,d− 1.

We start with ω1 ·RFp :

ω1 · [RFp](ω,p) = [Dq
1F

p](ω,p) =
ˆ

Π(ω,p)

ω1 ·Fp(x)dAΠ(x)

=

ˆ

R

. . .

ˆ

R

ˆ
R

ω1 ·Fp(pω+ y1ω1 + . . .+ yd−1ωd−1)dy1

 dy2 . . . dyd−1

=

ˆ

R

. . .

ˆ

R

ˆ
R

∂

∂y1
φ(pω+ y1ω1 + . . .+ yd−1ωd−1)dy1

 dy2 . . . dyd−1

=

ˆ

R

. . .

ˆ

R

 lim
a→+∞
b→−∞

φ(pω+ y1ω1 + . . .+ yd−1ωd−1)|y1=ay1=b

 dy2 . . . dyd−1 = 0,

8
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for any (ω,p) ∈ Sd−1 ×R. Since the numbering of vectors ω1, . . . ,ωd−1 in the basisB is arbit-
rary, we conclude that

ωk · [RFp](ω,p) = [Dq
kF

p](ω,p) = 0, k= 1, . . . ,d− 1, (ω,p) ∈ Sd−1 ×R. (28)

In other words, a longitudinal transform of a potential field vanishes. Since basis B is
orthonormal, by combining (28) with (27) one obtains the following formula:

RFp = ω ⟨ω ·RFp⟩= ωD⊥Fp = ωD⊥F. (29)

Thus, the componentwise Radon transform of the potential part Fp of the field F can be
easily recovered from the transversal transform ωD⊥F.

Let us find what information can be extracted from the weighted transversal transforms
W⊥

k F. It follows from the definition (5) that W⊥
k F=D⊥H(k) where field H(k)(x) is defined

as (ωk · x)F(x), k= 1,2, . . .d− 1. Due to the fast decay of F(x) (see (1)), fields H(k)(x) satisfy
conditions of lemma 6. Therefore
∂

∂p
W⊥

k F=
∂

∂p
D⊥(H(k)) =R(divH(k)) =R(ωk ·Fp +ωk ·Fs +(ωk · x)Φ(x))

= ωk ·RFp +ωk ·RFs +R{(ωk · x)Φ(x)}.

Due to (28) term ωk ·RFp vanishes, and one obtains

ωk ·RFs =
∂

∂p
W⊥

k F−R{(ωk · x)Φ(x)}, k= 1, . . . ,d− 1.

These equations combined with (23) determine projections of vector-valued function RFs

onto the vectors of the orthonormal basisB, leading to the following result:

RFs =
d−1∑
k=1

ωk

[
∂

∂p
W⊥

k F−R{(ωk · x)Φ(x)}
]
.

By combining the latter formula with equation (29) we arrive at the formula (18) that gives
an explicit expression for [RF](ω,p). Since field components Fj(x) are functions from the
Schwartz space, formula (2) can be used to reconstruct Fj’s from components of the vector-
valued [RF](ω,p), thus yielding equation (19). The proof of theorem 2 is complete.

4. Properties of longitudinal transforms and proof of theorem 3

In this section we assume that only longitudinal transforms Dq
j F, j = 1, . . . ,d− 1, and one

of the weighted longitudinal transforms (e.g.Wq
1F) are known. Our goal is to reconstruct field

F from these data.

4.1. Reconstructing the solenoidal part of the field

Proposition 7. Suppose F is a smooth vector field satisfying the decay conditions (1), and Fp,
Fs are its potential and solenoidal parts, respectively. Then longitudinal transforms Dq

j F
p of

Fp vanish, j= 1, . . . ,d− 1, and the Radon transform of the solenoidal part can be expressed
through Dq

j F as follows:

[RFs](ω,p) =
d−1∑
j=1

ωj [Dq
j F](ω,p), (ω,p) ∈ Sd−1 ×R. (30)

9
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Proof. Using (7) and (29) one obtains

Dq
j F= ωj ·RF= ωj ·R(Fp +Fs) = ωj ·ωD⊥Fp +ωj ·RFs = ωj ·RFs = Dq

j F
s,

which implies that all longitudinal transforms of the potential part of a field vanish:

Dq
j F

p = 0, j= 1, . . . ,d− 1.

Further, by expanding vector RF in basisB and using (7) again see that

RF= (ω ·RF)ω+
d−1∑
j=1

(ωj ·RF)ωj = ωD⊥F+
d−1∑
j=1

ωjDq
j F,

with

ωD⊥F= ωD⊥FP =RFp and ωjDq
j F= ωjDq

j F
s, j= 1, . . . ,d− 1,

so that (30) holds.

Equation (30) shows that the longitudinal transforms Dq
j F, j = 1,2, . . . ,d− 1, contain

enough information to obtain the componentwise Radon transform of the solenoidal part of
the field. However, a straightforward componentwise application of the inversion formula (2)
is not justified in general, since components of the field Fp are not in the Schwartz space.
It is known that formula (2) remains valid for slower decaying functions (see Chapter 1 of
[15]). However, reconstruction of functions decaying at the rate (12) still, in general, cannot
be guaranteed. While we conjecture that inversion formula (2) can be used for componentwise
inversion of (30), we will not prove this statement here. Instead, we notice that by computing
the second derivative of equation (30) in p one obtains the Radon transform of the compon-
entwise Laplacian Ψ of Fs:

R(Ψ) =
∂2

∂p2
RFs =

∂2

∂p2

d−1∑
j=1

ωjDq
j F. (31)

Let us find out the rate of decay of components of Ψ at infinity. Using (10) one obtains

Ψk(x) = ∆Fs
k(x) = ∆Fk(x)−∆Fp

k(x) = ∆Fk(x)−∆
∂

∂xk
φ(x) = ∆Fk(x)−

∂

∂xk
Φ(x)

= ∆Fk(x)−
∂

∂xk
divF(x), k= 1, . . . ,d.

Since each component of field F belongs to the Schwartz space, so doesΨk(x),k= 1, . . . ,d.
Therefore, equation (31) can be inverted componentwise using formula (2), thus proving for-
mula (20).

Knowing Ψ, the solenoidal part Fs of the field can be recovered as the following convolu-
tion:

Fs = G ∗Ψ.

4.2. Reconstructing the whole field

In this section we will show that, assuming that Ψ is known (for example, reconstructed
using formula (20)), the divergence Φ of the field can be reconstructed from the weighted
longitudinal transform Wq

1 (F) using formula (21), and the whole field F can be obtained as
convolutions (22).

10
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As before, we will try to differentiate the weighted transform Wq
1F. More precisely, let us

evaluate the following expression:

(ek ·ω)
∂

∂p
Wq

1F= (ek ·ω)
∂

∂p
R((x ·ω1)(ω1 ·F(x)))

=R
(

∂

∂xk
[(x ·ω1)(ω1 ·Fs(x))]

)
+R

(
∂

∂xk
[(x ·ω1)(ω1 ·Fp(x))]

)
, (32)

The second term in the right hand side of (32) can be transformed as follows:

R
(

∂

∂xk
[(x ·ω1)(ω1 ·Fp(x))]

)
=R

(
∂

∂xk
[(x ·ω1)(ω1 ·∇φ(x))]

)
=R((ek ·ω1)(ω1 ·∇φ(x)))+R

(
(x ·ω1)

∂

∂ω1

∂φ(x)
∂xk

)
. (33)

The first term in the right hand side of (33) can be seen to be equal to (ek ·ω1)Dq
1(F

p); it
vanishes as a longitudinal transform of a potential field. The remaining second term in (33)
can be simplified further:

R
(
(x ·ω1)

∂

∂ω1

(
∂φ(x)
∂xk

))

=

ˆ

R

. . .

ˆ

R

ˆ
R

y1
∂

∂y1

(
∂φ

∂xk
(pω+ y1ω1 + . . .+ yd−1ωd−1)

)
dy1

 dy2 . . . dyd−1

=−
ˆ

R

. . .

ˆ

R

ˆ
R

∂

∂xk
φ(pω+ y1ω1 + . . .+ yd−1ωd−1)dy1

 dy2 . . . dyd−1

=−R
(

∂

∂xk
φ(x)

)
=−R

(
Fp
k

)
, (34)

where integration by parts was performed with respect to y1. By combining (32)–(34) we thus
obtain

(ek ·ω)
∂

∂p
Wq

1 (F) =R
(

∂

∂xk
[(x ·ω1)(ω1 ·Fs(x))]

)
−R

(
Fp
k

)
. (35)

Now, let us apply the operator (ek ·ω) ∂
∂p again, this time to equation (35):

(ek ·ω)2
∂2

∂p2
Wq

1 (F) =R
(

∂2

∂x2k
[(x ·ω1)(ω1 ·Fs(x))]

)
−R

(
∂

∂xk
Fp
k

)
.

By summing the above formula in k from 1 to d one obtains

∂2

∂p2
Wq

1 (F) =R(∆[(x ·ω1)(ω1 ·Fs(x))])−R(Φ) . (36)

Further, we note that

∆[(x ·ω1)(ω1 ·Fs(x))] = 2ω1 ·∇(ω1 ·Fs(x))+ (x ·ω1)∆[ω1 ·Fs(x)]

= 2ω1 ·∇(ω1 ·Fs(x))+ (x ·ω1)ω1 ·Ψ(x).

11
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This allows one to simplify the first term in the right hand side of (36) as follows:

R(∆[(x ·ω1)(ω1 ·Fs(x)]) = 2R[ω1 ·∇(ω1 ·Fs(x))]+R((x ·ω1)(ω1 ·Ψ(x)))

= 2Dq
1(∇(ω1 ·Fs(x))+R((x ·ω1)(ω1 ·Ψ(x)))

=R((x ·ω1)(ω1 ·Ψ(x))) , (37)

which holds since the longitudinal transform of a potential field Dq
1(∇(ω1 ·Fs(x)) vanishes.

By combining (36) and (37) we arrive at the following formula

R(Φ) =R((x ·ω1)(ω1 ·Ψ(x)))− ∂2

∂p2
Wq

1(F). (38)

Now the LaplacianΦ of the potential φ can be reconstructed by inverting the Radon transform
in (38), yielding the whole field can be reconstructed by computing convolutions (22). This
completes the proof of theorem 3.

5. Vector fields in magnetoacoustoelectric tomography

Our interest in the Radon transforms of vector field is motivated, in part, by an inverse prob-
lem arising in MAET. This imaging modality is a novel coupled-physics technique designed
to image the electrical conductivity of biological objects. It is based on measurements of elec-
tric potential arising in conductive tissues when they move in a magnetic field. In detail, one
places the object of interest in a strong constant magnetic field and illuminates it with ultra-
sound pulses [16–20]. Frequently this is done with the object immersed in conductive saline,
which provides good acoustic coupling and facilitates the measurements of the arising electric
potential with the use of electrodes immersed in the liquid. The said potential results from the
interaction of the vibrational motion of electrons and ions contained in a conductive tissue,
with magnetic field. This generates the Lorentz forces that separate the particles of opposite
polarities and, in turn, results in Ohmic current flowing through the object and the saline. The
electric potential associated with this current is then measured outside of the object, providing
the data for the future MAET reconstruction.

5.1. A traditional data acquisition scheme

In the remaining part of the section 5 and in section 6 we work with the three-dimensional
space.

It has been shown [20] that when the tissue with conductivity σ(x) moves with velocity
V(t,x)within magnetic fieldB, the arising Lorentz force will generate Lorentz currents JL(t,x)
given by the formula

JL(t,x) = σ(x)B×V(t,x). (39)

The vibrational velocity V(t,x) of the tissues arising due to the ultrasound excitation is
governed by the standard wave equation with the speed of sound that can be assumed constant
within soft tissues. Without loss of generality the speed of sound can be set to 1. Then V(t,x)
and the acoustic pressure p(t,x) can be related to the velocity potential ζ(t,x) by equations

V(t,x) =
1
ρ
∇ζ(t,x), p(t,x) =

∂

∂t
ζ(t,x).

12
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Here the density ρ is assumed to be constant within soft tissues and equal to the density of
water. The scalar velocity potential ζ(t,x) itself also satisfies the wave equation in the whole
space R3:

∆ζ(t,x) =
∂2

∂t2
ζ(t,x).

The time scales of this model are such that the electromagnetic effects are much faster than
the mechanic motion of the liquid [19]. Therefore, the currents in the system can be considered
stationary, corresponding to velocity V(t,x) at the given time t. Then, it can be shown that the
difference of potentialsM(t) measured by a pair of electrodes can be expressed as follows [21]

M(t) =
1
ρ

ˆ

Ω

ζ(t,x)B ·C(x)dx, C(x)≡∇× I(x), (40)

where the lead current I(x) is the current that would flow through the object in the absence of
the magnetic and acoustic excitation, if a unit potential difference were applied to the electrode
pair. This quantity appears in (40) because I(x) also describes the sensitivity of the measuring
system to a dipole placed at the point x. Finally, the domain Ω in the above equation is the
volume occupied by the saline and by the object immersed in it. Below, it will be convenient
for us to consider a model where Ω is large and can modeled by the whole space R3. A meas-
urement corresponding to a given acoustic wave ζ(t,x) is, according to (40), a function of one
variable. The goal of MAET is, by using a sufficiently rich set of excitations ζ(t,x), to collect
enough information for reconstruction of the conductivity σ(x) of the tissues.

In the early mathematical work on MAET [21, 22] mathematicians would assume that the
object and the electrodes remain fixed and the transducer is moved around the object providing
a large family of excitations ζ(t,x). Then the inverse problem of MAET naturally decouples
into two steps. Since curl C(x) is independent from ζ(t,x), one considers (40) as values of
projections of the quantity B ·C(x) on the complete set of excitations ζ(t,x), and reconstructs
B ·C(x). Then, the second step is to reconstruct the conductivity σ(x) from B ·C(x), possibly
from measurements repeated with two or three different orientations of B. Depending on the
waveforms ζ(t,x), the first step frequently can be reduced to one of the known tomography
problems. For example, if one illuminates the object by ideal plane waves

ζ(t,x) = δ(t− x ·ω),

with various directions ω ∈ S2, the resulting measurements can be expressed the Radon trans-
form of B ·C(x), that can be easily inverted. Similarly, if one assumes an ideal point-like
transducer that produces spherical outgoing waves, the problem reduces to the inverse source
problem of thermo- and photoacoustic tomography, whose solution is well known by now (see,
e.g. [23, 24]).

The measuring scheme described above is easy to analyze. However, it does not work well
in practice. Indeed, if electrodes and the object are held in a fixed position, there are very few
directions from which the transducer can send sound waves into the object without illuminat-
ing the electrodes, which generates strong spurious electric pulses that overwhelm the useful
signal. Thus, researchers are investigating a different approach to data acquisition [25, 26],
which assumes that object is rotated while the electrodes are kept stationary. Equivalently,
one can keep the object fixed, and rotate the electrodes and transducer(s). In both cases, the
curl C(x) becomes a function of the object (or electrodes’) position, and the traditional two
step reconstruction procedure described above is not applicable anymore.

13
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Figure 1. The novel MAET scheme; the electrode/transducer assembly rotates around
the object.

5.2. Acquisition scheme with a rotated object

We thus consider here the novel acquisition scheme for MAET, with a rotating electrode/trans-
ducer assembly, as shown in figure 1. The object under investigation is immersed in a con-
ductive saline, and the assembly rotates around it. For simplicity, we model the propagation of
currents in this scheme assuming that the electrodes are placed far away from the object. Here,
the conductive medium is presumed to occupy all ofR3,with the conductivity σ(x) being con-
stant and known outside of the supportΩ0 of the inhomogeneity, i.e. σ(x) = σ0 for x ∈ R3\Ω0.
Then the lead current I is a function of x and the orientation ν of the electrodes, i.e. I≡ Iν(x).
We assume that, in the absence of the inhomogeneity, the electrodes generate field E0

ν = ν. In
the presence of inhomogeneity, additional potential uν(x) will arise, so that the current can be
expressed as

Iν(x) = σ(x)(ν+∇uν(x)), (41)

subject to the following condition at infinity:

Iν(x) = σ0E
0
ν + o(1) = σ0ν+ o(1)as x→∞.

Due to the absence of sinks and sources of charges in the medium, current Iν(x) is solen-
oidal. By setting to zero the divergence of (41) we find that potential uν(x) solves the diver-
gence equation, subject to the decay at infinity

∇· (σ(x)∇uν(x)) =−ν ·∇σ(x), x ∈ R3, (42)

lim
x→∞

uν(x) = 0. (43)

The above simplified model will allow us to express potential uν and current Iν for an
arbitrary orientation ν through three ‘basis’ solutions. Indeed, let us consider the solutions

14
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u( j)(x), j = 1,2,3 of (42), (43) corresponding to directions ν = e1,e2,e3, where ej’s are the
canonical vectors in R3:

u(j)(x)≡ uej(x), j= 1,2,3.

The corresponding total currents and their curls will be denoted by I( j)(x) and C( j)(x)
respectively:

I(j)(x) = σ(x)(ej+∇u(j)(x)), C(j)(x) =∇× I(j)(x), j= 1,2,3.

Due to the linearity of the problem (42), (43) with respect to the right hand side of (42),
for an arbitrary direction ν the potential uν(x) and current Iν(x) can be represented as the
following linear combinations:

uν(x) =
3∑
j=1

(ej · ν)u( j)(x),

Iν(x) =
3∑
j=1

(ej · ν)I( j)(x) = σ(x)
3∑
j=1

(ej · ν)(ν+∇u( j)(x)),

= σ(x)(ν+
3∑
j=1

(ej · ν)∇u( j)(x)). (44)

Let us denote by Cν(x) the curl of the three-dimensional field Iν(x):

Cν(x) =∇× Iν(x).

Recall that MAET measurements are directly related to B ·Cν(x) (see equation (40)). Let
us assume for now that the transducer is oriented along the vector ω perpendicular to ν,
and is producing ideal plane waves. Then, the corresponding measurements M(ν,ω, t) can be
expressed as

M(ν,ω, t) =
1
ρ

ˆ

Ω0

δ(t− x ·ω)B ·Cν(x)dx. (45)

Here the integration is restricted to Ω0 since the curls C( j)(x) of currents I( j)(x) vanish within
any region with constant conductivity, i.e. outside ofΩ0. By combining equations (44) and (45)
one obtains

M(ν,ω, t) =
1
ρ

ˆ

Ω0

δ(t− x ·ω)B ·
3∑
j=1

(ej · ν)C(j)(x)dx=
ˆ

Ω0

δ(t− x ·ω)ν ·C(x)dx,

where we introduced the vector field C(x) defined as follows

C(x) =
1
ρ

(
B ·C(1),B ·C(2),B ·C(3)

)
(x).

We thus recognize M(ν,ω, t) as a longitudinal Radon transform of the vector field C(x). If
one directs vector ν to be parallel to one of the vectors ω1 or ω2 orthogonal to ω,measurements
M(ν,ω, t) coincide with the longitudinal transforms

[
Dq
kC

]
(ω,p) defined by equation (4):

M(ωk,ω, t) =
[
Dq
kF

]
(ω, t), k= 1,2.
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If one manages to reconstruct from MAET measurements field C(x), projections of curls
B ·C( j) are easily found:

B ·C(j)(x) = ρej ·C(x), j= 1,2,3.

Then, the measurements can be repeated with alternatively directed B, until C( j)’s can be
determined. After that, currents I( j) and conductivity σ(x) can be reconstructed, following the
techniques presented in [21, 22]. In a simplified two-dimensional setting (as in [25]), curls
C( j), j = 1,2, are oriented orthogonally to the plane in which currents are flowing, and mag-
netic induction B is parallel to C( j)’s. Additional directions of B are not needed in this case.

However, analysis presented in the previous sections of this paper shows that only a solen-
oidal part of a vector field C(x) can be reconstructed from known longitudinal transforms
Dq
kC, k= 1,2. In general, there is no reason to expect that field C(x) is solenoidal. As a way

to remedy this situation, we propose to conduct additional measurements, by illuminating the
object with linearly modulated acoustic waves in the form

ζ(t,x) = (x ·ω1)δ(t− x ·ω), (46)

with directions ω varying over S2, and ω1 aligned with the electrode directions. Such meas-
urements N(ω1,ω, t) are described by the formula

N(ω1,ω, t) =
1
ρ

ˆ

Ω0

(x ·ω1)δ(t− x ·ω)B ·
3∑
j=1

(ej · ν)C(j)(x)dx,

=

ˆ

Ω0

(x ·ω1)δ(t− x ·ω)(ω1 ·C(x))dx,

they can be expressed as the weighted longitudinal transformWq
1C:

N(ω1,ω, t) =
[
Wq

kC
]
(ω, t).

Theorem 3 states that the vector field C(x) can be reconstructed from its longitudinal trans-
forms Dq

1C and Dq
2C and weighted longitudinal transformWq

1C using formulas (20)–(22).
MAETmeasurements using linearly modulated waves (46) have not been implemented pre-

viously, in part because the benefit of such measurements have not been previously discussed
in the literature. However, there is no physical obstacles for conducting such an experiment.
Indeed, functions in the form (46) are easily seen to satisfy the wave equation. They can be
generated in a number of ways. For example, if a transducer array is used for sound generation
(as in [26]), such waves can be obtained by scaling linearly the excitation voltage along the
transducer elements. If a synthetic flat detector is utilized (as in [25]), one obtains the desired
result by a weighted averaging of individual measurements. Such sound waves can also be
excited using optically generated ultrasound [27, 28], by using optical excitation with linearly
varying intensity.

We will not attempt to simulate a full MAET experiment with linearly modulated sound
waves in this paper, leaving it to the future work. Below we present numerical simulations of
reconstruction of a 3D vector field from its longitudinal transformsDq

1F,D
q
2F and the weighted

longitudinal transformWq
1F.

6. Numerical simulations

The goal of this section is to demonstrate the validity of the exact reconstruction formulas (20)–
(22) in a numerical experiment. To this end we picked a smooth phantom F(x) defined in the
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Figure 2. Components of vector field F and the gray scale we use throughout the paper.

unit ball B(1,0) in R3. Each component Fj(x), j = 1,2,3 is a linear combination of a rather
arbitrary collection of shifted radially symmetric functions (‘bumps’)

Fj(x) =
Mj∑
k=1

ak,jf
(
x− x(c)k,j ,Rk,j

)
,

f(r,R) =

{ (
1− r2

R

)4
, r< R,

0, r⩾ R,

where ak,j’s are weights, and x
(c)
k,j are the centers and Rk,j are the radii of support of the corres-

ponding bumps. For the ease of visualization, all centers x(c)k,j were chosen to lie in one of the
planes x1 =−0.3,x2 =−0.3, or x3 =−0.3. Each so defined component Fj is a C3(B(1,0))
function. The phantom is shown in figure 2, and the values of constants xk,j, Rk,j, and ak,j used
in our simulations can be found in table 1. In addition, M1 = 5, M2 = 5, M3 = 8.

Formulas (5)–(7) show that one can find values of longitudinal transforms Dq
1F, D

q
2F, and

Wq
1F by computing the standard and the linearly weighted Radon transforms of each of the

Fj, j = 1,2,3. The latter transforms of the radial bump functions f
(
x− x(c)k,j ,Rk,j

)
are given by

the following formulas that can be obtained by elementary calculations:

[
Rf

(
x− x(c)k,j ,Rk,j

)]
(ω,p) =

π

5
R2
k,j

1−

(
p−ω · x(c)k,j

)2

R2
k,j


5

,

when
∣∣∣p−ω · x(c)k,j

∣∣∣< Rk,j, (0 otherwise), and[
R
{
(ω1 · x)f

(
x− x(c)k,j ,Rk,j

)}]
(ω,p) =

(
ω1 · x(c)k,j

)[
Rf

(
x− x(c)k,j ,Rk,j

)]
(ω,p).

While our formulas are valid for any choice of orthonormal basis vectors ω1(ω) and ω2(ω),
for numerical simulations we defined these vectors as follows. Vector ω2 was chosen to lie in
the horizontal plane spanned by canonical vectors e1 and e2; it was computed as follows:

ω2(ω) =
ω∗
2 (ω)

|ω∗
2 (ω)|

,where ω∗
2 (ω) = (−(ω · e2),(ω · e1),0).
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Table 1. Values of constants xk,j, Rk,j, and ak,j used in both simulations.

j k xk,j Rk,j ak,j

1 1 (0.2,−.3,−.3) 0.4 1.0
1 2 (−.3,−.3,0.2) 0.5 1.7
1 3 (−.3,−.3,0.2) 0.25 −1.7
1 4 (−.3,0.3,−.3) 0.5 1.5
1 5 (−.3,0.3,−.3) 0.2 −2.5
2 1 (0.2,0.2,−.3) 0.5 1.0
2 2 (−.3,0.3,0.2) 0.5 1.5
2 3 (−.3,0.3,0.2) 0.2 −2.5
2 4 (0.3,−.3,0.2) 0.5 1.7
2 5 (0.3,−.3,0.2) 0.25 −1.7
3 1 (−.3,−.3,−.3) 0.45 1.5
3 2 (−.3,−.3,−.3) 0.2 −1.5
3 3 (−.3, .05, .45) 0.4 1.0
3 4 (−.3, .45, .05) 0.4 −1.0
3 5 (.05,−.3, .45) 0.4 −1.0
3 6 (.45,−.3, .05) 0.4 1.0
3 7 (.05, .45,−.3) 0.4 1.0
3 8 (.45, .05,−.3) 0.4 −1.0

The directions of ω were discretized in such a way (see the next paragraph), that the values
(0,0,1) and (0,0,−1)were never used, and the above formula for ω2 was always well defined.
Vector ω1(ω) was computed as the cross-product ω1(ω) = ω×ω2(ω).

The following grid in the variables (ω,p) was used to compute the Radon transforms.
Variable p was discretized using a uniform gird with 257 nodes in the interval [−1,1]. Vec-
tor ω(θ,φ) = (sinφ cosθ,sinφsinθ,cosφ) was discretized using a product grid on [0,2π]×
[0,π], with 513 uniformly spaced nodes in the variable θ and 256 Gaussian nodes in the vari-
able t= cosφ. For simplicity of presentation we did not use the redundancy in the Radon
transform to reduce the required data and the computational complexity. However, in practice
it is sufficient to vary ω over half a sphere and multiply the result by the factor of 2.

The inversion of the classical Radon transform required by equations (20) and (21) was
implemented by discretizing the 3D version of the formula (2), with α= 0:

f(x) = [R−1g](x) =
1

8π2

[
R#

(
∂

∂2p
g(ω,p)

)]
(x), x ∈ B(1,0). (47)

The inversion was computed in the nodes of 257× 257× 257 Cartesian grid in x, for |x|⩽
1 only. For our first simulation, the derivatives in p in (21) and in (47) were computed by
a spectrally accurate algorithm, using the Fast Fourier transform (FFT), in order to achieve
high accuracy when processing theoretically exact data. The components of the reconstructed
fields Fs(x) and Fp(x) are shown in figure 3 (the gray scale used in the images is the same
as in figure 2). When added together, these fields produce an accurate approximation to the
exact F(x). When plotted in a grey scale figure (not shown here) the reconstructed F(x) is
indistinguishable from the exact field presented in figure 2. In this case, the relative L2 error of
the reconstruction is 0.09% and the relative L∞ error does not exceed 0.3%. This is consistent
with the exactness of our reconstruction formulas.

Our second numerical simulation aims to demonstrate the noise sensitivity of formu-
las (20)–(22). In the above mentioned equations, functions Φ and Ψj, j = 1,2, . . . ,d are
reconstructed from the second derivatives of the data in p. This is followed by convolutions
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Figure 3. Reconstructed solenoidal and potential parts of the field, Fs and Fp.

with smoothing kernels in (22). However, the solenoidal part Fs of the field is obtained by con-
volutions with the fundamental solution (Ψj ∗G), j = 1, . . . ,d, whereas the potential part is
computed by convolution of Φ with the gradient ∇G of the fundamental solution. This addi-
tional differentiation implies that the potential part should be more sensitive to high spatial
frequencies of the noise.

In order to test this conclusion we added to the data Dq
1F, D

q
2F, andW

q
1F a small normally

distributed spatially uncorrelated noise with relative intensity 0.1% in L2 norm. Spectral dif-
ferentiation in p in (21) and in (47) was replaced by the standard second order symmetric finite
difference formula. This has a mild regularizing effect compared with the spectral differenti-
ation. The fields Fs(x) and Fp(x) reconstructed from the noisy data are shown in figure 4 (the
gray scale used in this figure is the same as in figure 2). Comparison with the figure 3 shows
that the solenoidal part Fs(x) is little affected by this mild noise, while reconstructed Fp(x)
contains much stronger high frequency artifacts (the reader may want to magnify the figure
to see this clearly). Indeed, a quantitative comparison reveals that the relative error in Fs(x) is
1.1% in L2 norm and 1.3% in L∞ norm. On the other hand, the relative error in Fp(x) is 63%
in L2 norm and 74% in L∞ norm.

The total reconstructed field is the sum of Fs(x) and Fp(x). It is depicted in figure 5 (the
gray scale is the same as in figure 2). Due to the high level of artifacts in Fp(x), the total
field also contains significant error, with the relative error equal to 36% in L2 norm and 41%
in L∞ norm. It should be noted that the high error in Fp(x) is a manifestation of the poor
conditioning of the problem of reconstructing the potential part of the field from a linearly
weighted longitudinal transform Wq

1F. Indeed, formula (30) shows that the Radon transform
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Figure 4. Solenoidal and potential parts of the field, Fs and Fp, reconstructed from noisy
data.

Figure 5. Field F reconstructed from noisy data.

of Fs is expressed as a linear combination of data Dq
2F. Thus, the conditioning of finding F

s is
similar to conditioning of inverting the standard scalar Radon transform. On the other hand,
in the equation (35) the Radon transform R

(
Fp
k

)
is expressed through the derivative of the

data ∂
∂pW

q
1 (F). This additional differentiation of data makes the problem of reconstructing Fp

significantly more ill-posed than that of inverting the regular Radon transform. This leads to
the appearance of strong high frequency artifacts in the reconstructed Fp.
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In order to convince the reader that this is indeed a high-frequency phenomenon, we
applied a low-pass linear filter to the total reconstructed field F(x), obtaining a smoothed field
Fsmooth(x). In detail, each component Fsmooth

k (x) of Fsmooth(x) was obtained by applying filter
η(ξ) in the Fourier domain:

Fsmooth
k (x) = F−1[η(ξ)[F(Fk)](ξ)](x), k= 1,2,3,

where F and F−1 are the forward and inverse Fourier transforms, and filter η(ξ) was given by
the formula

η(ξ) = 0.5

(
1+ cos

π|ξ|
0.4fNyquist

)
for |ξ|< 0.4fNyquist,0 otherwise,

where fNyquist is the Nyquist frequency of the spatial discretization in x. The relative errors in
the so found approximation Fsmooth(x) where 12% in L2 norm and 19% in L∞ norm.

We would like to stress that the reconstruction algorithm presented here, based on direct
discretization of our inversion formulas, is meant only to illustrate the exactness of these for-
mulas (when applied to accurate data), and to demonstrate the increased sensitivity of these
formulas to noise (in comparison to the standard Radon inversion). The development of a
more practical, efficient and robust algorithm is a matter of the future work. Such an algorithm
would require a prudent choice of a regularization technique, to reduce the noise sensitivity.
An optimal choice of such technique depends heavily on the parameters of a particular applic-
ation, such as the signal-to-noise ratio, spectral content of the noise, desired resolution, etc.
For a general overview of classical regularization methods we refer the reader to the book [29]
and article [30]. The regularization methods used recently in vector tomography include the
singular value decomposition [31], the method of approximate inverse [32], and an expansion
in a series of orthogonal polynomials [12]. These topics, however, are outside of the scope of
the present paper.
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Appendix

In the present appendix we prove theorem 1 that establishes the rates of decay at infinity of the
potential and solenoidal parts of the field, as given by equations (11)–(14).

We will need the following Lemma.

Lemma 8. Consider convolution h of functions f and g defined as follows

h(x) =
ˆ

Rd

f(y)g(x− y)dy, x ∈ Rd, (48)
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If f(x) and g(x) are locally integrable and satisfy the inequalities:

|f(x)|⩽ Cf
(1+ |x|)K

, |g(x)|⩽ Cg
(1+ |x|)M

, K> 0, M⩾ d+K, (49)

then there is a constant C such that convolution h(x) is bounded as follows:

|h(x)|⩽ C
(1+ |x|)K

.

Proof. Note that inequalities (49) imply that g is absolutely integrable over Rd:
ˆ

Rd

|g(y)|dy= A<∞.

For a fixed x, split the integral (48) as follows:

h(x) = IB(x)+ IO(x), IB(x)≡
ˆ

B(R)

f(y)g(x− y)dy, IO(x)≡
ˆ

Rd\B(R)

f(y)g(x− y)dy,

where B(R) is a ball of radius R= |x|/2 centered at the origin. Note that the volume |B(R)| of
the ball is

|B(R)|= CdR
d = 2−dCd|x|d,

where Cd is the volume of the unit ball in Rd. Obviously, for any y ∈ B(R), |y|⩽ R. Since
|x|= 2R, |x− y|⩾ R, and

|g(x− y)|⩽ Cg
(1+ |x− y|)M

⩽ Cg
(1+R)M

=
2MCg

(2+ |x|)M
.

Therefore, IB can be bounded as follows

|IB|⩽
CgCf|B(R)|
(1+R)M

=
CgCfCd|x|d

2d−M(2+ |x|)M
⩽ CgCfCd(1+ |x|)d

2d−M(1+ |x|)M
⩽ CgCfCd

2d−M(1+ |x|)K
. (50)

On the other hand, for y ∈ Rd\B(R), |f(y)| can be bounded by Cf
(1+R)K so that the following

inequality holds

|IO|⩽
ˆ

Rd\B(R)

|f(y)||g(x− y)|dy⩽ Cf
(1+R)K

ˆ

Rd

|g(y)|dy⩽ A
2KCf

(2+ |x|)K
⩽ A

2KCf
(1+ |x|)K

. (51)

Finally, by combining inequalities (50) and (51) one proves lemma 8.

We are ready to prove theorem 1.

Proof. First, we establish the rate of decay at infinity of the potential φ(x) given by the convo-
lution (8). We note that divergence Φ(x) belongs to the Schwartz space S(Rd) and, therefore,
for any l⩾ 0, there is a constant Cl such that |Φ(x)|⩽ Cl/(1+ |x|l). On the other hand, the
derivatives of the fundamental solution G(x) decay as follows:

|DαG(x)|=O
(

1
|x|d+|α|−2

)
, |α|= 1,2,3,4. (52)
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Let us introduce an infinitely smooth nonnegative cut-off function η(t), t ∈ R, with η(t) = 1
for every t ∈ (−1/2,1/2) and η(t) = 0 for |t|⩾ 1. Convolution (8) can be re-written as

φ(x) = I1(x)+ I2(x),

I1(x)≡
ˆ

|x−y|<1

Φ(y)G(x− y)η(|x− y|)dy, I2(x)≡
ˆ

Rd

Φ(y)G(x− y)(1− η(|x− y|))dy.

The first term I1(x) can be bounded as

|I1(x)|=

∣∣∣∣∣∣∣
ˆ

|x−y|<1

Φ(y)G(x− y)η(|x− y|)dy

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
ˆ

|u|<1

Φ(x− u)G(u)η(|u|)du

∣∣∣∣∣∣∣
⩽ CGmax

|u|<1
|Φ(x− u)|,

where

CG ≡
ˆ

|u|<1

|G(u)|η(|u|)du. (53)

Then |I1(x)| is bounded by CGCl/(1+(|x| − 1)l) for any l⩾ 0.
The second term is the following convolution

I2(x) =
ˆ

Rd

G(x− y)(1− η(|x− y|))∇y ·F(y)dy

=

ˆ

Rd

∇x [G(x− y)(1− η(|x− y|))] ·F(y)dy

=
d∑
j=1

ˆ

Rd

∂

∂xj
[G(x− y)(1− η(|x− y|))]Fj(y)dy.

The latter sum is the sum of convolutions of functions satisfying conditions of lemma 8,
where the role of f is played by Fj withM⩾ 2d− 1 (since Fj’s are Schwartz functions), and the
role of g is played by ∂

∂xj
[G(x)(1− η(|x|))] with K= d− 1. Therefore, I2(x) has the desired

rate of decay O
(
|x|1−d

)
. This term dominates the sum I1(x)+ I2(x) at infinity. This proves

equation (11).
The estimate for the derivatives of φ(x) can be obtained in a similar way. Indeed

∂

∂xj
φ(x) =

∂

∂xj

ˆ

Rd

Φ(y)G(x− y)dy= I3(x)+ I4(x),

where

I3(x)≡
∂

∂xj

ˆ

|x−y|<1

Φ(y)G(x− y)η(|x− y|)dy

I4(x)≡
∂

∂xj

ˆ

Rd

Φ(y)G(x− y)(1− η(|x− y|))dy.
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Now

|I3(x)| =

∣∣∣∣∣∣∣
∂

∂xj

ˆ

|u|<1

Φ(x− u)G(u)η(|u|)du

∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣
ˆ

|u|<1

∂

∂xj
Φ(x− u)G(u)η(|u|)du

∣∣∣∣∣∣∣
⩽ CGmax

|u|<1

∣∣∣∣ ∂

∂xj
Φ(x− u)

∣∣∣∣= CGmax
|u|<1

∣∣∣∣∣ ∂

∂xj

d∑
k=1

∂

∂xk
Fk(x− u)

∣∣∣∣∣ ,
where CG still given by (53). Since second derivatives of F are Schwartz functions, |I3(x)|
decays faster than any power of 1/|x|. For the term I4(x) we observe:

I4(x)≡
∂

∂xj

ˆ

Rd

Φ(y)G(x− y)(1− η(|x− y|))dy

=
∂

∂xj

d∑
j=k

ˆ

Rd

∂

∂xk
[G(x− y)(1− η(|x− y|))]Fk(y)dy

=
d∑
j=k

ˆ

Rd

∂2

∂xk∂xj
[G(x− y)(1− η(|x− y|))]Fk(y)dy.

The rate of decay of derivatives ∂2

∂xk∂xj
[G(x− y)(1− η(|x− y|))] coincides with the decay

rate of ∂2

∂xk∂xj
G(x); it is given by (52). Now, the application of lemma 8 establishes that |I4(x)|=

O
(
|x|−d

)
. This proves (12) for Fp. The similar estimate for Fs comes from Fs(x) = F(x)−

Fp(x), where the second term dominates at infinity.
Finally, equations (13) and (14) are proven similarly, by transferring the derivatives onto

G(x) and using (52) with |α|= 3 and |α|= 4, combined with lemma 8.
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