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Abstract

Abstract deformations of the CR structure of a compact strictly pseudoconvex hyper-
surface M in C? are encoded by complex functions on M. In sharp contrast with
the higher dimensional case, the natural integrability condition for 3-dimensional CR
structures is vacuous, and generic deformations of a compact strictly pseudoconvex
hypersurface M C C? are not embeddable even in CV for any N. A fundamental (and
difficult) problem is to characterize when a complex function on M C C? gives rise
to an actual deformation of M inside C?. In this paper we study the embeddability
of families of deformations of a given embedded CR 3-manifold, and the structure of
the space of embeddable CR structures on S3. We show that the space of embeddable
deformations of the standard CR 3-sphere is a Frechet submanifold of C ©(8§3,C)
near the origin. We establish a modified version of the Cheng-Lee slice theorem in
which we are able to characterize precisely the embeddable deformations in the slice
(in terms of spherical harmonics). We also introduce a canonical family of embed-
dable deformations and corresponding embeddings starting with any infinitesimally
embeddable deformation of the unit sphere in C?.
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1 Introduction and main results

A fundamental problem in CR geometry is that of characterizing embeddability of
abstract CR manifolds, where a CR manifold is said to be embeddable if it is CR
embeddable in CV for some N. By the work of Boutet de Monvel and Kohn [7, 33],
embeddability of compact strictly pseudoconvex CR manifolds can be characterized
in terms of a closed range property of 9. In particular, when the dimension of the CR
manifold is at least 5 it is always embeddable [7]. On the other hand, compact strictly
pseudoconvex CR 3-manifolds are generically not embeddable [8]. The first known
examples of such nonembeddable CR 3-manifolds go back to Rossi [45] who showed
that certain classical SU(2)-invariant structures on S> are not embeddable (though,
being real analytic, they are locally embeddable); a locally nonembeddable example
was given by Nirenberg [39, 40]. (Nirenberg’s example can be compactified to give a
CR structure on S3, and his construction already indicated that nonembeddability was
generic in the compact case.) The question of embeddability of compact strictly pseu-
doconvex CR 3-manifolds has continued to receive much attention, and many authors
have sought to achieve a deeper understanding of the set of embeddable structures.
Epstein [20, 21] has studied the set of embeddable deformations of a given compact
embeddable CR structure in terms of index theory for the corresponding (relative)
Szegd projectors, and shown that the set of embeddable structures is closed in the C*®
topology [21]. Chanillo, Chiu and Yang [13, 14] have given a sufficient condition for
embeddability in terms of CR Yamabe invariants; specifically they show that a com-
pact CR structure is embeddable if it has positive Yamabe invariant and nonnegative
CR Paneitz operator. A partial converse has recently been established by Takeuchi [47]
who showed that the CR Paneitz operator of an embeddable compact CR 3-manifold
is always nonnegative.

In this paper we study the embeddability of families of abstract deformations of a
fixed compact strictly pseudoconvex CR 3-manifold embedded in C2, and the struc-
ture of the space of embeddable deformations (as a subset of the space of all abstract
deformations) of the standard CR 3-sphere in C2. By the stability theorem of Lempert
[37], a small abstract deformation of a compact strictly pseudoconvex hypersurface
in C? is embeddable (in CV for some N) if and only if it is embeddable in C2. We
therefore restrict our attention to embeddability in C>. We shall mainly consider CR
structures on the 3-sphere S near its standard CR structure, i.e. the strictly pseudo-
convex CR structure that it inherits as the boundary of the unit ball in C?. Recall that a
strictly pseudoconvex CR structure (M, H, J) on a smooth 3-manifold M is a contact
distribution H € T M equipped with a bundle endomorphism J : H — H satisfying
J? = —id. When M = S3, by aresult of Eliashberg [19], a CR structure can be embed-
ded in C? only if the underlying contact structure agrees with that of the standard CR
sphere. Let I'(7) denote the space of smooth positively oriented CR structures on S>
compatible with its standard contact distribution H. Let I'([J)emp C T'(J) denote the
subset of CR structures that are embeddable in C2. In [15] it is shown that I'(J) is
a smooth tame Fréchet manifold in the sense of Hamilton [28], with respect to the
scale of standard L>-based Sobolev spaces on M. The same holds for the space of
embeddable CR structures near the standard CR 3-sphere:
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Theorem 1.1 [2, 38] I'(J)emp C T'(J) is a smooth tame Fréchet submanifold near
the standard CR sphere.

To understand the embeddable CR structures on S> more concretely, we parametrize
I'(J) by complex functions on S in the following way. First, note that specifying a
CR structure J compatible with H is the same as specifying its i eigenspaces T
and T%! = T1.0 a5 subbundles of C ® H. Let (z, w) denote the coordinates on C2
and define the following vector fields on $3,

Zi=w— —7—, ZTZZl (1)

spanning 710 and 79! respectively for the standard CR 3-sphere (S3,H, Jp). A
complex function ¢ = ¢! on 3 with | @[« < 1 defines an oriented CR structure on
(3, H) by defining its holomorphic tangent space # 7Y to be spanned by

Z(lp =7 +(p1121.

(Up to complex conjugation, all CR structures compatible with H are realized this
way.) Strictly speaking, ¢ should be interpreted as a section of (71:%)* @ T%! and
we refer to ¢ as the deformation tensor, though we usually trivialize (710)* @ 70!
using Z and Zj in order to think of ¢ as a function. We let © denote the space of
smooth deformation tensors, and let ®.,,, C © be the subset of deformations that are
embeddable in C2. The main goal of this paper is to better understand the space of
embeddable deformation tensors ®.,,, on S°, thought of as a space of functions using
the standard frame Z, Zj.

In [8] Burns and Epstein showed that there is an infinite dimensional linear space
within the space of embeddable deformation tensors ©,,,; near the origin (i.e. the
trivial deformation corresponding to the standard structure on S3), characterized by
the vanishing of certain terms in the spherical harmonic decomposition. To make this
more precise we introduce the spherical harmonic spaces H) , of functions on 53
that are the restrictions of harmonic homogeneous polynomials of bidegree (p, ¢) on
(C; for each p,q > .O. We denoFe the component of ¢ .in H”'q by ¢p.4, so that the
L= orthogonal spherical harmonic decomposition of ¢ is given by ¢ = > pg Ppaa-
Define ®pr C D to be the set of all deformation tensors ¢ such that ¢, , = 0 if
q < p + 4 (our deformation tensor is the conjugate of Burns and Epstein’s). Burns
and Epstein showed that if ¢ € D g is sufficiently small in C* then the deformation
is embeddable. This has a clear conceptual explanation given by Bland [2] in terms
of Lempert’s theory of extremal discs for the Kobayashi metric, the corresponding
circular representation, and nonnegativity of the Fourier coefficients of the conjugated
deformation tensor ¢ (relative to an S Linvariant frame); cf. [3, 36, 37, 43]. Examining
the linearized action of the contact diffeomorphisms on the space of CR structures on
$3 suggests that the space of Burns—Epstein deformations (or more precisely a certain
subspace of the Burns—Epstein deformations satisfying an additional condition along
the critical diagonal p = g + 4) should give a slice for the action of the group of
contact diffeomorphisms on the space of embeddable CR structures. But this has not
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been fully resolved in the literature; in particular, such a result has not been established
in the C*° case. One of our main results is a slice theorem for the C*° embeddable CR
structures on S near its standard CR structure, see Theorem 1.3. To do this we first
prove a modified version of the Cheng—Lee slice theorem [15] for the space of abstract
deformations of the standard CR structure on S, and then show that restricting to a
natural subspace of the modified slice gives a slice theorem for the embeddable CR
structures.

Before stating our slice theorems we briefly discuss the corresponding linearized
problem. Given any CR hypersurface M C C?, the infinitesimally embeddable abstract
deformations may be understood concretely as follows. Let M, be any smooth 1-
parameter family of strictly pseudoconvex hypersurfaces in C> with My = M, defined
as the zero loci of a smooth family of defining functions p;. It is always possible to find
a family of contact diffeomorphisms ¥, : M — M, with ¥y = id parametrizing the
family M,. Using ¥, one may pull back the CR structures of the M; to M in order to
obtain a family of CR structures on M whose holomorphic tangent spaces are spanned
by Z| = Z(l) + ¢! (t)Z? where Z(l) is a (unitary) frame for the holomorphic tangent

space of M = M. For purely aesthetic reasons, we lower the index 1 on g I (t) using
the Levi form of p; to obtain ¢q1(¢). A straightforward geometric calculation shows
that if ¢ = ¢y = | _, @11(t) then

o1 =MVi+iAn)f (2)

for some function f where Re f = —p = — %| 1o Ptlm is the normal velocity of
the deformation at = 0O (see, e.g, [6, 16, 18, 31] or Lemma 2.1 below); here V is the
Tanaka—Webster connection of the contact form idpg|a and Ay is the corresponding
pseudohermitian torsion. In the case of the standard CR sphere, defined by py =
1 — |z|> — |w|?, (2) simply becomes

o =2121f. 3)

The space D of infinitesimally embeddable deformation tensors on S? is easily under-
stood using spherical harmonics. The vector field Z; sends each H), ; isomorphically
onto H,_1 441 unless p = 0 in which case Z; is zero. It follows that ¢ is an embed-
dable infinitesimal deformation (i.e. ¢ is in the range of Z1Zy) if and only if ¢, ;, = 0
for g = 0, 1. Its easy to see that every infinitesimally embeddable deformation tensor
¢ can be realized as g—t | 1—o ¢(1) for some family of embeddable deformation tensors
@(t). We therefore sometimes refer to ¢ € Dy as a linearized embeddable deformation.

Having understood the embeddability problem at the linearized (i.e. infinitesimal)
level about the standard CR 3-sphere, it is natural to ask if we can similarly characterize
the embeddable deformations. Such a characterization is possible if we work modulo
contact diffeomorphisms. Let C denote the space of contact diffeomorphisms on 3.
The Lie algebra of C is the space of contact (Hamiltonian) vector fields, which can be
identified with C®°(S3, R) once a contact form on S3 has been chosen (we always take
the standard contact form 6 = i (zdZ+wdw) on S which normalizes the Levi form to
be h;7 = linthe frame Z,). The linearization of the natural action C xI'([J) — I'(J)
at (id, Jp) is
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(g, ¢11) > o1 +iZ1Zg, 4)

where g € C*(S3, R) is the potential for a contact (Hamiltonian) vector field and ¢ is
a deformation tensor on 3 (here we are identifying ® with the tangent space of I'(.7)
at Jo). As an immediate consequence of (4), it was observed in Burns—Epstein [8] that
an infinitesimal slice for the action of the contact diffeomorphisms on CR structures
at Jo is given by D . @ ’Dé where @é C D is the L? orthogonal complement to
Do and ’D’B g € DpE is the subspace of all ¢ € Dpp that additionally satisfy the
reality condition Im ((Zi)zgl)p, p+4) = 0 along the critical diagonal. (The latter reality
condition is equivalent to saying that ¢ must be L2 orthogonal to the image of the real
S1-invariant functions on 3 under i (Z1)?, where the inner product is the real part of
the complex inner product.)

In Cheng-Lee [15] it was shown that the space of marked CR structures on S> near
the standard CR structure can be locally identified with C x S where S is the set of all
deformation tensors ¢ such that Im (Z; Z7¢) = 0. Marking here refers to the choice
of a point in the CR Cartan frame bundle [11, 17, 48] of the given CR structure on
(S3, H); the symmetry group of any marked CR structure is trivial, so working with
marked structures eliminates the need to try to mod out by the noncompact symmetry
group of the standard CR sphere. For our purposes, we need a modified version of
the Cheng—Lee slice theorem which uses the linearly equivalent slice D' . ® ’D(J)-. Let
I'(J)™ denote the space of marked CR structures on (S 3 H), which we identify with
the space ®™ of marked deformations of (S3, H, Jy). The contact diffeomorphisms
act naturally by pullback on I'(7); a contact diffeomorphism that takes J; € I'([J)
to Jo € I'(J) lifts to an equivariant diffeomorphism between the corresponding CR
Cartan frame bundles [10, 11] so that the action of contact diffeomorphisms on the CR
structures I"(J) extends naturally to an action on the marked CR structures I'(7)"
(see, e.g., [15]), and hence on ®™ by identification with I"(J)™.

Theorem 1.2 Fix any marking yq of the standard CR sphere. Then

(i) Thenatural actionCxD™ — D™ restricts to a local smooth tame diffeomorphism
P:Cx Dy ®D7) x {yo} = D™ in a neighborhood of (0, yo) € D™;

(ii) For W e C sufficiently near the identity, the image of (D', ® CDé) X {yo} under
W is disjoint from itself unless ¥ = Id.

The proof of this modified Cheng—Lee slice theorem can be obtained by adapting
the proof of Theorem B in [15]. For the reader’s convenience we provide a slightly
simplified proof of this theorem in Sect. 5. The advantage of this modified slice theorem
is that a linear subspace of the slice gives a slice for the embeddable deformations. Let
D7, denote the space of marked embeddable deformations of the standard CR sphere.
We shall prove the following slice theorem for the set of embeddable deformations,
which also immediately implies Theorem 1.1.

Theorem 1.3 Fix any marking yo of the standard CR sphere. Then

(i) The natural action C x D™ — D™ restricts to a local smooth tame immersion
Pemp : C X D' x {yo} = D™ in a neighborhood of (id, 0) € C x D'y, whose
image is a neighborhood of (0, yo) in ©™

emb’
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(ii) For W e C sufficiently near the identity, the image of D'y % {yo} under W is
disjoint from itself unless ¥ = 1d.

We observe that by Theorem 1.2, Theorem 1.3 is equivalent to the statement that
Dy ® @é)\@% £ consists solely of nonembeddable deformations (near the origin).
This question was considered in [8] where it was shown that the nonembeddable
deformations form a Gg-set in (’D/B ) Z)(J)-)\Q/B > the results in [20] imply that
this G-set is open. Theorem 1.3 settles the question completely; a sufficiently small
P EDp, ® @é is embeddable if and only if ¢ € D'y .

Another consequence of Theorem 1.3 is a normal form for embeddable CR struc-
tures, unique up to an action of Aut(S>) on Dy

Corollary 1.4 For sufficiently small deformations ¢ of the standard CR sphere, ¢ is an
embeddable deformation if and only if there exists a smooth contact diffeomorphism
such that the pulled back CR structure corresponds to a deformation § € D'y ..

Note that D', can be replaced by D g in Corollary 1.4 (at the expense of leaving
also the freedom to act by an S!-equivariant contact diffeomorphism on ® ). Such
a result was only previously known in finite regularity, with the notion of “sufficiently
small” depending on the regularity; see the work of Bland and Bland-Duchamp [2, 4,
51

The above characterization of embeddable deformations is satisfying, but it does
not really give a practical means of checking for embeddability since one must first
normalize the deformation tensor by an appropriate contact diffeomorphism. We would
like to say something about the embeddability of a deformation without the need to first
normalize it. At the linearized (i.e. infinitesimal) level this is clear, as explained above.
To what extent does a similar characterization of embeddability hold beyond the linear
level? By taking a completely different approach to the problem using geometric flows
we provide the following result describing embeddable structures without the need to
normalize by contact diffeomorphisms.

Theorem 1.5 For ¢ € D sufficiently small there exists a smooth family ¢(t) € Demp
such that ¢(t) = t¢ + () for t € [0, 11, where u(t) = Ot?) and u(t) € CD&.
Moreover, there exists a smooth family of embeddings ®; : S3 — C?, with &y = Id,
realizing the deformation ¢(t) for each t € [0, 1].

Remark 1.6 'We make two remarks.

(1) In fact, it follows from the more detailed version of the theorem, Theorem 4.13,
that the family ¢(#) is canonical up to the choice of a constant A that determines
the initial velocity of the family of embeddings ®; (setting A = —1 ensures that
the family of surfaces ®;(S%) move outward and locally foliate C?); the resulting
time one map Do — D,p taking ¢ to ¢(1) has a linearization at ¢ = 0 which
is the identity and hence can be thought of as an exponential map.

(2) Note that, in terms of spherical harmonics, the condition ¥ € ’D& means that
Y¥p.q = 0 except possibly when ¢ = 0, 1. Also, note that ¥ (¢) will not be zero
in general (as can be seen by an inspection of the proof of Proposition 4.3 for the
special case where, say, ¢ € Hp ).
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In the special case where ¢ € © pg we naturally find that ¢(¢) = t¢ (i.e. ¥ (t) = 0)
and we obtain analyticity of ®; in . More precisely:

Theorem 1.7 For ¢ € Dpr sufficiently small there exists a family &, : §3 — C?
with complex parameter t, such that for each t, |t| < 2,

(1) D is a smooth embedding which realizes the deformation ¢(t) = t¢;
(i1) ®; is analytic in Tt as a function with values in the Banach space of C* maps
§3 — C2 for any k.

Note that this recovers the result of Burns—Epstein [8, Theorem 5.3] by setting T = 1.

As a by-product of our approach, we also establish the embeddability of a family of
deformations of an embedded structure that satisfy a well known necessary condition
(stated for = 0 above), under a natural additional condition that forces the resulting
family of embeddings to move inwards (or outwards). As mentioned above, given a CR
3-manifold (M, H, J) embedded in a complex surface, an infinitesimal deformation
tensor ¢ will be infinitesimally embeddable if and only if it satisfies (2) for some
complex function f on M. Given afamily of CR hypersurfaces M; C C?with My = M
contact parametrized by v, : M — M,, with ¥y = id, (2) applies at each time ¢ on
M; . Pulling back using v, : M — M, we obtain a family of embeddable deformations
¢(t) with ¢(0) = 0 and a family of complex functions f; on M satisfying a certain
second order equation at each time 7, corresponding to (2); f; can be interpreted as the
complex normal component of the variational vector field v, arising from the family
of embeddings ; (more precisely, as the corresponding function on M). Saying that
a family of abstract deformations ¢(t) satisfies this condition (for some family f;) in
principle says that the deformation ¢(#) moves tangent to the space of embeddable
deformations at each time ¢. Borrowing terminology from Jih-Hsin Cheng [16] we
will refer to this condition on ¢(¢) as the tangency condition; we shall also refer to the
family f; as afamily of potentials corresponding to ¢(¢). For the precise formulation of
the tangency condition see Sect. 3 and also Lemma 2.1. Given a family of deformations
of an embeddable CR structure satisfying the tangency condition, it is natural to ask
whether this family is embeddable. Our result is the following:

Theorem 1.8 Let M be a compact strictly pseudoconvex hypersurface in C* and let
(1) be a 1-parameter family of deformations of the induced CR structure on M with
@(0) = 0. Suppose ¢(t) satisfies the tangency condition for all t with a family of
potentials f; with Re f; having strict sign. Then there exists € > 0 such that ¢(t) is
an embeddable deformation for all t € [0, €).

For a more precise statement see Theorem 3.1 below. This generalizes Cheng’s
theorem for fillable structures [16, Theorem A] to the case of embeddable structures
and allows Re f; to have either sign. We remark that the sufficient condition in The-
orem 1.8 for embeddability of the family ¢(¢) is also a necessary condition. This
follows because a family of CR hypersurfaces M; € C? (¢ € [0, €]) can always be
re-embedded by applying a smooth 7-dependent family of dilations such that it moves
to the pseudoconvex side for all time (or, if desired instead, to the pseudconcave side
for all time) so that the family of potentials f; then satisfies Re f; > 0 for all ¢ (or, if
desired instead, Re f; < O for all ¢). See Sect.2.2.
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This paper is organized as follows. In Sect. 2 we give some preliminaries on defor-
mations of 3-dimensional CR structures and introduce the tangency equation for
families of embeddable deformations, which makes precise the tangency condition
referred to in Theorem 1.8. In Sect.3 we explain how one obtains embeddings from
solutions to the tangency equation and establish Theorem 3.1, which implies Theorem
1.8. In Sect. 4 we study the solvability of the tangency equation for small deformations
of the standard CR 3-sphere, and establish Theorems 1.5 and 1.7. Finally, in Sect.5
we prove the slice theorems, Theorem 1.2 and Theorem 1.3. We remark that the main
sections, Sects.3-5, are largely independent from each other. Section3 is primarily
geometric, and makes use of the Fefferman ambient metric construction in the frame-
work of Hirachi-Marugame-Matsumoto [31]. In both Sect.4 and Sect.5 we make use
of the Nash—Moser inverse function theorem as presented in Hamilton [28] (see also
Cheng—Lee [15] for a brief introduction to this and Hamilton’s tame Fréchet cate-
gory). These sections also make use of an elliptic regularity argument adapted from
[8] which appears first in the proof of Proposition 4.8. The proof of Theorem 4.13 (a
more precise version of Theorem 1.5) uses arguments from the theory of parabolic
evolution equations.

2 Deformations of 3-dimensional CR structures

Let M be a smooth oriented 3-manifold. A contact structure on M is arank 2 subbundle
H C T M which is nondegenerate in the sense that if H is locally given as the kernel
of some 1-form 6, then & A d6 is nowhere vanishing. A CR structure on (M, H) is
given by a smooth endomorphism J : H — H such that J> = —id. We refer to
(M, H, J) as a strictly pseudoconvex CR 3-manifold. The partial complex structure
J on H C TM defines an orientation of H, and therefore defines an orientation on
the annihilator subbundle H+ := Ann(H) C T*M. A nowhere vanishing section
6 of H™ is called a contact form for H. A contact form 6 is positively oriented if
df|y is compatible with the orientation of H, equivalently, if d6(-, J -) is positive
definite on H. A CR structure (M, H, J) together with a choice of positively oriented
contact form 6 is referred to as a pseudohermitian structure [42, 49]. The Reeb vector
field of a contact form 6 is the vector field 7 uniquely determined by 6(7") = 1 and
de(r, -)=0.

Given a CR manifold (M, H, J) we decompose the complexified contact distribu-
tion C® H as T'° @ 70!, where J acts by i on T"-? and by —i on 70! = 710,
Let 6 be a positively oriented contact form on M. Let Z; be a local frame for the
holomorphic tangent bundle T'° and Z; = Z1, so that {T', Z1, Zi} is a local frame
for C ® T M. Then the dual frame {6, o 91} is referred to as an admissible coframe
and one has

do =ih;;0" A0 5)
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for some positive smooth function /7. The function A7 is the component of the Levi
formLo(U, V) = —ido(U,V)on T"O, thatis

Lo(U' 2, V1Zi) = h,;U'VT

It is convenient to scale Z; so that ;7 = 1, and we will typically do so. In any case,

we write h!'! for the multiplicative inverse of 7. The Tanaka—Webster connection
associated to 6 is given in terms of such a local frame {T', Z1, Z7} by

VZi=w'®Z1, VZi=w;' ®Z;, VT =0
where the connection 1-forms ;! and wii satisfy

d0' =0' nw ' + A1 0 A6, and (6)
o' + o' =h'"dh;, %

for some function Ali. The uniquely determined function Ali is known as the
pseudohermitian torsion. Components of covariant derivatives will be denoted by
adding V with an appropriate subscript, so, e.g., if u is a function then Viu = Zu,
ViViu = Z1 Ziu — o1 "(Z1) Z1u and VoViu = TZju — w1 (T) Zju. We may also
use h 7 and h'! to raise and lower indices, so that Al = hliAli and A = hliAll,
with A} = Al;. Note that when &7 = 1 raising and lowering indices is a trivial
operation.

2.1 Abstract Deformations

Let (M, H, J) be a compact, strictly pseudoconvex, three-dimensional CR manifold.
Consider a smooth family of CR structures (M, H;, J;) on M with (Hy, Jo) = (H, J).
By Gray’s theorem [27] this family may be pulled back by a smooth family of dif-
feomorphisms to a family of the form (M, H, f,). When considering families of CR
structures on M we therefore always keep the contact distribution H fixed. If Zj is
holomorphic tangent vector field on (M, H, J) then this amounts to requiring that the
holomorphic tangent space of our deformed structure is spanned by a vector field of
the form Z; + WZT for some complex function ¢ = ¢! with |¢|*> < 1 on M. We
shall fix a contact form 6 on M such that Z; is unitary (i.e. h;7 = 1 with respect to
Z1). Given a deformed CR structure spanned by Z; + (pllzi we will always work
with the normalized frame

e — A ®)

V1—lp?

so that the Levi form of 6 with respect to the deformed structure has component
h(fi = 1. Given a family (M, H, J;) of CR structures on M, we may describe the

deformation J; by a deformation tensor ¢; ! (¢) via
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1 -
= —— (21 + 0 7). ©)

V=g

where we use the shorthand notation
lol? = o1 ()12 (10)
The corresponding admissible coframe (6, 9,1, 0;) is obtained by choosing

olm 1 (91 — wil(z)ei). (11)

VT=lgP

Note that J; is easily recovered by writing J; = iZ] ® 6,1 - iZ% ® 0,1. It is useful to
invert the transformations (Z1, Zj) + (2}, Zt) and (6", 07) > (0. 6}):

l -
2= ——— (z -0’ 07}).
V1=lgl (12)
1 _ 1 1 1 1
0 = ———= (6, + 971 I, ).

VT=lpP

We denote by V' the Tanaka—Webster connection of the pseudohermitian structure
(M, H, J;,0), and by A(¢) its pseudohermitian torsion in the coframe (0, ol 9,1).
For the connection form w; I on M relative to the admissible coframe 0, ol 91), we
shall write

w11=w11191+w11191+a)1109, (13)

and similarly for the connection forms w; L(#) of VI,

o' (1) = o110 6] + o110 6] + w1'0(0) 6. (14)
Note that we then have, for a smooth function f,

VIVIf = @ZD*f o1 (O Z] f. (15)

2.2 Embedded deformations
Let M be a strictly pseudoconvex hypersurface in a complex surface X. Then M
carries an induced CR structure (M, H, J), where H) is the maximal complex
subspace in T,M C T,X for each p € M and J is induced from the standard
complex structure on X. We say that a smooth family of embeddings ¥, : M — X,
t € [0, ¢€), is a parametrized deformation of M if ¥y = idy and M, = ¥,(M)

is strictly pseudoconvex for all ¢. By pulling back the induced CR stuctures on M;
by ; for each ¢, one obtains a smooth family of CR structures (M, H;, J;) on M
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with (M, Hy, Jo) = (M, H, J). We say that a parametrized deformation v, of M
is contact parametrized if the induced family of CR structures (M, H;, J;) on M
satisfies H; = H for all ¢, equivalently if ¢, : M — M, is a contact diffeomor-
phism for all ¢, where the contact structure on M; C X comes from the induced
CR structure. By Gray’s stability theorem [27] any parametrized deformation may be
reparametrized by a 1-parameter family of diffeomorphisms of M so that it becomes
a contact parametrized deformation.

Lemma2.1 Let y; : M — X, t € [0, ¢€), be a contact parametrized deformation
of the strictly pseudoconvex hypersurface M C X. Let (M, H, J;) denote the corre-
sponding family of CR structures on M and let (6, Qtl , 911 ) be a corresponding family of
admissible coframes with deformation tensor ¢11(t) as above. Then there is a smooth
family of functions f; € C*°(M, C) such that

Vi = S Re () — Y Re (ifiT +2(9) )Z1). (16)
and

@11(0)

T (1

ViV fi+iAu@) fi =

where lﬁt = C%lﬂt, o11(t) = C% @11(t) and J denotes the complex structure on X.

Remark 2.2 (i) Lemma 2.1 is proved, e.g., in [18, Lemma 4.5] for the case of t = 0
(note that what we are denoting by fo corresponds to i f in [18]) and the generalization
to arbitrary times ¢ is straightforward, though we include the full proof below for
completeness. For other presentations, see [6, 16, 31]. (ii) The denominator in the
right hand side of (17) will arise naturally in the proof below, but it can also be
explained by comparing the above lemma with [18, Lemma 4.5] and noting that by
(9) and (12) we have

R0)

t+s __ t
z! —“+mm4+<tﬁﬁﬁ

s+0@%)z§ (18)

so that the infinitesimal deformation tensor for the family of CR structures (M, H, J;)

1
at time ¢, relative to the frame (Z?, Z%), is lf\lwgilz' (iii) Note that, for each ¢, the

vector field ¥, Re (iftT + 2(Vt1f,)Z%) is tangent to M; = v,(M). Hence, with
our current conventions, if f; is pure imaginary for all ¢ then v, (M) = M for all ¢
and Y; : M — M is a family of contact diffeomorphisms of (M, H). In general, the
complex function i f; is akind of generalized Hamiltonian potential for the infinitesimal
motion of M; in X; see Section 4 of [18] for a more detailed discussion. (iv) Note
that J,, T points to the pseudoconvex side of M, for each 7. Hence, in particular, if
M bounds a strictly pseudoconvex domain and Re f; > O for all ¢, then M; moves
inward (i.e. to the pseudoconvex side) as ¢ increases; on the other hand, if Re f; < 0
then M; moves outward. (v) Note that the family of functions f; depend only on the

@ Springer



638 S.N. Curry, P. Ebenfelt

choice of contact form 6, and not on the choice of coframing; if 6 is replaced by ¥ 6
for some smooth function Y on M then the functions f; must replaced by e f;. The
family of functions f; may be more invariantly described as a family of densities (cf.
[18]), but this will not concern us since we will always work with respect to a fixed
contact form.

Proofof Lemma 2.1 Let (T, Z!, Z%) denote the frame dual to (0, 6}, 9;). Since v, :
M — M; is a diffeomorphism pulling back the CR structure on M; C X to the CR
structure (M, H, J;) on M, the frame (T, Z!, Z%) pushes forward under v, to a frame

(T*, LY, L[T) for M, such that L’T is a section of TV X |y, and JT' is everywhere
transverse to M;. The family of functions f; arises from taking components of v, that

are adapted to this framing as follows: Since v; o w;l is a section of 7' X[y, it can be
written as

Jrow ' =aJT +bT +cl L} +clL! (19)

for some (unique) smooth functions a;, by, ct1 on M; with a; and b; real and ct1 = ctl.

Setting f; = (a; +ib;) o Y; and th = —c,1 o V¥, equation (19) becomes
Y = JWRe (fT) = v Re (i +2v]21), (20)

where V,1 is the conjugate of V,l. The smooth functions f; and th on M are uniquely
determined for each ¢ and smooth in z, sin_ce Uy js smooth in ¢.

To obtain (16) we need to show that V,! = V! f;. In order to prove this and (17) it
will be convenient to introduce (arbitrary) local coordinates (z', z2) on X. We write
Y in these coordinates as vy, = (lﬂtl, wtz). Since, by definition, ¥; : (M, H, J;) - X
is a CR embedding for each ¢ € [0, €), it follows that the component functions 1/f,1 and
%2 are CR functions with respect to (M, H, J;). Thus for all + we have Z%w," =0,
k = 1, 2. Differentiating this expression with respect to r we have Z %‘ﬂtk +Z % I/Itk =0,
k=1, 2, where

o d o1 ()
Zi=—zt =L~ 7, modZ
P e !
- 1
7 (¢
=% @ Z{ mod Zt,
1 — g !
using (12). Hence,
tik ‘i)Il(t) tk k
ZLf + - Mzzlw, =0, =1,2. (1)

The relationship between Vl1 and f; will follow by substituting (20) into (21); to do
this we first write (20) in terms of (z!, z?)-components by applying dz¥ to each side,
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giving

U =i [V Re (AD)] = [y Re (ifiT +2v,12) |
= iRe (i) v — Re (ifiT +2V/' 2} ) v
=ifiTyF -V} Ziy}k, @2)

for k = 1, 2, where we have used that dz* o J = idz* and that Zti wtk = 0. Thus
ZWf = i(ZE DTV +i i Zi Ty — (Zvhziyf = v Ziziy*, (23)
for k = 1,2. We can simplify the above by noting that Z; Tyk = [ZL, T1yF and
VAVA Yk = (2%, Z} 19k, since Z! gﬁl = 0, and using the followmg €asy consequences
of the Tanaka—Webster structure equations (cf. [34, page 418]):
(24, Z) = ih;T + w1102 — w1 () Z, (24)
(where we retain the Levi form component h’li even though it is 1 for all #) and
(28, T1=A'5(1)Z) —a)iio(t)zg. (25)
We obtain
ZWf = GZLfi — ik VOTYS + G fiA" () — 28V} — o 1 (Vv Ziyw !, (26)
for k = 1, 2. Substituting this into (21) we obtain

¢i' (@)

— lol?

GZLf —in' s VOTyf + G fiA' () — 28V — o1 () V) + 1 )Ziyk =0,

27)

fork =1, 2. Since ¥, : (M, H, J;) — X is a CR embedding for each ¢, we have

1 2
(351 7)o

forall 7. Hence (27) implies that i Z} fi—i h' V! =0(.e. V! = V] f;, orequivalently,
V = V f:)and

®i H0) —0
1—|g|? 7

ifiA'5(0) = Z V! — o V] + (28)
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recalling that the choice of local coordinate system (z!, z%) was arbitrary, these iden-
tities hold on all of M and for all 7. Finally, using that Z{V,! + w1 ';(1)V,' = ViV!

and that V,' = V/ f;, and lowering an index using htli (= 1for all 1), (28) gives

o71(@)
1—|p?

VIVEfi —iAgi () fi = (29)

which is the conjugate of (17). This proves the result. O

Note that the contact parametrization ¢, : M — X in Lemma 2.1 can always be
replaced by one for which the corresponding functions f; are real-valued for all ¢
(the imaginary parts of the original functions f; generate a family of contact diffeo-
morphisms of (M, H) that can be composed with the original ¥, to give the desired
reparametrization, cf. [18, Lemma 4.6]). For our purposes, however, it will be advan-
tageous to retain the flexibility of allowing f; to be complex.

Note also, that if M;, t € [0, €], is a family of compact strictly pseudoconvex
hypersurfaces in C? then one can always find a smooth family of dilations F; such
that the equivalent family F; (M;) moves inwards for all ¢ and hence corresponds to
a family of potentials with Re f; > O for all ¢. Alternatively, by the same argument,
F;(M;) can be taken to move outwards for all 7 corresponding to a family of potentials
with Re f; < 0. Thus, if we seek to characterize families of embeddable deformations
via the existence of a family of solutions to (17), it is no loss of generality in asking
for our family f; to satisfy that Re f; has strict sign.

3 Embeddings from solutions to the Tangency equation

In this section we shall show that the tangency condition does in fact characterize
embeddability. More precisely, we shall show that it is possible to construct a smooth
family of CR embeddings from a smooth family of potentials f; that solve the rangency
equation (17) for a given family of deformations ¢(#); such a family of deformations
@(t) is said to satisfy the tangency condition. The aim of this section is to prove the
following result, from which Theorem 1.8 directly follows.

Theorem 3.1 Let M = My be a compact smooth hypersurface bounding a strictly
pseudoconvex domain Q@ C C?. Let (M, H, J;) be a smooth family of CR structures
on (M, H) with Jo = J where (M, H, J) is the CR structure induced on M < C2.
Let (t) be the associated family of deformation tensors given by (9). Assume that
there is a smooth family of solutions f; € C*°(M, C) to the tangency equation (17)
with Re f; having strict sign. Then, for a sufficiently small € > 0, there is a family of
mappings ¥ : M x [0, €) — C? such that:

G Y M — C? is an embedding for each t € [0, €) with Yy = id, where ¥; :=

w('a [)
(ii) ¥, is a CR diffeomorphism of (M, H, J;) onto the image M, := y;(M) C C2.
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The basic idea behind the proof of Theorem 3.1 is straightforward. We seek to solve
the initial value problem

{1&, = Y Re (fT) = vi.Re (ifi T +2(9] f)Z}). 0

Yo = id.

If (z!, z?) are the standard coordinates on C? then v, can be written as (v, wtz) and
the initial value problem above becomes
{[3% —ifiT +2Re (V! f)Z})]yi =0, an

v =2’ m

for j = 1, 2 (cf. the proof of Lemma 2.1). Since we expect i/, to be a CR embedding
with respect to the CR structure corresponding to Z} for each 7, there is no loss of
generality in supplementing (31) with the additional equation Z%lﬁj =0,j=1,2,
for each ¢. With this in mind, the local existence of a solution to (31) in the case where
Re f; > 0 follows easily from the Newlander-Nirenberg theorem with boundary and
extension of CR functions (applied to 2 \m, Jj = 1,2). Global existence then follows
by patching the local solutions using local uniqueness. In the case where Re f; < 0
we are able to use the classical version of the Newlander-Nirenberg theorem, but we
can no longer use extension of CR functions to conclude. We get around this by using
the (stable) embeddability results of Lempert and Epstein-Henkin to obtain a solution
¥, of (30) except with the initial condition possibly being some CR embedding other
than the identity. It is then easy to modify this family so that the initial condition is
satisfied; we remark that in doing so we are effectively (indirectly) solving (30) with
respect to a new family of potentials f; solving the tangency equation for the same
family of deformations ¢(¢) with Re f; > 0.

Proof of Theorem 3.1 Let ¢(1), fi, t € [0, €), be given as in the statement of the
theorem. Let W := % —ifiT +2Re ((thft)Zﬁ). OnY = M x [0, €g) we consider
the almost complex structure given by

7%y = span{Z., W}. (32)

A straightforward calculation using the tangency equation (17) shows that 7%1Y is in
fact integrable (cf. also the proof of Theorem A in [16] where this calculation is done
for the case corresponding to Re f; < 0; note that the calculation is independent of the
sign of Re f;). Note that this complex structure induces the CR structure corresponding
to Z% on each slice M x {r}. In the following we identify M C C? with M x {0},

though we retain both notations to help indicate when we are working in C? and when
we are working in Y.

We now show that in the case when Re f; > 0 the complex manifold ¥ = M x
[0, €0) with (partial) boundary M x {0} can be realized as a one sided neighborhood
of M c C? with M as the strictly pseudoconvex boundary since Re f; > 0. Indeed,
by the Newlander-Nirenberg theorem with boundary [12, 30] the complex manifold
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Y = M x [0, €p) can be locally realized in a neighborhood of any point p € M x {0} as
the strictly pseudoconvex side of a strictly pseudoconvex hypersurface in C? (it remains
to be shown that the realization can be taken to be the identity on My C C?). From
this local realizability it follows that a CR function on M x {0} can be extended to a
holomorphic function in a neighborhood in Y = M X [0, €p) of any point p € M x {0}.
In particular, the CR functions Wé = z!|y and wg = z?|y admit unique such local
extensions. Moreover, by the local uniqueness these extensions must glue together to
unique extensions 1//1(x, t) = 1//t1 (x) and 1//2(x, 1) = 1/ft2(x) of 1//6 (x) and wg(x),
defined in a neighborhood M x [0, €) of M x {0}, solving Wi/ = 0 and Ztil//‘j =0
for j = 1, 2. The family of maps ¢, = (1#,1, 1//t2) : M — C2,t € [0, €) therefore
solves (30).

It remains to consider the case where Re f; < 0 for all #. As a first step, we observe
that (30) is formally solvable to all orders at# = 0, and hence (by Borel’s lemma) there
exists a smooth family of contact embeddings 1}, : M — X, t e (-6, 0] satisfying
(30) to all orders (for our given f;, ¢(¢)) att = 0. By Lemma 2.1 there exist a family of
deformation tensors ¢ () and potentials f, t € (=6, 0] corresponding to the family of
embeddings Y and by construction ¢(¢) and f, agree with ¢(¢) and f;, respectively,
to all orders at + = 0; taking § > O sufficiently small we can ensure that Re f, <0
for all ¢. Hence we may smoothly extend the families ¢ (¢) and f; from ¢ € [0, €p) to
t € (=8, €o) by defining ¢(¢) and f; to be equal to ¢(¢) and ﬁ, respectively, when
t € (—4,0). Correspondingly we extend Zﬁ and W from ¢ € [0, €g) to ¢ € (=3, €p) in
the obvious way. The almost complex structure on Y therefore extends to an almost
complex structure on Y = M x (=8, ) with 7Oy = span{ZZ, W). By construction,

since ¢(¢) and ﬁ also ~solve the tangency equazion (17) for t € (-4, 0], the almost
complex structure on Y is integrable, making ¥ a complex manifold. Moreover, by
construction, the map

Y =M x (=5,0] > (x,1) = ¥ (x) € C? (33)

is a diffeomorphism from Y onto a one sided neigborhood U/ of M C X containing
M as its strictly pseudoconvex (partial) boundary that restricts to a biholomorphism
from M x (=38, 0) to U\M. We can therefore extend the domain Q C C? bounded
by M to a complex manifold X containing ¥ by identifying M x (—8,0) C ¥ with
U\M C 2 via the map (33). (Note that the result of this paragraph was essentially
also established in the proof of Theorem A in [16], though we find the approach we
have taken here to be simpler.)

From the construction of X and the fact that €2 is strictly pseudoconvex it is clear
that €2 has a Stein neighborhood basis in X. Moreover, if X; = QU (M x [0,7)) C X
then X; is a Stein space for all sufficiently small # > 0. In particular, there exists
€ > 0 such that M; = X, = M x {t} is Stein fillable and hence embeddable in
C? for ¢ € [0, €] (see [37], cf. [22, 23]). It follows that X, can be holomorphically
embedded in C? (by an embedding that is smooth up the boundary; again, see [22,
23, 37]). Let & : X. — C2? denote such an embedding. Clearly 1}, = Y|y, isaCR
embedding realizing the CR structure corresponding to Z| on M; for each 1. However,

1/}0 ‘M = My — C2 may not be the identity; i.e. the family 1}, solves (30) except with
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a different CR embedding as the initial condition. Let fz, w(X ) and M, = t &, (My).

By construction v/|g is a biholomorphism from Q¢ = € to Qo that is smooth up to
the boundary. To conclude the proof we show that the map 1/f|Q Qo — Qy c C?
can be extended to a smooth (in the appropriate sense) family of maps ®, : €, — C2,
t € [0, €], such that ®, is a biholomorphism onto its image €2, that is smooth up the
boundary for each #. One way to accomplish this is to note that, by compactness of
the ]l71, and of [0, €], there exists a point in fzo (which, without loss of generality,
we take to be the origin) and a constant & > 0 large enough such that the smooth
family of dilation maps F, : C*> 5 7 — (1 4+ ar)Z € C? maps Qo to a domain
F,(fzo) containing fZ, for each ¢ € [0, €]. The desired maps CD, can then be taken to
be &; = 1}|51 ) Ft_1|§2,' Then ¥; = ®; o Y; = WQ oF o U gives the desired
family of embeddings realizing the CR structure on M, for each ¢. This concludes the
proof. O

Remark 3.2 If ¢(t) and f; in Theorem 3.1 are analytic in 7 (with values in some Banach
space of functions), then one can show that v, and y; are also analytic in ¢ (with values
in the corresponding Banach spaces).

Note that in the case Re f; > 0 it is easy to see that Theorem 3.1 can be strengthened
by replacing C> with any complex surface.

4 Solutions to the Tangency equation on §3

We are now going to consider deformations of the standard CR structure on S°. Recall
that a smooth infinitesimal deformation tensor ¢;; on S 3 is embeddable, i.e. there is a
family of embeddable deformations 11 (¢) of the unit sphere $3in C? with ¢11(0) = 0
such that ¢ = % }t=0 ©11(1), if and only if

(Z)*f = ¢

for some f € C (8§53, C), where Z; is given by (1). In this section we shall construct,
in a canonical way, such a deformation ¢11(¢) for a given embeddable infinitesimal
deformation tensor ¢11. We do this by constructing a smooth family of complex func-
tions f; and a smooth family of deformations @11 (¢) satisfying (17) and then appealing
to Theorem 3.1. We start with some preliminary calculations.

4.1 Deformations of S with its standard CR structure
We shall continue to use the notation of Sect.2, where we now take (M, H, J, 0)
to be the standard pseudohermitian structure on S3. Recall that 6 = i(zdZ + wdw)

restricted to the unit sphere $3, where (z, w) are the coordinates on C2. We also recall
that we are using the frame Z; as in (1). We observe that in this case we have

o' =—iRO, A;; =0 (34)
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where R = 2 is the Tanaka—Webster scalar curvature of $3 with its standard structure.
Let ¢;'(r) be a smooth family of deformation tensors on S with its standard
pseudohermitian structure and frame. We shall consider the family of pseudohermitian

structures defined by the admissible coframes (6, th , 9;) where 9,1 isdefined asin (11).
We shall compute w L(#) and A (¢) in terms of the deformation tensor ¢ L), We
differentiate 911 and then substitute for 6! and ! using (12):

1 dg? g0 1 | R PN
dol = ——— A @' — ;o ——— (O —de; N0 — @7;'dO
t 2 (1 _ |(p|2)3/2 ( (/71 )+ 1 — |§0|2( (/71 (pl )
1 dlp|?

1 - -
=——6'A + (—iRO'ANO —iRp:'0" A0+ 0" Adp:!)
27 T —1el? 1 e : :

[P dlgl?

=T A== —iRO —iR|@|*0 + @1 de7' — (Z} dp;He))
_1 -
RPN
1— g2

(35)
where <,01I = (pli(t) and we have used that TJdgoIl - 2iR<pI1 = goil,o. We note that
dlpl* = o1'dei' + ¢i'der
and hence

dlpl?

- 1 - -
>~ o1lde;! = 7 (—o1'der' + o1'dp )
1 - - - - -
=3 (-(011(%1,191 +§011,191) + o1l (1! 16" +9011_191)> mod 6

1 2 1 1 1 1,2 1 11 1
=———(lel"vi 1—91 91 1+ (01 )01 1+91 1 Db,
2y/1— o
(36)

where the last equality is modulo 6 and 9,1 . We also note that the 6-component is given
by

dle? i Lo T i
> —oilde;' = 5(—<p11<pil,o+<ﬂilfp11,o)—2lR|<0|2 0 mod 6/, 6.
37
Next, we note that
Z{ dey' = S (i1 +e1'oi' D (38)
V1—lp? ’ ’

By using also the fact that w; ! (¢) is purely imaginary (since ', = 1), the following
lemma follows from the calculations (35)—(38) and the structure equation (6):
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Lemma4.1 Let M = S° with its standard pseudohermitian structure. Then,

1 - - - - -
1 1 1 1 1 1 1,2 1 2 1
w11(t) = s ———==75 Qo1 1+e1 o1 1 +e1 @11+ () 7er 1 —lelfer )
2(1_|¢|2)3/2 .1 1 1 1.1 .1
1 — -
1 . 11 1 1
He=—2i4f— - 39
w1'o(1) L T e @O0 e o0 (39)
?11,0
A11(I)=—1_|(p|2‘

Remark 4.2 The expression for w; ! (¢) can be simplified by noting that

1 1
J1—p2 20 —|p?

1 - - - -
= W(‘Pllﬁﬂil,l +‘Pil(/’ll.1 + ((ﬂl])2§0il,i + ‘(ﬂ|2¢11yi)~

(Zi+¢1'Zp)

Gk e Zlel

Consequently, we may write

1
?1 1 ~ 1
1 , t
w1 1(t) = + 7 , (40)
V1=lpl? V1—lgl?
where
Zﬁ =ZI+(/)1]ZI~ 41)

4.2 Spherical harmonics

We shall denote the space of spherical harmonic polynomials of bidegree (p, g) on
$3cC’byH ».q- We recall that the spherical harmonic spaces H), , are eigenspaces

forT =i (Za% + w%) —1i (23% + 12)%) acting on functions,
Tu=i(p—qu, (42)

and that Z; maps H, ; isomorphically onto H,_j 41 whenr > 1 and Z; = 0 on
Hp ;. An immediate consequence of this is that ¢;; is in the image of (Z D2 if and
only if the spherical harmonic expansion of ¢ has vanishing components in H), ,
for ¢ = 0, 1, and the kernel of (Z)? is given by those complex functions whose only
nontrivial components are in H), , for p = 0, 1. It follows that if ¢1; is in the image
of (Z1)? then there is a unique complex function f such that (Z{)>f = ¢;; and f
has vanishing components in H,, , for p =0, 1, i.e. f is L?-orthogonal to the kernel
of (Z1)%. Note that V| always acts as Z; on tensors of any type, since the connection
form is given by w;! = —i R6.

From the above it follows that the sublaplacian A, = —Z1Z; — Z;Z; maps each
H), , to itself. Since Aj is SU(2)-invariant (indeed Z; itself is) it must act on each
H), 4 by a constant (by Schur’s lemma, since the H), ; are irreducible representations
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of SU(2)). The constant is easily seen to be 2pg 4+ p+¢ (e.g., apply A to the spherical
harmonic (z + w)?(Z — w)?). Note that the Folland—Stein Sobolev s-norm |u|s on
Hy, ¢ is equivalent to the norm

1/2
11+ Ap)ul 2 = (Z(l +p+q+2pg)’ ||M,M,||§2) (43)
2%

where u =}, up 4 [26, 32]. To normalize constants it will be convenient to take
(43) as the definition of the H}.¢-norm in the following.

4.3 Formally embeddable deformations

We now assume that ¢11(0) = 0. We shall expand a potential solution f; and defor-
mation tensor ¢11(¢) satisfying (17) in powers of ¢ as follows:

fo=)_rOit (44)
k=0

THOED DA (45)
k=1

where 1) = ¢1. We shall identify terms in (17) with equal powers of #. We obtain
for 79

VD29 =g, (46)

the solvability of which is equivalent to ¢ being an embeddable infinitesimal defor-
mation. Before we proceed we first rewrite equation (17) explicitly in terms of the
deformation ¢11(#). We note that w1'(0) = —Rif implies that V| = V{|,:o and
Vi = V% lr=0 act on any tensor simply as Z; and Zj. The left hand side of (17) can
be written, by using the expression for A1 (¢) in Lemma 4.1,

1 ( o \? 1 1 i
—— (e Vi) fi—oh—— (Vi+a'vi) /
1—|pf? ) /1—|<p|2( 1)/t
1 . 1 i [911,0
b (mra ) ) (i) a e
¢1—|¢|2( YV T=gP VA T e
(47)

where we have also abbreviated w;!; = a)111(t) and @11 = ¢11(¢). By using also
(40), we find that this simplifies to

—- 2 _ _
— ly- T To. .
e ((v1+¢1 Vl) fr=eri (V””/’l Vl) fr—lwu,oﬁ>' (48)
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By canceling a factor of (1 — l¢1?)~!in (17), we obtain the equation

- 2 - - . d
(Vl +¢11Vi) fi—o'j (Vl +</>11Vi) fr —ignofi = P (49)

The operator acting on f; on the left hand side of this equation can be expressed as
(V1)? + L, where

Ly =¢1'"ViVi+01'ViVi+ (@D (VD? + 01" 1V — 1! 1VI — 0. (50)

We note that L, has a Taylor expansion
o
L, = szﬂ’c) (51)
k=1
where the operators L% are given by

k—1
LW — QO(k)Vlvi + (/)(k)VIVI + Zgo(J)gO(k*j)(vi)2
j=1
+ (Vig®) Vi — (Vie®) v — iVee®, (52)

where we have used the notation in (45) and recall that ;7 = 1, so <p11 = ¢11.

For the proof of the following proposition we introduce the orthogonal (in L?) pro-
jections P1, P> onto the image of (V; )2 (i.e., the subspace of functions with vanishing
components in H), ;, for ¢ = 0, 1) and its orthogonal complement, the kernel of (Vi)2
(i.e., with non-vanishing components only in H), 4 forg =0, 1).

Proposition 4.3 Given a smooth embeddable infinitesimal deformation tensor ¢i1,
there are unique formal power series f; = Y po, FOK and @11(t) = to1 +
Y s e® 1k with % and ¢® smooth, satisfying (49) such that for each k, f®
has vanishing components in Hy, 4 for p =0, 1, and for each k > 2, ¢® has vanish-
ing components in Hp 4 for g > 2.

Remark 4.4 Note that ¢(t) is of the form t¢ + ¥ (¢t) where ¥ (t) = Z/?iz go(k)tk takes
values in Z)(J)-.

Proof By identifying coefficients of ¥ in (49) we get for 1%, (V1)? f© = ¢, and for
k
t“ k>1,

k
(VP f O+ LD O = (k4 1D, (53)
j=1

We take f(© to be the unique solution of (V1)? f©) = ¢ with vanishing components
inHp 4 for p =0, 1.Fork > 1 we define f ® and p**D recursively by decomposing

@ Springer



648 S.N. Curry, P. Ebenfelt

YE_ LD FED) = A + By, where

k k
Ax = P Z L(j)f(k_j), By =P Z L(j)f(k_j), (54)
j=1 j=1

and then defining £® to be the unique solution to (V)% f®) = — A, with vanishing
components in H, , for p = 0, 1, and %+ to be By/(k + 1). The solutions are
easily seen to be smooth by standard properties of the solution operator to (V;)?. This
concludes the proof. O

Remark 4.5 Note thatin Proposition 4.3 we could have instead allowed the components
of the f® in H, 4 for p = 0,1 to be arbitrary, since (V1)? annihilates H, , for
p = 0, 1. Doing this we obtain the general formal solution to the tangency equation
(49). Below we shall use this flexibility and allow f(©) to have a nontrivial component
in Hy .

4.4 Deformations in the Burns—Epstein region

Recall from the introduction that the space of Burns—Epstein deformations ® g is
the set of all deformation tensors ¢ such that ¢, ;, = 0if ¢ < p + 4. The following
lemma follows easily by inspection of the definition of L, given in (50).

Lemma4.6 Let g1 € Dpp and f € (Z7)*DpE. Then Ly f € DpE.

An immediate consequence of this is the following:

Lemmad.7 Let1(t) = Y o, Rtk and f; = 332 f©1F be formal power series
with values in C*°(S3,C). If 9 € Dpgp, | < j < k, and fY) € (Z1)*Dpe,
0<j<k—11theny'_ | LD &) e Dgp.

Proof The lemma follows by applying Lemma 4.6 to @ = Zﬁ:] et/ and f; =

Zl;;(l) £t/ and then taking the r* coefficient of Lg f, which is the same as the ¥
coefficient of L, f. O

We let H}, ¢ denote the Folland—Stein Sobolev space [26] of complex valued func-
tions on $3 with s derivatives in L? in the directions tangent to the contact distribution
H. (Note that on these spaces any Reeb vector field, being a commutator of vector
fields tangent to H, behaves like a second order operator.) We denote the norm on Hy, ¢
by | - |Is (we will also occasionally use the standard Sobolev norm, which we denote
by || - || gs). Note that ® g is a subspace of the space ® of deformation tensors with
vanishing component in H, , for g = 0, 1. Thus Proposition 4.3 can be applied to
any infinitesimal deformation tensor in ® g, and using Lemma 4.7 we will prove the
following:

Proposition 4.8 Given ¢1| € D pg, the unique formal power series f, = 3 oo f Ot
and ¢11(t) = Z,fil p® 1k given by Proposition 4.3 satisfy

o) =t and Y e (Z)*Dp (55)
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for all k. Moreover, for every s > 10 there is Cs > 0 such that the formal power series
fi = 20 FOL* converges for |t| < Ry = (Csll@i1lls)™" to an analytic function
taking values in H}.q, and for each fixed t, |t| < Ry, f; is a C™ function on S3.

Remark 4.9 In this paper we will not be concerned with optimal regularity in the finite
regularity case. The choice s > 10 in the proposition is only for convenience and is
not optimal.

In the proof we will make use of the standard solution operator for the Kohn
Laplacian [, = —VIVT on S3, denoted as in [8] by Qp. That is, Q acts by zero
on ker [, = ker Z; and is the inverse to [J, on (ker ZT)J-. Note that [, = —Z1Z5
acts on each H) ; by multiplication by —g(p + 1). (A quick way to see this is to
note that Z; is SU(2)-invariant and hence so is [p; since [, preserves each Hj 4,
Schur’s lemma tells us that [J, must act by a constant on each H), ; and that constant
is easily found by testing [, on the element (z + w)?”(z — w)? of H), ,.) Thus, by
definition, Qp acts by 0 on H, o and by —m on Hj 4 for g > 0. From this and
the equivalence of the H fp g-norm with (43) it follows that Qy gains two derivatives
in Folland-Stein spaces (indeed, Qp is a Heisenberg pseudodifferential operator of
order —2 [8]). Now, if Sy denotes the orthogonal projection from L? functions on S°
to CR functions with respect to the standard CR structure on $3 then, by construction,
—71Z7Qp = 1Id — Sp and so —Z; 9y the (unique) partial inverse to Z; that is zero on
ker Z71. By considering the action on each H), ; (or by noting that O Z7; = Z70p) it
easy to check that Z;Qp = Q0Z i. From the above discussion it also readily follows
that (Z3 Qp)? = (5021)2 is the (unique) partial inverse to (Z1)? that is zero on
ker (21)2. In particular, we have the following lemma.

Lemma4.10 If g € H} g and Pog = O then u = (Q_OZT)zg solves (V)’u = g.
Moreover, there is a constant C depending only on s such that

lulls+2 < Cligls- (56)

Proof Recalling that P,g = 0 means that g has vanishing components in H), , for
g = 0, 1 (and hence is in the image of (V; )2) this follows from the definition of Qg
and the fact that it gains two derivatives in Folland-Stein space as discussed in the
paragraph before the lemma. O

Proof of Proposition 4.8 By the construction in the proof of Proposition 4.3 and an
induction using Lemma 4.7 we obtain (55) (Lemma 4.7 tells us that Ay in the proof
of Proposition 4.3 will be in ® g and the By will be zero, for each k > 1). It remains
to be shown that f; is analytic in #, when viewed as taking values in the Banach space
Hy. ¢, and that for each fixed 7 the function f; is C*°. Writing ¢ = ¢11, we then have

LY = ¢V Vi +¢ViVi + (V1) Vi — (Vi) Vi — iVog,

L® = ¢z(vi)2, and L) = 0 for j > 3. Thus, the f%® are determined by the
equations (V)2 f© = ¢, (V)2 = LD O

(V2 f® = O pE=l) _ @ pk=2) g o
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and the fact that they are orthogonal to the kernel of (V1)2. By Lemma 4.10 we have
FO=(QZ)*¢, f = =(Qoz)? LV f* and

0 = —(Qyz;)? (L(l)f(k—l) T L(z)f(k—2>) k=2

It follows that | f@ |, < C|¢ls—2 < Cl¢lls and, using the expressions for L) and
L@ above,

1Dl < 5C100s1 £ Qs (57)

and
17©0 = € (SIohlr 4t + 1021, 421) k=2 (58)

Choose C; such that Cf > C(5Cs + 1). By induction using the above display we
then conclude || f® |, < (Cyl@l)Ft! for all k& € {0,1,2,...}. This proves that
fi = Z/C;O:o fE gk converges for || < (Cs[/¢11]s) ™" to an analytic function valued in
Hy. ¢ functions on s3.

To complete the proof, we shall now show that for each fixed 7, || < (Cs| @11 I)~L,
[t 1s C*° smooth. This follows by an elliptic regularity argument parallel to that given
in the proof of Theorem 5.3 in [8]. Fix so > 10 and ¢ with [¢] < (Cy,ll¢11 ||so)_1’ and
let f = f; and ¢ = t¢. By construction f is orthogonal to the kernel of (V)? and
satisfies (V1) f = —Ly f + ¢. Applying (Q_OZ])2 to this last equation we get

f=—(Q0Z)*Lyf + (Q0Z7)*¢.
Letting A = —(QoZ i)sz we then have
(I — A f =(Q0Z7)*¢. (59)

Since Qp € Op Sy 52 (in the notation of the Heisenberg pseudodifferential calculus of

Beals and Grelner [1]), it is easy to see that I — A € Op SO c OpSY 1, here we
2’
are using the notation Op S, for the classical pseudodifferential operators of type
2 ’ 2
(%, %) and order m. As in [8] (where A is taken to be QyZ19Z) it is easy to see that
if | @]l oo (g3 1s sufficiently small, then the principal symbol of / — A is positive. If we
further take ¢ to be sufficiently small in C! then the argument on pages 832-833 of
[8] shows that there is a constant K (depending on the H®-norm of ¢) such that

lulms < Ksll(X — A)ullgs. (60)
Applying this to (59) we have

Ifles < Kl (QoZ7)*@lus < K@l s (61)
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where in the last inequality we have used that (QZ 1)2 € 0pSy, 2 c OpS
¢ € C®(S3, C) it follows that f € C®(S3, C). o

1 Since

N\—‘ |
N\

Remark 4.11 In the above regularity argument we used standard Sobolev spaces as
in pages 832-833 of [8]. In the proof of Theorem 4.13 below it will be convenient
to instead work with Folland—Stein spaces and we will see that this is possible using
results of Ponge [44] on the Heisenberg pseudodifferential calculus (so we could have
used Folland-Stein spaces in the above proof). However, in Sect.5 where we prove
the slice theorems we shall again work with standard Sobolev spaces (for consistency
with [15]) and will again need an elliptic regularity argument of the kind given above.

In order to apply Theorem 3.1 to produce a family of embeddings realizing a family
of deformations t¢ with ¢ € ®pr we need to ensure that the family of solutions f;
to the tangency equation are such that Re f; has strict sign. To do this we modify
Proposition 4.8 making use of the freedom to add a constant to fo = f© due to the
kernel of (V)2 and prove the following theorem.

Theorem 4.12 For any s > 10, A € R, R > 0 there exists € > 0 such that if
@11 € DpE satisfies |¢|s < € then there is a unique formal power series f; =
At fr = A+ 32 F PR such that

() f® e (Z;)*DpE fork = 0;
(i) f; converges for |t| < R to an analytic function taking values in Hy,g, and for
each fixed t, |t| < R, f; is a C™ function on S>;
(iii) f; solves

P11

VIVIfi +iAn (D) fr = ————
B T = p(n)]?

(62)

where @11(1) = t¢11;
@iv) if A # 0 and R is sufficiently large, then Re f; has a strict sign for |t| < 1.

Proof Recall that the equation (62) for f; is equivalent to the equation
(VO fi + Lo fi = 1.
In terms of f; this equation takes the form
(VD fi + Ly fi = ¢11 + itAVog1 .

Formally this equation is equivalent to (V1)2 f© = ¢y, (V)2 fD = LD 7O
iAVop11,

(V2 F® = [ fh=D) _ @ Fh=D s o

Since @11 € D pg implies Vo@11 € D gE, the unique formal solvability of this equation
for f; = 3 o2 f®rF satisfying (i) follows easily by induction using Lemma 4.7 as
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in the proof of Proposition 4.8. Arguing as in the proof of Proposition 4.8 we obtain
175 < Clgls—2 < Clgls,

17V = € (519007 + 41915 (63)
and
17015 = € (SIgIIF“ 1 + 1IN k=2 (64)

If we choose a constant Cy such that C; > C(5C + |A|) and CS2 > C(5Cs + 1), then
it follows by induction that | f® |, < (Cs|¢|s)* for all k € {1, 2, ...}. Moreover, as
long as Cy is also > C, we have | f(O) s < Csll@lls. If such a Cy has been chosen, the
radius of convergence of the power series is at least p = (Cs[¢[s)~!. Thus we have
proved that for any s > 10, A € R, R > 0 there exists € > 0 (e.g., ¢ = (C;R)™)
such that if (p“ € D pE satisfies |¢[y < € then there is a unique formal power series
fr=r+ fr = h+ 302 fOrF satisfying f® € (Z7)*D g for k > 0 such that f;
converges for || < R to an analytic function taking values in Hj.¢; by construction
f; solves (62). The C* smoothness of f;, and hence of f;, for fixed ¢ follows as in
the proof of Proposition 4.8.

We note that from the construction of f; above and the Sobolev embedding theorem
for Folland—Stein spaces (since s is > 3), we have for some constant C’:

o0 o
Ifi = Moo < C'1fils < €Y IF Pl < € <cs||¢)||s + Y (G ||¢)||s)’<|r|’<>

k=0 k=1
Cslolslt 1 t
<C 16l + sl@llsl | ) <c <_+ 7] > 65)
1 —71Cslolls R~ R—|t
From this it is easy to see that if A # 0 and R is sufficiently large, then Re f; has a
strict sign for |¢| < 1. m]

Theorem 1.7 now follows from Theorems 4.12 and 3.1.

4.5 Families of embeddable deformations with general linearized term

We now return to the case of general embeddable infinitesimal deformations ¢, for
which analyticity in ¢ of our formal solution may no longer hold. Our aim is to prove
the following theorem.

Theorem 4.13 Foranys > 10, A < 0, T > O there exists € > 0 such that if 11 € Dy
satisfies |@|s < € then there are unique f; = A + f, € C®([0,T] x $3,C) and
@11(t) € C°([0, T] x S3, C) such that
() fi € (Z)?(C>(S3,0)) forallt € [0, T;
(i) @11(t) = tg11+p11(t) where i1 (t) € D forallt € [0, T]and py1(t) = O (t?);
(iii) f; and ¢11(t) solve the tangency equation (17).
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In the proof of Theorem 4.13 we will solve (17) by splitting it into two equations
using the L? orthogonal projection P; from ® onto Dg and the complementary pro-
jection P, onto ’Dé. When we apply P; to (17) we get an equation with main term
(V1)? f;, and when we apply P, we get an equation with main term (j_z +iAVo) Pag
where i Vj acts on the deformation tensor Pog asi T —4 (since w; o = —i R = —2i). A
crucial point in the proof is that by (42) the operator —i 7' when applied to elements of
@é behaves like a second order subelliptic operator. For the proof of Theorem 4.13 we
will need the following lemmas which are based on this observation. The first lemma
is an immediate consequence of the action of the Reeb vector field (cf. (42)) and
the sublaplacian on the spherical harmonics and the description of the Folland—Stein
spaces in terms of spherical harmonic decompositions.

Lemma4.14 For any y > 1 and s > 0 there exists 5 > 0 such that the operator
—iT + y satisfies the following estimate

Bsluls+2 < I(=iT + y)uls (66)
foranyu € H;ng such that u = Pou. If y > 2, then Bs can be taken to be 1/3.

In the following we denote by H* ([0, Ty]; B) the Sobolev space of functions on
[0, Tp] taking values in a given Banach space B, cf. [24, Chapter 5].

Lemma4.15 Let ). < 0,5 > 0. If g € (Ni_o H([0, Tol: Hpy ) satisfies g = Pag
then there is a unique solution u € ﬂiig) H*([0, Ty]; H%§+2*2k) to

(L 4+ 0GT —H)u=g .
u(0) = 0.
Moreover, there is a constant C depending only on ) and s such that
s+1 k s .
d*u d
2| <cy |Gk : (68)
o 1 Nzqo o> g N le2qo )

Proof The existence of a unique solution follows immediately by decomposing writing
g in terms of spherical harmonics and using that i T acts by a constant on each H), ,
(see (42)); indeed, if g = ng,q (withp=0,1,2,...andg =0, 1 since g = P»g)
then the explicit solution is given by

t
u(t) = Z f e rall=g, (v)dT (69)
0
p.q

where ¢, 4, = A(g — p — 4) (note that ¢, ;, > 0, since A < 0 and g equals O or
1). It remains to establish the estimate (68). To establish (68) for s = 0 we take an
L?(83)-inner product of the equation with u’ = % u to obtain
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2 T 7
40, + D Cratingttyg =D 8pathq (70)
p.q

p.a
Taking the real part we obtain
"u/”ilo +2dthPq| pq| —Rezgpqupq' 7D
p.q

Hence, using the big constant-small constant inequality to estimate the left hand side

from above by 5 lgl? 1O, + 2||u ||H0 , we obtain
' + D epaglupgl* < Clel; (72)
Hyg dtpq Paimpat = Hpg
Integrating over [0, 7] we obtain
"2 2 2
”M ”Lz([O,To];H?-S) + Zcp,q|up,q(T0)| = C“g”LZ([O’TO];Hgs)‘ (73)
P4

Since A < 0 (and hence ¢, ;, > 0) we have |u’ ||L2([0 Tol: HO ) < ||g||L2 (0. 701 10)"

Thus we have gained in temporal regularity. To show that we also gain two Folland-
Stein derivatives we rewrite the equation as A(iT —4)u = g —u’ and use the result that
we have just established together with the fact that A (i T —4) has a well-defined inverse
that gains two derivatives in Folland-Stein spaces when acting on €D, 1) Hp.q

(where the overline denotes L2-closure), see Lemma 4.14 (taking y = 4). Hence, for
a possibly larger constant C,

+ Jul; (74)

2
”M "Lz([O,T()];Hg ) L2 [0,To1; HZ ) — C”g”LZ ([0, To1; HO )

This establishes the estimate (68) for s = 0 and forms the base case for an inductive
proof of (68) for integers s > 0. Let s > 0 and suppose (68) is known for this s. Let
g€ ﬂSH H*([0, Tp); H%g_y‘). Since (% + AT —4)u' = g’ we may apply the
estimate known for this s to #’ and g’ to obtain

dk s+1
dtx

dkg

Tk (75)

< .
L2([0, ToJ; HE 4726 =1 L2([0,Tos HEST20

We can clearly replace k = 1 by kK = 0 on the right hand side, and the missing term
[l 2 ([0.Tp]; H25+4) ON the right hand side can then be estimated using that A (i T —4)u =
’ FS

g —u’ and the estimate for u’ as previously. In this way we obtain, for a possibly larger
C, that

s+2
s+ dku e s+1 6
Z k = E )
P dt L2([0, Tl HE2) Pt Lz(IO’TOI;HI%_s;rZ—Zk)
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as required. The result follows by induction. O

Remark 4.16 Note that there is of course nothing particularly special about the num-
ber —4 in the lemma, which could be replaced by any nonpositive real number. As
explained above, this is the result that we will need in the proof of Theorem 4.13.

In practice, we will need to allow for small perturbations of the operator A(i 7 —4) in
Lemma4.15. Recall [44] that a Heisenberg pseudodifferential operator P of order m (m
real) on a compact manifold maps H}, ¢ continuously to H ™. Note that, with respect
to a (locally defined) S'-invariant frame W, a second order Heisenberg differential
operator P can be written as

P =a""Wy Wy + b Wi Wi + Wi W 4+ d Wi W+ e W+ £ W+ gL (T7)

In such a frame the operation of taking a commutator with 7' is equivalent to differ-
entiating the coefficients with respect to 7', that is,

[T, P]= (Ta" YW, W, + (Tb'"YW; Wi + (T Yyw, w;
+ (Td"YWi Wy + (TeHYWy + (TFHW; + Tg. (78)

In particular, [T, P] is also a second order Heisenberg differential operator. Now, let
P be a Heisenberg pseudodifferential operator of order 2 on S°. By decomposing P
with respect a finite open cover of S* (by S'-invariant sets) such that on each open set
we have a fixed S'-invariant frame for 71 and using a partition of unity we can show
that [T, P] is also a second order pseudodifferential operator, and hence is bounded
from Hy, to H*~2 for each s.

In the following lemma we modify Lemma 4.15 by adding to A(iT —4) a perturba-
tion term of the form 7, o P with P a small time-dependent second order Heisenberg
pseudodifferential operator (recall that A(iT — 4) is a second order Heisenberg dif-
ferential operator itself and is subelliptic when restricted to the band of functions u
with u = Pru); the higher order estimates then depend on the corresponding norms
of P> o P. We do this by adapting Hamilton’s proof of Lemmas 6.9 and 6.10 in [29].
Hence, if P = P;, t € [0, Tp], is a smooth one-parameter family of second order
Heisenberg pseudodifferential operators we define [ P]o; by

To
(Phac= [ 10T =4 Pro PAR s o dt 19)
0 FS

~>H,2;SS
and [[P]|2s by
N dk
[Pllas =) [WPL%' (80)
k=0 §

The norms are constructed precisely so that we will be able to apply the operator T
(or better, iT — 4) to our equation in order to gain spatial regularity (and then gain
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temporal regularity by shifting all the spatial derivatives to the right hand side). In
detail:

Lemma4.17 Let A < 0,5 > 0. Let P = P;, t € [0, To], be a smooth one-parameter
family of second order Heisenberg pseudodifferential operators on S and suppose

2]
P < — 81
[Pulo < 10”“”2 (1)

forallu e H pgandallt. If g € MNie ()H ([0, Tp]; st_y‘) satisfies g = P2g then
there is a unique solution u = Pou € ﬂSH Hk([O Tol; H25+2 2k) to

(& +3GT —H+ProP)u=g )
u(0) =0.
Moreover, there is a constant C such that
dtk LZ([O’TO];H;‘E‘%»Zka)
s dkg
<C — + CI[Pl2slgll 2 HO. ) (83)
2 dt* | 20, 701 1252 TRk )

k=0
where C depends only on A and s.

Proof The existence of a unique weak (L?) solution follows by using Galerkin approx-
imations for the equation decomposed into spherical harmonics and establishing
convergence using energy estimates similar to the base case of the higher regular-
ity argument below (cf. [24, Section 7.1]). To establish the base case of the a priori
estimate we argue as in the proof of Lemma 4.15 to obtain the following modified
version of (68):

To
72 2 2
W oy * 2o naltra TP < el = 2R [ [ #@ruw. s4)
-q

Here cp 4 = AM(g — p—4) > 0is the multiplier corresponding to A(i T —4). Throwing
away the second term on the left and then estimating the last term on the right above

by 3 7% ||L2([0 Tol: ) + 2| Pul? and using the assumption on the norm of

P we obtain

L2([0,Tol; HY)

| AP
II ||L2 0,701 H0g) = CllgIILz [0.75): H0) || ||L2 [0.70): H2g)" (85)
By assumption, the perturbation term P is small enough such that A(iT —4) +P 0 P
is still invertible and its inverse gains two Folland—Stein derivatives when acting on
L2-functions whose spherical harmonic decomposition is supported in the H p.q for
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g = 0, 1. Writing the equation in the form (A(iT —4) + P)u = g — u’ and using
Lemma 4.14, (81) and (85), a straightforward argument shows that

27|A] V2(A|

30 lzqominzg = Clelqomiag) + —5 1l2qonnzy  (86)

for some constant C. It follows that ||u||L2([0’T0];H£‘S) < CIIglle([O’TO];Hgs) for some
new constant C that depends on A. Combined with (85) this establishes the base (s = 0)
case for an inductive proof of (83).

The inductive step is handled in a similar manner to the proof of Lemmas 6.9 and
6.10in Hamilton’s Ricci flow paper [29] except with ordinary L?-based Sobolev spaces
replaced by L?-based Folland—Stein spaces; these proofs are similar to the argument
in Lemma 4.15 except that Hamilton differentiates the equation with respect to space
to gain spatial derivatives first and then uses the equation to gain time derivatives
(rather than the other way around). Our definition (79) was made so that we avoid
the need for interpolation in the spatial regularity part of the argument (since we can
merely break (iT —4)P> Pu up into PoP(iT — 4)u + [(iT —4), P> o Plu and then
estimate these two terms) and therefore avoid working directly with the symbol of
the operator P (with respect to a local S'-invariant frame); we note however that the
Folland—Stein version of the interpolation inequality used by Hamilton in the spatial
regularity part does hold, e.g., by [15, Corollary 2.12]. For the temporal regularity part
one invokes the interpolation inequality for ordinary Sobolev spaces (with respect to
the time variable) in order to reduce to the cases when all the time derivatives fall on
P or all on # when differentiating the equation satisfied by u; the argument is then as
in [29, Lemma 6.10]. The details are left to the reader. O

To prove Theorem 4.13 we shall work with graded Fréchet spaces where the grading
comes from Folland—Stein norms on functions on S>. To this end we observe the
following.

Theorem 4.18 Endow C*(S3, C) with the structure of a graded Fréchet space using
the Folland—-Stein norms || - ||s forall s € {0, 1,2, ...}. With this structure C* (S>3, C)
is a tame Fréchet space.

Remark 4.19 Note that the tame structure on C*(S3, C) defined in Theorem 4.18
is not equivalent to the standard one induced by the scale of standard (L?) Sobolev
norms.

Proof We need to establish the existence of tame linear maps L : C*°(S 3.0) > 2(B)
and M : £(B) — C*(S3, C) such that M L = id, where B is some Banach space and
3 (B) is the Fréchet space of exponentially decreasing sequences in B, i.e. the space of

sequences (a, ) such that | (a,,) ”22 Bs = Yonto2 lan II% < oo for all s endowed with

the scale of norms || - |z (53,5 [28]. We take B = L?(S3, C). Expanding an element
u € C*(83, C) in spherical harmonics as u = Zp,qzo up,q weletu, denote the sum
oftheu, , where 2" <2pg+p+q+1 < 2"+! whenn > 1 and let ug = ug,o. Then
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we define the map L : C*®°(S3, C) — X(B) by L(u) = (u,). Then
o0
LS5y, = D, 2" luall72
n=0

oo
2 2
= ||M0||L2 + E E 2" ||“p,q||Lz

n=121<2pg+p+q+1<2"+

oo
< fuol?, + Y > 2pg+p+q+Dlupgli
n=12"<2pg+p+q+1<27t!
= D @pa+p+a+ D lupglis
P,q=0
< Cslul?
(87)
foreachs € {0, 1,2, ...}. Hence L is tame. To define the map M we first let
7t L2(S3,C) — B Hp, (88)

21 <2 pg+p+q+1<2ntl

denote the orthogonal projection for n > 1 and let g denote the orthogonal projection
onto Hy . The map M is then defined by M((a,)) = Zn mpay,. It's clear that, by
definition, ML = id. Given a sequence (a,) € X(B) we decompose each a, in
spherical harmonics as a, = Y », q[an] p.q- To see that M is tame we note that m,a,
is orthogonal to 7,,,a,, for m # n and hence

IM (@) =) I7nanl?

n=0

(o]
Cy (nnoaouiz +y > 2pg +p+q+D'llanlpq ||iz)

=<
n=12"<2pg+p+q+1<2"t!
o0
< C | laol}, + ) > 20 a1 p g 72
n=1 2”§2pq+p+q+1<2”+1
o0
< G2 (Ilaolliz + 22’” lan ||iz>
n=1
= Cil@n)l3 5. 89)
for each s € {0, 1, 2, ...}. This proves the result. O

Arguing similarly to the above we can endow the space C*°(S3 x [0, Tp], C) with a
tame Fréchet space structure using the norms on the spaces ();,_ H k10, To1; H%ifzk )
for each s € {0, 1,2,...}. Such a tame Fréchet space structure was used, e.g., by
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Hamilton in his Ricci flow paper [29] (to establish short time existence of the flow)
except that he used ordinary Sobolev spaces rather than Folland—Stein spaces for the
spatial regularity. The idea is to describe the norms equivalently in terms of a dyadic
decomposition of the functions expressed in terms of spherical harmonics with respect
to the 3 and the Fourier dual variable in the [0, Tp]-direction. In more detail one first
uses an extension operator to include C"Q(S3 x [0, Tpl, C) into Cgo(S3 x R, C),
then one takes the Fourier transform with respect to the R factor and decomposes
with respect to spherical harmonics on S° to obtain functions of w € R and p, q €
{0, 1, 2, ...} (the extension operator respecting the tame structure can be constructed as
in the proof of Corollary 1.3.7 in [29]). The s-norms we are using become equivalent to
weighted L? norms with the multiplier (2 pg+ p+q+|w|+2)*, which treats two spatial
Folland—Stein derivatives as being on the same level as one time derivative (to see
the equivalence with the norm on ﬂizo H*([0, Ty; H%f;y‘ ) for each s consider the
binomial expansion of ((2pg + p+g+1)+(lw|+1))?*). The proof of tameness is then
highly analogous to the proof of Theorem 4.18, where now we dyadically decompose
our functions with respect to 2pqg + p + g + |w| + 2 rather than 2pg + p + g + 1.

Proof of Theorem 4.13 We start by recalling that (17) is equivalent to
2 d
(V) f+Lof = FTd (90)

where f = f;, ¢ = ¢11(t) and Ly is as in (50). As before let P; denote the L?
orthogonal projection onto the image of (V;)? and let P, denote the complementary
orthogonal projection onto the kernel of (VI)Z; recall that if u = ) p.g Up.q 1S the
spherical harmonic decomposition of u, then Py(u) = 3_ - ;= Up,q and Po(u) =
szO,q:O,l up 4. It is easy to see that the above displayed equation will hold with
o(t) = tg + u(t) (and Pru(t) = 0), if and only if

(VD f+PiLef)=¢

1
W ="PLyf)=0 ov

where 1’ = (%“' Writing f = A + f and noting that Lyf = L(pf — iAVpp we may
write this system as

(VD2 f +PiLyf) — ¢ —irtVop =0 o)
(4 4 iavo)u — Po(Ly f) = 0.

Viewing ¢ as a parameter, we now show that (92) can be solved for f and (depending
on ¢) near ¢ = 0. Fix so > 10 and consider the operator F taking triples (f, i, ¢)
with

o f ey H (0, Tol; H%Sg’*zkﬂ)) orthogonal to the kernel of (V1)?,

o u="Pou e HA(0, Tol; HEY ) such that 1(0) = 0, and

e p=Pip € H%‘gﬁz (viewed as a constant function in #)
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to pairs (a, b) with

o a=Pia e H (0, Tol; H7Y ), and
o b="Pb ey H (0, Tol; sto 2k

given by

F(ona9) = (V0] + PiLo /) = ¢ = Vo0, (G +irVo)n = Pa(Ly ).
©3)

We let 31 be the set of all ( f 1) as above, so that the domain of F is B; x P H 2S°+2.
Let 3> denote codomain of F as specified above. Linearizing F around (0, 0, 0) we
obtain

DFo.00(fs 100 = ((V2F, (4 +i2Volu). 94)

Let (a, b) € B,. By Lemma 4.10, if Ty > 0 is sufficiently small, then (Vl)zf =a
has a unique solution f € ﬂ oH k ([0, Tol; Hy 2S° 2k+2)) orthogonal to the ker-
nel of (V1)2. Also, by Lemma 4.15 there exist a unique p with u = Pou €

WU HE (0, Tol; Hpg ™) and 12(0) = 0 such that (4 +i3.Vo)u = b. Hence the
map DF,0,0) is a bijection from B; x {0} to B,. Thus by the Banach space implicit
function theorem there is a neighborhood ¢/ x V of the origin in By x P Hp; 23°+2
amap S : V — Bj such that F(S(¢), ¢) = 0 forall ¢ € V.

Hence, given ¢ € V there exists f € Miso H k[0, Tol; Hp 250 2k+2y) orthogonal to
the kernel of (V;)? and x = Papt € m“’“ Hk([O Tol; HZSO 242y Wwith 1(0) = 0
solving (92). In order to show that if ¢ € V is C*° and sufficiently small then f and p
are also C*° in space and time (after possibly shrinking Ty > 0) we are going to make
a similar argument again, but using the more complicated Nash—-Moser framework of
[28]. We retained the above finite regularity result since its proof is much simpler;
nevertheless, this result is subsumed by what follows.

Let A; denote the space of those ( f , u) that are C* in space and time, with f
orthogonal to the kernel of (V)% and u = P, viewed as a tame Fréchet space with
respect to the ﬁizo H¥ ([0, To]; Hﬁg_y‘ )-norms on each of the two factors. Similarly,
let A; denote the space of those (a, b) that are C* in space and time, witha = Pja and
b = P,b, viewed as a tame Fréchet space in analogous fashion. Endow P} C*°(S 3, (C)
with the tame Fréchet structure induced by the scale of Folland—Stein norms H2 Fs
Then F : A; x PiC®(S3,C) — Aj is clearly a tame map. Let (fo no, 90) €
A x P1C%®(S3, C) and consider the (partial) derivative Df( Foutto. wo)( ., 0). We

observe that D]-" Gortios (ﬂo)( f i, 0) = (a, b) can be written as

and

(VO + PilLgy [+ N o 0l) = (95)

(dt +iAVou — PZ(Lwof + Nfo 2o, WOM) =b, (96)
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where g9 = 9o + o and N 7 Fomongo = js |s —0 Lyyisp fo By an implicit function
theorem argument similar to the above there exists a nelghborhood W of the origin in
Bi ><771H250Jr2 andamap 7 : W x By — By such that (f, ) = T (fo, 1o, ¢0, a, b)
solves (95)—(96). Let W = W N (A; x P1C®(S3, C)). We need to show that the
restriction of S to W' x Ap is a smooth tame map with values in .A;. To do this we first
use (95) to write f as a function of u which then allows to view (96) as an equation for
w alone. Proposition 4.17 then gives us smoothness and tame estimates for . Going
back to the expression for f as a function of 1 we then easily obtain smoothness and
tame estimates for f . In detail, from (95) it follows that

=M =@Zp* (a=PiNj o gtt) 97)

where A = — (Q_OZI 2Py L y,.From (50) and Lemma (4.10) it’s easy to see that / — A is
invertible on L2 provided ¢ is taken to be sufficiently small in the C'-norm. Moreover,
it follows from [44, Theorem 1.2.2] that the Heisenberg principal symbol of I — A
is invertible provided ¢y is taken to be sufficiently small in the L°°-norm (since then
the corresponding model operator on each tangent space will be invertible in L) and
hence by [44, Propositions 5.4.2 and 5.5.9] one has a parametrix and corresponding
(sub)elliptic estimates

lulls = Cs (1T = Auls + lufo) - (98)

It follows that (I — A)~! is a Oth order Heisenberg pseudodifferential operator and
hence (again by [44]) we have the stronger estimates

17— A ulls < Cyluly (99)
forall s. Hence d = (I — A)~! (Q_OZI)Za is a smooth function and

f=a—U-A""(Qz)*PIN;

0.0 90 (100)

Since (I — A)~ l(QOZ 2PN ; o100 is a Oth order Heisenberg pseudodifferential
operator it follows that we have the a priori estimate

1fls < Cs (lals + Il (101)

where the constant Cy depends on the H }Jgs-norms of fo, o and ¢g. Equation (100)
allows us to write (96) in the form

(& +iAVo)u + P; b. (102)

0510, (/’OM

o0
where b is C ande 0.6

with Py 0,0 = 0. By taking fo, o and @ to be sufficiently small in the C?-norm we

is a second order Heisenberg pseudodifferential operator

@ Springer



662 S.N. Curry, P. Ebenfelt

can ensure that Pfo 10,60 satisfies (81) and hence by Lemma 4.17 we find that p is

C® and satisfies the tame estimates

s+1
Z el HK([0, ol HES22)
k=0
N N
=G (Z "a”H"([O,Tol;Hﬁ‘YS_z") + Z L ”Hk([o,ToJ;H%g‘”‘)) (103)
k=0 k=0

where the constant Cy depends on the H ;JSFS -norms of fo, o and ¢g. Smoothness of f
then follows from (100) and a similar tame estimate then follows by integrating (101)
over [0, Tp] and using (103).

It follows that the solution operator 7 for the linearized equations (95)—(96) restricts
to W' x Ay to give a smooth tame map with values in A; (after shrinking W' if
necessary by requiring that the C2-norms of fy, po and ¢ be sufficiently small).
It follows from the Nash—Moser implicit function theorem [28, Theorem 3.3.1] that
there exists a neighborhood 2/ 4 x V4 of the origin in A; x P;C*(S3, C) and a map
S4 Vg — Ajp such that F(Sa(9), ¢) = 0 for all ¢ € V4. (Clearly S4 is the
restriction of the map S from the finite regularity case.) This proves the result. O

We conclude this section by observing that Theorem 1.5 now follows from Theo-
rems 4.13 and 3.1 (cf. also Remark 3.2 for Theorem 1.5 (ii)).

5 Proof of Theorems 1.2 and 1.3

In this section we shall prove the slice theorems, Theorem 1.2 and Theorem 1.3,
described in the introduction. The proof of Theorem 1.2 is an application of the Nash—
Moser inverse function theorem (along the lines of [15], Theorem B). In the following
the graded Fréchet spaces are all defined with respect to the scale of standard L2-based
Sobolev spaces, as in [15].

Proof (Proof of Theorem 1.2) In a slight abuse of notation we identify C x (D3, &
’D(J)-) x {yo} with C x (D ® ’Dé). One can define a natural action of C on C x
(CD'B gD @é) so that the map P in the statement of the theorem is equivariant (cf.
[15], pp. 1284-1285). In order to check the conditions of the Nash—Moser inverse
function theorem we need to consider the linearization of the map P in Theorem 1.2
at all points in a neighborhood of (id, 0) in C x (D, ® @é); by the C-equivariance of
P it will suffice to consider only points of the form (id, ¢), as in the proof of Theorems
A and B in [15]. Recall that ©™ = © x Y, where Y is the CR Cartan bundle of §3
(which may be identified with SU(2, 1) modulo its finite center). As in Cheng—Lee
[15] we write P = (P, P») where P; takes values in © and P, takes values in Y.
In order to compute the linearization of P = (P, P») we will make use of the local
smooth tame parametrization W, : C®(S3, R) — C of the contact diffeomorphism
group in a neighborhood of the identity given in Theorem C of [15] (we identify these
two spaces in the calculation below, and refer to points in C°°(S3, R) rather than C;
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so, e.g., we write 0 instead of id). Using this parametrization, the linearization of P
at (0, ¢) is given by

DP0,9)(f,¢) = (VD> + L) f +¢ (104)

for f € C®(S*,R), ¢ € Dy, ® D where L, is as in (50) (cf. [15], equation
(5.1); note that we are calculating exclusively in terms of the frame Z1). We decom-
pose C*°(S, R) as a direct sum C39,(S*, R) & C°(S%, R) where €3, (5, R) =
ker(V))2NC®(S3 R) = D, yc0.1y Hp.g N C*>(S3, R) is the 8-dimensional space
of potential functions for the infinitesimal CR automorphisms of the standard S3,
and C°(S3, R) = D,.g201HpqN C>® (83, R) is the L? orthogonal complement of
C35% (8%, R) in C*(S?, R). We also decompose (cf. 8, p. 833])

D =Dy @ (Z)*(C®(S?,R) & Dy (105)

andlet IT: ® — (Z1)2(C™(S3, R)) = (Z1)*(C°(S?, R)) denote the corresponding
projection (the projection is oblique, but is bounded in Hy.¢ for every s, cf. [8, page
833]). Note that if ¢ € D . @ Z)(J)- then IT¢ = 0. We construct a family of inverse
maps V P (0, ¢) to the family of linearized maps D P (0, ¢) as follows. Given (K, X) €
D xsu(2,1) = T,p)P™ we need to solve uniquely the following linear equations

D PO, 9)(f, ) = (V1) + TILyg + ML,h = TIK (106)
(id — D P10, 9)(f, ¢) = ¢+ (id — TN L, f = (id — K (107)
DP(0.¢)(f.¢) =X (108)

where f = ¢+ h with & € CgOR(S3, R) and g € Cf(S3, R). As in the proof of
Proposition 4.8, by an elliptic regularity argument the map

(V) +TIL, : C(S?, R) — (ZD*(CP (S, R)) (109)

has a smooth tame solution operator (VD)2 + l'[L(/,)_1 for ¢ sufficiently small (in the
C! sense) with smooth tame dependence on ¢. Using this solution operator we may
solve (106) for g, viewing h e Cgom(S3, R) as a free 8-dimensional parameter for
now. One may then simply choose ¢ to satisfy (107), again viewing has a parameter.
Plugging the solutions for ¢ and ¢ into (108) yields a finite dimensional equation to
be solved for / in terms of X; solvability for small ¢ follows easily by the standard
finite dimensional inverse function theorem after checking that this map is injective
at (0, ¢) = (0, 0), where the map becomes an identification between potentials for
infinitesimal CR automorphisms and the corresponding elements of su(2, 1). This
establishes the existence of a smooth tame family V P (0, ¢) of inverses to the family
DP (0, p) of linearized maps, for sufficiently small ¢. Part (i) of the theorem now
follows by the Nash—Moser inverse function theorem.

Part (ii) follows easily from inspecting the linearized action of the contact diffeo-
morphisms on the slice. O
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We claim that the restriction of the map P : C x (D, @ @é) x {yo} — D"
from Theorem 1.2 t0 Pepp : C x D'y X {yo} — D™ locally parametrizes the set
of marked embeddable deformations of the standard CR sphere. This will be proved
in Proposition 5.2 below. An argument from [2] (which will be fleshed out in the
proof of Proposition 5.2 below) shows that the natural map C x Dpg x {yo} —
D7, is surjective; but this map only becomes injective after we further restrict to
the map Penp : C x Dy % {yo} — D7 .. In order to show that the restricted
map Penp is surjective we need the following lemma. Let .4 denote the set of
smooth deformation tensors on the standard CR 3-sphere whose spherical harmonic
decomposition is supported on the critical diagonal, i.e. the deformation tensors ¢ =
» » ©p, p+4- Note that Dcq is precisely the space of deformation tensors corresponding

to S!-invariant CR structures. Let Z)éd ={¢p €D | Im(V1)2<p =0}.

Lemma 5.1 Let ¢g € Deq be sufficiently small. Then there exists an S'-equivariant
contact diffeomorphism of S° (unique modulo S'-equivariant automorphisms of the
CR sphere) pulling the CR structure corresponding to @o back to one with deformation
tensor ¢o € D.y. Moreover, the contact diffeomorphism can be chosen to smoothly
depend on ¢.

Proof The argument is to establish a slice theorem essentially as in the proof of The-
orem 1.2, but can be made slightly simpler due to the relevant automorphism group
now being compact so that markings are not needed (this is analogous to the sit-
uation of Theorem A in [15]). Let C5 " denote the space of S l-equivariant contact
diffeomorphisms of $3 and let H C Aut(S?) denote the subgroup of group of S'-
equivariant automorphism of the CR sphere S3. By restricting the local parametrization
W, : C®(S3,R) — C of the contact diffeomorphism group (in a neighborhood of
the identity) given in Theorem C of [15] to S'-invariant functions we obtain a smooth
tame parametrization C>°(S3, R)S 'S of S ina neighborhood of the identity.
As in Theorem D of [15], by restricting this map to the space 27 of functions f in
C>°(83, R) with spherical harmonic decomposition of the form f = p=2 Sfp.p Ge.
functions f € C °°(S3, R)S1 with fo.0 = fi1,1 = 0) we obtain, as the image of the
restricted map, a local slice W € C5 " for the coset space C3 : /H.

Let Py : W x ’D’Cd — ®q denote the natural map (where the contact diffeomor-
phism acts by pullback on the CR structure corresponding to the deformation tensor).
One can define a natural action of C5' on W x D4 so that the map Py is equivariant
(cf. [15], pp. 1284—1285). In order to check the conditions of the Nash—-Moser inverse
function theorem we need to consider the linearization of P at all points in a neighbor-
hood of (id, 0) in C3 ' x ®.4q; by the equivariance of Py it will suffice to consider only
points of the form (id, ¢), as in the proof of Theorem A in [15]. In order to compute
the linearization we will make use of the local smooth tame parametrization of JV by
the space of functions 27 (we identify these two spaces in the calculation below, and
refer to points in 2 rather than V). Using this parametrization, the linearization of
Py at (0, ) is given by

DPy(0, 9)(f,¢) = (V)* + Ly f +¢ (110)
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for f € W, ¢ € D, where L, is as in (50) (cf. [15], equation (5.1)). We construct
a family of inverse maps V Py(0, ¢) to the family of linearized maps D Py(0, ¢) as
follows. Let 1 : Deq — ’D’C di C D4 denote the L2 orthogonal projection. (Note
that Ci)’cdl is the image of 2, or equivalently of C>(S3, R)Sl, under (Z;)2.) For
X € Deq we write x = x1 + x2 where x; = Ipx and x = (id — o) x € D.,.
Given y € D4 we first solve

(VD)? + ToLy) f = xi

using the same argument as in the proof of Proposition 4.8. As in the proof of Proposi-
tion 4.8, by an elliptic regularity argument the map ((V)? + MoLy) : W — D, dL has
a smooth tame inverse for sufficiently small ¢. Since we are free to choose ¢ € D/,
to solve the (id — I1p) projection of

(VD*+ L) f+¢=x

we obtain a smooth family of inverses V Py(0, ¢). Thus, by the Nash—Moser inverse
function theorem, given any sufficiently small deformation tensor ¢g there exists a
(unique small) S'-equivariant contact diffeomorphism (in W) pulling the correspond-
ing CR structure back to one with deformation tensor ¢ € D’ ,.

O

Proposition 5.2 Fix any marking yo of the standard CR sphere. The natural map
Pemp : C x D x {yo} = D™ is a local bijection from an open neighborhood of
(id, 0, yo) to an open neighborhood of (0, yo) in the subset ®7 . of marked embed-
dable deformations of the standard CR 3-sphere.

Proof That P,,,;, maps C x @'y, x {yo} into o7, follows from [8, Theorem 5.3],
cf. also Theorem 1.7 in this paper. Injectivity then follows from Theorem 1.2 above.
To see that the map is surjective, we first let ¢ be an embeddable deformation, with
¢ sufficiently small such that there is an embedding ® : §° — C? with image
a strictly convex hypersurface near the standard sphere realizing ¢ (i.e. such that
S(Z1+¢1'Z 7)isa (1, 0)-vector field along the image of ®). The hypersurface M =
®(S3) bounds a convex domain € which has Kobayashi indicatrix B € ToC? = C?
based at 0. Let W : B — Q denote the circular representation of €2 [3, 35], which is
smooth up to the boundary (and away from the origin). By [3], equation (3.5), V|yp
is a contact diffeomorphism from 9 B to M = 92 and so the CR structure on M pulls
back to a deformation ¢ 5p of the CR structure on 9 B; moreover, @i 95 (When
expressed in terms of an S!-invariant framing) has only positive Fourier coefficients
with respect to the natural S action on 8B [3].

The radial projection from 3 B to S is clearly S'-equivariant, but is not (in general)
a contact diffeomorphism (so it can be thought of as endowing S* with a second
S'-invariant contact distribution). We may correct for this possible discrepancy by
using the S'-invariant version of Gray’s classical theorem (since our two contact
distributions on $3 are isotopic through S!-invariant contact distributions), which tells
us that there exists an S!-invariant contact diffeomorphism from 8 B to S3. This contact
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diffeomorphism allows us to push forward the intrinsic CR structure on 9B to an §'-
invariant CR structure on S° compatible with the standard contact distribution H;
with respect to the standard frame Z; on § 3 this CR structure has deformation tensor
®yp.53 € Dea (by S invariance). Using Lemma 5.1 there exists an S l-equivariant
contact diffeomorphism which pulls the CR structure corresponding to ¢ ¢3 back
to one with deformation tensor ¢, ¢3 € D/ ,. We shall denote by ¥ the contact
diffeomorphism 3 B — S that pushes forward the CR structure on 3 B to the one on
§3 with deformation tensor g, .53 € D.,. Using this contact diffeomorphism we may
also push forward the CR structure with deformation tensor ¢y 5p from 9 B to one on
S with deformation tensor ¢ .53+ Note that 9, g3 (which describes the CR structure
of M relative to S 3) differs from v..@p 55, since the latter is the deformation tensor
for the CR structure of M relative to the CR structure of d B after we have identified
dB and M with S3 using the circular representation and the map . Knowing that the
deformation tensor of d B relative to S is ¢, .53 and the deformation tensor of M
relative to 0 B is ¥« .9, it is easy to show that

VeoM.9B + 5B 53

- . (111)
L+ (YoM aB) - 0y s

Pm,s3

We now claim that ¢, g3 € D', - Choose a unitary S Linvariant framing Z ?B for the
CR structure on 3 B and similarly a unitary S!-invariant framing Z ? on the standard CR
sphere S3. Working in these frames the identity (111) becomes an identity of functions,
and V,.@ar. 0B 1S just @ar.ap © w_l. Since ¥ is Sl-equivariant, it follows from (111)
that ¢ M. 3 has only non-positive Fourier coefficients, and moreover, the zeroth Fourier
component of @y, ¢3 is simply @, 5 g3. When expressed in the standard framing Z;, Z3
of 3 (which are not S! invariant since £1Z; = —2i Z;) then Fourier coefficients are
shifted by —4 (= —2 — 2) and hence, viewed in this frame, the deformation ¢,
lies in D p . Moreover, since the spherical harmonic coefficients of ¢, ¢3 agree with
®,p.s3 along the critical diagonal (which corresponded to the zeroth Fourier mode
when using S'-invariant framings) and ¢, 3 € D/, we have that g 3 € Dy
when expressed in terms of the standard framing for $3. This establishes that (o, y1)
is in the image of P, for some marking y;.

It remains to show that (¢, y) is in the image of P,,,;, for all markings y in a uniform
neighborhood of yq (for ¢ sufficiently small). Note that in the preceding argument we
could have chosen a different base point p for the Kobayashi indicatrix. Note also that
Aut(S%) = Aut(B?) acts simply and transitively on the set of pointed frames in B
Using this we can act on the marking y; of (¢, y;) while keeping ¢ fixed as follows.
Given a point p € B? and a unitary frame (ep, e2) for TP(C2 we repeat the above
construction of ¢, 3 € D5, but now use the Kobayashi indicatrix B, centered
at p and identify 0B, C T,,(C2 with 0B = 0By C TO(C2 using the linearization
of the automorphism of B2 that takes (p, (e1, e2)) to the point 0 with the standard
frame. In this way we obtain a family (v, ¢,) of points in C x D'y, parametrized by
s € Aut(S3) whose images under P, are all of the form (¢, yy). Since Aut(S3H =y
is finite dimensional and the map s +> ys in the special case ¢ = 0 is just the natural
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identification, the map s > yj is a local diffeomorphism for sufficiently small ¢. This
proves the result. O

Theorem 1.3 now follows from Proposition 5.2 and Theorem 1.2.

Remark 5.3 For comparison, we note that in [2, Theorem 14.2 and Theorem 15.1]
Bland gives a normal form for CR structures and for embeddable CR structures on $3
near the standard structure with respect to the action of contact diffeomorphisms and
S'-equivariant diffeomorphisms (which do not preserve the contact distribution). In
the notation of the proof of Proposition 5.2 Bland’s normal form for the embeddable
deformation ¢ is obtained by pushing ¢y 55 forward to S using the radial projection
from 9B to S and viewing this as a deformation of the CR structure of 3 B pushed
forward to S3 (recall that via this identification the contact distribution of 3B is S'-
invariant but does not in general match the standard contact distribution of S 3 , whichis
why §!-equivariant diffeomorphisms are needed for this normalization). Our approach
has been to keep the underlying contact structure fixed, which allows us to view the
deformation in normal form as a deformation of the standard CR structure.
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