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Abstract
Mechanical metamaterials are artificial structures that possess exceptional mechanical properties that are not naturally 
occurring. The complex geometrical and topological features of these metamaterials pose significant challenges to both 
structure design and manufacturing, despite the recent rapid development of additive manufacturing (AM) techniques. 
Thus, an effective framework for designing 3D metamaterials with desired mechanical properties, while also ensuring AM 
manufacturability, is urgently needed. In this paper, an AM manufacturability-aware deep generative model-based design 
framework is proposed for designing 3D metamaterial units for target properties. To accomplish this, we propose using Vari-
ational Autoencoder (VAE) as the feature extractor, which maps the 3D metamaterial geometries to a low-dimensional latent 
feature space. The latent feature space is concurrently linked to discriminators/regressors to predict manufacturability metrics 
and mechanical properties. We demonstrate that the proposed design framework is capable of designing high-performance 
metamaterial units with various user-defined manufacturability metrics. To showcase the effectiveness of the proposed design 
framework, three design cases with different objective functions are presented, and the final optimal designs are validated by 
comparing them to state-of-the-art designs or the optimal designs obtained by topology optimization methods.

Keywords  Metamaterial · Deep generative design · Manufacturability · Image analysis · VAE · Property-driven design

1  Introduction

Mechanical metamaterials are artificial structures that pos-
sess exceptional mechanical properties, such as having 
unique stiffness-to-weight ratio (Zheng et al. 2014), acous-
tic damping (Chen and Chan 2007), wave trapping (Wang 
et al. 2021, 2022a, 2022b; Gurbuz et al. 2021), vibration 
damping (Claeys et al. 2017; Garland et al. 2020; Qian 
et  al. 2021), and energy absorption properties (Alberdi 
et al. 2020; Liu et al. 2020; Xu and Liu 2019). The supe-
rior mechanical properties originate from the architectural 
features of the metamaterial units. Owing to their superior 
mechanical properties, mechanical metamaterials have great 
potential for application in aerospace, seismic engineering, 

biomechanics and medical devices, sports equipment, and 
various other fields. However, the complexities inherent in 
controlling the geometry and topology of metamaterial units, 
intricate nonlinear properties that necessitate advanced com-
putational methods, and the challenges related to manufac-
turing all present obstacles in their design and production. 
The advancements in manufacturing techniques have facili-
tated the development of metamaterials with complex geo-
metric features. In particular, additive manufacturing (AM) 
(Bodaghi et al. 2017; Lei et al. 2019) has great potential in 
fabricating metamaterials with complex shapes that were 
previously impossible to produce using traditional manufac-
turing techniques (Li et al. 2016; Pham et al. 2019; Thomp-
son et al. 2016). Despite the greater design flexibility that 
AM provides, it is still crucial to incorporate AM-related 
manufacturability constraints, such as support structure 
(Jiang et al. 2018; Strano et al. 2013), powder removal 
(Hunter et al. 2020), and process-specific metrics (Oliveira 
et al. 2020), into the structure design process. The current 
structure design for AM processes inadequately accounts 
for the interdependence between metamaterial design and 
AM manufacturing.
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To address this issue, several approaches that consider 
part manufacturability have been proposed in the literature. 
A widely used approach is the real-time process monitoring 
(Grasso and Colosimo 2017; Qi et al. 2019), which utilizes 
image-based monitoring techniques to detect potential fail-
ures during the printing process and alert the user before the 
process completes. However, this approach still falls short 
of improving the manufacturability of the part during the 
design stage. Regarding the design for manufacturability 
approaches, one straightforward approach is to provide a 
design worksheet as a reference for the engineers to evalu-
ate their designs (Booth et al. 2017). However, this manual 
approach is time-consuming and limited to the predefined 
criteria listed in the worksheet. Tedia and Williams (2016) 
proposed a voxel-based manufacturability analysis approach 
that checks the manufacturability based on the minimal fea-
ture size, support material, orientation, and manufacturing 
time for different build orientations. Shi et al. (2018) intro-
duced a feature-based method using heat kernel signature 
for manufacturability analysis in AM, including unsupported 
feature, minimum feature size, minimum self-supporting 
angle, and minimum vertical aspect ratio. Telea and Jalba 
(2011) proposed a voxel-based, distance fields metrics man-
ufacturability analysis technique for thin-region detection. 
Kerbrat et al. (2011) proposed a method that decomposes the 
geometrical model into octrees and evaluates the manufac-
turability index of each octant. Despite these efforts, these 
methods still lack the capability of enhancing the manu-
facturability of the part during the design stage based on 
the user-defined metrics. Therefore, a metamaterial design 
methodology that incorporates AM manufacturability is 
highly desired. Manufacturability checking is also imple-
mented in commercial software, including Magics, Nettfab, 
and online 3D printing service, such as 3DXpert, Sculpteo, 
and Shapeways. They provide functions such as identify-
ing and evaluating the minimum feature size based on the 
printer’s resolution, optimizing the build orientation, and 
generating and measuring support structures. However, these 
functions are often specific to a particular type of printer 
and have limited capability to handle various types of fea-
tures. For instance, some software may not be able to detect 
enclosed voids.

Topology optimization (TO) has emerged as a power-
ful computational tool that optimizes an objective function 
subject to different constraints, by recasting the design prob-
lem as an optimal material distribution problem in a specific 
design domain. Topology optimization has been recently 
applied to design structures with complex geometrical fea-
tures that are suitable for AM. Manufacturability metrics, 
such as overhang angle (Qian 2017; Zhang et al. 2022b), 
overhang length (Zhang et al. 2022a), enclosed void (Xiong 
et al. 2020; Zhou and Zhang 2019), and feature size (Bostan-
abad et al. 2019), are considered in topology optimization 

formulations for designing additively manufactured struc-
tures. However, previous works only considered one or two 
of those manufacturability metrics and a comprehensive 
topology optimization methodology that addresses all the 
mentioned manufacturability criteria is currently lacking. 
There are also a few works on topology optimization for 
designing AM metamaterials (Gao et al. 2018; Li et al. 
2018; Takezawa et al. 2017; Wang et al. 2014; Zhang and 
Khandelwal 2020). Vogiatzis et al. (2017, 2018) proposed a 
level-set method-based TO for designing negative metama-
terials with Poisson’s ratios. However, the obtained optimal 
3D designs were extruded from the 2D units to ensure AM 
manufacturability, which greatly limits the design scope to 
a 2D design space. Watts et al. (2019) proposed a surrogate 
modeling-based method for designing macroscale structures 
infilled with metamaterials. However, in this work, only the 
connectivity between two different unit cells was considered 
in terms of the manufacturability. Takezawa et al. (2017) 
proposed a topology optimization framework to obtain the 
optimal metamaterial unit design with high stiffness and 
verified it experimentally. This research considered two AM 
manufacturability metrics: the absence of enclosed voids and 
the minimization of inclined shapes within the metamaterial 
structures. However, these metrics were not directly included 
in the design formulation. Instead, holes with fixed diam-
eters and locations were pre-defined in the design space to 
ensure the absence of enclosed voids. The works mentioned 
above only incorporated a limited set of manufacturability 
metrics, limiting the generalizability of the proposed design 
approaches. Moreover, incorporating AM manufacturability 
into TO is challenging because the metrics need to be dif-
ferentiable for gradient-based optimization. Thus, it is dif-
ficult to perform manufacturability analysis on voxel-based 
or slice-based 3D metamaterial structures. Consequently, 
integrating AM manufacturability analysis with TO for 
metamaterial unit design is still a significant challenge.

Deep learning (DL) has shown significant promise in 
the field of computational metamaterial design (Yang et al. 
2018; Liu, et al. 2016; Jha et al. 2018; Cang et al. 2017; 
Wang et al. 2020b, 2022a; Meyer et al. 2022; Bastek et al. 
2022; Kumar et al. 2020) and there have been a few attempts 
to leverage the synergy of DL and AM techniques in this 
area. For instance, Wilt et al. (2020) proposed a DL-based 
surrogate modeling method for the prediction of errors in 
compliant auxetic metamaterials produced by additive man-
ufacturing. Zeng et al. (2022) developed a DL-based design 
method for the inverse design of multiscale, multifunctional, 
and gradient mechanical metamaterial while considering 
the compatibility between adjacent units as an AM manu-
facturability metric. Gu et al. (2018) proposed a convolu-
tional neural network-based design approach for designing 
hierarchical materials. The designed structures were fabri-
cated and validated by multi-material jetting AM process. 
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Zeng et al. (2023) proposed a deep learning approach for 
the inverse design and 3D printing of gradient mechanical 
metamaterials. However, their method was limited by the 
creation of 3D metamaterial units through the extrusion of 
2D metamaterials, restricting the design scope to the 2D 
space. Although DL-based design methods have been suc-
cessful in generating novel designs that can be fabricated 
using AM, they have not explicitly considered or only con-
sidered a limited number of AM manufacturability metrics 
during the design process. As a result, there is no guarantee 
that these optimized designs can be manufactured efficiently.

Previous methods of designing metamaterial units either 
included only a restricted range of manufacturability met-
rics or did not explicitly integrate manufacturability met-
rics, thereby constraining the flexibility and generalizability 
of these approaches. The motivation of this research is to 
address limitations in previous research works of designing 
3D metamaterial units. The goal of this research is to design 
high-performance 3D metamaterial units that meet various 
manufacturability constraints. To accomplish this, we pro-
pose an integrated manufacturability-aware deep generative 
design framework comprising two major components: (1) 
a unified manufacturability-aware deep generative model 
for feature learning and (2) a design optimization approach 
for generating 3D metamaterial units for optimal proper-
ties while considering manufacturability constraints. The 
framework considers three design objectives, which are 
elastic modulus, Poisson’s ratio, and heat conductivity, and 
six manufacturability metrics, including surface area, maxi-
mum feature size, minimum feature size, minimum overhang 
angle, maximum overhang length, and enclosed voids. Users 
can selectively enable or disable these design objectives and 
manufacturability metrics to obtain 3D metamaterial units 
with varying performances and manufacturability-related 
geometric characteristics.

The major contributions of this work are summarized as 
follows:

(1)	 An image analysis-based approach is proposed for 
evaluating AM manufacturability metrics based on 
voxelated 3D metamaterial units. This approach can 
be easily extended for applications on any other voxel-
based 3D structures.

(2)	 A manufacturability-aware deep generative model is 
established to learn a unified feature space that incor-
porates geometrical, manufacturability, and mechanical 
properties information.

(3)	 The proposed design framework exhibits both flexibil-
ity and generalizability in multi-objective design of 3D 
metamaterial units for multiple properties, as well as 
accommodating multiple manufacturability metrics. 
The resulting 3D metamaterial unit successfully com-
plies with various manufacturability constraints.

The structure of this paper is as follows. In Sect. 2, we 
describe the process of creating a highly diverse 3D metama-
terial database, which includes geometry information as well 
as associated mechanical properties, such as elastic modulus, 
Poisson’s ratio, and heat conductivity. We also define and 
evaluate the manufacturability metrics by conducting image 
analysis on the metamaterial unit samples. Section 3 pro-
poses an integrated manufacturability-aware deep generative 
model-based design framework. In Sect. 4, we demonstrate 
the effectiveness of the proposed design approach through 
one unsupervised and three supervised design cases. Finally, 
in Sect. 5, we summarize the contributions of this work and 
discuss potential future research directions.

2 � Establishment of the metamaterial 
database: metamaterial unit 
geometry, mechanical properties, 
and manufacturability metrics

2.1 � Generation and collection of 3D metamaterial 
units

In total, we created a highly diverse database that consists 
of 46,840 metamaterial unit samples. The 3D metamaterial 
units are generated or collected from three different meth-
ods/resources. All the metamaterial unit samples have a 
resolution of 48 × 48 × 48 voxels.

The first group of 3D metamaterial units are generated 
using the microstructure family template-based method that 
is modified from the one proposed in literature (Chen et al. 
2018). The structures are defined in a cubic space, and the 
structure geometries are enforced to be cubic symmetric by 
constraining structures inside a single control tetrahedron 
(red-dotted area) and mirroring it to 48 copies. The detailed 
generation process can be found in Appendix A1. Any struc-
tures generated by this method that consist of disconnected 
components rather than a single contiguous part, not con-
nected to the neighbor units under the periodic boundary 
condition (PBC) or having a volume fraction outside the 
range of [0.05, 0.4] are removed from the generated data-
set. Some examples of 3D metamaterial units generated are 
shown in Fig. 1a.

The second group of 3D metamaterial units are generated 
by defining the skeletons of the cubic symmetric metamate-
rial unit in a continuous design domain and then creating 
the geometries by assigning radius ( r ) along the skeleton. 
This group contains octet structures, octahedral structures, 
and body-centered cubic structures. Some examples in this 
group are shown in Fig. 1b.

The last group of 3D metamaterial units are collected 
from the open source dataset (Chan et al. 2021). This meta-
material group is generated using level-set functions, which 
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create isosurface families based on crystallographic structure 
factors. We only select the cubic symmetric metamaterial 
units with volume fraction in the range of [0.05, 0.4] . It is 
to be noted that the metamaterial unit samples from open 
source dataset only provide the shape information, while 
a parametric description of each sample is not available. 
Examples from the third group are shown in Fig. 1c.

Because of the substantial diversity in structural charac-
teristics and the distinct nature of the generation algorithms, 
representing all metamaterial unit samples with a limited set 
of geometric parameters is unfeasible.

2.2 � Mechanical properties simulation

In this research, we will showcase the design approach by 
exploring two different properties of metamaterial units: 
elasticity and heat conductivity. To illustrate the methodol-
ogy, we have selected aluminum as the base material, which 
has elastic properties of EAl = 68300MPa and �Al = 0.31 and 
heat conductivity of kAl = 0.237W∕mmK . This framework 
has the potential to be extended to other base materials, such 
as steel, titanium, copper, and Inconel. However, simula-
tions of the metamaterial unit properties will need to be re-
conducted using the new material properties.

The elastic properties are obtained by finite element 
simulation in ABAQUS with unified PBC (Xia et al. 2003). 
The cubic symmetric of 3D metamaterials ensures that all 
structures have elastic tensors with only three parameters: 
elastic modulus E , Poisson’s ratio �, and shear modulus G . 
As a result, the effective stress–strain tensor Ceff  is expressed 
as follows:

The stress–strain tensor Ceff  can be extracted by solv-
ing the stress–strain relationship using the output of the 
ABAQUS simulation.

Thermal conductivity is a property that characterizes the 
ability of the material to conduct heat when a temperature 
load or temperature gradient field is applied to the design 
domain. The thermal conductivities of 3D metamaterial 
units are simulated in ABAQUS under PBC (Mirabolgha-
semi et al. 2019). For 3D cubic symmetric metamaterials, 
effective thermal conductivity tensor Keff  can be written 
as a 3 × 3 matrix based on isotropic thermal conductiv-
ity k (Eq. 2). The Keff  is extracted from the output of the 
ABAQUS simulation. Therefore, the thermal conductivity 
k can be obtained.

For each metamaterial unit, its elastic modulus E , Pois-
son’s ratio � , and thermal conductivity k are obtained by 
simulation. The histograms in Fig. 2a show the statistics of 
the three mechanical properties of all samples in the meta-
material database.

2.3 � Manufacturability evaluation by image analysis

There is no universal set of manufacturability metrics that 
applies to all AM techniques, as the requirements of the 
printing process and part geometries vary depending on the 
specific technique used. Therefore, the proposed framework 
incorporates a set of widely applicable geometry-based man-
ufacturability metrics and can be extended to include addi-
tional metrics that are specific to particular AM techniques 
and part geometries. Image analysis algorithms/tools are 
developed in MATLAB to evaluate AM manufacturability 
metrics based on the voxel images of metamaterial samples 
(Ashburner and Friston 2000).
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Fig. 1   a The cubic region defining cubic symmetric metamaterial 
units and a few examples of 3D metamaterial units generated using 
the first method. b A few examples from the second group: octet 
structures, octahedral structures, and body-centered cubic structures. 
c A few examples of the 3D metamaterial units collected from Chan 
et al. (2021)
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2.3.1 � Surface area ( SA ) and surface area‑to‑volume ratio 
( SA∕V)

In AM, both surface area and surface area-to-volume ratio 
of a 3D-printed part are critical factors affecting the qual-
ity and properties of the final product. When the surface 
area is large, the part tends to cool more rapidly, result-
ing in increased residual stresses and distortions (Tao and 
Leu 2016). Furthermore, a larger surface area can lead to 
increased exposure to oxygen, which can alter the micro-
structure and mechanical properties of the material (Yadol-
lahi and Shamsaei 2017). Additionally, in certain printing 
techniques, such as selective laser sintering (SLS) or binder 
jetting (BJ), a high surface area can cause the part to adhere 
more strongly to the build plate, making it difficult to detach 
and increasing the risk of damage to the part or build plate. 
Surface area-to-volume ratio is often used to assess the com-
pactness and efficiency of a design. A lower SA∕V  indicates 
less material usage, which is suitable for lightweight design. 
In opposite, a higher SA∕V  often associated with complex 
geometries, which may require support structures during 
printing to maintain their stability. Additionally, in metal 
additive manufacturing processes like powder bed fusion 
(PBF) and selective laser sintering (SLS), a high SA∕V  can 
lead to uneven powder distribution within the build chamber, 

potentially affecting the density and properties of the printed 
part.

2.3.2 � Maximum overhang length ( L ) and minimum 
overhang angle ( �)

Due to the layer-by-layer building characteristic of AM pro-
cesses, the overhang features are a major limitation, particu-
larly in material extrusion techniques (Zhang et al. 2020). 
Previous research has shown that unsupported overhang fea-
tures can lead to a deterioration in shape accuracy, mechani-
cal properties, and surface quality (Atzeni and Salmi 2015; 
Feng et al. 2021; Thore et al. 2019). Support structures are 
typically used to successfully print overhang structures, but 
they increase printing time and post-processing complex-
ity (Järvinen et al. 2014; Wei et al. 2019) and can lead to 
rough surfaces and decreased structural integrity (Lam et al. 
2020). Therefore, reducing the maximum overhang length 
can help to minimize the need for total support structures 
and improve printing efficiency.

Overhang analysis is based on a voxelated model shown 
in Fig. 3a, where i denotes the ith layer of an overhang, 
counting from the bottom to the top. Li represents the width 
of an overhang part without support beneath it in the ith layer. 
Among all the Li values, we define the maximum Li as the 

Fig. 2   a Statistics of the heat conductivity, elastic modulus, and Poisson’s ratio of all 3D metamaterial unit samples in the database. b Statistics 
of the continuous manufacturability metric values of all samples. c Statistics of the binary manufacturability metric values of all samples
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maximum overhang length L . In addition to minimizing the 
overhang length, another strategy to reduce the need for 
support structures is to minimize the overhang angle. The 
minimum overhang angle � is defined as the angle between 
the x–y plane, as illustrated in Fig. 3a, that can be fabricated 
without adding support during the deposition process. The 
overhang angle is an important factor to consider in additive 
manufacturing techniques, particularly those that use sup-
port structures, such as fused deposition modeling (FDM) 
(Bintara et  al. 2019), stereolithography (SLA) (He and 
Song 2018), and selective laser sintering (SLS) (Kruth et al. 
2005). Typically, � is set at 45◦ (Jin et al. 2017; Wei et al. 
2016). However, the optimal angle may vary for different 
printers and materials, and some researchers may perform 
tests to determine the suitable angle size before printing the 
part (Lee and Lee 2017).

2.3.3 � Maximum feature size ( t
max

)

The size of features in a 3D-printed part is an important 
consideration for AM, as overly thick features can be sus-
ceptible to distortion for certain techniques. For example, 
in metal binder jetting (BJ) techniques, thicker parts can 

be more difficult to bind uniformly, resulting in areas with 
higher binder content that may not be burned off com-
pletely during sintering (Lores et al. 2019). This can lead 
to residual stresses in the part, which can cause warping 
or distortion. In laser-based AM techniques, such as selec-
tive laser melting (SLM) and powder bed fusion (PBF), 
a thicker part may receive a higher laser power to ensure 
complete melting of the material. However, increasing the 
laser power can also result in greater heat accumulation 
and potential distortion or cracking (Li et al. 2017). While 
there is no widely accepted maximum feature size (Reddy 
et al. 2016), we include it as one of the manufacturability 
metrics for the prospective users. In this work, the maxi-
mum feature size is obtained by the following procedure. 
One illustrative example of the maximum feature size is 
shown in Fig. 3b.

(a)	 Find the skeleton of the structure, which is in the format 
of voxel image. Record the skeleton as solid voxels.

(b)	 For each solid voxel in the skeleton, calculate its short-
est distance to the surface of the structure. Record all 
the distances as a list.

(c)	 Find the maximum value in the list. The maximum 
value corresponds to the maximum feature size tmax.

Fig. 3   a Definition of the overhang angle and the maximum overhang length. b Definition of the maximum feature size. c Definition of unprint-
able minimum features
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2.4 � Minimum feature size ( t
min

)

Minimum feature size is one of the most important manu-
facturability metrics, which, in practice, is limited not only 
by the laser spot size and powder size, but also by the 3D 
model slicing and resolution of the machine (Moylan et al. 
2012; Tedia and Williams 2016). The minimum feature 
size is considered for various AM techniques, such as ste-
reolithography, inkjet printing, selective laser sintering, 
and binder printing (Bertrand et al. 2007; Boschetto and 
Bottini 2014; Cao et al. 2015). In this work, we consider 
the edge/corner-connected voxels (Fig. 3c) as the unprint-
able features due to the bottleneck shape between the two 
voxels. The minimum feature size is obtained by the fol-
lowing procedures:

(a)	 Slice the 3D metamaterial unit layer by layer, in this 
work, each layer has a thickness of one voxel. There-
fore, we slice the 3D metamaterial unit into 48 pieces 
in total.

(b)	 For each piece, identify and record the number of con-
nected voxels at edges and corners. This process is iter-
ated over all 48 pieces.

(c)	 Sum up the number of edge/corner-connected voxels 
for all the layers. If the number is greater than 0, the 
structure is considered to have unprintable minimum 
features and is categorized as 1. Otherwise, the struc-
ture is categorized as 0, indicating that it does not have 
unprintable minimum features.

2.4.1 � Enclosed voids ( EV)

Enclosed voids have negative impacts on both the powder-
based and material extrusion-based AM techniques, such as 
selective laser sintering (SLS) (Tuncer and Bose 2020; Wang 
et al. 2020a), fused deposition modeling (FDM) (Hutmacher 
et al. 2001; Zein et al. 2002), and electron beam melting 
(EBM) (Walton and Moztarzadeh 2017). In powder-based 
techniques, unsintered powder acts as a support material that 
must be removed after fabrication. In material extrusion-
based techniques, support structures may also be necessary 
and need to be removed after fabrication. Therefore, it is 
critical to avoid fully enclosed voids, as they can make it 
impossible to remove the powder or support structures. To 
detect the presence of enclosed voids, image analysis is con-
ducted on all 3D metamaterial units in the database. Meta-
material units with enclosed voids are categorized as 1 and 
those without enclosed voids are categorized as 0.

With the aforementioned manufacturability metrics, we 
evaluate the manufacturability of all samples in the 3D meta-
material unit database. The statistics of the manufacturabil-
ity metric values are summarized in Fig. 2b and c.

3 � Deep generative model‑based design 
framework

This section introduces an integrated manufacturability-
aware deep generative model for the optimal design of 
metamaterial units under manufacturing constraints. The 
proposed model is evaluated on two aspects: the reconstruc-
tion accuracy and the accuracy of predicting properties and 
manufacturability metrics values.

3.1 � Overall design framework

The integrated manufacturability-aware deep generative 
model-based design framework consists of two major 
components:

(1)	 A manufacturability-aware deep generative model for 
low-dimensional representations of 3D metamaterial 
units and prediction of their corresponding properties. 
The low-dimensional representation is employed as the 
structure design space. The manufacturability-aware 
deep generative model consists of two parts: (a) a Vari-
ational Autoencoder (VAE) for feature learning, which 
learns parametric latent features from the high-dimen-
sional 3D metamaterial image data through encoder 
and (b) supervised learning models that establish con-
nections between the encoded latent vectors and the 
mechanical properties and manufacturability metrics. 
The supervised learning models also perform regulari-
zation on the latent feature space. Details of the model 
are introduced in Sect. 3.2.

(2)	 A design optimization approach for generating novel 
structures with desired properties and manufacturabil-
ity by exploring the latent space. Genetic algorithm 
(NSGA-II) is employed in optimization due to its capa-
bility of overcoming local optima to obtain the global 
optimum. As the design properties and manufacturabil-
ity are obtained using the trained supervised learning 
model during the optimization process, the computing 
efficiency is not a concern here. The design approach 
can be stated as follows:

where z is a vector of design variables in the form of the 
latent variable vector learned from the deep generative 
model. fi(i = 1, 2,… , nf ) are the objective functions related 
to the mechanical properties, cj(j = 1, 2,… , nc) are the con-
straint functions based on the manufacturability metrics. nf  

min

z
[f1(z), f2(z)… , fnf (z)]

(3)s.t.cj(z) ≤ 0
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is the number of objective functions. nc is the number of 
manufacturability constraints. fi and cj are functions of z , as 
all supervised learning models of mechanical properties and 
manufacturability metric values take z as input. The objec-
tive functions of mechanical properties are normalized, so 
that the design framework is independent from the selection 
of base materials (Fig. 4).

3.2 � Manufacturability‑aware deep generative 
model for feature learning

VAE (Kingma and Welling 2014), originated from autoen-
coder, contains two components: encoder and decoder. The 
VAE’s encoder conducts nonlinear dimensionality reduction 
and compresses the high-dimensional data ( x ) into a low-
dimensional latent space ( z ). The encoder can be expressed 
as Q�(z|x) , which is the approximate posterior that follows a 
normal distribution and � is the vector of the encoder param-
eters. The decoder, also a nonlinear operator, can map back 

the low-dimensional latent feature space to the original high-
dimensional input data space. The decoder is expressed as 
P�(x|z)P�(z) , where � is the vector of decoder parameters. 
P�(z) is the prior distribution of latent variables and P�(x|z) 
is the approximated distribution of x conditioned on z . The 
VAE embeds the Bayesian inference in the autoencoder 
architecture, which regularizes the latent feature space into 
a Gaussian distribution. The loss function of VAE includes 
two parts, and it can be expressed as follows:

where z represents the latent vectors, x represents the input 
data, and x̂ represents the reconstruction data. L(x,x̂) is the 
reconstruction loss, where L(x,x̂) =

1

n

∑n

i=1
(x − x̂)

2 , which is 
the mean squared error between the input data x̂ and the 
reconstruction data x . n represents the number of training 
data in the VAE model. LKL(z,N(0, Id)) is the Kullback–Lei-
bler divergence loss, which measures the differences 

(4)LVAE = L(x,x̂) + LKL(z,N(0, Id))

Fig. 4   Integrated manufacturability-aware deep generative model-
based structure design framework. Step 1 is to create a deep genera-
tive model that embeds mechanical properties and manufacturability 
information in the latent space. Step 2 is to conduct design optimi-
zation guided by mechanical properties and manufacturability in the 
latent space. 2D tSNE representations of the latent space are pro-

vided. The colors in each plot represent different levels of mechanical 
properties and manufacturability metrics values. Each layer (objective 
or constraint function) can be turned on/off to meet various design 
requirements. The star and dashed line indicate the locations of one 
metamaterial design in the property/manufacturability metric spaces
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between the distribution of latent vectors z and a normal 
distribution N(0, Id).

Previous research studies (Li and Wang 2020; Xu et al. 
2022) have shown that the latent feature space encoded by a 
stand-alone VAE only captures the geometrical information 
of the input data, thus hindering its ability to capture the 
structure–properties relationships. To address this limita-
tion, we propose a manufacturability-aware deep generative 
model, where the supervised learning models are directly 
attached to the latent feature space encoded by VAE, to link 
the latent features to the mechanical properties and AM 
manufacturability metrics. The supervised learning models 
are trained simultaneously with the encoder and decoder 
during the training process. Supervised learning models of 
mechanical properties and the AM manufacturability metrics 
regularize the latent feature space to mitigate the overfit-
ting issue. After the manufacturability-aware deep genera-
tive model is trained, the obtained latent feature space not 
only contains the samples’ geometrical information but also 
contains the mechanical properties/manufacturability infor-
mation learned from the supervised learning models. The 
proposed manufacturability-aware deep generative model 
outperforms the deep generative modeling approach that 
trains the VAE and the supervised learning models sepa-
rately (Appendix A2).

The loss function of supervised learning models is 
defined as the sum of the mechanical properties losses 
( LProp ) and the manufacturability metrics losses ( LManu):

Losses for the properties and manufacturability metrics 
are treated in two ways. For the continuous variables (e.g., 
surface area, maximum overhang length, minimum over-
hang angle, maximum feature size, elastic modulus, Pois-
son’s ratio, and heat conductivity), a regressor is used to 
map the latent variables-properties relations; for discrete 
manufacturability metrics (e.g., existence of the enclosed 
voids and existence of unprintable features), discrimina-
tors are used to link them to the latent feature space. The 
regressors and discriminators are deep neural networks 
with fully connected layers, which map the latent features 
to the properties and manufacturability metrics. We use 
the mean squared error (MSE) loss LMSE in the regres-
sors, where LMSE =

1

n

∑n

i=1
(Yi − Ŷi)

2
 ; we use the binary 

cross-entropy loss LBCE in the discriminators, where 
LBCE = −

1

n

∑n

i=1
(Yi ⋅ logŶi + (1 − Yi) ⋅ log(1 − Ŷi)) . Ŷi rep-

resents the true response of the ith sample, Yi represents the 
predicted response of the ith sample and n represents the total 
number of sample points. Therefore, in this work, Eq. 5 can 
be further expressed as follows:

(5)Lsurpervised = LProp + LManu

As this work focuses on designing symmetric metama-
terial units, the loss for enhancing geometrical symme-
tricity  Lsymmetric of the reconstructed metamaterial units 
is defined as follows:

where xTaxis represents the transposed structure of the recon-
structed structure x along three different axes (refer to axis 
0, 1, and 2 in Fig. 5). l represents the length of the structures, 
where l = 48 in our dataset. The difference between the 
transposed reconstruction structure xTaxis and the reconstruc-
tion structure x is used as the loss function for geometrical 
symmetry, which is calculated as the sum of absolute error 
between each voxel.

When arranging the reconstructed metamaterial units into 
grids to create a bulk material, it is crucial to ensure that 
the units can connect seamlessly at the boundaries while 
maintaining connectivity within each unit. A connectivity 
loss Lconnectivity is defined for this purpose. The reconstructed 
structure x is first copied along axis 0, 1, and 2 each with 3 
times to construct structure X of 3 × 3 units. X is a binary 
matrix, in which the solid phase is represented by 1 and the 
pore phase is represented by 0. Image analysis is conducted 
to check the 26 connectivity of the solid phase. If the units 
are connected seamlessly at the boundaries and internally, 
the number of isolated parts nip should be 1. Therefore, the 
loss term that enhances connectivity of the reconstructed 
metamaterial units is defined in Eq. 8 as follows:

To sum up, the final loss function of the proposed deep 
generative model consists of four parts: loss for training 
the variational autoencoder, loss for training supervised 
learning models, loss of geometrical symmetric, and loss 
for ensuring connectivity at the boundaries:

(6)

Lsurpervised = 1
n

n
∑

i=1

(

Ei − Êi
)2 + 1

n

n
∑

i=1

(

�i − �̂i
)2 + 1

n

n
∑

i=1

(

Gi − Ĝi
)2

+ 1
n

n
∑

i=1

(

ki − k̂i
)2 + 1

n

n
∑

i=1

(

SAi − ŜAi

)2

+ 1
n

n
∑

i=1

(

SA
V i

− ŜA
V i

)2

+ 1
n

n
∑

i=1

(

Li − L̂i
)2

+ 1
n

n
∑

i=1

(

�i − �̂i
)2 + 1

n

n
∑

i=1
(tmaxi − (t̂maxi )

2

− 1
n

n
∑

(i=1)
(tmini ⋅ log t̂mini ) + (1 − tmini ) ⋅ log(1 − t̂mini ))

− 1
n

n
∑

i=1
(EVi ⋅ log ÊVi) + (1 − EVi) ⋅ log(1 − ÊVi))

(7)Lsymmetric =

l∑
i=1

l∑
j=1

l∑
k=1

( ∑
axis=0,1,2

|||xijk − x
Taxis

ijk

|||
)

(8)Lconnectivity = nip(X) − 1

(9)
Ltotal = �1LVAE + �2Lsupervised + �3Lsymmetric + �4Lconnectivity
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�1 , �2 , �3 , and �4 are the weights to balance different 
parts of loss terms. Based on our experimental tests, 
�1 = 5 , �2 = 1 , �3 = 0.01 , and  �4 = 0.01 are used in this 
study. To achieve a balance between the accuracies of the 
deep generative model and the dimensionality of the latent 
feature space, we conducted a convergence study, based on 
which the dimensionality of the latent space is set as 100 
(Appendix A3). The detailed architecture of the manufac-
turability-aware deep generative model is shown in Fig. 5. 
Hyperparameters of this model are listed in Appendix A4.

The 3D metamaterial unit dataset is divided into two sets, 
39,378 (90%) for training and 4375 (10%) for testing. The 
3D metamaterial units are structural symmetrical structures 
with the shape of 48 × 48 × 48 voxels. To alleviate the com-
putational cost while training the deep generative model, 
we leverage the geometrical symmetry of the metamaterial 
designs and only use one-eighth of the structure as the input. 
Therefore, the input data has a dimension of 24 × 24 × 24 
voxels. The reconstructed data would be mirrored three 
times to obtain the original 48 × 48 × 48 voxels shape. The 

proposed deep learning model is implemented in PyTorch 
(Paszke et al. 2019). Adam is used as the optimizer for 
parameter optimization. The number of epochs is set to 400.

3.3 � Validation of the manufacturability‑aware deep 
generative model

Here, the proposed manufacturability-aware deep gen-
erative model is validated in two aspects: the reconstruc-
tion accuracy of the VAE component and the property/
manufacturability prediction accuracies the regressors and 
discriminators.

The reconstruction accuracy is evaluated by performing 
a voxel-to-voxel comparison of the original structure image 
input to the encoder and the structure reconstructed by the 
decoder. A few examples are shown in Fig. 6. The metric of 
reconstruction accuracy is defined as follows:

Fig. 5   Detailed architecture of the manufacturability-aware deep generative model

Fig. 6   Original and reconstructed structures from the training set and the test set
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where N represents the total amount of test structures used 
and l represents the voxel length of the structures, where 
l = 48 in our dataset. In the first set, the trained models are 
employed to reconstruct the images in the training set to 
verify the accuracy of the training process. In the second set, 
the trained models are employed to reconstruct the images in 
the test set. The reconstruction accuracies of the training and 
test sets are presented in Table 1. The accuracies are above 
0.972, which means the average number of mismatched vox-
els in one of the metamaterial unit is within 2.8% of the total 
number of voxels ( 48 × 48 × 48).

The coefficient of determination ( R2 ) is used to evaluate 
the accuracies of the regressors, which quantifies the devia-
tion of data from their true mean value:

(10)Accuracyreconstruction = 1 −
1

N

1

l3

l∑
i=1

l∑
j=1

l∑
k=1

|||Oijk − Rijk
|||

where Yi represents the true response of the ith sample, Ŷi 
represents the predicted response of the ith sample, and 
nsample represents the total number of sample points. Yi is the 
averaged value of Yi(true) and Yi =

1

nsample

∑
Yi . A higher R2 

value means a more accurate model. The values predicted 
by the regressors versus the ground truth values are shown 
in Fig. 7.

The accuracy metrics of the discriminators are defined 
as the ratio of the number of correct predictions to the 
total number of predictions. For binary classification, it is 
expressed as follows:

(11)R2 = 1 −

∑�
Yi − Ŷi

�2
∑�

Yi − Yi

�2

Table 1   Prediction accuracies of the supervised learning models

Please refer to Eq. 11 for the accuracy metrics of calculating SA, SA∕V , tmax, L, �, k,E,G, and � and refer to Eq. 12 for the accuracy metrics of 
calculating tmin and EV

Reconstruction accuracy Property

k E G �

Training set 0.9726 0.9611 0.9740 0.9750 0.9561
Testing set 0.9725 0.9477 0.9631 0.9651 0.9278

Manufacturability

SA SA∕V tmax L � tmin EV

Training set 0.9805 0.9772 0.9831 0.9025 0.8704 0.8569 0.9627
Testing set 0.9787 0.9726 0.9819 0.87523 0.8400 0.8200 0.9425

Fig. 7   Predicted values vs ground truth values of the regressors for predicting continuous manufacturability metrics and mechanical properties
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where TP represents true positives, TN represents true nega-
tives, FP represents false positives, and  FN represents false 
negatives. As shown in Table 1, both regression models 
and classification models were able to achieve satisfactory 
accuracies.

(12)AccuracyBCE =
TP + TN

TP + TN + FP + FN

4 � Metamaterial design cases

4.1 � Generation of new metamaterial units 
by unsupervised generative design

We firstly present a case to illustrate the mechanism of 
generating continuously evolving metamaterial unit 
designs by manipulating the values of the latent variables. 
The basic idea is to morph the metamaterial unit designs 
by manipulating the values of the latent variables.

Fig. 8   a Generating metamaterial units by manipulating the values of one latent variable and fixing others. b Two examples of generating con-
tinuously evolving metamaterial designs by spherical linear interpolation in the latent space
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We first randomly choose a metamaterial unit and vary 
one of its corresponding latent variables along negative and 
positive direction. When we vary one latent variable, the 
others remain to its original values. The resultant generated 
metamaterial units are shown in Fig. 8a. We only show the 
shape transient by modifying latent variable values on three 
randomly selected latent dimensions.

Second, we demonstrate the generative design capabil-
ity by conducting the interpolation between two existing 
samples. Linear interpolation has been traditionally used 
because of its simplicity. However, for a high-dimensional 
latent space with a Gaussian prior, linear interpolation can 
cause the generated shapes to become blurry due to deviat-
ing from the model's prior distribution. Therefore, spherical 
linear interpolation, which is firstly introduced and imple-
mented in White (2016), is employed to interpolate between 
two points in the latent space. By avoiding sampling from 
locations that are highly unlikely given the model’s prior 
distribution, spherical linear interpolation provides a more 
appropriate method for generating shapes. The spherical lin-
ear interpolation is formulated as follows:

where slerp represents the spherical linear interpolation that 
treats the interpolation as a great circular path on a n-dimen-
sional hypersphere; z1, z2 are two randomly selected latent 
vectors on the latent feature space; and � represents the loca-
tion along the path, with the start and end points marked as 0 
and 1, respectively. Thus, 0 ≤ � ≤ 1 ; � represents the angle 
subtended by the arc, so that cos� = z1 ⋅ z2 . Two examples of 
generative metamaterial design by spherical linear interpola-
tion in latent space are shown in Fig. 8b. In each example, 
we randomly choose two 3D metamaterial units from the 
training dataset. The two metamaterial units are encoded to 
obtain the corresponding latent vectors z1, z2 . The spherical 
linear interpolation is carried out between these two latent 
vectors. A total of eight designs are generated along the path, 
corresponding to � values of 0, 1
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, and 1 . To 

aid visualization, we plotted the two interpolation paths in 
two randomly selected latent dimensions.

4.2 � Design optimization: designing metamaterial 
unit with negative Poisson’s ratio 
under manufacturability constraints

The Poisson’s ratio defines the ratio between the transverse 
strain and axial strain. Materials that are uniaxially com-
pressed are typically expanded in the orthogonal directions 
to the applied load. Conversely, materials with negative 
Poisson’s ratio contract in the transverse direction under 
applied load. Metamaterials with the auxetic behavior have 

(13)z� = slerp
(
z1, z2;�

)
=

sin(1 − �)�

sin�
z1 +

sin��

sin�
z2

a great potential in the development of protective objects 
with higher indentation resistance, such as shock absorb-
ers, packing material, and body armors (Babaee et al. 2013; 
Evans 1991; Grima et al. 2015; Yasuda and Yang 2015).

In this design case, the objective is to create metama-
terial units with negative Poisson’s ratio and a good addi-
tive manufacturability. The design problem is formulated 
as minimizing the Poisson’s ration under the following AM 
manufacturability constraints: the maximum feature size tmax 
should not exceed 5 mm, the surface area-to-volume ratio 
should not exceed 1 mm−1, all the small features can be 
printed, and the connectivity is ensured at the metamaterial 
unit boundaries ( Lconnectivity = 0 ). The problem statement is 
expressed as follows:

As discussed in Sect. 3.1, we employ NSGA-II to search 
for the optimal design represented in the form of a latent 
vector z . Subsequently, the optimal latent vector is decoded 
to obtain the metamaterial unit in the format of a 3D voxel 
image. The design optimization process is repeated three 
times independently with different initial points and seeds 
in the optimization process. Three different optimal designs 
are obtained, as shown in Fig. 9. The Poisson’s ratios of 
each of the three optimal designs are verified using finite 
element simulation in ABAQUS and their AM manufactur-
ability metric values are verified through voxel-based image 

min

z
�(z)

s.t. tmax(z) − 5 ≤ 0

SA∕V(z) − 1 ≤ 0

𝜈(z) < 0

tmin(z) = 0

Lconnectivity(z) = 0

(14)min(z) ≤ z ≤ max(z)

Fig. 9   Three optimal design candidates found by the proposed 
approach



	 Z. Wang, H. Xu 22  Page 14 of 23

analysis and are shown in Table 2. The optimal designs 
obtained exhibit exceptional mechanical properties, ranking 
among the top 0.1% in the metamaterial database in terms of 
Poisson’s ratio. Only 48 out of 46,840 metamaterial units in 
the existing database have slightly smaller negative Poisson’s 
ratios. Notably, two out of the three obtained designs meet 
all manufacturability constraints, while design (b) exceeding 
the present surface area limit within 12%. By contrast, the 48 
metamaterial units with smaller negative Poisson’s ratio than 
the obtained optimal designs in the database do not meet the 
manufacturability constraints.

4.3 � Design optimization: designing metamaterial 
units with maximized bulk modulus 
under manufacturability constraints

In this design case, the objective is to generate a 3D meta-
material unit with a maximized bulk modulus ( B ), while 
ensuring there are no enclosed voids and the structure is 
within a specific volume fraction range. The optimal design 
found by our approach is compared with the metamaterial 
unit designs obtained by the method proposed in literature 
(Takezawa et al. 2017), where a TO method is proposed for 
the design of maximized bulk modulus metamaterial units 
without enclosed voids. To ensure a fair comparison, the 
same volume fraction value 0.3 is used in the comparative 
study. Bulk modulus of a metamaterial unit can be obtained 

by Eq. 15, where E and � can be obtained by supervised 
learning model. The bulk modulus is normalized.

In this design case, the manufacturability metrics take 
the same settings used in literature (Takezawa et al. 2017): 
there should not exist any enclosed voids in the structure. In 
addition, the structural connectivity at the boundaries of the 
metamaterial units is also considered in our design search 
process. The formulation of the problem is then stated as 
following:

where z represents a vector of latent variables. VF(⋅) 
represents the volume fraction of the decoded 3D metama-
terial unit, which can be seen as a function of z . To ensure 
a fair comparison, we used a hollow tetradecahedron 

(15)B =
E

3(1 − 2�)

max

z
B(z)

s.t. EV(z) = 0

Lconnectivity(z) = 0

|VF(z) − 0.3| = 0.001

(16)min (z) ≤ z ≤ max (z)

Table 2   Predicted and ground truth Poisson’s ratio of 3D metamaterial optimal design candidates and their manufacturability

P represents the predicted values and T represents the ground truth values

Design candidates Objective Manufacturability metrics

Poisson’s ratio � SA

V

(
mm−1

)
tmax(mm ) tmin Lconnectivity

Constraints – 1 5 0 0

P T P T P T P T P T

(a) − 0.301 − 0.297 0.97 0.989 3.10 3.04 0 0 0 0
(b) − 0.483 − 0.506 0.98 1.116 4.85 5 0 0 0 0
(c) − 0.401 − 0.381 0.99 0.998 4.20 4.24 0 0 0 0

Fig. 10   a Initial shape for design search. b Optimal design with 
vf = 0.3 from TO method. c Optimal design by the proposed method 
with consideration of the same manufacturability constraints (Eq. 16). 

d Optimal design by the proposed method with consideration of an 
augmented set of manufacturability constraints (Eq. 17)
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geometry, which is similar to the initial shape in Fig. 10a, 
as the starting point for the design search. NSGA-II is 
applied to search for the optimal design represented in 
the form of a latent vector z . Subsequently, the optimal 
latent vector is decoded to obtain the metamaterial unit in 
the format of a 3D voxel image (Fig. 10c). The predicted 
performance and true performance of the optimal design 
are compared and shown in Table 3. The proposed frame-
work was able to generate an optimal design that exhibits 
a higher normalized bulk modulus when compared to the 
design reported in Takezawa et al. (2017).

In addition, the proposed design framework offers the 
flexibility to incorporate more manufacturability metrics 
for the same design objective. We conducted another case 
study by setting the manufacturability constraints as follows: 
the maximum overhang length should not exceed 10 mm, 
the overhang angle � should not less than 10°, the surface 
area-to-volume ratio should not exceed 0.5 mm−1, and there 
should not exist any enclosed voids or unprintable small fea-
tures. Also, the connectivity at the boundaries of the meta-
material units should be ensured. Thus, the formulation of 
the problem is stated as following:

max

z
B(z)

s.t.L(z) − 10 ≤ 0

−�(z) + 10◦ ≤ 0

SA∕V(z) − 0.5 ≤ 0

EV(z) = 0

The optimal design under the aforementioned manufac-
turability constraints is shown in Fig. 10d. The performance 
and the manufacturability metrics values of the optimal 
design are listed in Table 3. Compared to the optimal designs 
produced by TO (Takezawa et al. 2017), the design obtained 
using the proposed approach has relatively lower modulus, 
but satisfying more manufacturability constraints. Based on 
the results, we conclude a few strengths and limitations of 
the proposed approach:

•	 The deep generative model-based approach has the 
capacity to explicitly incorporate multiple manufactur-
ability constraints within the problem formulation, while 
Takezawa et al. (2017) meets the no-enclosed-void con-
straint by restricting the design domain.

•	 TO is sensitive to the initial condition, whereas the pro-
posed approach has the capability of overcoming the 
local minima in design search.

•	 TO is based on the gradient-based search, which is more 
efficient in convergence; the proposed method uses non-
gradient-based optimization algorithm, which requires 
a large number of generations. It is to be noted that the 
design performances are obtained by the trained super-
vised learning models, thus the computing time is not a 
major concern in this work.

tmin(z) = 0

Lconnectivity(z) = 0

|VF(z) − 0.3| = 0.001

(17)min(z) ≤ z ≤ max(z)

Table 3   Comparison of the metamaterial unit designs obtained by the proposed framework and the optimal design reported in literature

P represents predicted values and T represents ground truth values

Design formulation in Eq. 16 Objective Manufacturability

B(Normalized) A
(
mm

2
)

L(mm ) �(◦) tmin EV Lconnectivity

Constraints – – – – – – 0 0 0 0

P T P T P T

TO-(Takezawa et al. 2017) – 0.102 0 0 0 0
Proposed approach 0.131 0.120 0 0 0 0

Design formulation in Eq. 17 (more constraints) Objective Manufacturability

B(Normal-
ized)

SA

V

(
mm−1

)
L(mm ) �(◦) tmin EV Lconnectivity

Constraints – – ≤ 0.5 ≤ 1 0 ≥ 10 0 0 0

P T P T P T P T P T P T P T

Proposed approach 0.091 0.074 0.31 0.305 4.8 5 15.2 11.38 0 0 0 0 0 0
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•	 TO method enables property-driven freeform design; our 
proposed method is confined to the design space learned 
from the training database.

4.4 � Multi‑objective design optimization: designing 
metamaterial with maximized elastic 
modulus and minimized heat conductivity 
under manufacturability constraints

In this case, we present a multi-objective design of metamate-
rial units for maximum elastic modulus and minimum heat 
conductivity, all while adhering to additive manufacturability 
constraints. Metamaterials with high elastic modulus and low 
heat conductivity offer enhanced resistance to deformation 
and effective heat control. These materials find applications 
in aerospace components, energy storage devices, biomedical 
implants, and more. To showcase the capacity of our proposed 
design framework to handle multiple manufacturability con-
straints, we activate all the constraints that were previously 
integrated into the deep generative model.

A multi-objective design optimization is conducted to 
maximize the elastic modulus ( E ) and minimize the heat con-
ductivity ( k ) of the 3D metamaterial units. In this design case, 
the following manufacturability constraints are considered: the 
total surface area should not surpass 12,000 mm2, the surface 
area-to-volume ratio should not surpass 0.5 mm−1, the maxi-
mum overhang length should not exceed 10 mm, the overhang 
angle � should not be less than 10°, the maximum feature size 

should not exceed 20 mm, the structure should not contain any 
enclosed voids, and the geometry connectivity at the metama-
terial unit boundaries should be ensured. The design problem 
is formulated as follows:

⎧⎪⎨⎪⎩

max

z
E(z)

min

z
k(z)

s.t.SA(z) − 12000 ≤ 0

SA∕V(z) − 0.5 ≤ 0

L(z) − 10 ≤ 0

−�(z) + 10◦ ≤ 0

tmax(z) − 20 ≤ 0

EV(z) = 0

Lconnectivity(z) = 0

(18)min (z) ≤ z ≤ max (z)

Fig. 11   a Non-dominated design set obtained by multi-objective 
optimization. b True heat conductivity and elastic modulus values 
obtained by finite element simulation and the predicted values by 

the supervised learning model. c Obtained designs: 3D metamaterial 
units with high elastic modulus and low thermal conductivity while 
satisfying the given manufacturability constraints
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NSGA-II is applied to search for the optimal designs (on 
the Pareto frontier) represented in the form of a latent vec-
tor z. Subsequently, the optimal latent vector is decoded to 
obtain the metamaterial unit in the format of a 3D voxel 
image (Fig. 11a). As shown in Fig. 11b, the proposed design 
framework successfully generates designs that exceed the 
feasible designs in the original database in both stiffness 
and heat conductivity, while meeting manufacturability con-
straints. The true properties of the found designs are verified 
by simulations and their manufacturability is evaluated using 
image analysis. The predicted values and the correspond-
ing ground truth values are compared in Fig. 11c. The pre-
dicted manufacturability constraints values and the ground 
truth manufacturability values are listed and compared in 
Appendix A5. 13 out of 20 optimal design candidates meet 
all manufacturability constraints. 35% optimal design candi-
dates violate the maximum overhang angle constraint, with 
relative error within 46.5%. These violations are attributed 
to the prediction errors of the supervised learning models, 
which can be potentially mitigated by refining the model 
with more training data points. Notably, the overhang angle 
constraint is particularly prone to be violated due to its 
lower accuracy as compared to the other regression models 
(Table 1).

5 � Conclusion

In this work, a manufacturability-aware deep generative 
model-based design framework is established for designing 
3D metamaterial units for mechanical properties under AM 
manufacturability constraints. By leveraging the latent space 
learned by the deep generative model, the proposed frame-
work enables both generative design and exploitative opti-
mization. Our major conclusions are summarized as follows:

(1)	 The proposed design framework based on a manufac-
turability-aware deep generative model can learn a uni-
fied feature space that incorporates geometrical, manu-
facturability, and mechanical properties information. 
This feature space enables property-driven structure 
design with consideration of manufacturability con-
straints.

(2)	 The effectiveness of the proposed framework is dem-
onstrated through three engineering case studies with 
different design objectives and manufacturability con-
straints.

(3)	 The proposed design framework offers flexibility in 
accommodating various mechanical properties and 
manufacturability constraints. Design objectives and 
manufacturability constraints can be easily turned on/
off to meet various design requirements.

(4)	 In comparison to the gradient-based TO method, the 
proposed design framework generates optimal designs 
that are less sensitive to the choice of initial design. 
Moreover, it is capable of generating a diverse range of 
new designs that meet the specified design objectives 
and constraints.

In our future work, we plan to address the limitations 
of the proposed framework, which can be summarized as 
follows:

(1)	 Some discrepancies exist between the predicted 
responses and true responses for optimal designs, 
which are caused by the errors of the supervised learn-
ing models, particularly when the new designs require 
extrapolation in the latent space.

(2)	 We aim to expand the set of manufacturability metrics 
to enhance the generalizability of the proposed frame-
work for a broader range of AM techniques.

Appendix

Details of the microstructure family template‑based 
method

This method is used to generate the first group of micro-
structure samples in the database. This method is a four-step 
process:

Step 1: Define rectangular bars in the continu-
ous cubic spatial domain [0, l]3 , where l  represents the 
length of the spatial domain. The rectangular bars are 
defined by the coordinates of the pair of reference points 
[loci, locj]=[

(
locxi, locyi, loczi

)
,
(
locxj, locyj, loczj

)
] and the 

side length of the square cross-section of the bar ( h ). There-
fore, each bar corresponds to 7 design variables. To avoid 
overly complicated structures, we only create 1 or 2 bars in 
this step.

Step 2: Voxelate the spatial domain [0, l]3 . In this work, 
we use l = 48 , resulting in a 48 × 48 × 48 voxel domain. The 
bars created in Step 1 are also voxelated. The voxels of the 
rectangular bars are referred as “original bar voxels” in the 
following steps.

Step 3: Map the original bar voxels by the midpoint of the 
grid along each axis sequentially, following the relationship 
loc� = l − loc . Through this mirroring process, the original 
bar voxels on one side of each axis’s midpoint are reflected 
to the opposite side, creating a symmetric arrangement in 
all three directions.

Step 4: Record the indices of each voxel to enforce a 
hierarchical relationship between locxi, locyi, andloczi coor-
dinates. This step map the bar voxels 

(
locxi, locyi, loczi

)
 

obtained by previous step to  new locat ions 
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(
locxi

′, locyi
′, loczi

′
)
 by permuting their coordinates while 

adhering to the relationship locxi′ > locyi′ > loczi
′ . This step 

enforces a cubic symmetry in the structure.
After completing the abovementioned steps, the rectan-

gular bars defined within the spatial domain [0, l]3 are mir-
rored to form a voxelated, cubic, symmetric metamaterial 
unit. For the metamaterial units generated by 1 bar, there 
are 7 design variables; for the metamaterial units generated 
by 2 bars, there are in total 14 design variables. Latin hyper 
sampling (LHS) is used to assign values to the parameters of 
each bar. In our LHS table, the values regarding the coordi-
nates (locxi, locyi, loczi, locxj, locyj, loczj ) are generated in the 
range of [0, l] and the parameter of side length h is generated 
in the range of (0, l] (Fig. 12).

Deep generative model that trains VAE 
and supervised learning model separately

Here, we present an alternative modeling approach that 
trains the VAE and supervised learning models separately. 
The VAE is firstly trained to obtain a low-dimensional latent 
feature space that solely depends on the geometries of the 3D 
metamaterial units. Then, we use supervised learning mod-
els to establish the relationship between the latent feature 
variables and the mechanical properties and manufacturabil-
ity metric values. The accuracy of this model is evaluated 
based on the reconstruction accuracy and the accuracies of 
the supervised learning models. The metrics are introduced 
in Eqs. 10–12. The results are presented in Table 4. Com-
pared to the proposed integrated manufacturability-aware 
model (Table 1), the strategy of training the VAE and the 
supervised learning models separately show slightly higher 
accuracy in structural reconstruction but lower accuracies in 

Fig. 12   Detailed generation process of the first metamaterial unit database

Table 4   Accuracies of the alternative modeling approach on reconstruction of 3D metamaterial units and prediction of properties and manufac-
turability metric values

Reconstruction accuracy Property

k E G �

Training set 0.9778 0.9172 0.9387 0.9288 0.9032
Testing set 0.9776 0.9067 0.9320 0.9256 0.8929

Manufacturability

SA SA∕V tmax L � tmin EV

Training set 0.9594 0.9266 0.9472 0.8429 0.8076 0.8179 0.9211
Testing set 0.9566 0.9263 0.9456 0.8283 0.8042 0.8082 0.9122
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predicting properties and manufacturability metric values. 
The lower prediction accuracies may lead to infeasible or 
low-performance designs found by optimization.

Convergence test to determine the dimensions 
of latent feature space

See Table 5.

Hyperparameters of the manufacturability‑aware 
deep generative model

See Table 6

Multi‑objective design optimization: 
manufacturability metric values and true 
manufacturability of the optimal design candidates

See Table 7 and Fig. 13

Table 5   A convergence test to show the loss values of the proposed 
manufacturability-aware deep generative model on the test dataset

All these models are trained using the same training strategies and 
sharing the same architecture except for the number of latent dimen-
sions.

Latent 
dimension

L(x,x̂) LKL Lsupervised Lsymmetric Lconnectivity

25 0.0815 0.0474 0.0014 0.0016 0.0003
50 0.0732 0.0402 0.0014 0.0014 0.0003
75 0.0596 0.0316 0.0013 0.0013 0.0002
100 0.0584 0.0302 0.0012 0.0013 0.0002
125 0.0581 0.0290 0.0012 0.0013 0.0002
150 0.0580 0.0283 0.0012 0.0013 0.0002

Table 6   The detailed 
structure of the proposed 
manufacturability-aware deep 
generative model

Block Specifications

Encoder
 Encoder Conv3d-1 (Conv32 + ReLU) × 3 + MaxPooling
 Encoder Conv3d-2 (Conv64 + ReLU) × 3 + MaxPooling
 Encoder Conv3d-3 (Conv96 + ReLU) × 3 + MaxPooling
 Encoder Conv3d-4 (Conv96 + ReLU) × 3
 Encoder FC 2592 + ReLU → 1000 + ReLU → 100
 Mean, Variance, Latent vector 100

Decoder
 Decoder FC 100 + ReLU → 1000 + ReLU → 2592
 Decoder ConvTranspose3d-1 (Conv96 + ReLU) × 3 + Upsampling
 Decoder ConvTranspose3d-2 (Conv64 + ReLU) × 3 + Upsampling
 Decoder ConvTranspose3d-3 (Conv32 + ReLU) × 3 + Upsampling
 Decoder ConvTranspose3d-4 (Conv16 + ReLU) × 2 + Conv1 + Sigmoid

Regressor for mechanical properties
 Regressor-mechanical FC 1000 + ReLU → 500 + ReLU → 100 + ReLU → 4

Regressor for manufacturability metrics
 Regressor-manufacturability FC 1000 + ReLU → 500 + ReLU → 100 + ReLU → 5

Discriminator for manufacturability metrics
 Discriminator FC 1000 + ReLU → 500 + ReLU → 100 + Sigmoid → 2
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Table 7   Manufacturability constraints and true manufacturability metric values of the optimal design candidates

P represents predicted values from supervised learning models and T represents ground truth value obtained by image analysis on the structures. 
The design candidates satisfying all manufacturability constraints are highlighted in gray

Fig. 13   True manufacturability metrics values and the predicted values by the supervised learning model
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