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Abstract

Mechanical metamaterials are artificial structures that possess exceptional mechanical properties that are not naturally
occurring. The complex geometrical and topological features of these metamaterials pose significant challenges to both
structure design and manufacturing, despite the recent rapid development of additive manufacturing (AM) techniques.
Thus, an effective framework for designing 3D metamaterials with desired mechanical properties, while also ensuring AM
manufacturability, is urgently needed. In this paper, an AM manufacturability-aware deep generative model-based design
framework is proposed for designing 3D metamaterial units for target properties. To accomplish this, we propose using Vari-
ational Autoencoder (VAE) as the feature extractor, which maps the 3D metamaterial geometries to a low-dimensional latent
feature space. The latent feature space is concurrently linked to discriminators/regressors to predict manufacturability metrics
and mechanical properties. We demonstrate that the proposed design framework is capable of designing high-performance
metamaterial units with various user-defined manufacturability metrics. To showcase the effectiveness of the proposed design
framework, three design cases with different objective functions are presented, and the final optimal designs are validated by

comparing them to state-of-the-art designs or the optimal designs obtained by topology optimization methods.

Keywords Metamaterial - Deep generative design - Manufacturability - Image analysis - VAE - Property-driven design

1 Introduction

Mechanical metamaterials are artificial structures that pos-
sess exceptional mechanical properties, such as having
unique stiffness-to-weight ratio (Zheng et al. 2014), acous-
tic damping (Chen and Chan 2007), wave trapping (Wang
et al. 2021, 2022a, 2022b; Gurbuz et al. 2021), vibration
damping (Claeys et al. 2017; Garland et al. 2020; Qian
et al. 2021), and energy absorption properties (Alberdi
et al. 2020; Liu et al. 2020; Xu and Liu 2019). The supe-
rior mechanical properties originate from the architectural
features of the metamaterial units. Owing to their superior
mechanical properties, mechanical metamaterials have great
potential for application in aerospace, seismic engineering,
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biomechanics and medical devices, sports equipment, and
various other fields. However, the complexities inherent in
controlling the geometry and topology of metamaterial units,
intricate nonlinear properties that necessitate advanced com-
putational methods, and the challenges related to manufac-
turing all present obstacles in their design and production.
The advancements in manufacturing techniques have facili-
tated the development of metamaterials with complex geo-
metric features. In particular, additive manufacturing (AM)
(Bodaghi et al. 2017; Lei et al. 2019) has great potential in
fabricating metamaterials with complex shapes that were
previously impossible to produce using traditional manufac-
turing techniques (Li et al. 2016; Pham et al. 2019; Thomp-
son et al. 2016). Despite the greater design flexibility that
AM provides, it is still crucial to incorporate AM-related
manufacturability constraints, such as support structure
(Jiang et al. 2018; Strano et al. 2013), powder removal
(Hunter et al. 2020), and process-specific metrics (Oliveira
et al. 2020), into the structure design process. The current
structure design for AM processes inadequately accounts
for the interdependence between metamaterial design and
AM manufacturing.
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To address this issue, several approaches that consider
part manufacturability have been proposed in the literature.
A widely used approach is the real-time process monitoring
(Grasso and Colosimo 2017; Qi et al. 2019), which utilizes
image-based monitoring techniques to detect potential fail-
ures during the printing process and alert the user before the
process completes. However, this approach still falls short
of improving the manufacturability of the part during the
design stage. Regarding the design for manufacturability
approaches, one straightforward approach is to provide a
design worksheet as a reference for the engineers to evalu-
ate their designs (Booth et al. 2017). However, this manual
approach is time-consuming and limited to the predefined
criteria listed in the worksheet. Tedia and Williams (2016)
proposed a voxel-based manufacturability analysis approach
that checks the manufacturability based on the minimal fea-
ture size, support material, orientation, and manufacturing
time for different build orientations. Shi et al. (2018) intro-
duced a feature-based method using heat kernel signature
for manufacturability analysis in AM, including unsupported
feature, minimum feature size, minimum self-supporting
angle, and minimum vertical aspect ratio. Telea and Jalba
(2011) proposed a voxel-based, distance fields metrics man-
ufacturability analysis technique for thin-region detection.
Kerbrat et al. (2011) proposed a method that decomposes the
geometrical model into octrees and evaluates the manufac-
turability index of each octant. Despite these efforts, these
methods still lack the capability of enhancing the manu-
facturability of the part during the design stage based on
the user-defined metrics. Therefore, a metamaterial design
methodology that incorporates AM manufacturability is
highly desired. Manufacturability checking is also imple-
mented in commercial software, including Magics, Nettfab,
and online 3D printing service, such as 3DXpert, Sculpteo,
and Shapeways. They provide functions such as identify-
ing and evaluating the minimum feature size based on the
printer’s resolution, optimizing the build orientation, and
generating and measuring support structures. However, these
functions are often specific to a particular type of printer
and have limited capability to handle various types of fea-
tures. For instance, some software may not be able to detect
enclosed voids.

Topology optimization (TO) has emerged as a power-
ful computational tool that optimizes an objective function
subject to different constraints, by recasting the design prob-
lem as an optimal material distribution problem in a specific
design domain. Topology optimization has been recently
applied to design structures with complex geometrical fea-
tures that are suitable for AM. Manufacturability metrics,
such as overhang angle (Qian 2017; Zhang et al. 2022b),
overhang length (Zhang et al. 2022a), enclosed void (Xiong
et al. 2020; Zhou and Zhang 2019), and feature size (Bostan-
abad et al. 2019), are considered in topology optimization
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formulations for designing additively manufactured struc-
tures. However, previous works only considered one or two
of those manufacturability metrics and a comprehensive
topology optimization methodology that addresses all the
mentioned manufacturability criteria is currently lacking.
There are also a few works on topology optimization for
designing AM metamaterials (Gao et al. 2018; Li et al.
2018; Takezawa et al. 2017; Wang et al. 2014; Zhang and
Khandelwal 2020). Vogiatzis et al. (2017, 2018) proposed a
level-set method-based TO for designing negative metama-
terials with Poisson’s ratios. However, the obtained optimal
3D designs were extruded from the 2D units to ensure AM
manufacturability, which greatly limits the design scope to
a 2D design space. Watts et al. (2019) proposed a surrogate
modeling-based method for designing macroscale structures
infilled with metamaterials. However, in this work, only the
connectivity between two different unit cells was considered
in terms of the manufacturability. Takezawa et al. (2017)
proposed a topology optimization framework to obtain the
optimal metamaterial unit design with high stiffness and
verified it experimentally. This research considered two AM
manufacturability metrics: the absence of enclosed voids and
the minimization of inclined shapes within the metamaterial
structures. However, these metrics were not directly included
in the design formulation. Instead, holes with fixed diam-
eters and locations were pre-defined in the design space to
ensure the absence of enclosed voids. The works mentioned
above only incorporated a limited set of manufacturability
metrics, limiting the generalizability of the proposed design
approaches. Moreover, incorporating AM manufacturability
into TO is challenging because the metrics need to be dif-
ferentiable for gradient-based optimization. Thus, it is dif-
ficult to perform manufacturability analysis on voxel-based
or slice-based 3D metamaterial structures. Consequently,
integrating AM manufacturability analysis with TO for
metamaterial unit design is still a significant challenge.
Deep learning (DL) has shown significant promise in
the field of computational metamaterial design (Yang et al.
2018; Liu, et al. 2016; Jha et al. 2018; Cang et al. 2017,
Wang et al. 2020b, 2022a; Meyer et al. 2022; Bastek et al.
2022; Kumar et al. 2020) and there have been a few attempts
to leverage the synergy of DL and AM techniques in this
area. For instance, Wilt et al. (2020) proposed a DL-based
surrogate modeling method for the prediction of errors in
compliant auxetic metamaterials produced by additive man-
ufacturing. Zeng et al. (2022) developed a DL-based design
method for the inverse design of multiscale, multifunctional,
and gradient mechanical metamaterial while considering
the compatibility between adjacent units as an AM manu-
facturability metric. Gu et al. (2018) proposed a convolu-
tional neural network-based design approach for designing
hierarchical materials. The designed structures were fabri-
cated and validated by multi-material jetting AM process.
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Zeng et al. (2023) proposed a deep learning approach for
the inverse design and 3D printing of gradient mechanical
metamaterials. However, their method was limited by the
creation of 3D metamaterial units through the extrusion of
2D metamaterials, restricting the design scope to the 2D
space. Although DL-based design methods have been suc-
cessful in generating novel designs that can be fabricated
using AM, they have not explicitly considered or only con-
sidered a limited number of AM manufacturability metrics
during the design process. As a result, there is no guarantee
that these optimized designs can be manufactured efficiently.

Previous methods of designing metamaterial units either
included only a restricted range of manufacturability met-
rics or did not explicitly integrate manufacturability met-
rics, thereby constraining the flexibility and generalizability
of these approaches. The motivation of this research is to
address limitations in previous research works of designing
3D metamaterial units. The goal of this research is to design
high-performance 3D metamaterial units that meet various
manufacturability constraints. To accomplish this, we pro-
pose an integrated manufacturability-aware deep generative
design framework comprising two major components: (1)
a unified manufacturability-aware deep generative model
for feature learning and (2) a design optimization approach
for generating 3D metamaterial units for optimal proper-
ties while considering manufacturability constraints. The
framework considers three design objectives, which are
elastic modulus, Poisson’s ratio, and heat conductivity, and
six manufacturability metrics, including surface area, maxi-
mum feature size, minimum feature size, minimum overhang
angle, maximum overhang length, and enclosed voids. Users
can selectively enable or disable these design objectives and
manufacturability metrics to obtain 3D metamaterial units
with varying performances and manufacturability-related
geometric characteristics.

The major contributions of this work are summarized as
follows:

(1) An image analysis-based approach is proposed for
evaluating AM manufacturability metrics based on
voxelated 3D metamaterial units. This approach can
be easily extended for applications on any other voxel-
based 3D structures.

(2) A manufacturability-aware deep generative model is
established to learn a unified feature space that incor-
porates geometrical, manufacturability, and mechanical
properties information.

(3) The proposed design framework exhibits both flexibil-
ity and generalizability in multi-objective design of 3D
metamaterial units for multiple properties, as well as
accommodating multiple manufacturability metrics.
The resulting 3D metamaterial unit successfully com-
plies with various manufacturability constraints.

The structure of this paper is as follows. In Sect. 2, we
describe the process of creating a highly diverse 3D metama-
terial database, which includes geometry information as well
as associated mechanical properties, such as elastic modulus,
Poisson’s ratio, and heat conductivity. We also define and
evaluate the manufacturability metrics by conducting image
analysis on the metamaterial unit samples. Section 3 pro-
poses an integrated manufacturability-aware deep generative
model-based design framework. In Sect. 4, we demonstrate
the effectiveness of the proposed design approach through
one unsupervised and three supervised design cases. Finally,
in Sect. 5, we summarize the contributions of this work and
discuss potential future research directions.

2 Establishment of the metamaterial
database: metamaterial unit
geometry, mechanical properties,
and manufacturability metrics

2.1 Generation and collection of 3D metamaterial
units

In total, we created a highly diverse database that consists
of 46,840 metamaterial unit samples. The 3D metamaterial
units are generated or collected from three different meth-
ods/resources. All the metamaterial unit samples have a
resolution of 48 X 48 X 48 voxels.

The first group of 3D metamaterial units are generated
using the microstructure family template-based method that
is modified from the one proposed in literature (Chen et al.
2018). The structures are defined in a cubic space, and the
structure geometries are enforced to be cubic symmetric by
constraining structures inside a single control tetrahedron
(red-dotted area) and mirroring it to 48 copies. The detailed
generation process can be found in Appendix Al. Any struc-
tures generated by this method that consist of disconnected
components rather than a single contiguous part, not con-
nected to the neighbor units under the periodic boundary
condition (PBC) or having a volume fraction outside the
range of [0.05,0.4] are removed from the generated data-
set. Some examples of 3D metamaterial units generated are
shown in Fig. la.

The second group of 3D metamaterial units are generated
by defining the skeletons of the cubic symmetric metamate-
rial unit in a continuous design domain and then creating
the geometries by assigning radius (r) along the skeleton.
This group contains octet structures, octahedral structures,
and body-centered cubic structures. Some examples in this
group are shown in Fig. 1b.

The last group of 3D metamaterial units are collected
from the open source dataset (Chan et al. 2021). This meta-
material group is generated using level-set functions, which
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Fig.1 a The cubic region defining cubic symmetric metamaterial
units and a few examples of 3D metamaterial units generated using
the first method. b A few examples from the second group: octet
structures, octahedral structures, and body-centered cubic structures.
¢ A few examples of the 3D metamaterial units collected from Chan
et al. (2021)

create isosurface families based on crystallographic structure
factors. We only select the cubic symmetric metamaterial
units with volume fraction in the range of [0.05,0.4]. It is
to be noted that the metamaterial unit samples from open
source dataset only provide the shape information, while
a parametric description of each sample is not available.
Examples from the third group are shown in Fig. 1c.

Because of the substantial diversity in structural charac-
teristics and the distinct nature of the generation algorithms,
representing all metamaterial unit samples with a limited set
of geometric parameters is unfeasible.

2.2 Mechanical properties simulation

In this research, we will showcase the design approach by
exploring two different properties of metamaterial units:
elasticity and heat conductivity. To illustrate the methodol-
ogy, we have selected aluminum as the base material, which
has elastic properties of E,; = 68300MPa and v,; = 0.31and
heat conductivity of k,; = 0.237 W /mmK. This framework
has the potential to be extended to other base materials, such
as steel, titanium, copper, and Inconel. However, simula-
tions of the metamaterial unit properties will need to be re-
conducted using the new material properties.

@ Springer

The elastic properties are obtained by finite element
simulation in ABAQUS with unified PBC (Xia et al. 2003).
The cubic symmetric of 3D metamaterials ensures that all
structures have elastic tensors with only three parameters:
elastic modulus E, Poisson’s ratio v, and shear modulus G.
As a result, the effective stress—strain tensor C is expressed
as follows:

[ E(1-v) Ev Ev 7
(1+v(1-2v) (+v(1-2v) (+ni-2v) 000
Ev E(1-v) Ev 000
(I+v)(1=2v) (1+v)(1-2v) (1+v)(1-2v)
of Ev Ev E(1-v) 000
CY =] wvd—2v) d+-2v) (d+v)(1-2v) (1)
000 GO0O
000 0GO
000 00G |

The stress—strain tensor C%" can be extracted by solv-
ing the stress—strain relationship using the output of the
ABAQUS simulation.

Thermal conductivity is a property that characterizes the
ability of the material to conduct heat when a temperature
load or temperature gradient field is applied to the design
domain. The thermal conductivities of 3D metamaterial
units are simulated in ABAQUS under PBC (Mirabolgha-
semi et al. 2019). For 3D cubic symmetric metamaterials,
effective thermal conductivity tensor K% can be written
as a 3 X 3 matrix based on isotropic thermal conductiv-
ity k (Eq. 2). The K is extracted from the output of the
ABAQUS simulation. Therefore, the thermal conductivity
k can be obtained.

100
KT =k 010 2)
001

For each metamaterial unit, its elastic modulus £, Pois-
son’s ratio v, and thermal conductivity k are obtained by
simulation. The histograms in Fig. 2a show the statistics of
the three mechanical properties of all samples in the meta-
material database.

2.3 Manufacturability evaluation by image analysis

There is no universal set of manufacturability metrics that
applies to all AM techniques, as the requirements of the
printing process and part geometries vary depending on the
specific technique used. Therefore, the proposed framework
incorporates a set of widely applicable geometry-based man-
ufacturability metrics and can be extended to include addi-
tional metrics that are specific to particular AM techniques
and part geometries. Image analysis algorithms/tools are
developed in MATLAB to evaluate AM manufacturability
metrics based on the voxel images of metamaterial samples
(Ashburner and Friston 2000).
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Fig.2 a Statistics of the heat conductivity, elastic modulus, and Poisson’s ratio of all 3D metamaterial unit samples in the database. b Statistics
of the continuous manufacturability metric values of all samples. ¢ Statistics of the binary manufacturability metric values of all samples

2.3.1 Surface area (SA) and surface area-to-volume ratio
(SA/V)

In AM, both surface area and surface area-to-volume ratio
of a 3D-printed part are critical factors affecting the qual-
ity and properties of the final product. When the surface
area is large, the part tends to cool more rapidly, result-
ing in increased residual stresses and distortions (Tao and
Leu 2016). Furthermore, a larger surface area can lead to
increased exposure to oxygen, which can alter the micro-
structure and mechanical properties of the material (Yadol-
lahi and Shamsaei 2017). Additionally, in certain printing
techniques, such as selective laser sintering (SLS) or binder
jetting (BJ), a high surface area can cause the part to adhere
more strongly to the build plate, making it difficult to detach
and increasing the risk of damage to the part or build plate.
Surface area-to-volume ratio is often used to assess the com-
pactness and efficiency of a design. A lower SA/V indicates
less material usage, which is suitable for lightweight design.
In opposite, a higher SA/V often associated with complex
geometries, which may require support structures during
printing to maintain their stability. Additionally, in metal
additive manufacturing processes like powder bed fusion
(PBF) and selective laser sintering (SLS), a high SA/V can
lead to uneven powder distribution within the build chamber,

potentially affecting the density and properties of the printed
part.

2.3.2 Maximum overhang length (L) and minimum
overhang angle (0)

Due to the layer-by-layer building characteristic of AM pro-
cesses, the overhang features are a major limitation, particu-
larly in material extrusion techniques (Zhang et al. 2020).
Previous research has shown that unsupported overhang fea-
tures can lead to a deterioration in shape accuracy, mechani-
cal properties, and surface quality (Atzeni and Salmi 2015;
Feng et al. 2021; Thore et al. 2019). Support structures are
typically used to successfully print overhang structures, but
they increase printing time and post-processing complex-
ity (Jarvinen et al. 2014; Wei et al. 2019) and can lead to
rough surfaces and decreased structural integrity (Lam et al.
2020). Therefore, reducing the maximum overhang length
can help to minimize the need for total support structures
and improve printing efficiency.

Overhang analysis is based on a voxelated model shown
in Fig. 3a, where i denotes the i layer of an overhang,
counting from the bottom to the top. L; represents the width
of an overhang part without support beneath it in the i layer.
Among all the L; values, we define the maximum L; as the
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Fig. 3 a Definition of the overhang angle and the maximum overhang length. b Definition of the maximum feature size. ¢ Definition of unprint-

able minimum features

maximum overhang length L. In addition to minimizing the
overhang length, another strategy to reduce the need for
support structures is to minimize the overhang angle. The
minimum overhang angle 6 is defined as the angle between
the x—y plane, as illustrated in Fig. 3a, that can be fabricated
without adding support during the deposition process. The
overhang angle is an important factor to consider in additive
manufacturing techniques, particularly those that use sup-
port structures, such as fused deposition modeling (FDM)
(Bintara et al. 2019), stereolithography (SLA) (He and
Song 2018), and selective laser sintering (SLS) (Kruth et al.
2005). Typically, 6 is set at 45° (Jin et al. 2017; Wei et al.
2016). However, the optimal angle may vary for different
printers and materials, and some researchers may perform
tests to determine the suitable angle size before printing the
part (Lee and Lee 2017).

2.3.3 Maximum feature size (t,,,,)

The size of features in a 3D-printed part is an important
consideration for AM, as overly thick features can be sus-
ceptible to distortion for certain techniques. For example,
in metal binder jetting (BJ) techniques, thicker parts can
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be more difficult to bind uniformly, resulting in areas with
higher binder content that may not be burned off com-
pletely during sintering (Lores et al. 2019). This can lead
to residual stresses in the part, which can cause warping
or distortion. In laser-based AM techniques, such as selec-
tive laser melting (SLM) and powder bed fusion (PBF),
a thicker part may receive a higher laser power to ensure
complete melting of the material. However, increasing the
laser power can also result in greater heat accumulation
and potential distortion or cracking (Li et al. 2017). While
there is no widely accepted maximum feature size (Reddy
et al. 2016), we include it as one of the manufacturability
metrics for the prospective users. In this work, the maxi-
mum feature size is obtained by the following procedure.
One illustrative example of the maximum feature size is
shown in Fig. 3b.

(a) Find the skeleton of the structure, which is in the format
of voxel image. Record the skeleton as solid voxels.

(b) For each solid voxel in the skeleton, calculate its short-
est distance to the surface of the structure. Record all
the distances as a list.

(c) Find the maximum value in the list. The maximum

value corresponds to the maximum feature size #,,,,.
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2.4 Minimum feature size (t,;,)

Minimum feature size is one of the most important manu-
facturability metrics, which, in practice, is limited not only
by the laser spot size and powder size, but also by the 3D
model slicing and resolution of the machine (Moylan et al.
2012; Tedia and Williams 2016). The minimum feature
size is considered for various AM techniques, such as ste-
reolithography, inkjet printing, selective laser sintering,
and binder printing (Bertrand et al. 2007; Boschetto and
Bottini 2014; Cao et al. 2015). In this work, we consider
the edge/corner-connected voxels (Fig. 3c) as the unprint-
able features due to the bottleneck shape between the two
voxels. The minimum feature size is obtained by the fol-
lowing procedures:

(a) Slice the 3D metamaterial unit layer by layer, in this
work, each layer has a thickness of one voxel. There-
fore, we slice the 3D metamaterial unit into 48 pieces
in total.

(b) For each piece, identify and record the number of con-
nected voxels at edges and corners. This process is iter-
ated over all 48 pieces.

(¢) Sum up the number of edge/corner-connected voxels
for all the layers. If the number is greater than 0, the
structure is considered to have unprintable minimum
features and is categorized as 1. Otherwise, the struc-
ture is categorized as 0, indicating that it does not have
unprintable minimum features.

2.4.1 Enclosed voids (EV)

Enclosed voids have negative impacts on both the powder-
based and material extrusion-based AM techniques, such as
selective laser sintering (SLS) (Tuncer and Bose 2020; Wang
et al. 2020a), fused deposition modeling (FDM) (Hutmacher
et al. 2001; Zein et al. 2002), and electron beam melting
(EBM) (Walton and Moztarzadeh 2017). In powder-based
techniques, unsintered powder acts as a support material that
must be removed after fabrication. In material extrusion-
based techniques, support structures may also be necessary
and need to be removed after fabrication. Therefore, it is
critical to avoid fully enclosed voids, as they can make it
impossible to remove the powder or support structures. To
detect the presence of enclosed voids, image analysis is con-
ducted on all 3D metamaterial units in the database. Meta-
material units with enclosed voids are categorized as 1 and
those without enclosed voids are categorized as 0.

With the aforementioned manufacturability metrics, we
evaluate the manufacturability of all samples in the 3D meta-
material unit database. The statistics of the manufacturabil-
ity metric values are summarized in Fig. 2b and c.

3 Deep generative model-based design
framework

This section introduces an integrated manufacturability-
aware deep generative model for the optimal design of
metamaterial units under manufacturing constraints. The
proposed model is evaluated on two aspects: the reconstruc-
tion accuracy and the accuracy of predicting properties and
manufacturability metrics values.

3.1 Overall design framework

The integrated manufacturability-aware deep generative
model-based design framework consists of two major
components:

(1) A manufacturability-aware deep generative model for
low-dimensional representations of 3D metamaterial
units and prediction of their corresponding properties.
The low-dimensional representation is employed as the
structure design space. The manufacturability-aware
deep generative model consists of two parts: (a) a Vari-
ational Autoencoder (VAE) for feature learning, which
learns parametric latent features from the high-dimen-
sional 3D metamaterial image data through encoder
and (b) supervised learning models that establish con-
nections between the encoded latent vectors and the
mechanical properties and manufacturability metrics.
The supervised learning models also perform regulari-
zation on the latent feature space. Details of the model
are introduced in Sect. 3.2.

(2) A design optimization approach for generating novel
structures with desired properties and manufacturabil-
ity by exploring the latent space. Genetic algorithm
(NSGA-II) is employed in optimization due to its capa-
bility of overcoming local optima to obtain the global
optimum. As the design properties and manufacturabil-
ity are obtained using the trained supervised learning
model during the optimization process, the computing
efficiency is not a concern here. The design approach
can be stated as follows:

B TGN AR

s.t.ei(z) <0 3)

where z is a vector of design variables in the form of the
latent variable vector learned from the deep generative
model. f;(i=1,2,... ,nf) are the objective functions related
to the mechanical properties, c_,-Q' =1,2,...,n,)are the con-
straint functions based on the manufacturability metrics. n,
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is the number of objective functions. n, is the number of
manufacturability constraints. f; and ¢; are functions of z, as
all supervised learning models of mechanical properties and
manufacturability metric values take z as input. The objec-
tive functions of mechanical properties are normalized, so
that the design framework is independent from the selection
of base materials (Fig. 4).

3.2 Manufacturability-aware deep generative
model for feature learning

VAE (Kingma and Welling 2014), originated from autoen-
coder, contains two components: encoder and decoder. The
VAE’s encoder conducts nonlinear dimensionality reduction
and compresses the high-dimensional data (x) into a low-
dimensional latent space (z). The encoder can be expressed
as 0, (z|x), which is the approximate posterior that follows a
normal distribution and ¢ is the vector of the encoder param-
eters. The decoder, also a nonlinear operator, can map back

the low-dimensional latent feature space to the original high-
dimensional input data space. The decoder is expressed as
Py(x|z)Py(z), where 6 is the vector of decoder parameters.
P,(z) is the prior distribution of latent variables and P,(x|z)
is the approximated distribution of x conditioned on z. The
VAE embeds the Bayesian inference in the autoencoder
architecture, which regularizes the latent feature space into
a Gaussian distribution. The loss function of VAE includes
two parts, and it can be expressed as follows:

Lyag = Lxg) + Lx (@, N(0, 1) )

where z represents the latent vectors, x represents the input
data, and X represents the reconstruction data. Lz is the
reconstruction loss, where L, 3) = % Yo, - )%, which is
the mean squared error between the input data X and the
reconstruction data x. n represents the number of training
data in the VAE model. Ly; (z, N(0,1,)) is the Kullback-Lei-
bler divergence loss, which measures the differences

encoder

-0+

decoder

&

regressors/
discriminators

—

Step 1: Deep generative model for feature learning

Mechanical Properties:

Elastic Modulus E
Poisson’s ratio y
Shear Modulus G
Thermal conductivity k
Manufacturability:

Maximum feature size 4y

Surface area SA

Surface area to volume ratio
SA/V

Minimum overhang angle 6
Maximum overhang length L

Enclosed voids EV (0/1)

Minimum feature t,,,; (0/1)

—

Step 2: Design search and optimization

Fig.4 Integrated manufacturability-aware deep generative model-
based structure design framework. Step 1 is to create a deep genera-
tive model that embeds mechanical properties and manufacturability
information in the latent space. Step 2 is to conduct design optimi-
zation guided by mechanical properties and manufacturability in the
latent space. 2D tSNE representations of the latent space are pro-

@ Springer

vided. The colors in each plot represent different levels of mechanical
properties and manufacturability metrics values. Each layer (objective
or constraint function) can be turned on/off to meet various design
requirements. The star and dashed line indicate the locations of one
metamaterial design in the property/manufacturability metric spaces
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between the distribution of latent vectors z and a normal
distribution N(0,1 ).

Previous research studies (Li and Wang 2020; Xu et al.
2022) have shown that the latent feature space encoded by a
stand-alone VAE only captures the geometrical information
of the input data, thus hindering its ability to capture the
structure—properties relationships. To address this limita-
tion, we propose a manufacturability-aware deep generative
model, where the supervised learning models are directly
attached to the latent feature space encoded by VAE, to link
the latent features to the mechanical properties and AM
manufacturability metrics. The supervised learning models
are trained simultaneously with the encoder and decoder
during the training process. Supervised learning models of
mechanical properties and the AM manufacturability metrics
regularize the latent feature space to mitigate the overfit-
ting issue. After the manufacturability-aware deep genera-
tive model is trained, the obtained latent feature space not
only contains the samples’ geometrical information but also
contains the mechanical properties/manufacturability infor-
mation learned from the supervised learning models. The
proposed manufacturability-aware deep generative model
outperforms the deep generative modeling approach that
trains the VAE and the supervised learning models sepa-
rately (Appendix A2).

The loss function of supervised learning models is
defined as the sum of the mechanical properties losses
(Lpy,,) and the manufacturability metrics losses (Lyy,,,):

Lsurpervised = LProp + LManu (5)

Losses for the properties and manufacturability metrics
are treated in two ways. For the continuous variables (e.g.,
surface area, maximum overhang length, minimum over-
hang angle, maximum feature size, elastic modulus, Pois-
son’s ratio, and heat conductivity), a regressor is used to
map the latent variables-properties relations; for discrete
manufacturability metrics (e.g., existence of the enclosed
voids and existence of unprintable features), discrimina-
tors are used to link them to the latent feature space. The
regressors and discriminators are deep neural networks
with fully connected layers, which map the latent features
to the properties and manufacturability metrics. We use
the mean squared error (MSE) loss Lysp in the regres-

sors, where Ly g, = - z - Y) ; we use the binary
Cross- entropy loss LBCE in the discriminators, where
Lgeg = — Z, (¥ logY +(1-7Y)-log(l - Y)) Y rep-
resents the true response of the i sample, Y, represents the
predicted response of the i sample and n represents the total
number of sample points. Therefore, in this work, Eq. 5 can
be further expressed as follows:

n n n
1 2 1 21
n ~ (Ei—E) + " 2 (vi=9)" + n 2

surpervised =

SA  S§A
< v ¥ ) IR
1 n 2 1 (6)
) .,
+ o 6,-8,)" + o ;(lmax, = ()
1 n
== X (g Tog i) + (1= 1) og(1 = i)

—l (EV log EV,) + (1 — EV,) - log(1 — EV}))
n

As this work focuses on designing symmetric metama-
terial units, the loss for enhancing geometrical symme-
tricity  Lgymmeric Of the reconstructed metamaterial units
is defined as follows:

! ! !
— Taxis
Lsymmetric - z / z / z / z / |xijk _x,'jk

axis=0,1,2

)

where x T« represents the transposed structure of the recon-

structed structure x along three different axes (refer to axis
0, 1, and 2 in Fig. 5). [ represents the length of the structures,
where / = 48 in our dataset. The difference between the
transposed reconstruction structure x T« and the reconstruc-
tion structure x is used as the loss function for geometrical
symmetry, which is calculated as the sum of absolute error
between each voxel.

When arranging the reconstructed metamaterial units into
grids to create a bulk material, it is crucial to ensure that
the units can connect seamlessly at the boundaries while
maintaining connectivity within each unit. A connectivity
1088 L gnnectivity 1 defined for this purpose. The reconstructed
structure x is first copied along axis 0, 1, and 2 each with 3
times to construct structure X of 3 X 3 units. X is a binary
matrix, in which the solid phase is represented by 1 and the
pore phase is represented by 0. Image analysis is conducted
to check the 26 connectivity of the solid phase. If the units
are connected seamlessly at the boundaries and internally,
the number of isolated parts nip should be 1. Therefore, the
loss term that enhances connectivity of the reconstructed
metamaterial units is defined in Eq. 8 as follows:

L = nip(X) — 1 (8)

‘connectivity

To sum up, the final loss function of the proposed deep
generative model consists of four parts: loss for training
the variational autoencoder, loss for training supervised
learning models, loss of geometrical symmetric, and loss
for ensuring connectivity at the boundaries:

Llotal = alLVAE + aZLsupervised + a3LsymmeLric + a4Lconnectivity

®
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Mechanical Properties:
Elastic Modulus E; Poisson’s ratio y; Thermal conductivity k

48 X 48 x 48

Maxpoal
D

24 X 24 x 24 12x 12 x 12 2592

6X6x%6

3x3x3
axis 2

axis 1
|£ axis 0

48 x 48 x 48

Upsample

-

2592 3x3x3 6X6%6 12%12 %12 24 % 24 X 24

1000
[ s00
 E—

| —

Manufacturability:
Maximum feature size t,,,; Surface area 4;
Minimum overhang angle &; Maximum overhang length

Fig.5 Detailed architecture of the manufacturability-aware deep generative model

@, ay, a3, and a, are the weights to balance different
parts of loss terms. Based on our experimental tests,
a,=5,a,=1, a3 =0.01, and a, = 0.01 are used in this
study. To achieve a balance between the accuracies of the
deep generative model and the dimensionality of the latent
feature space, we conducted a convergence study, based on
which the dimensionality of the latent space is set as 100
(Appendix A3). The detailed architecture of the manufac-
turability-aware deep generative model is shown in Fig. 5.
Hyperparameters of this model are listed in Appendix A4.

The 3D metamaterial unit dataset is divided into two sets,
39,378 (90%) for training and 4375 (10%) for testing. The
3D metamaterial units are structural symmetrical structures
with the shape of 48 x 48 X 48 voxels. To alleviate the com-
putational cost while training the deep generative model,
we leverage the geometrical symmetry of the metamaterial
designs and only use one-eighth of the structure as the input.
Therefore, the input data has a dimension of 24 X 24 x 24
voxels. The reconstructed data would be mirrored three
times to obtain the original 48 X 48 X 48 voxels shape. The

proposed deep learning model is implemented in PyTorch
(Paszke et al. 2019). Adam is used as the optimizer for
parameter optimization. The number of epochs is set to 400.

3.3 Validation of the manufacturability-aware deep
generative model

Here, the proposed manufacturability-aware deep gen-
erative model is validated in two aspects: the reconstruc-
tion accuracy of the VAE component and the property/
manufacturability prediction accuracies the regressors and
discriminators.

The reconstruction accuracy is evaluated by performing
a voxel-to-voxel comparison of the original structure image
input to the encoder and the structure reconstructed by the
decoder. A few examples are shown in Fig. 6. The metric of
reconstruction accuracy is defined as follows:

Training set Test set
A A
[ \ [ \
Original
structure
Reconstructed
structure

Fig. 6 Original and reconstructed structures from the training set and the test set
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Table 1 Prediction accuracies of the supervised learning models

Reconstruction accuracy Property
k E G v

Training set 0.9726 0.9611 0.9740 0.9750 0.9561
Testing set 0.9725 0.9477 0.9631 0.9651 0.9278

Manufacturability

SA SA/V Fnax L 0 Lmin EV
Training set 0.9805 0.9772 0.9831 0.9025 0.8704 0.8569 0.9627
Testing set 0.9787 0.9726 0.9819 0.87523 0.8400 0.8200 0.9425

Please refer to Eq. 11 for the accuracy metrics of calculating SA, SA/V, ¢,

calculating ¢, ;, and EV

min

Accuracyreconslruction =1-

where N represents the total amount of test structures used
and [ represents the voxel length of the structures, where
[ = 48 in our dataset. In the first set, the trained models are
employed to reconstruct the images in the training set to
verify the accuracy of the training process. In the second set,
the trained models are employed to reconstruct the images in
the test set. The reconstruction accuracies of the training and
test sets are presented in Table 1. The accuracies are above
0.972, which means the average number of mismatched vox-
els in one of the metamaterial unit is within 2.8% of the total
number of voxels (48 X 48 X 48).

The coefficient of determination (R?) is used to evaluate
the accuracies of the regressors, which quantifies the devia-
tion of data from their true mean value:

Surface area SA Surface area to volume ratio SA/V

Maximum feature tmax

‘max, L» 0>k, E, G, and v and refer to Eq. 12 for the accuracy metrics of

)2
>(r-7)

Y (v-Y,
R=1-—"—"r—"" (11

where Y, represents the true response of the i sample, ¥,
represents the predicted response of the i sample, and
n represents the total number of sample points. Y is the

1 . 2
— > Y. A higher R

value means a more accurate model. The values predicted
by the regressors versus the ground truth values are shown
in Fig. 7.

The accuracy metrics of the discriminators are defined
as the ratio of the number of correct predictions to the
total number of predictions. For binary classification, it is
expressed as follows:

sample -
averaged value of Y, and ¥; =

n

Overhang length L
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Fig. 7 Predicted values vs ground truth values of the regressors for predicting continuous manufacturability metrics and mechanical properties
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TP+ TN
TP + TN + FP + FN

Accuracygeg = (12)
where TP represents true positives, TN represents true nega-
tives, FP represents false positives, and FN represents false
negatives. As shown in Table 1, both regression models
and classification models were able to achieve satisfactory
accuracies.

4 Metamaterial design cases

4.1 Generation of new metamaterial units
by unsupervised generative design

We firstly present a case to illustrate the mechanism of
generating continuously evolving metamaterial unit
designs by manipulating the values of the latent variables.
The basic idea is to morph the metamaterial unit designs
by manipulating the values of the latent variables.

(a)
CEeCEegEgRBERE

= Llatentdimension#10 <+

AN
(4

= Llatentdimension#20 <+

LAY
(24

Latentdimension #30 +

$H G0

‘.- Encoded:latent vectors :
3 ‘e path1 : i

..o ‘path2.

Latent dimension #2
o

-4 -3/ -2 -1

0

1 2 3 4

Latent‘dimensio'n #1

XK K K K K

Fig.8 a Generating metamaterial units by manipulating the values of one latent variable and fixing others. b Two examples of generating con-
tinuously evolving metamaterial designs by spherical linear interpolation in the latent space
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We first randomly choose a metamaterial unit and vary
one of its corresponding latent variables along negative and
positive direction. When we vary one latent variable, the
others remain to its original values. The resultant generated
metamaterial units are shown in Fig. 8a. We only show the
shape transient by modifying latent variable values on three
randomly selected latent dimensions.

Second, we demonstrate the generative design capabil-
ity by conducting the interpolation between two existing
samples. Linear interpolation has been traditionally used
because of its simplicity. However, for a high-dimensional
latent space with a Gaussian prior, linear interpolation can
cause the generated shapes to become blurry due to deviat-
ing from the model's prior distribution. Therefore, spherical
linear interpolation, which is firstly introduced and imple-
mented in White (2016), is employed to interpolate between
two points in the latent space. By avoiding sampling from
locations that are highly unlikely given the model’s prior
distribution, spherical linear interpolation provides a more
appropriate method for generating shapes. The spherical lin-
ear interpolation is formulated as follows:

sin(1 — u)@
Z

sinu6
. " Z
sin@ ! sin® ?

Z,= slerp(zl,zz;ﬂ) = 13)
where slerp represents the spherical linear interpolation that
treats the interpolation as a great circular path on a n-dimen-
sional hypersphere; z,,z, are two randomly selected latent
vectors on the latent feature space; and u represents the loca-
tion along the path, with the start and end points marked as 0
and 1, respectively. Thus, 0 < u < 1; 6 represents the angle
subtended by the arc, so that cosf = z; - z,. Two examples of
generative metamaterial design by spherical linear interpola-
tion in latent space are shown in Fig. 8b. In each example,
we randomly choose two 3D metamaterial units from the
training dataset. The two metamaterial units are encoded to
obtain the corresponding latent vectors z,,Z,. The spherical
linear interpolation is carried out between these two latent
vectors. A total of eight designs are generated along the path,
corresponding to u values of O, é, %, %, %, %, %, %, %, and 1. To
aid visualization, we plotted the two interpolation paths in
two randomly selected latent dimensions.

4.2 Design optimization: designing metamaterial
unit with negative Poisson’s ratio
under manufacturability constraints

The Poisson’s ratio defines the ratio between the transverse
strain and axial strain. Materials that are uniaxially com-
pressed are typically expanded in the orthogonal directions
to the applied load. Conversely, materials with negative
Poisson’s ratio contract in the transverse direction under
applied load. Metamaterials with the auxetic behavior have

a great potential in the development of protective objects
with higher indentation resistance, such as shock absorb-
ers, packing material, and body armors (Babaee et al. 2013;
Evans 1991; Grima et al. 2015; Yasuda and Yang 2015).

In this design case, the objective is to create metama-
terial units with negative Poisson’s ratio and a good addi-
tive manufacturability. The design problem is formulated
as minimizing the Poisson’s ration under the following AM
manufacturability constraints: the maximum feature size 7,
should not exceed 5 mm, the surface area-to-volume ratio
should not exceed 1 mm™!, all the small features can be
printed, and the connectivity is ensured at the metamaterial
unit boundaries (Lgypneciiviey = 0)- The problem statement is
expressed as follows:

mzi“ V@)

St In(@ =5<0
SA/V(@)-1<0
v(z) <0

Imin@) =0
Leonnectivity@) =0

min(z) <z < max(z) (14)

As discussed in Sect. 3.1, we employ NSGA-II to search
for the optimal design represented in the form of a latent
vector z. Subsequently, the optimal latent vector is decoded
to obtain the metamaterial unit in the format of a 3D voxel
image. The design optimization process is repeated three
times independently with different initial points and seeds
in the optimization process. Three different optimal designs
are obtained, as shown in Fig. 9. The Poisson’s ratios of
each of the three optimal designs are verified using finite
element simulation in ABAQUS and their AM manufactur-
ability metric values are verified through voxel-based image

(a) (b) (c)

Fig.9 Three optimal design candidates found by the proposed
approach
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Table 2 Predicted and ground truth Poisson’s ratio of 3D metamaterial optimal design candidates and their manufacturability
Design candidates Objective Manufacturability metrics
Poisson’s ratio v SA (mrn‘l ) f e (I Fin Leonnectivity
v

Constraints - 1 5 0 0

P T P T P T P T P T
(a) —0.301 -0.297 0.97 0.989 3.10 3.04 0 0 0 0
(b) —-0.483 —0.506 0.98 1.116 4.85 5 0 0 0 0
(c) —0.401 —0.381 0.99 0.998 4.20 4.24 0 0 0 0

P represents the predicted values and 7 represents the ground truth values

analysis and are shown in Table 2. The optimal designs
obtained exhibit exceptional mechanical properties, ranking
among the top 0.1% in the metamaterial database in terms of
Poisson’s ratio. Only 48 out of 46,840 metamaterial units in
the existing database have slightly smaller negative Poisson’s
ratios. Notably, two out of the three obtained designs meet
all manufacturability constraints, while design (b) exceeding
the present surface area limit within 12%. By contrast, the 48
metamaterial units with smaller negative Poisson’s ratio than
the obtained optimal designs in the database do not meet the
manufacturability constraints.

4.3 Design optimization: designing metamaterial
units with maximized bulk modulus
under manufacturability constraints

In this design case, the objective is to generate a 3D meta-
material unit with a maximized bulk modulus (B), while
ensuring there are no enclosed voids and the structure is
within a specific volume fraction range. The optimal design
found by our approach is compared with the metamaterial
unit designs obtained by the method proposed in literature
(Takezawa et al. 2017), where a TO method is proposed for
the design of maximized bulk modulus metamaterial units
without enclosed voids. To ensure a fair comparison, the
same volume fraction value 0.3 is used in the comparative
study. Bulk modulus of a metamaterial unit can be obtained

Initial shape Optimized shape (TO)

QO

Fig. 10 a Initial shape for design search. b Optimal design with
vf = 0.3 from TO method. ¢ Optimal design by the proposed method
with consideration of the same manufacturability constraints (Eq. 16).
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by Eq. 15, where E and v can be obtained by supervised
learning model. The bulk modulus is normalized.

E

B=——
3(1 —2v)

15)

In this design case, the manufacturability metrics take
the same settings used in literature (Takezawa et al. 2017):
there should not exist any enclosed voids in the structure. In
addition, the structural connectivity at the boundaries of the
metamaterial units is also considered in our design search
process. The formulation of the problem is then stated as
following:

max
B
. (2)

s.t. EV(z) =0
Lconnectivity(z) =0
|VF(z) — 0.3] = 0.001

min (z) <z < max () (16)

where z represents a vector of latent variables. VF(.)
represents the volume fraction of the decoded 3D metama-
terial unit, which can be seen as a function of z. To ensure
a fair comparison, we used a hollow tetradecahedron

Optimized shape (Eq.16) Optimized shape (Eq.17)

X LR L

d Optimal design by the proposed method with consideration of an
augmented set of manufacturability constraints (Eq. 17)
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Table 3 Comparison of the metamaterial unit designs obtained by the proposed framework and the optimal design reported in literature

Design formulation in Eq. 16 Objective Manufacturability
B(Normalized)  A(mm?) L(mm) 0(°) fmin EV Leonnectivity
Constraints - - - - - - 0 0 0 0
P T P T P T
TO-(Takezawa et al. 2017) - 0.102 0 0 0 0
Proposed approach 0.131 0.120 0 0 0 0
Design formulation in Eq. 17 (more constraints) Objective Manufacturability
B(Normal— “ (rnm_l ) L( mm ) 0(0) Tmin EV Lconneclivily
ized) !
Constraints - - <05 <10 >10 0 0 0
P T P T P T P T P T P P T
Proposed approach 0.091 0.074 0.31 0.305 4.8 5 15.2 11.38 0 0 0 0 0
P represents predicted values and T represents ground truth values
geometry, which is similar to the initial shape in Fig. 10a,  , ) =0
min

as the starting point for the design search. NSGA-II is
applied to search for the optimal design represented in
the form of a latent vector z. Subsequently, the optimal
latent vector is decoded to obtain the metamaterial unit in
the format of a 3D voxel image (Fig. 10c). The predicted
performance and true performance of the optimal design
are compared and shown in Table 3. The proposed frame-
work was able to generate an optimal design that exhibits
a higher normalized bulk modulus when compared to the
design reported in Takezawa et al. (2017).

In addition, the proposed design framework offers the
flexibility to incorporate more manufacturability metrics
for the same design objective. We conducted another case
study by setting the manufacturability constraints as follows:
the maximum overhang length should not exceed 10 mm,
the overhang angle 6 should not less than 10°, the surface
area-to-volume ratio should not exceed 0.5 mm™!, and there
should not exist any enclosed voids or unprintable small fea-
tures. Also, the connectivity at the boundaries of the meta-
material units should be ensured. Thus, the formulation of
the problem is stated as following:

mzax B(Z)

s.0.Lz) — 10 < 0
—0(z) + 10° <0
SA/V(z)—-0.5<0

EV(iZz)=0

Lconnectivity(z) =0
|VF(z) — 0.3] = 0.001

min(z) <z < max(z) (17)

The optimal design under the aforementioned manufac-
turability constraints is shown in Fig. 10d. The performance
and the manufacturability metrics values of the optimal
design are listed in Table 3. Compared to the optimal designs
produced by TO (Takezawa et al. 2017), the design obtained
using the proposed approach has relatively lower modulus,
but satisfying more manufacturability constraints. Based on
the results, we conclude a few strengths and limitations of
the proposed approach:

e The deep generative model-based approach has the
capacity to explicitly incorporate multiple manufactur-
ability constraints within the problem formulation, while
Takezawa et al. (2017) meets the no-enclosed-void con-
straint by restricting the design domain.

e TO is sensitive to the initial condition, whereas the pro-
posed approach has the capability of overcoming the
local minima in design search.

e TO is based on the gradient-based search, which is more
efficient in convergence; the proposed method uses non-
gradient-based optimization algorithm, which requires
a large number of generations. It is to be noted that the
design performances are obtained by the trained super-
vised learning models, thus the computing time is not a
major concern in this work.
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e TO method enables property-driven freeform design; our
proposed method is confined to the design space learned
from the training database.

4.4 Multi-objective design optimization: designing
metamaterial with maximized elastic
modulus and minimized heat conductivity
under manufacturability constraints

In this case, we present a multi-objective design of metamate-
rial units for maximum elastic modulus and minimum heat
conductivity, all while adhering to additive manufacturability
constraints. Metamaterials with high elastic modulus and low
heat conductivity offer enhanced resistance to deformation
and effective heat control. These materials find applications
in aerospace components, energy storage devices, biomedical
implants, and more. To showcase the capacity of our proposed
design framework to handle multiple manufacturability con-
straints, we activate all the constraints that were previously
integrated into the deep generative model.

A multi-objective design optimization is conducted to
maximize the elastic modulus (E) and minimize the heat con-
ductivity (k) of the 3D metamaterial units. In this design case,
the following manufacturability constraints are considered: the
total surface area should not surpass 12,000 mm?, the surface
area-to-volume ratio should not surpass 0.5 mm~", the maxi-
mum overhang length should not exceed 10 mm, the overhang
angle 0 should not be less than 10°, the maximum feature size

Y4444 049
X XX X X X

(a)

Feasible designs in the origian| database .

e Obtained Pareto Frontier: predicted values _ e v
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Fig.11 a Non-dominated design set obtained by multi-objective
optimization. b True heat conductivity and elastic modulus values
obtained by finite element simulation and the predicted values by
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should not exceed 20 mm, the structure should not contain any
enclosed voids, and the geometry connectivity at the metama-
terial unit boundaries should be ensured. The design problem
is formulated as follows:

k@
5..SA(z) — 12000 < 0
SA/V(z)—05<0
Liz)—10<0
—0(z)+10° <0
Imax(@) —20 < 0
EV(z)=0
Leonnectivity @) = 0

min (z) < z < max (z) (18)

Elastic Modulus
R? = 0.9057

Heat Conductivity
R? = 0.8809

Ground Truth Value (MPa)
(=)}
o
o
o
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Predicted Value (W/mm-K)

0 25005000 75001000@2500
Predicted Value (MPa)
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the supervised learning model. ¢ Obtained designs: 3D metamaterial
units with high elastic modulus and low thermal conductivity while
satisfying the given manufacturability constraints
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NSGA-II is applied to search for the optimal designs (on
the Pareto frontier) represented in the form of a latent vec-
tor z. Subsequently, the optimal latent vector is decoded to
obtain the metamaterial unit in the format of a 3D voxel
image (Fig. 11a). As shown in Fig. 11b, the proposed design
framework successfully generates designs that exceed the
feasible designs in the original database in both stiffness
and heat conductivity, while meeting manufacturability con-
straints. The true properties of the found designs are verified
by simulations and their manufacturability is evaluated using
image analysis. The predicted values and the correspond-
ing ground truth values are compared in Fig. 11c. The pre-
dicted manufacturability constraints values and the ground
truth manufacturability values are listed and compared in
Appendix AS5. 13 out of 20 optimal design candidates meet
all manufacturability constraints. 35% optimal design candi-
dates violate the maximum overhang angle constraint, with
relative error within 46.5%. These violations are attributed
to the prediction errors of the supervised learning models,
which can be potentially mitigated by refining the model
with more training data points. Notably, the overhang angle
constraint is particularly prone to be violated due to its
lower accuracy as compared to the other regression models
(Table 1).

5 Conclusion

In this work, a manufacturability-aware deep generative
model-based design framework is established for designing
3D metamaterial units for mechanical properties under AM
manufacturability constraints. By leveraging the latent space
learned by the deep generative model, the proposed frame-
work enables both generative design and exploitative opti-
mization. Our major conclusions are summarized as follows:

(1) The proposed design framework based on a manufac-
turability-aware deep generative model can learn a uni-
fied feature space that incorporates geometrical, manu-
facturability, and mechanical properties information.
This feature space enables property-driven structure
design with consideration of manufacturability con-
straints.

(2) The effectiveness of the proposed framework is dem-
onstrated through three engineering case studies with
different design objectives and manufacturability con-
straints.

(3) The proposed design framework offers flexibility in
accommodating various mechanical properties and
manufacturability constraints. Design objectives and
manufacturability constraints can be easily turned on/
off to meet various design requirements.

(4) In comparison to the gradient-based TO method, the
proposed design framework generates optimal designs
that are less sensitive to the choice of initial design.
Moreover, it is capable of generating a diverse range of
new designs that meet the specified design objectives
and constraints.

In our future work, we plan to address the limitations
of the proposed framework, which can be summarized as
follows:

(1) Some discrepancies exist between the predicted
responses and true responses for optimal designs,
which are caused by the errors of the supervised learn-
ing models, particularly when the new designs require
extrapolation in the latent space.

(2) We aim to expand the set of manufacturability metrics
to enhance the generalizability of the proposed frame-
work for a broader range of AM techniques.

Appendix

Details of the microstructure family template-based
method

This method is used to generate the first group of micro-
structure samples in the database. This method is a four-step
process:

Step 1: Define rectangular bars in the continu-
ous cubic spatial domain [0, 1]3, where [ represents the
length of the spatial domain. The rectangular bars are
defined by the coordinates of the pair of reference points
[loc;, locj]=[(locxi, locy;, loczi), (locxj, locyj, loczj)] and the
side length of the square cross-section of the bar (/). There-
fore, each bar corresponds to 7 design variables. To avoid
overly complicated structures, we only create 1 or 2 bars in
this step.

Step 2: Voxelate the spatial domain [0, /]*. In this work,
we use / = 48, resulting in a 48 X 48 X 48 voxel domain. The
bars created in Step 1 are also voxelated. The voxels of the
rectangular bars are referred as “original bar voxels” in the
following steps.

Step 3: Map the original bar voxels by the midpoint of the
grid along each axis sequentially, following the relationship
loc’ =1 — loc. Through this mirroring process, the original
bar voxels on one side of each axis’s midpoint are reflected
to the opposite side, creating a symmetric arrangement in
all three directions.

Step 4: Record the indices of each voxel to enforce a
hierarchical relationship between locx;, locy;, andlocz; coor-
dinates. This step map the bar voxels (locx;, locy;, locz;)
obtained by previous step to new locations
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(locx/, locy,', locz;') by permuting their coordinates while
adhering to the relationship locx;! > locy;! > locz;'. This step
enforces a cubic symmetry in the structure.

After completing the abovementioned steps, the rectan-
gular bars defined within the spatial domain [0, 1] are mir-
rored to form a voxelated, cubic, symmetric metamaterial
unit. For the metamaterial units generated by 1 bar, there
are 7 design variables; for the metamaterial units generated
by 2 bars, there are in total 14 design variables. Latin hyper
sampling (LHS) is used to assign values to the parameters of
each bar. In our LHS table, the values regarding the coordi-
nates (locx;, locy;, locz;, locxj, locyj, loczj) are generated in the
range of [0, /] and the parameter of side length % is generated
in the range of (0, /] (Fig. 12).

Continucus
space

Fig. 12 Detailed generation process of the first metamaterial unit database

Step 2

Deep generative model that trains VAE
and supervised learning model separately

Here, we present an alternative modeling approach that
trains the VAE and supervised learning models separately.
The VAE is firstly trained to obtain a low-dimensional latent
feature space that solely depends on the geometries of the 3D
metamaterial units. Then, we use supervised learning mod-
els to establish the relationship between the latent feature
variables and the mechanical properties and manufacturabil-
ity metric values. The accuracy of this model is evaluated
based on the reconstruction accuracy and the accuracies of
the supervised learning models. The metrics are introduced
in Egs. 10-12. The results are presented in Table 4. Com-
pared to the proposed integrated manufacturability-aware
model (Table 1), the strategy of training the VAE and the
supervised learning models separately show slightly higher
accuracy in structural reconstruction but lower accuracies in

Step 3 Step 4

XK

Voxelated space

Table 4 Accuracies of the alternative modeling approach on reconstruction of 3D metamaterial units and prediction of properties and manufac-

turability metric values

Reconstruction accuracy Property
k E G Y

Training set 0.9778 0.9172 0.9387 0.9288 0.9032
Testing set 0.9776 0.9067 0.9320 0.9256 0.8929

Manufacturability

SA SA/V fax L 0 tmin EV
Training set 0.9594 0.9266 0.9472 0.8429 0.8076 0.8179 0.9211
Testing set 0.9566 0.9263 0.9456 0.8283 0.8042 0.8082 0.9122
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predicting properties and manufacturability metric values.
The lower prediction accuracies may lead to infeasible or
low-performance designs found by optimization.

Convergence test to determine the dimensions
of latent feature space

See Table 5.

Table5 A convergence test to show the loss values of the proposed
manufacturability-aware deep generative model on the test dataset

Latent L s Ly, Lopervised  Lsymmetric  Leonnectivity
dimension

25 0.0815 0.0474 0.0014 0.0016 0.0003
50 0.0732  0.0402  0.0014 0.0014 0.0003
75 0.0596 0.0316  0.0013 0.0013 0.0002
100 0.0584  0.0302  0.0012 0.0013 0.0002
125 0.0581  0.0290 0.0012 0.0013 0.0002
150 0.0580  0.0283  0.0012 0.0013 0.0002

All these models are trained using the same training strategies and
sharing the same architecture except for the number of latent dimen-
sions.

Hyperparameters of the manufacturability-aware
deep generative model

See Table 6

Multi-objective design optimization:
manufacturability metric values and true
manufacturability of the optimal design candidates

See Table 7 and Fig. 13

Table 6 The detailed

Block
structure of the proposed

Specifications

manufacturability-aware deep
generative model

Encoder
Encoder Conv3d-1
Encoder Conv3d-2
Encoder Conv3d-3
Encoder Conv3d-4
Encoder FC
Mean, Variance, Latent vector
Decoder
Decoder FC
Decoder ConvTranspose3d-1
Decoder ConvTranspose3d-2
Decoder ConvTranspose3d-3
Decoder ConvTranspose3d-4

Regressor for mechanical properties

Regressor-mechanical FC

(Conv32 +ReLU) % 3 + MaxPooling
(Conv64 + ReLU) X 3 + MaxPooling
(Conv96 + ReLU) X 3 + MaxPooling
(Conv96 +ReLU) X3

2592+ ReLU — 1000+ ReLLU — 100
100

100+ReLU — 1000+ ReLU — 2592
(Conv96 +ReLU) X 3 + Upsampling
(Conv64 +ReLU) x 3 + Upsampling
(Conv32 +ReLU) % 3 + Upsampling
(Conv16+ReLU) X2+ Conv1 + Sigmoid

1000 +ReLU — 500+ReLU — 100+ReLU — 4

Regressor for manufacturability metrics

Regressor-manufacturability FC

1000 +ReLU — 500+ReLU — 100+ReLU — 5

Discriminator for manufacturability metrics

Discriminator FC

1000 +ReLU — 500+ ReLU — 100+ Sigmoid — 2

@ Springer



22 Page200f23 Z.Wang, H. Xu
Table 7 Manufacturability constraints and true manufacturability metric values of the optimal design candidates
e < Manufacturability |
candidates SA(mm?) a (mm~1) L(mm) 6(°) tmax (MmM) EV Leonnectivity
Metrics <12000 <0.5 <10 >10 <20 0 0

value

P T P T P T P T P T P | T P T

#1 5718 5952 0.20 0.19 8.4 9.899 10.8 5.7682 4.9 51962 | 0 | O 0 0

#2 5899 6096 0.19 0.19 5.2 4 15.0 14.036 5.9 51539 | 0 | O 0 0

#3 5707 6192 0.20 0.19 3.7 4 12.4 14.036 6.6 6.2539 | 0 | O 0 0

#4 5630 6336 0.23 0.20 4.7 4 15.8 14.036 5.0 51539 | 0 | O 0 0

#5 5644 6360 0.22 0.20 4.0 5 13.3 11.31 6.8 68935 | 0 |0 0 0

#6 5134 6552 0.29 0.24 4.7 5 12.4 11.31 6.4 6.1188 | 0 | O 0 0

#7 5825 6696 0.25 0.21 6.1 6 11.3 9.4623 4.7 49889 | 0 | O 0 0

#8 6989 6864 0.37 0.32 4.7 5 13.3 11.31 7.2 69282 | 0 | 0 0 0

#9 5411 6888 0.21 0.21 8.1 8.485 10.1 6.7214 6.6 6.25 0|0 0 0

#10 10030 9096 0.28 0.29 6.2 6 114 9.4623 7.1 6.2539 | 0 | O 0 0

#11 11320 9744 0.30 0.30 3.3 4 15.6 14.036 7.4 69282 | 0 | 0 0 0

#12 8774 9840 0.30 0.31 5.2 5 15.5 11.31 7.1 7.6837 | 0 | O 0 0

#13 7831 9864 0.30 0.31 6.8 6 13.3 9.4623 79 7.5 0|0 0 0

#14 9085 9984 0.27 0.31 2.2 2.236 28.5 24.095 6.4 6.7315 | 0 | 0O 0 0

#15 9776 9864 0.35 0.31 1.2 2 30.2 26.565 6.9 62539 | 0 | O 0 0

#16 9076 10104 | 0.16 0.21 6.9 7 10.4 8.1301 7.5 7.5 0|0 0 0

#17 11790 | 10512 | 0.33 0.34 4.7 4 15.5 14.036 6.7 62539 | 0 | O 0 0

#18 9437 10416 | 0.38 0.33 3.0 | 2.828 22.8 19.471 6.7 63738 | 0 | O 0 0

#19 11038 | 11160 | 0.31 0.35 5.5 6 13.2 9.4623 6.4 6.2539 | 0 | O 0 0

#20 9907 11184 | 0.34 0.35 1.5 2.236 25.8 24.095 6.1 63738 | 0 | O 0 0

P represents predicted values from supervised learning models and T represents ground truth value obtained by image analysis on the structures.
The design candidates satisfying all manufacturability constraints are highlighted in gray

Surface Area SA Surface Area to Volume Ratio SA/V Overhang Length L
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Fig. 13 True manufacturability metrics values and the predicted values by the supervised learning model
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