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Abstract
Abstract deformations of the CR structure of a compact strictly pseudoconvex hyper-
surface M in C

2 are encoded by complex functions on M . In sharp contrast with
the higher dimensional case, the natural integrability condition for 3-dimensional CR
structures is vacuous, and generic deformations of a compact strictly pseudoconvex
hypersurface M ⊆ C

2 are not embeddable even inCN for any N . A fundamental (and
difficult) problem is to characterize when a complex function on M ⊆ C

2 gives rise
to an actual deformation of M inside C

2. In this paper we study the embeddability
of families of deformations of a given embedded CR 3-manifold, and the structure of
the space of embeddable CR structures on S3. We show that the space of embeddable
deformations of the standard CR 3-sphere is a Frechet submanifold of C∞(S3,C)

near the origin. We establish a modified version of the Cheng–Lee slice theorem in
which we are able to characterize precisely the embeddable deformations in the slice
(in terms of spherical harmonics). We also introduce a canonical family of embed-
dable deformations and corresponding embeddings starting with any infinitesimally
embeddable deformation of the unit sphere in C2.

Mathematics Subject Classification 32V20 · 32V30

The second author was supported in part by the NSF grants DMS-1600701 and DMS-1900955.

B Peter Ebenfelt
pebenfel@math.ucsd.edu

Sean N. Curry
sean.curry@okstate.edu

1 Department of Mathematics, Oklahoma State University, Stillwater, OK 74078, USA

2 Department of Mathematics, University of California at San Diego, La Jolla, CA 92093-0112, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00208-023-02658-y&domain=pdf


628 S. N. Curry, P. Ebenfelt

1 Introduction andmain results

A fundamental problem in CR geometry is that of characterizing embeddability of
abstract CR manifolds, where a CR manifold is said to be embeddable if it is CR
embeddable in C

N for some N . By the work of Boutet de Monvel and Kohn [7, 33],
embeddability of compact strictly pseudoconvex CR manifolds can be characterized
in terms of a closed range property of ∂̄b. In particular, when the dimension of the CR
manifold is at least 5 it is always embeddable [7]. On the other hand, compact strictly
pseudoconvex CR 3-manifolds are generically not embeddable [8]. The first known
examples of such nonembeddable CR 3-manifolds go back to Rossi [45] who showed
that certain classical SU(2)-invariant structures on S3 are not embeddable (though,
being real analytic, they are locally embeddable); a locally nonembeddable example
was given by Nirenberg [39, 40]. (Nirenberg’s example can be compactified to give a
CR structure on S3, and his construction already indicated that nonembeddability was
generic in the compact case.) The question of embeddability of compact strictly pseu-
doconvex CR 3-manifolds has continued to receive much attention, and many authors
have sought to achieve a deeper understanding of the set of embeddable structures.
Epstein [20, 21] has studied the set of embeddable deformations of a given compact
embeddable CR structure in terms of index theory for the corresponding (relative)
Szegő projectors, and shown that the set of embeddable structures is closed in the C∞
topology [21]. Chanillo, Chiu and Yang [13, 14] have given a sufficient condition for
embeddability in terms of CR Yamabe invariants; specifically they show that a com-
pact CR structure is embeddable if it has positive Yamabe invariant and nonnegative
CR Paneitz operator. A partial converse has recently been established by Takeuchi [47]
who showed that the CR Paneitz operator of an embeddable compact CR 3-manifold
is always nonnegative.

In this paper we study the embeddability of families of abstract deformations of a
fixed compact strictly pseudoconvex CR 3-manifold embedded in C

2, and the struc-
ture of the space of embeddable deformations (as a subset of the space of all abstract
deformations) of the standard CR 3-sphere inC2. By the stability theorem of Lempert
[37], a small abstract deformation of a compact strictly pseudoconvex hypersurface
in C

2 is embeddable (in C
N for some N ) if and only if it is embeddable in C

2. We
therefore restrict our attention to embeddability in C

2. We shall mainly consider CR
structures on the 3-sphere S3 near its standard CR structure, i.e. the strictly pseudo-
convex CR structure that it inherits as the boundary of the unit ball inC2. Recall that a
strictly pseudoconvex CR structure (M, H , J ) on a smooth 3-manifold M is a contact
distribution H ⊆ T M equipped with a bundle endomorphism J : H → H satisfying
J 2 = −id.When M = S3, by a result of Eliashberg [19], a CR structure can be embed-
ded in C2 only if the underlying contact structure agrees with that of the standard CR
sphere. Let �(J ) denote the space of smooth positively oriented CR structures on S3

compatible with its standard contact distribution H . Let �(J )emb ⊂ �(J ) denote the
subset of CR structures that are embeddable in C

2. In [15] it is shown that �(J ) is
a smooth tame Fréchet manifold in the sense of Hamilton [28], with respect to the
scale of standard L2-based Sobolev spaces on M . The same holds for the space of
embeddable CR structures near the standard CR 3-sphere:
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Deformations and embeddings of three-dimensional. . . 629

Theorem 1.1 [2, 38] �(J )emb ⊂ �(J ) is a smooth tame Fréchet submanifold near
the standard CR sphere.

Tounderstand the embeddableCR structures on S3 more concretely,we parametrize
�(J ) by complex functions on S3 in the following way. First, note that specifying a
CR structure J compatible with H is the same as specifying its ±i eigenspaces T 1,0

and T 0,1 = T 1,0 as subbundles of C ⊗ H . Let (z, w) denote the coordinates on C
2

and define the following vector fields on S3,

Z1 = w̄
∂

∂z
− z̄

∂

∂w
, Z 1̄ = Z1 (1)

spanning T 1,0 and T 0,1 respectively for the standard CR 3-sphere (S3, H , J0). A
complex function ϕ = ϕ1

1̄ on S3 with ||ϕ||∞ < 1 defines an oriented CR structure on
(S3, H) by defining its holomorphic tangent space ϕT 1,0 to be spanned by

Zϕ
1 = Z1 + ϕ1

1̄Z 1̄.

(Up to complex conjugation, all CR structures compatible with H are realized this
way.) Strictly speaking, ϕ should be interpreted as a section of (T 1,0)∗ ⊗ T 0,1 and
we refer to ϕ as the deformation tensor, though we usually trivialize (T 1,0)∗ ⊗ T 0,1

using Z1 and Z 1̄ in order to think of ϕ as a function. We let D denote the space of
smooth deformation tensors, and letDemb ⊂ D be the subset of deformations that are
embeddable in C

2. The main goal of this paper is to better understand the space of
embeddable deformation tensorsDemb on S3, thought of as a space of functions using
the standard frame Z1, Z 1̄.

In [8] Burns and Epstein showed that there is an infinite dimensional linear space
within the space of embeddable deformation tensors Demb near the origin (i.e. the
trivial deformation corresponding to the standard structure on S3), characterized by
the vanishing of certain terms in the spherical harmonic decomposition. To make this
more precise we introduce the spherical harmonic spaces Hp,q of functions on S3

that are the restrictions of harmonic homogeneous polynomials of bidegree (p, q) on
C
2 for each p, q ≥ 0. We denote the component of ϕ in Hp,q by ϕp,q , so that the

L2 orthogonal spherical harmonic decomposition of ϕ is given by ϕ = ∑
p,q ϕp,q .

Define DB E ⊂ D to be the set of all deformation tensors ϕ such that ϕp,q = 0 if
q < p + 4 (our deformation tensor is the conjugate of Burns and Epstein’s). Burns
and Epstein showed that if ϕ ∈ DB E is sufficiently small in C4 then the deformation
is embeddable. This has a clear conceptual explanation given by Bland [2] in terms
of Lempert’s theory of extremal discs for the Kobayashi metric, the corresponding
circular representation, and nonnegativity of the Fourier coefficients of the conjugated
deformation tensor ϕ (relative to an S1-invariant frame); cf. [3, 36, 37, 43]. Examining
the linearized action of the contact diffeomorphisms on the space of CR structures on
S3 suggests that the space of Burns–Epstein deformations (or more precisely a certain
subspace of the Burns–Epstein deformations satisfying an additional condition along
the critical diagonal p = q + 4) should give a slice for the action of the group of
contact diffeomorphisms on the space of embeddable CR structures. But this has not
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630 S. N. Curry, P. Ebenfelt

been fully resolved in the literature; in particular, such a result has not been established
in the C∞ case. One of our main results is a slice theorem for the C∞ embeddable CR
structures on S3 near its standard CR structure, see Theorem 1.3. To do this we first
prove a modified version of the Cheng–Lee slice theorem [15] for the space of abstract
deformations of the standard CR structure on S3, and then show that restricting to a
natural subspace of the modified slice gives a slice theorem for the embeddable CR
structures.

Before stating our slice theorems we briefly discuss the corresponding linearized
problem.Given anyCRhypersurface M ⊆ C

2, the infinitesimally embeddable abstract
deformations may be understood concretely as follows. Let Mt be any smooth 1-
parameter family of strictly pseudoconvex hypersurfaces inC2 with M0 = M , defined
as the zero loci of a smooth family of defining functions ρt . It is always possible to find
a family of contact diffeomorphisms ψt : M → Mt with ψ0 = id parametrizing the
family Mt . Using ψt one may pull back the CR structures of the Mt to M in order to
obtain a family of CR structures on M whose holomorphic tangent spaces are spanned
by Zt

1 = Z0
1 + ϕ1

1̄(t)Z0
1̄
where Z0

1 is a (unitary) frame for the holomorphic tangent

space of M = M0. For purely aesthetic reasons, we lower the index 1̄ on ϕ1
1̄(t) using

the Levi form of ρt to obtain ϕ11(t). A straightforward geometric calculation shows
that if ϕ̇ = ϕ̇11 = d

dt

∣
∣
t=0 ϕ11(t) then

ϕ̇11 = (∇1∇1 + i A11) f (2)

for some function f where Re f = −ρ̇ = − d
dt

∣
∣
t=0 ρt |M is the normal velocity of

the deformation at t = 0 (see, e.g, [6, 16, 18, 31] or Lemma 2.1 below); here ∇ is the
Tanaka–Webster connection of the contact form i∂ρ0|M and A11 is the corresponding
pseudohermitian torsion. In the case of the standard CR sphere, defined by ρ0 =
1 − |z|2 − |w|2, (2) simply becomes

ϕ̇11 = Z1Z1 f . (3)

The spaceD0 of infinitesimally embeddable deformation tensors on S3 is easily under-
stood using spherical harmonics. The vector field Z1 sends each Hp,q isomorphically
onto Hp−1,q+1 unless p = 0 in which case Z1 is zero. It follows that ϕ̇ is an embed-
dable infinitesimal deformation (i.e. ϕ̇ is in the range of Z1Z1) if and only if ϕ̇p,q = 0
for q = 0, 1. Its easy to see that every infinitesimally embeddable deformation tensor
ϕ̇ can be realized as d

dt

∣
∣
t=0 ϕ(t) for some family of embeddable deformation tensors

ϕ(t).We therefore sometimes refer to ϕ̇ ∈ D0 as a linearized embeddable deformation.
Having understood the embeddability problem at the linearized (i.e. infinitesimal)

level about the standardCR3-sphere, it is natural to ask if we can similarly characterize
the embeddable deformations. Such a characterization is possible if we work modulo
contact diffeomorphisms. Let C denote the space of contact diffeomorphisms on S3.
The Lie algebra of C is the space of contact (Hamiltonian) vector fields, which can be
identified withC∞(S3,R) once a contact form on S3 has been chosen (we always take
the standard contact form θ = i(zdz̄+wdw̄) on S3 which normalizes the Levi form to
be h11̄ = 1 in the frame Z1). The linearization of the natural action C×�(J ) → �(J )

at (id, J0) is
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(g, ϕ̇11) �→ ϕ̇11 + i Z1Z1g, (4)

where g ∈ C∞(S3,R) is the potential for a contact (Hamiltonian) vector field and ϕ̇ is
a deformation tensor on S3 (here we are identifyingDwith the tangent space of �(J )

at J0). As an immediate consequence of (4), it was observed in Burns–Epstein [8] that
an infinitesimal slice for the action of the contact diffeomorphisms on CR structures
at J0 is given by D′

B E ⊕ D⊥
0 where D⊥

0 ⊆ D is the L2 orthogonal complement to
D0 and D′

B E ⊆ DB E is the subspace of all ϕ ∈ DB E that additionally satisfy the
reality condition Im ((Z 1̄)

2ϕp,p+4) = 0 along the critical diagonal. (The latter reality
condition is equivalent to saying that ϕ must be L2 orthogonal to the image of the real
S1-invariant functions on S3 under i(Z1)

2, where the inner product is the real part of
the complex inner product.)

In Cheng–Lee [15] it was shown that the space of marked CR structures on S3 near
the standard CR structure can be locally identified with C ×S where S is the set of all
deformation tensors ϕ such that Im (Z 1̄Z 1̄ϕ) = 0. Marking here refers to the choice
of a point in the CR Cartan frame bundle [11, 17, 48] of the given CR structure on
(S3, H); the symmetry group of any marked CR structure is trivial, so working with
marked structures eliminates the need to try to mod out by the noncompact symmetry
group of the standard CR sphere. For our purposes, we need a modified version of
the Cheng–Lee slice theorem which uses the linearly equivalent sliceD′

B E ⊕D⊥
0 . Let

�(J )m denote the space of marked CR structures on (S3, H), which we identify with
the space Dm of marked deformations of (S3, H , J0). The contact diffeomorphisms
act naturally by pullback on �(J ); a contact diffeomorphism that takes J1 ∈ �(J )

to J2 ∈ �(J ) lifts to an equivariant diffeomorphism between the corresponding CR
Cartan frame bundles [10, 11] so that the action of contact diffeomorphisms on the CR
structures �(J ) extends naturally to an action on the marked CR structures �(J )m

(see, e.g., [15]), and hence on Dm by identification with �(J )m .

Theorem 1.2 Fix any marking y0 of the standard CR sphere. Then

(i) The natural actionC×Dm → Dm restricts to a local smooth tame diffeomorphism
P : C × (D′

B E ⊕ D⊥
0 ) × {y0} → Dm in a neighborhood of (0, y0) ∈ Dm;

(ii) For � ∈ C sufficiently near the identity, the image of (D′
B E ⊕D⊥

0 ) × {y0} under
� is disjoint from itself unless � = Id.

The proof of this modified Cheng–Lee slice theorem can be obtained by adapting
the proof of Theorem B in [15]. For the reader’s convenience we provide a slightly
simplified proof of this theorem inSect. 5. The advantage of thismodified slice theorem
is that a linear subspace of the slice gives a slice for the embeddable deformations. Let
Dm

emb denote the space ofmarked embeddable deformations of the standardCR sphere.
We shall prove the following slice theorem for the set of embeddable deformations,
which also immediately implies Theorem 1.1.

Theorem 1.3 Fix any marking y0 of the standard CR sphere. Then

(i) The natural action C × Dm → Dm restricts to a local smooth tame immersion
Pemb : C × D′

B E × {y0} → Dm in a neighborhood of (id, 0) ∈ C × D′
B E whose

image is a neighborhood of (0, y0) in Dm
emb;
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632 S. N. Curry, P. Ebenfelt

(ii) For � ∈ C sufficiently near the identity, the image of D′
B E × {y0} under � is

disjoint from itself unless � = Id.

We observe that by Theorem 1.2, Theorem 1.3 is equivalent to the statement that
(D′

B E ⊕D⊥
0 )\D′

B E consists solely of nonembeddable deformations (near the origin).
This question was considered in [8] where it was shown that the nonembeddable
deformations form a Gδ-set in (D′

B E ⊕ D⊥
0 )\D′

B E ; the results in [20] imply that
this Gδ-set is open. Theorem 1.3 settles the question completely; a sufficiently small
ϕ ∈ D′

B E ⊕ D⊥
0 is embeddable if and only if ϕ ∈ D′

B E .
Another consequence of Theorem 1.3 is a normal form for embeddable CR struc-

tures, unique up to an action of Aut(S3) on D′
B E .

Corollary 1.4 For sufficiently small deformations ϕ of the standard CR sphere, ϕ is an
embeddable deformation if and only if there exists a smooth contact diffeomorphism
such that the pulled back CR structure corresponds to a deformation ϕ̃ ∈ D′

B E .

Note that D′
B E can be replaced by DB E in Corollary 1.4 (at the expense of leaving

also the freedom to act by an S1-equivariant contact diffeomorphism on DB E ). Such
a result was only previously known in finite regularity, with the notion of “sufficiently
small” depending on the regularity; see the work of Bland and Bland-Duchamp [2, 4,
5].

The above characterization of embeddable deformations is satisfying, but it does
not really give a practical means of checking for embeddability since one must first
normalize the deformation tensor by an appropriate contact diffeomorphism.Wewould
like to say something about the embeddability of a deformationwithout the need to first
normalize it. At the linearized (i.e. infinitesimal) level this is clear, as explained above.
To what extent does a similar characterization of embeddability hold beyond the linear
level? By taking a completely different approach to the problem using geometric flows
we provide the following result describing embeddable structures without the need to
normalize by contact diffeomorphisms.

Theorem 1.5 For ϕ̇ ∈ D0 sufficiently small there exists a smooth family ϕ(t) ∈ Demb

such that ϕ(t) = t ϕ̇ + μ(t) for t ∈ [0, 1], where μ(t) = O(t2) and μ(t) ∈ D⊥
0 .

Moreover, there exists a smooth family of embeddings 
t : S3 → C
2, with 
0 = Id,

realizing the deformation ϕ(t) for each t ∈ [0, 1].
Remark 1.6 We make two remarks.

(1) In fact, it follows from the more detailed version of the theorem, Theorem 4.13,
that the family ϕ(t) is canonical up to the choice of a constant λ that determines
the initial velocity of the family of embeddings 
t (setting λ = −1 ensures that
the family of surfaces
t (S3)move outward and locally foliateC2); the resulting
time one map D0 → Demb taking ϕ̇ to ϕ(1) has a linearization at ϕ̇ = 0 which
is the identity and hence can be thought of as an exponential map.

(2) Note that, in terms of spherical harmonics, the condition ψ ∈ D⊥
0 means that

ψp,q = 0 except possibly when q = 0, 1. Also, note that ψ(t) will not be zero
in general (as can be seen by an inspection of the proof of Proposition 4.3 for the
special case where, say, ϕ̇ ∈ Hp,2).
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In the special case where ϕ̇ ∈ DB E we naturally find that ϕ(t) = t ϕ̇ (i.e. ψ(t) = 0)
and we obtain analyticity of 
t in t . More precisely:

Theorem 1.7 For ϕ̇ ∈ DB E sufficiently small there exists a family 
τ : S3 → C
2

with complex parameter τ , such that for each τ , |τ | < 2,

(i) 
τ is a smooth embedding which realizes the deformation ϕ(τ) = τ ϕ̇;
(ii) 
τ is analytic in τ as a function with values in the Banach space of Ck maps

S3 → C
2 for any k.

Note that this recovers the result of Burns–Epstein [8, Theorem 5.3] by setting τ = 1.
As a by-product of our approach, we also establish the embeddability of a family of

deformations of an embedded structure that satisfy a well known necessary condition
(stated for t = 0 above), under a natural additional condition that forces the resulting
family of embeddings tomove inwards (or outwards). Asmentioned above, given aCR
3-manifold (M, H , J ) embedded in a complex surface, an infinitesimal deformation
tensor ϕ̇ will be infinitesimally embeddable if and only if it satisfies (2) for some
complex function f on M .Given a family ofCRhypersurfaces Mt ⊆ C

2 with M0 = M
contact parametrized by ψt : M → Mt , with ψ0 = id, (2) applies at each time t on
Mt . Pulling back usingψt : M → Mt we obtain a family of embeddable deformations
ϕ(t) with ϕ(0) = 0 and a family of complex functions ft on M satisfying a certain
second order equation at each time t , corresponding to (2); ft can be interpreted as the
complex normal component of the variational vector field ψ̇t arising from the family
of embeddings ψt (more precisely, as the corresponding function on M). Saying that
a family of abstract deformations ϕ(t) satisfies this condition (for some family ft ) in
principle says that the deformation ϕ(t) moves tangent to the space of embeddable
deformations at each time t . Borrowing terminology from Jih-Hsin Cheng [16] we
will refer to this condition on ϕ(t) as the tangency condition; we shall also refer to the
family ft as a family of potentials corresponding to ϕ(t). For the precise formulation of
the tangency condition see Sect. 3 and also Lemma 2.1. Given a family of deformations
of an embeddable CR structure satisfying the tangency condition, it is natural to ask
whether this family is embeddable. Our result is the following:

Theorem 1.8 Let M be a compact strictly pseudoconvex hypersurface in C
2 and let

ϕ(t) be a 1-parameter family of deformations of the induced CR structure on M with
ϕ(0) = 0. Suppose ϕ(t) satisfies the tangency condition for all t with a family of
potentials ft with Re ft having strict sign. Then there exists ε > 0 such that ϕ(t) is
an embeddable deformation for all t ∈ [0, ε).

For a more precise statement see Theorem 3.1 below. This generalizes Cheng’s
theorem for fillable structures [16, Theorem A] to the case of embeddable structures
and allows Re ft to have either sign. We remark that the sufficient condition in The-
orem 1.8 for embeddability of the family ϕ(t) is also a necessary condition. This
follows because a family of CR hypersurfaces Mt ⊆ C

2 (t ∈ [0, ε]) can always be
re-embedded by applying a smooth t-dependent family of dilations such that it moves
to the pseudoconvex side for all time (or, if desired instead, to the pseudconcave side
for all time) so that the family of potentials ft then satisfies Re ft > 0 for all t (or, if
desired instead, Re ft < 0 for all t). See Sect. 2.2.

123



634 S. N. Curry, P. Ebenfelt

This paper is organized as follows. In Sect. 2 we give some preliminaries on defor-
mations of 3-dimensional CR structures and introduce the tangency equation for
families of embeddable deformations, which makes precise the tangency condition
referred to in Theorem 1.8. In Sect. 3 we explain how one obtains embeddings from
solutions to the tangency equation and establish Theorem 3.1, which implies Theorem
1.8. In Sect. 4 we study the solvability of the tangency equation for small deformations
of the standard CR 3-sphere, and establish Theorems 1.5 and 1.7. Finally, in Sect. 5
we prove the slice theorems, Theorem 1.2 and Theorem 1.3. We remark that the main
sections, Sects. 3-5, are largely independent from each other. Section3 is primarily
geometric, and makes use of the Fefferman ambient metric construction in the frame-
work of Hirachi-Marugame-Matsumoto [31]. In both Sect. 4 and Sect. 5 we make use
of the Nash–Moser inverse function theorem as presented in Hamilton [28] (see also
Cheng–Lee [15] for a brief introduction to this and Hamilton’s tame Fréchet cate-
gory). These sections also make use of an elliptic regularity argument adapted from
[8] which appears first in the proof of Proposition 4.8. The proof of Theorem 4.13 (a
more precise version of Theorem 1.5) uses arguments from the theory of parabolic
evolution equations.

2 Deformations of 3-dimensional CR structures

Let M be a smooth oriented 3-manifold.A contact structure on M is a rank 2 subbundle
H ⊂ T M which is nondegenerate in the sense that if H is locally given as the kernel
of some 1-form θ , then θ ∧ dθ is nowhere vanishing. A CR structure on (M, H) is
given by a smooth endomorphism J : H → H such that J 2 = −id. We refer to
(M, H , J ) as a strictly pseudoconvex CR 3-manifold. The partial complex structure
J on H ⊂ T M defines an orientation of H , and therefore defines an orientation on
the annihilator subbundle H⊥ := Ann(H) ⊂ T ∗M . A nowhere vanishing section
θ of H⊥ is called a contact form for H . A contact form θ is positively oriented if
dθ |H is compatible with the orientation of H , equivalently, if dθ( · , J · ) is positive
definite on H . A CR structure (M, H , J ) together with a choice of positively oriented
contact form θ is referred to as a pseudohermitian structure [42, 49]. The Reeb vector
field of a contact form θ is the vector field T uniquely determined by θ(T ) = 1 and
dθ(T , · ) = 0.

Given a CR manifold (M, H , J ) we decompose the complexified contact distribu-
tion C ⊗ H as T 1,0 ⊕ T 0,1, where J acts by i on T 1,0 and by −i on T 0,1 = T 1,0.
Let θ be a positively oriented contact form on M . Let Z1 be a local frame for the
holomorphic tangent bundle T 1,0 and Z 1̄ = Z1, so that {T , Z1, Z 1̄} is a local frame

for C ⊗ T M . Then the dual frame {θ, θ1, θ 1̄} is referred to as an admissible coframe
and one has

dθ = ih11̄θ
1 ∧ θ 1̄ (5)
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for some positive smooth function h11̄. The function h11̄ is the component of the Levi
form Lθ (U , V ) = −idθ(U , V ) on T 1,0, that is

Lθ (U
1Z1, V 1̄Z 1̄) = h11̄U 1V 1̄.

It is convenient to scale Z1 so that h11̄ = 1, and we will typically do so. In any case,

we write h11̄ for the multiplicative inverse of h11̄. The Tanaka–Webster connection
associated to θ is given in terms of such a local frame {T , Z1, Z 1̄} by

∇Z1 = ω1
1 ⊗ Z1, ∇Z 1̄ = ω1̄

1̄ ⊗ Z 1̄, ∇T = 0

where the connection 1-forms ω1
1 and ω1̄

1̄ satisfy

dθ1 = θ1 ∧ ω1
1 + A1

1̄ θ ∧ θ 1̄, and (6)

ω1
1 + ω1̄

1̄ = h11̄dh11̄, (7)

for some function A1
1̄. The uniquely determined function A1

1̄ is known as the
pseudohermitian torsion. Components of covariant derivatives will be denoted by
adding ∇ with an appropriate subscript, so, e.g., if u is a function then ∇1u = Z1u,
∇1∇1u = Z1Z1u − ω1

1(Z1)Z1u and ∇0∇1u = T Z1u − ω1
1(T )Z1u. We may also

use h11̄ and h11̄ to raise and lower indices, so that A1̄1̄ = h11̄A1
1̄ and A11 = h11̄A1̄

1,

with A1̄
1 = A1

1̄. Note that when h11̄ = 1 raising and lowering indices is a trivial
operation.

2.1 Abstract Deformations

Let (M, H , J ) be a compact, strictly pseudoconvex, three-dimensional CR manifold.
Consider a smooth family of CR structures (M, Ht , Jt ) on M with (H0, J0) = (H , J ).
By Gray’s theorem [27] this family may be pulled back by a smooth family of dif-
feomorphisms to a family of the form (M, H , J̃t ). When considering families of CR
structures on M we therefore always keep the contact distribution H fixed. If Z1 is
holomorphic tangent vector field on (M, H , J ) then this amounts to requiring that the
holomorphic tangent space of our deformed structure is spanned by a vector field of
the form Z1 + ϕ1

1̄Z 1̄ for some complex function ϕ = ϕ1
1̄ with |ϕ|2 < 1 on M . We

shall fix a contact form θ on M such that Z1 is unitary (i.e. h11̄ = 1 with respect to

Z1). Given a deformed CR structure spanned by Z1 + ϕ1
1̄Z 1̄ we will always work

with the normalized frame

Zϕ
1 = 1

√
1 − |ϕ|2

(
Z1 + ϕ1

1̄Z 1̄

)
(8)

so that the Levi form of θ with respect to the deformed structure has component
hϕ

11̄
= 1. Given a family (M, H , Jt ) of CR structures on M , we may describe the

deformation Jt by a deformation tensor ϕ1
1̄(t) via
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Zt
1 := 1

√
1 − |ϕ|2

(
Z1 + ϕ1

1̄(t)Z 1̄

)
, (9)

where we use the shorthand notation

|ϕ|2 = |ϕ1
1̄(t)|2. (10)

The corresponding admissible coframe (θ, θ1t , θ 1̄t ) is obtained by choosing

θ1t := 1
√
1 − |ϕ|2

(
θ1 − ϕ1̄

1(t) θ 1̄
)

. (11)

Note that Jt is easily recovered by writing Jt = i Z t
1 ⊗ θ1t − i Z t

1̄
⊗ θ 1̄t . It is useful to

invert the transformations (Z1, Z 1̄) �→ (Zt
1, Zt

1̄
) and (θ1, θ 1̄) �→ (θ1t , θ 1̄t ):

Z1 = 1
√
1 − |ϕ|2

(
Zt
1 − ϕ1

1̄(t)Zt
1̄

)
,

θ1 = 1
√
1 − |ϕ|2

(
θ1t + ϕ1̄

1(t)θ 1̄t
)

.

(12)

We denote by ∇ t the Tanaka–Webster connection of the pseudohermitian structure
(M, H , Jt , θ), and by A11(t) its pseudohermitian torsion in the coframe (θ, θ1t , θ 1̄t ).

For the connection form ω1
1 on M relative to the admissible coframe (θ, θ1, θ 1̄), we

shall write

ω1
1 = ω1

1
1 θ1 + ω1

1
1̄ θ 1̄ + ω1

1
0 θ, (13)

and similarly for the connection forms ω1
1(t) of ∇ t ,

ω1
1(t) = ω1

1
1(t) θ1t + ω1

1
1̄(t) θ 1̄t + ω1

1
0(t) θ. (14)

Note that we then have, for a smooth function f ,

∇ t
1∇ t

1 f = (Zt
1)

2 f − ω1
1
1(t)Zt

1 f . (15)

2.2 Embedded deformations

Let M be a strictly pseudoconvex hypersurface in a complex surface X . Then M
carries an induced CR structure (M, H , J ), where Hp is the maximal complex
subspace in Tp M ⊂ Tp X for each p ∈ M and J is induced from the standard
complex structure on X . We say that a smooth family of embeddings ψt : M → X ,
t ∈ [0, ε), is a parametrized deformation of M if ψ0 = idM and Mt = ψt (M)

is strictly pseudoconvex for all t . By pulling back the induced CR stuctures on Mt

by ψt for each t , one obtains a smooth family of CR structures (M, Ht , Jt ) on M
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with (M, H0, J0) = (M, H , J ). We say that a parametrized deformation ψt of M
is contact parametrized if the induced family of CR structures (M, Ht , Jt ) on M
satisfies Ht = H for all t , equivalently if ψt : M → Mt is a contact diffeomor-
phism for all t , where the contact structure on Mt ⊂ X comes from the induced
CR structure. By Gray’s stability theorem [27] any parametrized deformation may be
reparametrized by a 1-parameter family of diffeomorphisms of M so that it becomes
a contact parametrized deformation.

Lemma 2.1 Let ψt : M → X, t ∈ [0, ε), be a contact parametrized deformation
of the strictly pseudoconvex hypersurface M ⊂ X. Let (M, H , Jt ) denote the corre-
sponding family of CR structures on M and let (θ, θ1t , θ 1̄t ) be a corresponding family of
admissible coframes with deformation tensor ϕ11(t) as above. Then there is a smooth
family of functions ft ∈ C∞(M,C) such that

ψ̇t = Jψt ∗ Re ( ft T ) − ψt ∗ Re
(

i ft T + 2(∇ 1̄
t ft )Zt

1̄

)
, (16)

and

∇ t
1∇ t

1 ft + i A11(t) ft = ϕ̇11(t)

1 − |ϕ(t)|2 , (17)

where ψ̇t = d
dt ψt , ϕ̇11(t) = d

dt ϕ11(t) and J denotes the complex structure on X.

Remark 2.2 (i) Lemma 2.1 is proved, e.g., in [18, Lemma 4.5] for the case of t = 0
(note that what we are denoting by f0 corresponds to i f̄ in [18]) and the generalization
to arbitrary times t is straightforward, though we include the full proof below for
completeness. For other presentations, see [6, 16, 31]. (ii) The denominator in the
right hand side of (17) will arise naturally in the proof below, but it can also be
explained by comparing the above lemma with [18, Lemma 4.5] and noting that by
(9) and (12) we have

Zt+s
1 = (1 + O(s))Zt

1 +
(

ϕ̇1
1̄(t)

1 − |ϕ(t)|2 s + O(s2)

)

Zt
1̄

(18)

so that the infinitesimal deformation tensor for the family of CR structures (M, H , Jt )

at time t , relative to the frame (Zt
1, Zt

1̄
), is ϕ̇1

1̄(t)
1−|ϕ(t)|2 . (iii) Note that, for each t , the

vector field ψt ∗ Re
(

i ft T + 2(∇ 1̄
t ft )Zt

1̄

)
is tangent to Mt = ψt (M). Hence, with

our current conventions, if ft is pure imaginary for all t then ψt (M) = M for all t
and ψt : M → M is a family of contact diffeomorphisms of (M, H). In general, the
complex function i ft is a kind of generalizedHamiltonian potential for the infinitesimal
motion of Mt in X ; see Section 4 of [18] for a more detailed discussion. (iv) Note
that Jψt ∗T points to the pseudoconvex side of Mt for each t . Hence, in particular, if
M0 bounds a strictly pseudoconvex domain and Re ft > 0 for all t , then Mt moves
inward (i.e. to the pseudoconvex side) as t increases; on the other hand, if Re ft < 0
then Mt moves outward. (v) Note that the family of functions ft depend only on the
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choice of contact form θ , and not on the choice of coframing; if θ is replaced by eϒθ

for some smooth function ϒ on M then the functions ft must replaced by eϒ ft . The
family of functions ft may be more invariantly described as a family of densities (cf.
[18]), but this will not concern us since we will always work with respect to a fixed
contact form.

Proof of Lemma 2.1 Let (T , Zt
1, Zt

1̄
) denote the frame dual to (θ, θ1t , θ 1̄t ). Since ψt :

M → Mt is a diffeomorphism pulling back the CR structure on Mt ⊂ X to the CR
structure (M, H , Jt ) on M , the frame (T , Zt

1, Zt
1̄
) pushes forward underψt to a frame

(T t , Lt
1, Lt

1̄
) for Mt such that Lt

1̄
is a section of T (0,1) X |Mt and J T t is everywhere

transverse to Mt . The family of functions ft arises from taking components of ψ̇t that
are adapted to this framing as follows: Since ψ̇t ◦ ψ−1

t is a section of T X |Mt it can be
written as

ψ̇t ◦ ψ−1
t = at J T t + bt T

t + c1t Lt
1 + c1̄t Lt

1̄
(19)

for some (unique) smooth functions at , bt , c1t on Mt with at and bt real and c1̄t = c1t .
Setting ft = (at + ibt ) ◦ ψt and V 1

t = −c1t ◦ ψt , equation (19) becomes

ψ̇t = Jψt ∗ Re ( ft T ) − ψt ∗ Re
(

i ft T + 2V 1̄
t Z t

1̄

)
, (20)

where V 1̄
t is the conjugate of V 1

t . The smooth functions ft and V 1
t on M are uniquely

determined for each t and smooth in t , since ψt is smooth in t .
To obtain (16) we need to show that V 1̄

t = ∇ 1̄
t ft . In order to prove this and (17) it

will be convenient to introduce (arbitrary) local coordinates (z1, z2) on X . We write
ψt in these coordinates as ψt = (ψ1

t , ψ2
t ). Since, by definition, ψt : (M, H , Jt ) → X

is a CR embedding for each t ∈ [0, ε), it follows that the component functionsψ1
t and

ψ2
t are CR functions with respect to (M, H , Jt ). Thus for all t we have Zt

1̄
ψk

t = 0,

k = 1, 2. Differentiating this expression with respect to t we have Zt
1̄
ψ̇k

t + Ż t
1̄
ψk

t = 0,
k = 1, 2, where

Ż t
1̄

= d

dt
Z t
1̄

= ϕ̇1̄
1(t)

√
1 − |ϕ|2 Z1 mod Zt

1̄

= ϕ̇1̄
1(t)

1 − |ϕ|2 Zt
1 mod Zt

1̄
,

using (12). Hence,

Zt
1̄
ψ̇k

t + ϕ̇1̄
1(t)

1 − |ϕ|2 Zt
1ψ

k
t = 0, k = 1, 2. (21)

The relationship between V 1
t and ft will follow by substituting (20) into (21); to do

this we first write (20) in terms of (z1, z2)-components by applying dzk to each side,
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giving

ψ̇k
t = i

[
ψt ∗ Re ( ft T )

]
zk −

[
ψt ∗ Re

(
i ft T + 2V 1̄

t Z t
1̄

)]
zk

= i Re ( ft T ) ψk
t − Re

(
i ft T + 2V 1̄

t Z t
1̄

)
ψk

t

= i f̄t T ψk
t − V 1

t Z t
1ψ

k
t , (22)

for k = 1, 2, where we have used that dzk ◦ J = idzk and that Zt
1̄
ψk

t = 0. Thus

Zt
1̄
ψ̇k

t = i(Zt
1̄

f̄t )T ψk
t + i f̄t Z t

1̄
T ψk

t − (Zt
1̄
V 1

t )Zt
1ψ

k
t − V 1

t Z t
1̄

Zt
1ψ

k, (23)

for k = 1, 2. We can simplify the above by noting that Zt
1̄
T ψk

t = [Zt
1̄
, T ]ψk

t and

Zt
1̄

Zt
1ψ

k = [Zt
1̄
, Zt

1]ψk , since Zt
1̄
ψk

t = 0, and using the following easy consequences
of the Tanaka–Webster structure equations (cf. [34, page 418]):

[Zt
1̄
, Zt

1] = iht
11̄

T + ω1
1
1̄(t)Zt

1 − ω1̄
1̄
1(t)Zt

1̄
(24)

(where we retain the Levi form component ht
11̄

even though it is 1 for all t) and

[Zt
1̄
, T ] = A1

1̄(t)Zt
1 − ω1̄

1̄
0(t)Zt

1̄
. (25)

We obtain

Zt
1̄
ψ̇k

t = (i Z t
1̄

f̄t − iht
11̄

V 1
t )T ψk

t + (i f̄t A1
1̄(t) − Zt

1̄
V 1

t − ω1
1
1̄(t)V 1

t )Zt
1ψ

k
t , (26)

for k = 1, 2. Substituting this into (21) we obtain

(i Z t
1̄

f̄t − iht
11̄

V 1
t )T ψk

t + (i f̄t A1
1̄(t) − Zt

1̄
V 1

t − ω1
1
1̄(t)V 1

t + ϕ̇1̄
1(t)

1 − |ϕ|2 )Zt
1ψ

k
t = 0,

(27)

for k = 1, 2. Since ψt : (M, H , Jt ) → X is a CR embedding for each t , we have

det

(
Zt
1ψ

1
t Z t

1ψ
2
t

T ψ1
t T ψ2

t

)

�= 0

for all t . Hence (27) implies that i Z t
1̄

f̄t −iht
11̄

V 1
t = 0 (i.e. V 1

t = ∇1
t f̄t , or equivalently,

V 1̄
t = ∇ 1̄

t ft ) and

i f̄t A1
1̄(t) − Zt

1̄
V 1

t − ω1
1
1̄(t)V 1

t + ϕ̇1̄
1(t)

1 − |ϕ|2 = 0; (28)
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recalling that the choice of local coordinate system (z1, z2) was arbitrary, these iden-
tities hold on all of M and for all t . Finally, using that Zt

1̄
V 1

t + ω1
1
1̄(t)V 1

t = ∇ t
1̄
V 1

and that V 1
t = ∇1

t f̄t , and lowering an index using ht
11̄

(= 1 for all t), (28) gives

∇ t
1̄
∇ t
1̄

f̄t − i A1̄1̄(t) f̄t = ϕ̇1̄1̄(t)

1 − |ϕ|2 , (29)

which is the conjugate of (17). This proves the result. ��

Note that the contact parametrization ψt : M → X in Lemma 2.1 can always be
replaced by one for which the corresponding functions ft are real-valued for all t
(the imaginary parts of the original functions ft generate a family of contact diffeo-
morphisms of (M, H) that can be composed with the original ψt to give the desired
reparametrization, cf. [18, Lemma 4.6]). For our purposes, however, it will be advan-
tageous to retain the flexibility of allowing ft to be complex.

Note also, that if Mt , t ∈ [0, ε], is a family of compact strictly pseudoconvex
hypersurfaces in C

2 then one can always find a smooth family of dilations Ft such
that the equivalent family Ft (Mt ) moves inwards for all t and hence corresponds to
a family of potentials with Re ft > 0 for all t . Alternatively, by the same argument,
Ft (Mt ) can be taken to move outwards for all t corresponding to a family of potentials
with Re ft < 0. Thus, if we seek to characterize families of embeddable deformations
via the existence of a family of solutions to (17), it is no loss of generality in asking
for our family ft to satisfy that Re ft has strict sign.

3 Embeddings from solutions to the Tangency equation

In this section we shall show that the tangency condition does in fact characterize
embeddability. More precisely, we shall show that it is possible to construct a smooth
family of CR embeddings from a smooth family of potentials ft that solve the tangency
equation (17) for a given family of deformations ϕ(t); such a family of deformations
ϕ(t) is said to satisfy the tangency condition. The aim of this section is to prove the
following result, from which Theorem 1.8 directly follows.

Theorem 3.1 Let M = M0 be a compact smooth hypersurface bounding a strictly
pseudoconvex domain � ⊂ C

2. Let (M, H , Jt ) be a smooth family of CR structures
on (M, H) with J0 = J where (M, H , J ) is the CR structure induced on M ⊆ C

2.
Let ϕ(t) be the associated family of deformation tensors given by (9). Assume that
there is a smooth family of solutions ft ∈ C∞(M,C) to the tangency equation (17)
with Re ft having strict sign. Then, for a sufficiently small ε > 0, there is a family of
mappings ψ : M × [0, ε) → C

2 such that:

(i) ψt : M → C
2 is an embedding for each t ∈ [0, ε) with ψ0 = id, where ψt :=

ψ(·, t).
(ii) ψt is a CR diffeomorphism of (M, H , Jt ) onto the image Mt := ψt (M) ⊂ C

2.
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The basic idea behind the proof of Theorem 3.1 is straightforward.We seek to solve
the initial value problem

{
ψ̇t = Jψt ∗ Re ( ft T ) − ψt ∗ Re

(
i ft T + 2(∇ 1̄

t ft )Zt
1̄

)
,

ψ0 = id.
(30)

If (z1, z2) are the standard coordinates on C2 then ψt can be written as (ψ1
t , ψ2

t ) and
the initial value problem above becomes

{[
∂
∂t − i f̄t T + 2Re

(
(∇1

t f̄t )Zt
1

)]
ψ

j
t = 0,

ψ
j
0 = z j |M ,

(31)

for j = 1, 2 (cf. the proof of Lemma 2.1). Since we expect ψt to be a CR embedding
with respect to the CR structure corresponding to Zt

1 for each t , there is no loss of
generality in supplementing (31) with the additional equation Zt

1̄
ψ j = 0, j = 1, 2,

for each t . With this in mind, the local existence of a solution to (31) in the case where
Re ft > 0 follows easily from the Newlander-Nirenberg theorem with boundary and
extension of CR functions (applied to z j |M , j = 1, 2). Global existence then follows
by patching the local solutions using local uniqueness. In the case where Re ft < 0
we are able to use the classical version of the Newlander-Nirenberg theorem, but we
can no longer use extension of CR functions to conclude. We get around this by using
the (stable) embeddability results of Lempert and Epstein-Henkin to obtain a solution
ψ̃t of (30) except with the initial condition possibly being some CR embedding other
than the identity. It is then easy to modify this family so that the initial condition is
satisfied; we remark that in doing so we are effectively (indirectly) solving (30) with
respect to a new family of potentials ft solving the tangency equation for the same
family of deformations ϕ(t) with Re ft > 0.

Proof of Theorem 3.1 Let ϕ(t), ft , t ∈ [0, ε0), be given as in the statement of the
theorem. Let W := ∂

∂t − i f̄t T + 2Re
(
(∇1

t f̄t )Zt
1

)
. On Y = M × [0, ε0) we consider

the almost complex structure given by

T 0,1Y = span{Zt
1̄
, W }. (32)

A straightforward calculation using the tangency equation (17) shows that T 0,1Y is in
fact integrable (cf. also the proof of Theorem A in [16] where this calculation is done
for the case corresponding to Re ft < 0; note that the calculation is independent of the
sign of Re ft ). Note that this complex structure induces theCR structure corresponding
to Zt

1̄
on each slice M × {t}. In the following we identify M ⊂ C

2 with M × {0},
though we retain both notations to help indicate when we are working inC2 and when
we are working in Y .

We now show that in the case when Re ft > 0 the complex manifold Y = M ×
[0, ε0) with (partial) boundary M × {0} can be realized as a one sided neighborhood
of M ⊂ C

2 with M as the strictly pseudoconvex boundary since Re ft > 0. Indeed,
by the Newlander-Nirenberg theorem with boundary [12, 30] the complex manifold
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Y = M ×[0, ε0) can be locally realized in a neighborhood of any point p ∈ M ×{0} as
the strictly pseudoconvex side of a strictly pseudoconvexhypersurface inC2 (it remains
to be shown that the realization can be taken to be the identity on M0 ⊂ C

2). From
this local realizability it follows that a CR function on M × {0} can be extended to a
holomorphic function in a neighborhood in Y = M ×[0, ε0) of any point p ∈ M ×{0}.
In particular, the CR functions ψ1

0 = z1|M and ψ2
0 = z2|M admit unique such local

extensions. Moreover, by the local uniqueness these extensions must glue together to
unique extensions ψ1(x, t) = ψ1

t (x) and ψ2(x, t) = ψ2
t (x) of ψ1

0 (x) and ψ2
0 (x),

defined in a neighborhood M × [0, ε) of M × {0}, solving Wψ j = 0 and Zt
1̄
ψ j = 0

for j = 1, 2. The family of maps ψt = (ψ1
t , ψ2

t ) : M → C
2, t ∈ [0, ε) therefore

solves (30).
It remains to consider the case where Re ft < 0 for all t . As a first step, we observe

that (30) is formally solvable to all orders at t = 0, and hence (by Borel’s lemma) there
exists a smooth family of contact embeddings ψ̂t : M → X , t ∈ (−δ, 0] satisfying
(30) to all orders (for our given ft , ϕ(t)) at t = 0. By Lemma 2.1 there exist a family of
deformation tensors ϕ̂(t) and potentials f̂t , t ∈ (−δ, 0] corresponding to the family of
embeddings ψ̂t and by construction ϕ̂(t) and f̂t agree with ϕ(t) and ft , respectively,
to all orders at t = 0; taking δ > 0 sufficiently small we can ensure that Re f̂t < 0
for all t . Hence we may smoothly extend the families ϕ(t) and ft from t ∈ [0, ε0) to
t ∈ (−δ, ε0) by defining ϕ(t) and ft to be equal to ϕ̂(t) and f̂t , respectively, when
t ∈ (−δ, 0). Correspondingly we extend Zt

1 and W from t ∈ [0, ε0) to t ∈ (−δ, ε0) in
the obvious way. The almost complex structure on Y therefore extends to an almost
complex structure on Ỹ = M ×(−δ, ε0)with T 0,1Ỹ = span{Zt

1̄
, W }. By construction,

since ϕ̂(t) and f̂t also solve the tangency equation (17) for t ∈ (−δ, 0], the almost
complex structure on Ỹ is integrable, making Ỹ a complex manifold. Moreover, by
construction, the map

Ŷ = M × (−δ, 0] � (x, t) → ψ̂t (x) ∈ C
2 (33)

is a diffeomorphism from Ŷ onto a one sided neigborhood U of M ⊂ X containing
M as its strictly pseudoconvex (partial) boundary that restricts to a biholomorphism
from M × (−δ, 0) to U\M . We can therefore extend the domain � ⊂ C

2 bounded
by M to a complex manifold X containing Ỹ by identifying M × (−δ, 0) ⊂ Ỹ with
U\M ⊂ � via the map (33). (Note that the result of this paragraph was essentially
also established in the proof of Theorem A in [16], though we find the approach we
have taken here to be simpler.)

From the construction of X and the fact that � is strictly pseudoconvex it is clear
that � has a Stein neighborhood basis in X . Moreover, if Xt = �∪ (M × [0, t)) ⊂ X
then Xt is a Stein space for all sufficiently small t > 0. In particular, there exists
ε > 0 such that Mt = ∂ Xt = M × {t} is Stein fillable and hence embeddable in
C
2 for t ∈ [0, ε] (see [37], cf. [22, 23]). It follows that Xε can be holomorphically

embedded in C
2 (by an embedding that is smooth up the boundary; again, see [22,

23, 37]). Let ψ̃ : Xε → C
2 denote such an embedding. Clearly ψ̃t = ψ |Mt is a CR

embedding realizing the CR structure corresponding to Zt
1 on Mt for each t . However,

ψ̃0 : M = M0 → C
2 may not be the identity; i.e. the family ψ̃t solves (30) except with
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a different CR embedding as the initial condition. Let �̃t = ψ̃(Xt ) and M̃t = ψ̃t (Mt ).
By construction ψ̃ |� is a biholomorphism from �0 = � to �̃0 that is smooth up to
the boundary. To conclude the proof we show that the map ψ̃ |−1

� : �̃0 → �0 ⊂ C
2

can be extended to a smooth (in the appropriate sense) family of maps 
t : �̃t → C
2,

t ∈ [0, ε], such that 
t is a biholomorphism onto its image �t that is smooth up the
boundary for each t . One way to accomplish this is to note that, by compactness of
the M̃t and of [0, ε], there exists a point in �̃0 (which, without loss of generality,
we take to be the origin) and a constant α > 0 large enough such that the smooth
family of dilation maps Ft : C

2 � z̃ → (1 + αt)z̃ ∈ C
2 maps �̃0 to a domain

Ft (�̃0) containing �̃t for each t ∈ [0, ε]. The desired maps 
t can then be taken to
be 
t = ψ̃ |−1

� ◦ F−1
t |�̃t

. Then ψt = 
t ◦ ψ̃t = ψ̃ |−1
� ◦ F−1

t ◦ ψ̃t gives the desired
family of embeddings realizing the CR structure on Mt for each t . This concludes the
proof. ��

Remark 3.2 If ϕ(t) and ft in Theorem 3.1 are analytic in t (with values in someBanach
space of functions), then one can show thatψt and γt are also analytic in t (with values
in the corresponding Banach spaces).

Note that in the case Re ft > 0 it is easy to see that Theorem 3.1 can be strengthened
by replacing C

2 with any complex surface.

4 Solutions to the Tangency equation on S3

We are now going to consider deformations of the standard CR structure on S3. Recall
that a smooth infinitesimal deformation tensor ϕ̇11 on S3 is embeddable, i.e. there is a
family of embeddable deformations ϕ11(t) of the unit sphere S3 inC2 with ϕ11(0) = 0
such that ϕ̇11 = d

dt

∣
∣
t=0 ϕ11(t), if and only if

(Z1)
2 f = ϕ̇11

for some f ∈ C∞(S3,C), where Z1 is given by (1). In this section we shall construct,
in a canonical way, such a deformation ϕ11(t) for a given embeddable infinitesimal
deformation tensor ϕ̇11. We do this by constructing a smooth family of complex func-
tions ft and a smooth family of deformations ϕ11(t) satisfying (17) and then appealing
to Theorem 3.1. We start with some preliminary calculations.

4.1 Deformations of S3 with its standard CR structure

We shall continue to use the notation of Sect. 2, where we now take (M, H , J , θ)

to be the standard pseudohermitian structure on S3. Recall that θ = i(zdz̄ + wdw̄)

restricted to the unit sphere S3, where (z, w) are the coordinates onC2. We also recall
that we are using the frame Z1 as in (1). We observe that in this case we have

ω1
1 = −i Rθ, A11 = 0 (34)
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where R = 2 is the Tanaka–Webster scalar curvature of S3 with its standard structure.
Let ϕ1

1̄(t) be a smooth family of deformation tensors on S3 with its standard
pseudohermitian structure and frame.We shall consider the family of pseudohermitian
structures defined by the admissible coframes (θ, θ1t , θ 1̄t )where θ1t is defined as in (11).

We shall compute ω1
1(t) and A11(t) in terms of the deformation tensor ϕ1

1̄(t). We
differentiate θ1t and then substitute for θ1 and θ 1̄ using (12):

dθ1t = 1

2

d|ϕ|2
(1 − |ϕ|2)3/2 ∧ (θ1 − ϕ1̄

1θ 1̄) + 1
√
1 − |ϕ|2 (dθ1 − dϕ1̄

1 ∧ θ 1̄ − ϕ1̄
1dθ 1̄)

= −1

2
θ1t ∧ d|ϕ|2

1 − |ϕ|2 + 1
√
1 − |ϕ|2 (−i Rθ1 ∧ θ − i Rϕ1̄

1θ 1̄ ∧ θ + θ 1̄ ∧ dϕ1̄
1)

= 1

1 − |ϕ|2 θ1t ∧ (−d|ϕ|2
2

− i Rθ − i R|ϕ|2θ + ϕ1
1̄dϕ1̄

1 − (Zt
1�dϕ1̄

1)θ 1̄t )

− ϕ1̄
1
,0

1 − |ϕ|2 θ ∧ θ 1̄t

(35)

where ϕ1
1̄ = ϕ1

1̄(t) and we have used that T �dϕ1̄
1 − 2i Rϕ1̄

1 = ϕ1̄
1
,0. We note that

d|ϕ|2 = ϕ1
1̄dϕ1̄

1 + ϕ1̄
1dϕ1

1̄,

and hence

d|ϕ|2
2

− ϕ1
1̄dϕ1̄

1 = 1

2
(−ϕ1

1̄dϕ1̄
1 + ϕ1̄

1dϕ1
1̄)

= 1

2

(
−ϕ1

1̄(ϕ1̄
1
,1θ

1 + ϕ1̄
1
,1̄θ

1̄) + ϕ1̄
1(ϕ1

1̄
,1θ

1 + ϕ1
1̄
,1̄θ

1̄)
)

mod θ

= 1

2
√
1 − |ϕ|2 (−|ϕ|2ϕ1̄

1
,1 − ϕ1

1̄ϕ1̄
1
,1̄ + (ϕ1̄

1)2ϕ1
1̄
,1 + ϕ1̄

1ϕ1
1̄
,1̄)θ

1̄
t

(36)

where the last equality is modulo θ and θ1t . We also note that the θ -component is given
by

d|ϕ|2
2

− ϕ1
1̄dϕ1̄

1 =
(
1

2
(−ϕ1

1̄ϕ1̄
1
,0 + ϕ1̄

1ϕ1
1̄
,0) − 2i R|ϕ|2

)

θ mod θ1t , θ 1̄t .

(37)

Next, we note that

Zt
1�dϕ1̄

1 = 1
√
1 − |ϕ|2 (ϕ1̄

1
,1 + ϕ1

1̄ϕ1̄
1
,1̄). (38)

By using also the fact that ω1
1(t) is purely imaginary (since ht

11 = 1), the following
lemma follows from the calculations (35)–(38) and the structure equation (6):
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Lemma 4.1 Let M = S3 with its standard pseudohermitian structure. Then,

ω1
1
1(t) = 1

2(1 − |ϕ|2)3/2 (2ϕ1
1̄
,1̄ + ϕ1

1̄ϕ1̄
1
,1 + ϕ1̄

1ϕ1
1̄
,1 + (ϕ1

1̄)2ϕ1̄
1
,1̄ − |ϕ|2ϕ1

1̄
,1̄)

ω1
1
0(t) = −2i + 1

2(1 − |ϕ|2) (ϕ1
1̄ϕ1̄

1
,0 − ϕ1̄

1ϕ1
1̄
,0)

A11(t) = − ϕ11,0

1 − |ϕ|2 .

(39)

Remark 4.2 The expression for ω1
1
1(t) can be simplified by noting that

(Z1 + ϕ1
1̄Z 1̄)

1
√
1 − |ϕ|2 = 1

2(1 − |ϕ|2)3/2 (Z1 + ϕ1
1̄Z 1̄)|ϕ|2

= 1

2(1 − |ϕ|2)3/2 (ϕ1
1̄ϕ1̄

1
,1 + ϕ1̄

1ϕ1
1̄
,1 + (ϕ1

1̄)2ϕ1̄
1
,1̄ + |ϕ|2ϕ1

1̄
,1̄).

Consequently, we may write

ω1
1
1(t) = ϕ1

1̄
,1̄

√
1 − |ϕ|2 + Z̃ t

1
1

√
1 − |ϕ|2 , (40)

where

Z̃ t
1 = Z1 + ϕ1

1̄Z 1̄. (41)

4.2 Spherical harmonics

We shall denote the space of spherical harmonic polynomials of bidegree (p, q) on
S3 ⊂ C

2 by Hp,q . We recall that the spherical harmonic spaces Hp,q are eigenspaces

for T = i
(

z ∂
∂z + w ∂

∂w

)
− i

(
z̄ ∂

∂ z̄ + w̄ ∂
∂w̄

)
acting on functions,

T u = i(p − q)u, (42)

and that Z1 maps Hr ,s isomorphically onto Hr−1,s+1 when r ≥ 1 and Z1 = 0 on
H0,s . An immediate consequence of this is that ϕ̇11 is in the image of (Z1)

2 if and
only if the spherical harmonic expansion of ϕ̇11 has vanishing components in Hp,q

for q = 0, 1, and the kernel of (Z1)
2 is given by those complex functions whose only

nontrivial components are in Hp,q for p = 0, 1. It follows that if ϕ̇11 is in the image
of (Z1)

2 then there is a unique complex function f such that (Z1)
2 f = ϕ̇11 and f

has vanishing components in Hp,q for p = 0, 1, i.e. f is L2-orthogonal to the kernel
of (Z1)

2. Note that ∇1 always acts as Z1 on tensors of any type, since the connection
form is given by ω1

1 = −i Rθ .
From the above it follows that the sublaplacian �b = −Z1Z 1̄ − Z 1̄Z1 maps each

Hp,q to itself. Since �b is SU(2)-invariant (indeed Z1 itself is) it must act on each
Hp,q by a constant (by Schur’s lemma, since the Hp,q are irreducible representations
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of SU(2)). The constant is easily seen to be 2pq + p+q (e.g., apply�b to the spherical
harmonic (z + w)p(z̄ − w̄)q ). Note that the Folland–Stein Sobolev s-norm ||u||s on
Hs

F S is equivalent to the norm

||(1 + �b)
s/2u||L2 =

(
∑

p,q

(1 + p + q + 2pq)s ||u p,q ||2L2

)1/2

(43)

where u = ∑
p,q u p,q [26, 32]. To normalize constants it will be convenient to take

(43) as the definition of the Hs
F S-norm in the following.

4.3 Formally embeddable deformations

We now assume that ϕ11(0) = 0. We shall expand a potential solution ft and defor-
mation tensor ϕ11(t) satisfying (17) in powers of t as follows:

ft =
∞∑

k=0

f (k)tk (44)

ϕ11(t) =
∞∑

k=1

ϕ(k)tk, (45)

where ϕ(1) = ϕ̇11. We shall identify terms in (17) with equal powers of t . We obtain
for t0:

(∇1)
2 f (0) = ϕ̇11, (46)

the solvability of which is equivalent to ϕ̇11 being an embeddable infinitesimal defor-
mation. Before we proceed we first rewrite equation (17) explicitly in terms of the
deformation ϕ11(t). We note that ω1

1(0) = −Riθ implies that ∇1 = ∇ t
1|t=0 and

∇1̄ = ∇ t
1̄
|t=0 act on any tensor simply as Z1 and Z 1̄. The left hand side of (17) can

be written, by using the expression for A11(t) in Lemma 4.1,

1

1 − |ϕ|2
(
∇1 + ϕ1

1̄∇1̄

)2
ft − ω1

1
1

1
√
1 − |ϕ|2

(
∇1 + ϕ1

1̄∇1̄

)
ft

+ 1
√
1 − |ϕ|2

(
(
∇1 + ϕ1

1̄∇1̄

) 1
√
1 − |ϕ|2

)
(
∇1 + ϕ1

1̄∇1̄

)
ft − iϕ11,0

1 − |ϕ|2 ft ,

(47)

where we have also abbreviated ω1
1
1 = ω1

1
1(t) and ϕ11 = ϕ11(t). By using also

(40), we find that this simplifies to

1

1 − |ϕ|2
((

∇1 + ϕ1
1̄∇1̄

)2
ft − ϕ1

1̄
,1̄

(
∇1 + ϕ1

1̄∇1̄

)
ft − iϕ11,0 ft

)

. (48)
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By canceling a factor of (1 − |ϕ|2)−1 in (17), we obtain the equation

(
∇1 + ϕ1

1̄∇1̄

)2
ft − ϕ1

1̄
,1̄

(
∇1 + ϕ1

1̄∇1̄

)
ft − iϕ11,0 ft = d

dt
ϕ11. (49)

The operator acting on ft on the left hand side of this equation can be expressed as
(∇1)

2 + Lϕ where

Lϕ = ϕ1
1̄∇1∇1̄ + ϕ1

1̄∇1̄∇1 + (ϕ1
1̄)2(∇1̄)

2 + ϕ1
1̄
,1∇1̄ − ϕ1

1̄
,1̄∇1 − iϕ11,0. (50)

We note that Lϕ has a Taylor expansion

Lϕ =
∞∑

k=1

tk L(k) (51)

where the operators L(k) are given by

L(k) = ϕ(k)∇1∇1̄ + ϕ(k)∇1̄∇1 +
k−1∑

j=1

ϕ( j)ϕ(k− j)(∇1̄)
2

+ (∇1ϕ
(k))∇1̄ − (∇1̄ϕ

(k))∇1 − i∇0ϕ
(k), (52)

where we have used the notation in (45) and recall that h11̄ = 1, so ϕ1
1̄ = ϕ11.

For the proof of the following proposition we introduce the orthogonal (in L2) pro-
jectionsP1,P2 onto the image of (∇1)

2 (i.e., the subspace of functions with vanishing
components in Hp,q for q = 0, 1) and its orthogonal complement, the kernel of (∇1̄)

2

(i.e., with non-vanishing components only in Hp,q for q = 0, 1).

Proposition 4.3 Given a smooth embeddable infinitesimal deformation tensor ϕ̇11,
there are unique formal power series ft = ∑∞

k=0 f (k)tk and ϕ11(t) = t ϕ̇11 +∑∞
k=2 ϕ(k)tk , with f (k) and ϕ(k) smooth, satisfying (49) such that for each k, f (k)

has vanishing components in Hp,q for p = 0, 1, and for each k ≥ 2, ϕ(k) has vanish-
ing components in Hp,q for q ≥ 2.

Remark 4.4 Note that ϕ(t) is of the form t ϕ̇ + ψ(t) where ψ(t) = ∑∞
k=2 ϕ(k)tk takes

values in D⊥
0 .

Proof By identifying coefficients of tk in (49) we get for t0, (∇1)
2 f (0) = ϕ̇11, and for

tk , k ≥ 1,

(∇1)
2 f (k) +

k∑

j=1

L( j) f (k− j) = (k + 1)ϕ(k+1). (53)

We take f (0) to be the unique solution of (∇1)
2 f (0) = ϕ̇11 with vanishing components

in Hp,q for p = 0, 1. For k ≥ 1 we define f (k) and ϕ(k+1) recursively by decomposing
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∑k
j=1 L( j) f (k− j) = Ak + Bk , where

Ak = P1

k∑

j=1

L( j) f (k− j), Bk = P2

k∑

j=1

L( j) f (k− j), (54)

and then defining f (k) to be the unique solution to (∇1)
2 f (k) = −Ak with vanishing

components in Hp,q for p = 0, 1, and ϕ(k+1) to be Bk/(k + 1). The solutions are
easily seen to be smooth by standard properties of the solution operator to (∇1)

2. This
concludes the proof. ��
Remark 4.5 Note that in Proposition 4.3we could have instead allowed the components
of the f (k) in Hp,q for p = 0, 1 to be arbitrary, since (∇1)

2 annihilates Hp,q for
p = 0, 1. Doing this we obtain the general formal solution to the tangency equation
(49). Below we shall use this flexibility and allow f (0) to have a nontrivial component
in H0,0.

4.4 Deformations in the Burns–Epstein region

Recall from the introduction that the space of Burns–Epstein deformations DB E is
the set of all deformation tensors ϕ such that ϕp,q = 0 if q < p + 4. The following
lemma follows easily by inspection of the definition of Lϕ given in (50).

Lemma 4.6 Let ϕ11 ∈ DB E and f ∈ (Z 1̄)
2DB E . Then Lϕ f ∈ DB E .

An immediate consequence of this is the following:

Lemma 4.7 Let ϕ11(t) = ∑∞
k=1 ϕ(k)tk and ft = ∑∞

k=0 f (k)tk be formal power series
with values in C∞(S3,C). If ϕ( j) ∈ DB E , 1 ≤ j ≤ k, and f ( j) ∈ (Z 1̄)

2DB E ,
0 ≤ j ≤ k − 1, then

∑k
j=1 L( j) f (k− j) ∈ DB E .

Proof The lemma follows by applying Lemma 4.6 to ϕ̃11 = ∑k
j=1 ϕ( j)t j and f̃t =

∑k−1
j=0 f ( j)t j and then taking the tk coefficient of L ϕ̃ f̃ , which is the same as the tk

coefficient of Lϕ f . ��
We let Hs

F S denote the Folland–Stein Sobolev space [26] of complex valued func-
tions on S3 with s derivatives in L2 in the directions tangent to the contact distribution
H . (Note that on these spaces any Reeb vector field, being a commutator of vector
fields tangent to H , behaves like a second order operator.)We denote the norm on Hs

F S
by || · ||s (we will also occasionally use the standard Sobolev norm, which we denote
by || · ||Hs ). Note thatDB E is a subspace of the spaceD0 of deformation tensors with
vanishing component in Hp,q for q = 0, 1. Thus Proposition 4.3 can be applied to
any infinitesimal deformation tensor inDB E , and using Lemma 4.7 we will prove the
following:

Proposition 4.8 Given ϕ̇11 ∈ DB E , the unique formal power series ft = ∑∞
k=0 f (k)tk

and ϕ11(t) = ∑∞
k=1 ϕ(k)tk given by Proposition 4.3 satisfy

ϕ11(t) = t ϕ̇11 and f (k) ∈ (Z 1̄)
2DB E (55)
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for all k. Moreover, for every s ≥ 10 there is Cs > 0 such that the formal power series
ft = ∑∞

k=0 f (k)tk converges for |t | < Rs = (Cs ||ϕ̇11||s)−1 to an analytic function
taking values in Hs

F S, and for each fixed t, |t | < Rs, ft is a C∞ function on S3.

Remark 4.9 In this paper we will not be concerned with optimal regularity in the finite
regularity case. The choice s ≥ 10 in the proposition is only for convenience and is
not optimal.

In the proof we will make use of the standard solution operator for the Kohn
Laplacian �b = −∇ 1̄∇1̄ on S3, denoted as in [8] by Q0. That is, Q0 acts by zero
on ker�b = ker Z 1̄ and is the inverse to �b on (ker Z 1̄)

⊥. Note that �b = −Z1Z 1̄
acts on each Hp,q by multiplication by −q(p + 1). (A quick way to see this is to
note that Z1 is SU(2)-invariant and hence so is �b; since �b preserves each Hp,q ,
Schur’s lemma tells us that �b must act by a constant on each Hp,q and that constant
is easily found by testing �b on the element (z + w)p(z̄ − w̄)q of Hp,q .) Thus, by
definition, Q0 acts by 0 on Hp,0 and by − 1

q(p+1) on Hp,q for q > 0. From this and
the equivalence of the Hs

F S-norm with (43) it follows that Q0 gains two derivatives
in Folland–Stein spaces (indeed, Q0 is a Heisenberg pseudodifferential operator of
order −2 [8]). Now, if S0 denotes the orthogonal projection from L2 functions on S3

to CR functions with respect to the standard CR structure on S3 then, by construction,
−Z1Z 1̄Q0 = Id−S0 and so −Z 1̄Q0 the (unique) partial inverse to Z1 that is zero on
ker Z 1̄. By considering the action on each Hp,q (or by noting that �b Z 1̄ = Z 1̄�b) it
easy to check that Z 1̄Q0 = Q0Z 1̄. From the above discussion it also readily follows
that (Z 1̄Q0)

2 = (Q0Z 1̄)
2 is the (unique) partial inverse to (Z1)

2 that is zero on
ker (Z 1̄)

2. In particular, we have the following lemma.

Lemma 4.10 If g ∈ Hs
F S and P2g = 0 then u = (Q0Z 1̄)

2 g solves (∇1)
2u = g.

Moreover, there is a constant C depending only on s such that

||u||s+2 ≤ C ||g||s . (56)

Proof Recalling that P2g = 0 means that g has vanishing components in Hp,q for
q = 0, 1 (and hence is in the image of (∇1)

2) this follows from the definition of Q0
and the fact that it gains two derivatives in Folland–Stein space as discussed in the
paragraph before the lemma. ��
Proof of Proposition 4.8 By the construction in the proof of Proposition 4.3 and an
induction using Lemma 4.7 we obtain (55) (Lemma 4.7 tells us that Ak in the proof
of Proposition 4.3 will be inDB E and the Bk will be zero, for each k ≥ 1). It remains
to be shown that ft is analytic in t , when viewed as taking values in the Banach space
Hs

F S , and that for each fixed t the function ft is C∞. Writing ϕ̇ = ϕ̇11, we then have

L(1) = ϕ̇∇1∇1̄ + ϕ̇∇1̄∇1 + (∇1ϕ̇)∇1̄ − (∇1̄ϕ̇)∇1 − i∇0ϕ̇,

L(2) = ϕ̇2(∇1̄)
2, and L( j) = 0 for j ≥ 3. Thus, the f (k) are determined by the

equations (∇1)
2 f (0) = ϕ̇, (∇1)

2 f (1) = −L(1) f (0),

(∇1)
2 f (k) = −L(1) f (k−1) − L(2) f (k−2), k ≥ 2,
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and the fact that they are orthogonal to the kernel of (∇1)
2. By Lemma 4.10 we have

f (0) = (Q0Z 1̄)
2ϕ̇, f (1) = −(Q0Z 1̄)

2 L(1) f (0) and

f (k) = −(Q0Z 1̄)
2
(

L(1) f (k−1) + L(2) f (k−2)
)

, k ≥ 2.

It follows that || f (0)||s ≤ C ||ϕ̇||s−2 ≤ C ||ϕ̇||s and, using the expressions for L(1) and
L(2) above,

|| f (1)||s ≤ 5C ||ϕ̇||s || f (0)||s (57)

and

|| f (k)||s ≤ C
(
5||ϕ̇||s || f (k−1)||s + ||ϕ̇||2s || f (k−2)||s

)
, k ≥ 2. (58)

Choose Cs such that C2
s > C(5Cs + 1). By induction using the above display we

then conclude || f (k)||s ≤ (Cs ||ϕ̇||s)k+1 for all k ∈ {0, 1, 2, . . .}. This proves that
ft = ∑∞

k=0 f (k)tk converges for |t | < (Cs ||ϕ̇11||s)−1 to an analytic function valued in
Hs

F S functions on S3.
To complete the proof, we shall now show that for each fixed t , |t | < (Cs ||ϕ̇11||s)−1,

ft is C∞ smooth. This follows by an elliptic regularity argument parallel to that given
in the proof of Theorem 5.3 in [8]. Fix s0 ≥ 10 and t with |t | < (Cs0 ||ϕ̇11||s0)−1, and
let f = ft and ϕ = t ϕ̇. By construction f is orthogonal to the kernel of (∇1)

2 and
satisfies (∇1)

2 f = −Lϕ f + ϕ̇. Applying (Q0Z 1̄)
2 to this last equation we get

f = −(Q0Z 1̄)
2Lϕ f + (Q0Z 1̄)

2ϕ̇.

Letting A = −(Q0Z 1̄)
2Lϕ we then have

(I − A) f = (Q0Z 1̄)
2ϕ̇. (59)

SinceQ0 ∈ Op S−2
V (in the notation of the Heisenberg pseudodifferential calculus of

Beals and Greiner [1]), it is easy to see that I − A ∈ Op S0
V ⊂ Op S0

1
2 , 12

; here we

are using the notation Op Sm
1
2 , 12

for the classical pseudodifferential operators of type

( 12 ,
1
2 ) and order m. As in [8] (where A is taken to be Q0Z1ϕZ1) it is easy to see that

if ||ϕ̇||L∞(S3) is sufficiently small, then the principal symbol of I − A is positive. If we
further take ϕ̇ to be sufficiently small in C1 then the argument on pages 832–833 of
[8] shows that there is a constant Ks (depending on the Hs-norm of ϕ̇) such that

||u||Hs ≤ Ks ||(I − A)u||Hs . (60)

Applying this to (59) we have

|| f ||Hs ≤ Ks ||(Q0Z 1̄)
2ϕ̇||Hs ≤ K ′

s ||ϕ̇||Hs−1 (61)
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where in the last inequality we have used that (Q0Z 1̄)
2 ∈ Op S−2

V ⊂ Op S−1
1
2 , 12

. Since

ϕ̇ ∈ C∞(S3,C) it follows that f ∈ C∞(S3,C). ��
Remark 4.11 In the above regularity argument we used standard Sobolev spaces as
in pages 832–833 of [8]. In the proof of Theorem 4.13 below it will be convenient
to instead work with Folland–Stein spaces and we will see that this is possible using
results of Ponge [44] on the Heisenberg pseudodifferential calculus (so we could have
used Folland–Stein spaces in the above proof). However, in Sect. 5 where we prove
the slice theorems we shall again work with standard Sobolev spaces (for consistency
with [15]) and will again need an elliptic regularity argument of the kind given above.

In order to apply Theorem 3.1 to produce a family of embeddings realizing a family
of deformations t ϕ̇ with ϕ̇ ∈ DB E we need to ensure that the family of solutions ft

to the tangency equation are such that Re ft has strict sign. To do this we modify
Proposition 4.8 making use of the freedom to add a constant to f0 = f (0) due to the
kernel of (∇1)

2 and prove the following theorem.

Theorem 4.12 For any s ≥ 10, λ ∈ R, R > 0 there exists ε > 0 such that if
ϕ̇11 ∈ DB E satisfies ||ϕ̇||s < ε then there is a unique formal power series ft =
λ + f̃t = λ + ∑∞

k=0 f̃ (k)tk such that

(i) f̃ (k) ∈ (Z 1̄)
2DB E for k ≥ 0;

(ii) ft converges for |t | < R to an analytic function taking values in Hs
F S, and for

each fixed t, |t | < R, ft is a C∞ function on S3;
(iii) ft solves

∇ t
1∇ t

1 ft + i A11(t) ft = ϕ̇11

1 − |ϕ(t)|2 (62)

where ϕ11(t) = t ϕ̇11;
(iv) if λ �= 0 and R is sufficiently large, then Re ft has a strict sign for |t | ≤ 1.

Proof Recall that the equation (62) for ft is equivalent to the equation

(∇1)
2 ft + Lϕ ft = ϕ̇11.

In terms of f̃t this equation takes the form

(∇1)
2 f̃t + Lϕ f̃t = ϕ̇11 + i tλ∇0ϕ̇11.

Formally this equation is equivalent to (∇1)
2 f̃ (0) = ϕ̇11, (∇1)

2 f̃ (1) = −L(1) f̃ (0) +
iλ∇0ϕ̇11,

(∇1)
2 f̃ (k) = −L(1) f̃ (k−1) − L(2) f̃ (k−2), k ≥ 2.

Since ϕ̇11 ∈ DB E implies∇0ϕ̇11 ∈ DB E , the unique formal solvability of this equation
for f̃t = ∑∞

k=0 f̃ (k)tk satisfying (i) follows easily by induction using Lemma 4.7 as
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in the proof of Proposition 4.8. Arguing as in the proof of Proposition 4.8 we obtain
|| f̃ (0)||s ≤ C ||ϕ̇||s−2 ≤ C ||ϕ̇||s ,

|| f̃ (1)||s ≤ C
(
5||ϕ̇||s || f̃ (0)||s + |λ|||ϕ̇||s

)
(63)

and

|| f̃ (k)||s ≤ C
(
5||ϕ̇||s || f̃ (k−1)||s + ||ϕ̇||2s || f̃ (k−2)||s

)
, k ≥ 2. (64)

If we choose a constant Cs such that Cs ≥ C(5C + |λ|) and C2
s ≥ C(5Cs + 1), then

it follows by induction that || f (k)||s ≤ (Cs ||ϕ̇||s)k for all k ∈ {1, 2, . . .}. Moreover, as
long as Cs is also ≥ C , we have || f̃ (0)||s ≤ Cs ||ϕ̇||s . If such a Cs has been chosen, the
radius of convergence of the power series is at least ρ = (Cs ||ϕ̇||s)−1. Thus we have
proved that for any s ≥ 10, λ ∈ R, R > 0 there exists ε > 0 (e.g., ε = (Cs R)−1)
such that if ϕ̇11 ∈ DB E satisfies ||ϕ̇||s < ε then there is a unique formal power series
ft = λ + f̃t = λ + ∑∞

k=0 f̃ (k)tk satisfying f̃ (k) ∈ (Z 1̄)
2DB E for k ≥ 0 such that ft

converges for |t | < R to an analytic function taking values in Hs
F S ; by construction

ft solves (62). The C∞ smoothness of f̃t , and hence of ft , for fixed t follows as in
the proof of Proposition 4.8.

We note that from the construction of ft above and the Sobolev embedding theorem
for Folland–Stein spaces (since s is ≥ 3), we have for some constant C ′:

|| ft − λ||∞ ≤ C ′|| f̃t ||s ≤ C ′
∞∑

k=0

|| f̃ (k)||s |t |k ≤ C ′
(

Cs ||ϕ̇||s +
∞∑

k=1

(Cs ||ϕ̇||s)k |t |k
)

≤ C ′
(

Cs ||ϕ̇||s + Cs ||ϕ̇||s |t |
1 − |t |Cs ||ϕ̇||s

)

≤ C ′
(
1

R
+ |t |

R − |t |
)

. (65)

From this it is easy to see that if λ �= 0 and R is sufficiently large, then Re ft has a
strict sign for |t | ≤ 1. ��

Theorem 1.7 now follows from Theorems 4.12 and 3.1.

4.5 Families of embeddable deformations with general linearized term

We now return to the case of general embeddable infinitesimal deformations ϕ̇11, for
which analyticity in t of our formal solution may no longer hold. Our aim is to prove
the following theorem.

Theorem 4.13 For any s ≥ 10, λ < 0, T > 0 there exists ε > 0 such that if ϕ̇11 ∈ D0
satisfies ||ϕ̇||s < ε then there are unique ft = λ + f̃t ∈ C∞([0, T ] × S3,C) and
ϕ11(t) ∈ C∞([0, T ] × S3,C) such that

(i) f̃t ∈ (Z 1̄)
2
(
C∞(S3,C)

)
for all t ∈ [0, T ];

(ii) ϕ11(t) = t ϕ̇11+μ11(t) where μ11(t) ∈ D⊥
0 for all t ∈ [0, T ] and μ11(t) = O(t2);

(iii) ft and ϕ11(t) solve the tangency equation (17).
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In the proof of Theorem 4.13 we will solve (17) by splitting it into two equations
using the L2 orthogonal projection P1 from D onto D0 and the complementary pro-
jection P2 onto D⊥

0 . When we apply P1 to (17) we get an equation with main term
(∇1)

2 ft , and when we apply P2 we get an equation with main term
( d

dt + iλ∇0
)
P2ϕ

where i∇0 acts on the deformation tensorP2ϕ as iT −4 (sinceω1
1
0 = −i R = −2i). A

crucial point in the proof is that by (42) the operator −iT when applied to elements of
D⊥

0 behaves like a second order subelliptic operator. For the proof of Theorem 4.13 we
will need the following lemmas which are based on this observation. The first lemma
is an immediate consequence of the action of the Reeb vector field (cf. (42)) and
the sublaplacian on the spherical harmonics and the description of the Folland–Stein
spaces in terms of spherical harmonic decompositions.

Lemma 4.14 For any γ > 1 and s > 0 there exists βs > 0 such that the operator
−iT + γ satisfies the following estimate

βs ||u||s+2 ≤ ||(−iT + γ )u||s (66)

for any u ∈ Hs+2
F S such that u = P2u. If γ ≥ 2, then βs can be taken to be 1/3.

In the following we denote by Hk([0, T0];B) the Sobolev space of functions on
[0, T0] taking values in a given Banach space B, cf. [24, Chapter 5].

Lemma 4.15 Let λ < 0, s ≥ 0. If g ∈ ⋂s
k=0 Hk([0, T0]; H2 s−2k

F S ) satisfies g = P2g

then there is a unique solution u ∈ ⋂s+1
k=0 Hk([0, T0]; H2 s+2−2k

F S ) to

{ ( d
dt + λ(iT − 4)

)
u = g

u(0) = 0.
(67)

Moreover, there is a constant C depending only on λ and s such that

s+1∑

k=0

∣
∣
∣
∣

∣
∣
∣
∣
dku

dtk

∣
∣
∣
∣

∣
∣
∣
∣
L2([0,T0];H2s+2−2k

F S )

≤ C
s∑

k=0

∣
∣
∣
∣

∣
∣
∣
∣
dk g

dtk

∣
∣
∣
∣

∣
∣
∣
∣
L2([0,T0];H2s−2k

F S )

. (68)

Proof The existence of a unique solution follows immediately by decomposingwriting
g in terms of spherical harmonics and using that iT acts by a constant on each Hp,q

(see (42)); indeed, if g = ∑
gp,q (with p = 0, 1, 2, . . . and q = 0, 1 since g = P2g)

then the explicit solution is given by

u(t) =
∑

p,q

∫ t

0
e−cp,q (t−τ)gp,q(τ )dτ (69)

where cp,q = λ(q − p − 4) (note that cp,q > 0, since λ < 0 and q equals 0 or
1). It remains to establish the estimate (68). To establish (68) for s = 0 we take an
L2(S3)-inner product of the equation with u′ = d

dt u to obtain
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||u′||2
H0

F S
+

∑

p,q

cp,qu p,qu′
p,q =

∑

p,q

gp,qu′
p,q . (70)

Taking the real part we obtain

||u′||2
H0

F S
+ 1

2

d

dt

∑

p,q

cp,q |u p,q |2 = Re
∑

p,q

gp,qu′
p,q . (71)

Hence, using the big constant-small constant inequality to estimate the left hand side
from above by C

2 ||g||2
H0

F S
+ 1

2 ||u′||2
H0

F S
, we obtain

||u′||2
H0

F S
+ d

dt

∑

p,q

cp,q |u p,q |2 ≤ C ||g||2
H0

F S
. (72)

Integrating over [0, T0] we obtain

||u′||2
L2([0,T0];H0

F S)
+

∑

p,q

cp,q |u p,q(T0)|2 ≤ C ||g||2
L2([0,T0];H0

F S)
. (73)

Since λ < 0 (and hence cp,q > 0) we have ||u′||2
L2([0,T0];H0

F S)
≤ C ||g||2

L2([0,T0];H0
F S)

.

Thus we have gained in temporal regularity. To show that we also gain two Folland–
Stein derivatives we rewrite the equation as λ(iT −4)u = g−u′ and use the result that
we have just established together with the fact that λ(iT −4) has a well-defined inverse
that gains two derivatives in Folland–Stein spaces when acting on

⊕
q∈{0,1} Hp,q

(where the overline denotes L2-closure), see Lemma 4.14 (taking γ = 4). Hence, for
a possibly larger constant C ,

||u′||2
L2([0,T0];H0

F S)
+ ||u||2

L2([0,T0];H2
F S)

≤ C ||g||2
L2([0,T0];H0

F S)
. (74)

This establishes the estimate (68) for s = 0 and forms the base case for an inductive
proof of (68) for integers s ≥ 0. Let s ≥ 0 and suppose (68) is known for this s. Let
g ∈ ⋂s+1

k=0 Hk([0, T0]; H2 s−2k
F S ). Since

( d
dt + λ(iT − 4)

)
u′ = g′ we may apply the

estimate known for this s to u′ and g′ to obtain

s+2∑

k=1

∣
∣
∣
∣

∣
∣
∣
∣
dku

dtk

∣
∣
∣
∣

∣
∣
∣
∣
L2([0,T0];H2s+4−2k

F S )

≤ C
s+1∑

k=1

∣
∣
∣
∣

∣
∣
∣
∣
dk g

dtk

∣
∣
∣
∣

∣
∣
∣
∣
L2([0,T0];H2s+2−2k

F S )

. (75)

We can clearly replace k = 1 by k = 0 on the right hand side, and the missing term
||u||L2([0,T0];H2 s+4

F S )
on the right hand side can then be estimated using that λ(iT −4)u =

g −u′ and the estimate for u′ as previously. In this way we obtain, for a possibly larger
C , that

s+2∑

k=0

∣
∣
∣
∣

∣
∣
∣
∣
dku

dtk

∣
∣
∣
∣

∣
∣
∣
∣
L2([0,T0];H2s+4−2k

F S )

≤ C
s+1∑

k=0

∣
∣
∣
∣

∣
∣
∣
∣
dk g

dtk

∣
∣
∣
∣

∣
∣
∣
∣
L2([0,T0];H2s+2−2k

F S )

, (76)
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as required. The result follows by induction. ��
Remark 4.16 Note that there is of course nothing particularly special about the num-
ber −4 in the lemma, which could be replaced by any nonpositive real number. As
explained above, this is the result that we will need in the proof of Theorem 4.13.

In practice, wewill need to allow for small perturbations of the operator λ(iT −4) in
Lemma4.15.Recall [44] that aHeisenberg pseudodifferential operator P of orderm (m
real) on a compact manifold maps Hs

F S continuously to Hs−m
F S . Note that, with respect

to a (locally defined) S1-invariant frame W1, a second order Heisenberg differential
operator P can be written as

P = a11W1W1 + b1̄1̄W1̄W1̄ + c11̄W1W1̄ + d 1̄1W1̄W1 + e1W1 + f 1̄W1̄ + g. (77)

In such a frame the operation of taking a commutator with T is equivalent to differ-
entiating the coefficients with respect to T , that is,

[T , P] = (T a11)W1W1 + (T b1̄1̄)W1̄W1̄ + (T c11̄)W1W1̄

+ (T d 1̄1)W1̄W1 + (T e1)W1 + (T f 1̄)W1̄ + T g. (78)

In particular, [T , P] is also a second order Heisenberg differential operator. Now, let
P be a Heisenberg pseudodifferential operator of order 2 on S3. By decomposing P
with respect a finite open cover of S3 (by S1-invariant sets) such that on each open set
we have a fixed S1-invariant frame for T 1,0 and using a partition of unity we can show
that [T , P] is also a second order pseudodifferential operator, and hence is bounded
from Hs

F S to Hs−2 for each s.
In the following lemma we modify Lemma 4.15 by adding to λ(iT −4) a perturba-

tion term of the form P2 ◦ P with P a small time-dependent second order Heisenberg
pseudodifferential operator (recall that λ(iT − 4) is a second order Heisenberg dif-
ferential operator itself and is subelliptic when restricted to the band of functions u
with u = P2u); the higher order estimates then depend on the corresponding norms
of P2 ◦ P . We do this by adapting Hamilton’s proof of Lemmas 6.9 and 6.10 in [29].
Hence, if P = Pt , t ∈ [0, T0], is a smooth one-parameter family of second order
Heisenberg pseudodifferential operators we define [P]2s by

[P]2s =
∫ T0

0
|| [iT − 4,P2 ◦ Pt ] ||2

H2s+2
F S →H2s

F S
dt (79)

and |[P]|2s by

|[P]|2s =
s∑

k=0

[
dk

dtk
P

]

2s−2k
. (80)

The norms are constructed precisely so that we will be able to apply the operator T
(or better, iT − 4) to our equation in order to gain spatial regularity (and then gain
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temporal regularity by shifting all the spatial derivatives to the right hand side). In
detail:

Lemma 4.17 Let λ < 0, s ≥ 0. Let P = Pt , t ∈ [0, T0], be a smooth one-parameter
family of second order Heisenberg pseudodifferential operators on S3 and suppose

||Pu||0 ≤ |λ|
10

||u||2 (81)

for all u ∈ H2
F S and all t . If g ∈ ⋂s

k=0 Hk([0, T0]; H2 s−2k
F S ) satisfies g = P2g then

there is a unique solution u = P2u ∈ ⋂s+1
k=0 Hk([0, T0]; H2 s+2−2k

F S ) to

{ ( d
dt + λ(iT − 4) + P2 ◦ P

)
u = g

u(0) = 0.
(82)

Moreover, there is a constant C such that

s+1∑

k=0

∣
∣
∣
∣

∣
∣
∣
∣
dku

dtk

∣
∣
∣
∣

∣
∣
∣
∣
L2([0,T0];H2s+2−2k

F S )

≤ C
s∑

k=0

∣
∣
∣
∣

∣
∣
∣
∣
dk g

dtk

∣
∣
∣
∣

∣
∣
∣
∣
L2([0,T0];H2s−2k

F S )

+ C |[P]|2s ||g||L2([0,T0];H0
F S), (83)

where C depends only on λ and s.

Proof The existence of a unique weak (L2) solution follows by usingGalerkin approx-
imations for the equation decomposed into spherical harmonics and establishing
convergence using energy estimates similar to the base case of the higher regular-
ity argument below (cf. [24, Section 7.1]). To establish the base case of the a priori
estimate we argue as in the proof of Lemma 4.15 to obtain the following modified
version of (68):

||u′||2
L2([0,T0];H0

F S )
+

∑

p,q

cp,q |u p,q (T0)|2 ≤ C ||g||2
L2([0,T0];H0

F S )
− 2Re

∫ T0

0

∫

S3
u′(t)Pu(t)dt . (84)

Here cp,q = λ(q − p −4) > 0 is the multiplier corresponding to λ(iT −4). Throwing
away the second term on the left and then estimating the last term on the right above
by 1

2 ||u′||2
L2([0,T0];H0

F S)
+ 2||Pu||2

L2([0,T0];H0
F S)

and using the assumption on the norm of

P we obtain

1

2
||u′||2

L2([0,T0];H0
F S)

≤ C ||g||2
L2([0,T0];H0

F S)
+ |λ|2

25
||u||2

L2([0,T0];H2
F S)

. (85)

By assumption, the perturbation term P is small enough such that λ(iT −4)+P2 ◦ P
is still invertible and its inverse gains two Folland–Stein derivatives when acting on
L2-functions whose spherical harmonic decomposition is supported in the Hp,q for
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q = 0, 1. Writing the equation in the form (λ(iT − 4) + P) u = g − u′ and using
Lemma 4.14, (81) and (85), a straightforward argument shows that

27|λ|
30

||u||L2([0,T0];H2
F S) ≤ C ||g||L2([0,T0];H0

F S) +
√
2|λ|
5

||u||L2([0,T0];H2
F S), (86)

for some constant C . It follows that ||u||L2([0,T0];H2
F S) ≤ C ||g||L2([0,T0];H0

F S) for some
new constantC that depends onλ. Combinedwith (85) this establishes the base (s = 0)
case for an inductive proof of (83).

The inductive step is handled in a similar manner to the proof of Lemmas 6.9 and
6.10 inHamilton’sRicci flowpaper [29] exceptwith ordinary L2-basedSobolev spaces
replaced by L2-based Folland–Stein spaces; these proofs are similar to the argument
in Lemma 4.15 except that Hamilton differentiates the equation with respect to space
to gain spatial derivatives first and then uses the equation to gain time derivatives
(rather than the other way around). Our definition (79) was made so that we avoid
the need for interpolation in the spatial regularity part of the argument (since we can
merely break (iT − 4)P2Pu up into P2P(iT − 4)u + [(iT − 4),P2 ◦ P]u and then
estimate these two terms) and therefore avoid working directly with the symbol of
the operator P (with respect to a local S1-invariant frame); we note however that the
Folland–Stein version of the interpolation inequality used by Hamilton in the spatial
regularity part does hold, e.g., by [15, Corollary 2.12]. For the temporal regularity part
one invokes the interpolation inequality for ordinary Sobolev spaces (with respect to
the time variable) in order to reduce to the cases when all the time derivatives fall on
P or all on u when differentiating the equation satisfied by u; the argument is then as
in [29, Lemma 6.10]. The details are left to the reader. ��

To prove Theorem4.13we shall workwith graded Fréchet spaceswhere the grading
comes from Folland–Stein norms on functions on S3. To this end we observe the
following.

Theorem 4.18 Endow C∞(S3,C) with the structure of a graded Fréchet space using
the Folland–Stein norms || · ||s for all s ∈ {0, 1, 2, . . .}. With this structure C∞(S3,C)

is a tame Fréchet space.

Remark 4.19 Note that the tame structure on C∞(S3,C) defined in Theorem 4.18
is not equivalent to the standard one induced by the scale of standard (L2) Sobolev
norms.

Proof Weneed to establish the existence of tame linearmaps L : C∞(S3,C) → �(B)

and M : �(B) → C∞(S3,C) such that M L = id, whereB is some Banach space and
�(B) is the Fréchet space of exponentially decreasing sequences inB, i.e. the space of
sequences (an) such that ||(an)||2�(B),s = ∑∞

n=0 2
sn||an||2B < ∞ for all s endowed with

the scale of norms || · ||�(B),s [28]. We take B = L2(S3,C). Expanding an element
u ∈ C∞(S3,C) in spherical harmonics as u = ∑

p,q≥0 u p,q we let un denote the sum

of the u p,q where 2n ≤ 2pq + p +q +1 < 2n+1 when n ≥ 1 and let u0 = u0,0. Then
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we define the map L : C∞(S3,C) → �(B) by L(u) = (un). Then

||L(u)||2�(B),s =
∞∑

n=0

2sn||un||2L2

= ||u0||2L2 +
∞∑

n=1

∑

2n≤2pq+p+q+1<2n+1

2sn||u p,q ||2L2

≤ ||u0||2L2 +
∞∑

n=1

∑

2n≤2pq+p+q+1<2n+1

(2pq + p + q + 1)s ||u p,q ||2L2

=
∑

p,q≥0

(2pq + p + q + 1)s ||u p,q ||2L2

≤ Cs ||u||2s
(87)

for each s ∈ {0, 1, 2, . . .}. Hence L is tame. To define the map M we first let

πn : L2(S3,C) →
⊕

2n≤2pq+p+q+1<2n+1

Hp,q (88)

denote the orthogonal projection for n ≥ 1 and let π0 denote the orthogonal projection
onto H0,0. The map M is then defined by M((an)) = ∑

n πnan . It’s clear that, by
definition, M L = id. Given a sequence (an) ∈ �(B) we decompose each an in
spherical harmonics as an = ∑

p,q [an]p,q . To see that M is tame we note that πnan

is orthogonal to πmam for m �= n and hence

||M((an))||2s =
∞∑

n=0

||πnan ||2s

≤ Cs

⎛

⎝||π0a0||2L2 +
∞∑

n=1

∑

2n≤2pq+p+q+1<2n+1

(2pq + p + q + 1)s ||[an]p,q ||2L2

⎞

⎠

≤ Cs

⎛

⎝||a0||2L2 +
∞∑

n=1

∑

2n≤2pq+p+q+1<2n+1

2(n+1)s ||[an]p,q ||2L2

⎞

⎠

≤ Cs2
s

(

||a0||2L2 +
∞∑

n=1

2ns ||an ||2L2

)

= C ′
s ||(an)||2�(B),s , (89)

for each s ∈ {0, 1, 2, . . .}. This proves the result. ��
Arguing similarly to the above we can endow the space C∞(S3×[0, T0],C)with a

tameFréchet space structure using the norms on the spaces
⋂s

k=0 Hk([0, T0]; H2 s−2k
F S )

for each s ∈ {0, 1, 2, . . .}. Such a tame Fréchet space structure was used, e.g., by
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Hamilton in his Ricci flow paper [29] (to establish short time existence of the flow)
except that he used ordinary Sobolev spaces rather than Folland–Stein spaces for the
spatial regularity. The idea is to describe the norms equivalently in terms of a dyadic
decomposition of the functions expressed in terms of spherical harmonics with respect
to the S3 and the Fourier dual variable in the [0, T0]-direction. In more detail one first
uses an extension operator to include C∞(S3 × [0, T0],C) into C∞

0 (S3 × R,C),
then one takes the Fourier transform with respect to the R factor and decomposes
with respect to spherical harmonics on S3 to obtain functions of ω ∈ R and p, q ∈
{0, 1, 2, . . .} (the extension operator respecting the tame structure can be constructed as
in the proof of Corollary 1.3.7 in [29]). The s-normswe are using become equivalent to
weighted L2 normswith themultiplier (2pq+p+q+|ω|+2)s , which treats two spatial
Folland–Stein derivatives as being on the same level as one time derivative (to see
the equivalence with the norm on

⋂s
k=0 Hk([0, T0]; H2 s−2k

F S ) for each s consider the
binomial expansion of ((2pq+ p+q+1)+(|ω|+1))2s ). The proof of tameness is then
highly analogous to the proof of Theorem 4.18, where now we dyadically decompose
our functions with respect to 2pq + p + q + |ω| + 2 rather than 2pq + p + q + 1.

Proof of Theorem 4.13 We start by recalling that (17) is equivalent to

(∇1)
2 f + Lϕ f = d

dt
ϕ (90)

where f = ft , ϕ = ϕ11(t) and Lϕ is as in (50). As before let P1 denote the L2

orthogonal projection onto the image of (∇1)
2 and let P2 denote the complementary

orthogonal projection onto the kernel of (∇1̄)
2; recall that if u = ∑

p,q u p,q is the
spherical harmonic decomposition of u, then P1(u) = ∑

p≥0,q≥2 u p,q and P2(u) =∑
p≥0,q=0,1 u p,q . It is easy to see that the above displayed equation will hold with

ϕ(t) = t ϕ̇ + μ(t) (and P1μ(t) = 0), if and only if

(∇1)
2 f + P1(Lϕ f ) = ϕ̇

μ′ − P2(Lϕ f ) = 0
(91)

where μ′ = d
dt μ. Writing f = λ + f̃ and noting that Lϕ f = Lϕ f̃ − iλ∇0ϕ we may

write this system as

(∇1)
2 f̃ + P1(Lϕ f̃ ) − ϕ̇ − iλt∇0ϕ̇ = 0

( d
dt + iλ∇0)μ − P2(Lϕ f̃ ) = 0.

(92)

Viewing ϕ̇ as a parameter, we now show that (92) can be solved for f̃ andμ (depending
on ϕ̇) near ϕ̇ = 0. Fix s0 ≥ 10 and consider the operator F taking triples ( f̃ , μ, ϕ̇)

with

• f̃ ∈ ⋂s0
k=0 Hk([0, T0]; H2s0−2k+2

F S )) orthogonal to the kernel of (∇1)
2,

• μ = P2μ ∈ ⋂s0+1
k=0 Hk([0, T0]; H2s0−2k+2

F S ) such that μ(0) = 0, and

• ϕ̇ = P1ϕ̇ ∈ H2s0+2
F S (viewed as a constant function in t)
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to pairs (a, b) with

• a = P1a ∈ ⋂s0
k=0 Hk([0, T0]; H2s0−2k

F S )), and

• b = P2b ∈ ⋂s0
k=0 Hk([0, T0]; H2s0−2k

F S )

given by

F( f̃ , μ, ϕ̇) =
(
(∇1)

2 f̃ + P1(Lϕ f̃ ) − ϕ̇ − iλt∇0ϕ̇, ( d
dt + iλ∇0)μ − P2(Lϕ f̃ )

)
.

(93)

We let B1 be the set of all ( f̃ , μ) as above, so that the domain ofF is B1 ×P1H2s0+2
F S .

Let B2 denote codomain of F as specified above. Linearizing F around (0, 0, 0) we
obtain

DF(0,0,0)( f̃ , μ, 0) =
(
(∇1)

2 f̃ , ( d
dt + iλ∇0)μ

)
. (94)

Let (a, b) ∈ B2. By Lemma 4.10, if T0 > 0 is sufficiently small, then (∇1)
2 f̃ = a

has a unique solution f̃ ∈ ⋂s0
k=0 Hk([0, T0]; H2s0−2k+2

F S )) orthogonal to the ker-
nel of (∇1)

2. Also, by Lemma 4.15 there exist a unique μ with μ = P2μ ∈
⋂s0+1

k=0 Hk([0, T0]; H2s0−2k+2
F S ) and μ(0) = 0 such that ( d

dt + iλ∇0)μ = b. Hence the
map DF(0,0,0) is a bijection from B1 × {0} to B2. Thus by the Banach space implicit
function theorem there is a neighborhood U × V of the origin in B1 × P1H2s0+2

F S and
a map S : V → B1 such that F(S(ϕ̇), ϕ̇) = 0 for all ϕ̇ ∈ V .

Hence, given ϕ̇ ∈ V there exists f̃ ∈ ⋂s0
k=0 Hk([0, T0]; H2s0−2k+2

F S )) orthogonal to

the kernel of (∇1)
2 and μ = P2μ ∈ ⋂s0+1

k=0 Hk([0, T0]; H2s0−2k+2
F S ) with μ(0) = 0

solving (92). In order to show that if ϕ̇ ∈ V is C∞ and sufficiently small then f̃ and μ

are also C∞ in space and time (after possibly shrinking T0 > 0) we are going to make
a similar argument again, but using the more complicated Nash–Moser framework of
[28]. We retained the above finite regularity result since its proof is much simpler;
nevertheless, this result is subsumed by what follows.

Let A1 denote the space of those ( f̃ , μ) that are C∞ in space and time, with f̃
orthogonal to the kernel of (∇1)

2 and μ = P2μ, viewed as a tame Fréchet space with
respect to the

⋂s
k=0 Hk([0, T0]; H2 s−2k

F S )-norms on each of the two factors. Similarly,
letA2 denote the space of those (a, b) that areC∞ in space and time,with a = P1a and
b = P2b, viewed as a tame Fréchet space in analogous fashion. EndowP1C∞(S3,C)

with the tame Fréchet structure induced by the scale of Folland–Stein norms H2 s
F S .

Then F : A1 × P1C∞(S3,C) → A2 is clearly a tame map. Let ( f̃0, μ0, ϕ̇0) ∈
A1 × P1C∞(S3,C) and consider the (partial) derivative DF

( f̃0,μ0,ϕ̇0)
( f̃ , μ, 0). We

observe that DF
( f̃0,μ0,ϕ̇0)

( f̃ , μ, 0) = (a, b) can be written as

(∇1)
2 f̃ + P1(Lϕ0 f̃ + N f̃0,μ0,ϕ̇0

μ) = a, (95)

( d
dt + iλ∇0)μ − P2(Lϕ0 f̃ + N f̃0,μ0,ϕ̇0

μ) = b, (96)
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where ϕ0 = t ϕ̇0 + μ0 and N f̃0,μ0,ϕ̇0
μ = d

ds

∣
∣
s=0 Lϕ0+sμ f̃0. By an implicit function

theorem argument similar to the above, there exists a neighborhoodW of the origin in
B1 ×P1H2s0+2

F S and a map T : W ×B2 → B1 such that ( f̃ , μ) = T ( f̃0, μ0, ϕ̇0, a, b)

solves (95)–(96). Let W ′ = W ∩ (A1 × P1C∞(S3,C)). We need to show that the
restriction of S̃ toW ′ ×A2 is a smooth tamemap with values inA1. To do this we first
use (95) to write f̃ as a function ofμwhich then allows to view (96) as an equation for
μ alone. Proposition 4.17 then gives us smoothness and tame estimates for μ. Going
back to the expression for f̃ as a function of μ we then easily obtain smoothness and
tame estimates for f̃ . In detail, from (95) it follows that

(I − A) f̃ = (Q0Z 1̄)
2
(

a − P1N f̃0,μ0,ϕ̇0
μ

)
, (97)

where A = −(Q0Z 1̄)
2P1Lϕ0 . From (50) andLemma (4.10) it’s easy to see that I −A is

invertible on L2 providedϕ0 is taken to be sufficiently small in theC1-norm.Moreover,
it follows from [44, Theorem 1.2.2] that the Heisenberg principal symbol of I − A
is invertible provided ϕ0 is taken to be sufficiently small in the L∞-norm (since then
the corresponding model operator on each tangent space will be invertible in L2) and
hence by [44, Propositions 5.4.2 and 5.5.9] one has a parametrix and corresponding
(sub)elliptic estimates

||u||s ≤ Cs (||(I − A)u||s + ||u||0) . (98)

It follows that (I − A)−1 is a 0th order Heisenberg pseudodifferential operator and
hence (again by [44]) we have the stronger estimates

||(I − A)−1u||s ≤ Cs ||u||s (99)

for all s. Hence ã = (I − A)−1(Q0Z 1̄)
2a is a smooth function and

f̃ = ã − (I − A)−1(Q0Z 1̄)
2P1N f̃0,μ0,ϕ̇0

μ. (100)

Since (I − A)−1(Q0Z 1̄)
2P1N f̃0,μ0,ϕ̇0

is a 0th order Heisenberg pseudodifferential
operator it follows that we have the a priori estimate

|| f̃ ||s ≤ Cs (||a||s + ||μ||s) , (101)

where the constant Cs depends on the Hs+5
F S -norms of f̃0, μ0 and ϕ̇0. Equation (100)

allows us to write (96) in the form

( d
dt + iλ∇0)μ + Pf̃0,μ0,ϕ̇0

μ = b̃, (102)

where b̃ is C∞ and Pf̃0,μ0,ϕ̇0
is a second order Heisenberg pseudodifferential operator

with P0,0,0 = 0. By taking f̃0, μ0 and ϕ̇0 to be sufficiently small in the C2-norm we
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can ensure that Pf̃0,μ0,ϕ̇0
satisfies (81) and hence by Lemma 4.17 we find that μ is

C∞ and satisfies the tame estimates

s+1∑

k=0

||μ||Hk([0,T0];H2s+2−2k
F S )

≤ Cs

(
s∑

k=0

||a||Hk([0,T0];H2s−2k
F S )

+
s∑

k=0

||b||Hk([0,T0];H2s−2k
F S )

)

(103)

where the constant Cs depends on the Hs+5
F S -norms of f̃0,μ0 and ϕ̇0. Smoothness of f̃

then follows from (100) and a similar tame estimate then follows by integrating (101)
over [0, T0] and using (103).

It follows that the solution operatorT for the linearized equations (95)–(96) restricts
to W ′ × A2 to give a smooth tame map with values in A1 (after shrinking W ′ if
necessary by requiring that the C2-norms of f̃0, μ0 and ϕ̇0 be sufficiently small).
It follows from the Nash–Moser implicit function theorem [28, Theorem 3.3.1] that
there exists a neighborhood UA × VA of the origin inA1 ×P1C∞(S3,C) and a map
SA : VA → A1 such that F(SA(ϕ̇), ϕ̇) = 0 for all ϕ̇ ∈ VA. (Clearly SA is the
restriction of the map S from the finite regularity case.) This proves the result. ��

We conclude this section by observing that Theorem 1.5 now follows from Theo-
rems 4.13 and 3.1 (cf. also Remark 3.2 for Theorem 1.5 (ii)).

5 Proof of Theorems 1.2 and 1.3

In this section we shall prove the slice theorems, Theorem 1.2 and Theorem 1.3,
described in the introduction. The proof of Theorem 1.2 is an application of the Nash–
Moser inverse function theorem (along the lines of [15], Theorem B). In the following
the graded Fréchet spaces are all defined with respect to the scale of standard L2-based
Sobolev spaces, as in [15].

Proof (Proof of Theorem 1.2) In a slight abuse of notation we identify C × (D′
B E ⊕

D⊥
0 ) × {y0} with C × (D′

B E ⊕ D⊥
0 ). One can define a natural action of C on C ×

(D′
B E ⊕ D⊥

0 ) so that the map P in the statement of the theorem is equivariant (cf.
[15], pp. 1284–1285). In order to check the conditions of the Nash–Moser inverse
function theorem we need to consider the linearization of the map P in Theorem 1.2
at all points in a neighborhood of (id, 0) in C× (D′

B E ⊕D⊥
0 ); by the C-equivariance of

P it will suffice to consider only points of the form (id, ϕ), as in the proof of Theorems
A and B in [15]. Recall that Dm ∼= D × Y , where Y is the CR Cartan bundle of S3

(which may be identified with SU(2, 1) modulo its finite center). As in Cheng–Lee
[15] we write P = (P1, P2) where P1 takes values in D and P2 takes values in Y .
In order to compute the linearization of P = (P1, P2) we will make use of the local
smooth tame parametrization �e : C∞(S3,R) → C of the contact diffeomorphism
group in a neighborhood of the identity given in Theorem C of [15] (we identify these
two spaces in the calculation below, and refer to points in C∞(S3,R) rather than C;
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so, e.g., we write 0 instead of id). Using this parametrization, the linearization of P1
at (0, ϕ) is given by

D P1(0, ϕ)( ḟ , ϕ̇) = ((∇1)
2 + Lϕ) ḟ + ϕ̇ (104)

for ḟ ∈ C∞(S3,R), ϕ̇ ∈ D′
B E ⊕ D⊥

0 where Lϕ is as in (50) (cf. [15], equation
(5.1); note that we are calculating exclusively in terms of the frame Z1). We decom-
pose C∞(S3,R) as a direct sum C∞

CR(S3,R) ⊕ C∞⊥ (S3,R) where C∞
CR(S3,R) =

ker(∇1)
2 ∩ C∞(S3,R) = ⊕

p,q∈{0,1} Hp,q ∩ C∞(S3,R) is the 8-dimensional space

of potential functions for the infinitesimal CR automorphisms of the standard S3,
and C∞⊥ (S3,R) = ⊕

p,q �=0,1 Hp,q ∩ C∞(S3,R) is the L2 orthogonal complement of

C∞
CR(S3,R) in C∞(S3,R). We also decompose (cf. [8, p. 833])

D = D′
B E ⊕ (Z1)

2(C∞(S3,R)) ⊕ D⊥
0 (105)

and let � : D → (Z1)
2(C∞(S3,R)) = (Z1)

2(C∞⊥ (S3,R)) denote the corresponding
projection (the projection is oblique, but is bounded in Hs

F S for every s, cf. [8, page
833]). Note that if ϕ̇ ∈ D′

B E ⊕ D⊥
0 then �ϕ̇ = 0. We construct a family of inverse

maps V P(0, ϕ) to the family of linearizedmaps D P(0, ϕ) as follows. Given (K , X) ∈
D × su(2, 1) ∼= T(0,ϕ)D

m we need to solve uniquely the following linear equations

�D P1(0, ϕ)( ḟ , ϕ̇) = (∇1)
2 ġ + �Lϕ ġ + �Lϕ ḣ = �K (106)

(id − �)D P1(0, ϕ)( ḟ , ϕ̇) = ϕ̇ + (id − �)Lϕ ḟ = (id − �)K (107)

D P2(0, ϕ)( ḟ , ϕ̇) = X (108)

where ḟ = ġ + ḣ with ḣ ∈ C∞
C R(S3,R) and ġ ∈ C∞⊥ (S3,R). As in the proof of

Proposition 4.8, by an elliptic regularity argument the map

(∇1)
2 + �Lϕ : C∞⊥ (S3,R) → (Z1)

2(C∞⊥ (S3,R)) (109)

has a smooth tame solution operator ((∇1)
2 +�Lϕ)−1 for ϕ sufficiently small (in the

C1 sense) with smooth tame dependence on ϕ. Using this solution operator we may
solve (106) for ġ, viewing ḣ ∈ C∞

CR(S3,R) as a free 8-dimensional parameter for
now. One may then simply choose ϕ̇ to satisfy (107), again viewing ḣ as a parameter.
Plugging the solutions for ġ and ϕ̇ into (108) yields a finite dimensional equation to
be solved for ḣ in terms of X ; solvability for small ϕ follows easily by the standard
finite dimensional inverse function theorem after checking that this map is injective
at (0, ϕ) = (0, 0), where the map becomes an identification between potentials for
infinitesimal CR automorphisms and the corresponding elements of su(2, 1). This
establishes the existence of a smooth tame family V P(0, ϕ) of inverses to the family
D P(0, ϕ) of linearized maps, for sufficiently small ϕ. Part (i) of the theorem now
follows by the Nash–Moser inverse function theorem.

Part (ii) follows easily from inspecting the linearized action of the contact diffeo-
morphisms on the slice. ��
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We claim that the restriction of the map P : C × (D′
B E ⊕ D⊥

0 ) × {y0} → Dm

from Theorem 1.2 to Pemb : C × D′
B E × {y0} → Dm locally parametrizes the set

of marked embeddable deformations of the standard CR sphere. This will be proved
in Proposition 5.2 below. An argument from [2] (which will be fleshed out in the
proof of Proposition 5.2 below) shows that the natural map C × DB E × {y0} →
Dm

emb is surjective; but this map only becomes injective after we further restrict to
the map Pemb : C × D′

B E × {y0} → Dm
emb. In order to show that the restricted

map Pemb is surjective we need the following lemma. Let Dcd denote the set of
smooth deformation tensors on the standard CR 3-sphere whose spherical harmonic
decomposition is supported on the critical diagonal, i.e. the deformation tensors ϕ =∑

p ϕp,p+4. Note thatDcd is precisely the space of deformation tensors corresponding

to S1-invariant CR structures. Let D′
cd = { ϕ ∈ Dcd | Im(∇1)2ϕ = 0 }.

Lemma 5.1 Let ϕ0 ∈ Dcd be sufficiently small. Then there exists an S1-equivariant
contact diffeomorphism of S3 (unique modulo S1-equivariant automorphisms of the
CR sphere) pulling the CR structure corresponding to ϕ0 back to one with deformation
tensor ϕ̃0 ∈ D′

cd. Moreover, the contact diffeomorphism can be chosen to smoothly
depend on ϕ0.

Proof The argument is to establish a slice theorem essentially as in the proof of The-
orem 1.2, but can be made slightly simpler due to the relevant automorphism group
now being compact so that markings are not needed (this is analogous to the sit-
uation of Theorem A in [15]). Let CS1 denote the space of S1-equivariant contact
diffeomorphisms of S3 and let H ⊆ Aut(S3) denote the subgroup of group of S1-
equivariant automorphismof theCR sphere S3. By restricting the local parametrization
�e : C∞(S3,R) → C of the contact diffeomorphism group (in a neighborhood of
the identity) given in Theorem C of [15] to S1-invariant functions we obtain a smooth
tame parametrization C∞(S3,R)S1 → CS1 of CS1 in a neighborhood of the identity.
As in Theorem D of [15], by restricting this map to the space W of functions f in
C∞(S3,R) with spherical harmonic decomposition of the form f = ∑

p≥2 f p,p (i.e.

functions f ∈ C∞(S3,R)S1 with f0,0 = f1,1 = 0) we obtain, as the image of the
restricted map, a local slice W ⊆ CS1 for the coset space CS1/H .

Let P0 : W × D′
cd → Dcd denote the natural map (where the contact diffeomor-

phism acts by pullback on the CR structure corresponding to the deformation tensor).
One can define a natural action of CS1 on W × D′

cd so that the map P0 is equivariant
(cf. [15], pp. 1284–1285). In order to check the conditions of the Nash–Moser inverse
function theoremwe need to consider the linearization of P0 at all points in a neighbor-
hood of (id, 0) in CS1 ×Dcd; by the equivariance of P0 it will suffice to consider only
points of the form (id, ϕ), as in the proof of Theorem A in [15]. In order to compute
the linearization we will make use of the local smooth tame parametrization ofW by
the space of functions W (we identify these two spaces in the calculation below, and
refer to points in W rather than W). Using this parametrization, the linearization of
P0 at (0, ϕ) is given by

D P0(0, ϕ)( ḟ , ϕ̇) = ((∇1)
2 + Lϕ) ḟ + ϕ̇ (110)
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for ḟ ∈ W, ϕ̇ ∈ D′
cd where Lϕ is as in (50) (cf. [15], equation (5.1)). We construct

a family of inverse maps V P0(0, ϕ) to the family of linearized maps D P0(0, ϕ) as
follows. Let �0 : Dcd → D′

cd
⊥ ⊆ Dcd denote the L2 orthogonal projection. (Note

that D′
cd

⊥ is the image of W, or equivalently of C∞(S3,R)S1 , under (Z1)
2.) For

χ ∈ Dcd we write χ = χ1 + χ2 where χ1 = �0χ and χ2 = (id − �0)χ ∈ D′
cd .

Given χ ∈ Dcd we first solve

((∇1)
2 + �0Lϕ) ḟ = χ1

using the same argument as in the proof of Proposition 4.8. As in the proof of Proposi-
tion 4.8, by an elliptic regularity argument the map ((∇1)

2+�0Lϕ) : W → D′
cd

⊥ has
a smooth tame inverse for sufficiently small ϕ. Since we are free to choose ϕ̇ ∈ D′

cd
to solve the (id − �0) projection of

((∇1)
2 + Lϕ) ḟ + ϕ̇ = χ

we obtain a smooth family of inverses V P0(0, ϕ). Thus, by the Nash–Moser inverse
function theorem, given any sufficiently small deformation tensor ϕ0 there exists a
(unique small) S1-equivariant contact diffeomorphism (inW) pulling the correspond-
ing CR structure back to one with deformation tensor ϕ̃0 ∈ D′

cd . ��
Proposition 5.2 Fix any marking y0 of the standard CR sphere. The natural map
Pemb : C × D′

B E × {y0} → Dm is a local bijection from an open neighborhood of
(id, 0, y0) to an open neighborhood of (0, y0) in the subset Dm

emb of marked embed-
dable deformations of the standard CR 3-sphere.

Proof That Pemb maps C × D′
B E × {y0} into Dm

emb follows from [8, Theorem 5.3],
cf. also Theorem 1.7 in this paper. Injectivity then follows from Theorem 1.2 above.
To see that the map is surjective, we first let ϕ be an embeddable deformation, with
ϕ sufficiently small such that there is an embedding 
 : S3 → C

2 with image
a strictly convex hypersurface near the standard sphere realizing ϕ (i.e. such that

∗(Z1+ϕ1

1̄Z 1̄) is a (1, 0)-vector field along the image of
). The hypersurface M =

(S3) bounds a convex domain � which has Kobayashi indicatrix B ⊆ T0C2 ∼= C

2

based at 0. Let � : B → � denote the circular representation of � [3, 35], which is
smooth up to the boundary (and away from the origin). By [3], equation (3.5), �|∂ B

is a contact diffeomorphism from ∂ B to M = ∂� and so the CR structure on M pulls
back to a deformation ϕM,∂ B of the CR structure on ∂ B; moreover, ϕM,∂ B (when
expressed in terms of an S1-invariant framing) has only positive Fourier coefficients
with respect to the natural S1 action on ∂ B [3].

The radial projection from ∂ B to S3 is clearly S1-equivariant, but is not (in general)
a contact diffeomorphism (so it can be thought of as endowing S3 with a second
S1-invariant contact distribution). We may correct for this possible discrepancy by
using the S1-invariant version of Gray’s classical theorem (since our two contact
distributions on S3 are isotopic through S1-invariant contact distributions), which tells
us that there exists an S1-invariant contact diffeomorphism from ∂ B to S3. This contact
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diffeomorphism allows us to push forward the intrinsic CR structure on ∂ B to an S1-
invariant CR structure on S3 compatible with the standard contact distribution H ;
with respect to the standard frame Z1 on S3 this CR structure has deformation tensor
ϕ̃∂ B,S3 ∈ Dcd (by S1-invariance). Using Lemma 5.1 there exists an S1-equivariant
contact diffeomorphism which pulls the CR structure corresponding to ϕ̃∂ B,S3 back
to one with deformation tensor ϕ∂ B,S3 ∈ D′

cd . We shall denote by ψ the contact
diffeomorphism ∂ B → S3 that pushes forward the CR structure on ∂ B to the one on
S3 with deformation tensor ϕ∂ B,S3 ∈ D′

cd . Using this contact diffeomorphismwemay
also push forward the CR structure with deformation tensor ϕM,∂ B from ∂ B to one on
S3 with deformation tensor ϕM,S3 . Note that ϕM,S3 (which describes the CR structure
of M relative to S3) differs from ψ∗ϕM,∂ B , since the latter is the deformation tensor
for the CR structure of M relative to the CR structure of ∂ B after we have identified
∂ B and M with S3 using the circular representation and the map ψ . Knowing that the
deformation tensor of ∂ B relative to S3 is ϕ∂ B,S3 and the deformation tensor of M
relative to ∂ B is ψ∗ϕM,∂ B , it is easy to show that

ϕM,S3 = ψ∗ϕM,∂ B + ϕ∂ B,S3

1 + (ψ∗ϕM,∂ B) · ϕ∂ B,S3
. (111)

We now claim that ϕM,S3 ∈ D′
B E . Choose a unitary S1-invariant framing Z∂ B

1 for the
CR structure on ∂ B and similarly a unitary S1-invariant framing Z0

1 on the standardCR
sphere S3.Working in these frames the identity (111) becomes an identity of functions,
and ψ∗ϕM,∂ B is just ϕM,∂ B ◦ ψ−1. Since ψ is S1-equivariant, it follows from (111)
that ϕM,S3 has only non-positive Fourier coefficients, andmoreover, the zeroth Fourier
component of ϕM,S3 is simply ϕ∂ B,S3 . When expressed in the standard framing Z1, Z 1̄
of S3 (which are not S1 invariant since LT Z1 = −2i Z1) then Fourier coefficients are
shifted by −4 (= −2 − 2) and hence, viewed in this frame, the deformation ϕM,S3

lies inDB E . Moreover, since the spherical harmonic coefficients of ϕM,S3 agree with
ϕ∂ B,S3 along the critical diagonal (which corresponded to the zeroth Fourier mode
when using S1-invariant framings) and ϕ∂ B,S3 ∈ D′

cd we have that ϕM,S3 ∈ D′
B E

when expressed in terms of the standard framing for S3. This establishes that (ϕ, y1)
is in the image of Pemb for some marking y1.

It remains to show that (ϕ, y) is in the image of Pemb for all markings y in a uniform
neighborhood of y0 (for ϕ sufficiently small). Note that in the preceding argument we
could have chosen a different base point p for the Kobayashi indicatrix. Note also that
Aut(S3) = Aut(B2) acts simply and transitively on the set of pointed frames in B

2.
Using this we can act on the marking y1 of (ϕ, y1) while keeping ϕ fixed as follows.
Given a point p ∈ B

2 and a unitary frame (e1, e2) for TpC
2 we repeat the above

construction of ϕM,S3 ∈ D′
B E but now use the Kobayashi indicatrix Bp centered

at p and identify ∂ Bp ⊆ TpC
2 with ∂ B = ∂ B0 ⊆ T0C2 using the linearization

of the automorphism of B2 that takes (p, (e1, e2)) to the point 0 with the standard
frame. In this way we obtain a family (ψs, ϕs) of points in C ×D′

B E parametrized by
s ∈ Aut(S3)whose images under Pemb are all of the form (ϕ, ys). Since Aut(S3) ∼= Y
is finite dimensional and the map s �→ ys in the special case ϕ = 0 is just the natural
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identification, the map s �→ ys is a local diffeomorphism for sufficiently small ϕ. This
proves the result. ��

Theorem 1.3 now follows from Proposition 5.2 and Theorem 1.2.

Remark 5.3 For comparison, we note that in [2, Theorem 14.2 and Theorem 15.1]
Bland gives a normal form for CR structures and for embeddable CR structures on S3

near the standard structure with respect to the action of contact diffeomorphisms and
S1-equivariant diffeomorphisms (which do not preserve the contact distribution). In
the notation of the proof of Proposition 5.2 Bland’s normal form for the embeddable
deformation ϕ is obtained by pushing ϕM,∂ B forward to S3 using the radial projection
from ∂ B to S3 and viewing this as a deformation of the CR structure of ∂ B pushed
forward to S3 (recall that via this identification the contact distribution of ∂ B is S1-
invariant but does not in general match the standard contact distribution of S3, which is
why S1-equivariant diffeomorphisms are needed for this normalization). Our approach
has been to keep the underlying contact structure fixed, which allows us to view the
deformation in normal form as a deformation of the standard CR structure.
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