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We address the two challenges architects face when designing heterogeneous
processors with cache-coherent shared memory. First, we introduce HeteroGen, an
automated tool for composing clusters of cores, each with its own coherence protocol.
Second, we show that the output of HeteroGen conforms to a  precisely defined memory
consistency model that we call a  compound consistency model. We also demonstrate
that HeteroGen can correctly fuse a  wide range of coherence protocols. Our experiments
indicate that protocols generated by HeteroGen perform comparably to a  publicly
available manually generated heterogeneous protocol.

ur work draws inspiration from two modern
processor design trends: processor core het-
erogeneity and cache-coherent shared mem-

ory. The trend of heterogeneity has grown beyond just
CPU/GPU designs, as seen in chips from Apple, Qual-
comm, and Samsung that now feature diverse cores
such as digital signal processors, neural processors,
and camera processors in addition to CPUs and GPUs.

Our other motivating design trend is the continued
reliance on cache-coherent shared memory. In the early
days, the CPU cores did not share memory with the GPU
cores. However, today, cache-coherent shared memory—
often with accelerator-specific protocol features—has
become prevalent and has been codified in standardized
design frameworks such as AMBA CHI and CXL.

Architects face two challenges when designing het-
erogeneous processors with cache-coherent shared
memory. The first challenge is complexity. Designing a
coherence protocol for a homogeneous processor is
already challenging, and introducing heterogeneity only
increases the difficulty. This is because communication
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patterns within a CPU, a GPU, or an accelerator are
very different, often mandating bespoke coherence
protocols for each case. To compose these very differ-
ent protocols into a unified heterogeneous whole is
challenging.

The second challenge is reasoning about the mem-
ory consistency model of the heterogeneous processor.
Consider a processor that consists of several clusters
of diverse cores, each with its own per-cluster coher-
ence protocol and consistency model. Now assume
that we have overcome the first challenge of compos-
ing the cluster-level protocols together into a single
protocol. What consistency model does this heteroge-
neous processor provide? How does one ensure that
the composed protocol adheres to this model?

To overcome these two challenges—the design
complexity and consistency model—we have devel-
oped HeteroGen, a tool for automatically generating
heterogeneous protocols that adhere to precise con-
sistency models. As shown in Figure 1, HeteroGen
takes as the input simple atomic specifications of the
per-cluster coherence protocols, each of which satis-
fies its own per-cluster consistency model. The output
is a concurrent heterogeneous protocol that satisfies a
precisely defined consistency model that we refer to as
a compound consistency model.
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FIGURE 1. HeteroGen takes as its inputs the coherence protocols of the individual clusters (Cluster1 and Cluster2) and automati-

cally merges their directory controllers to produce the merged directory. The target system model consists of multiple clusters of

cores with their private L1 caches and global shared L2.

The compound consistency model is a compositional
amalgamation of each of the per-cluster consistency
models where operations from each cluster continue to
adhere to that cluster’s consistency model. One of Het-
eroGen’s key contributions is its guarantee that its out-
put protocol will provide compound consistency. In the
following, we first discuss compound consistency before
going on to our method for automatically generating
heterogeneous protocols. Our IEEE HPCA paper10 has
more details.

B A C K G R O U N D
Memory C o n s i s t e n c y  Models
The memory consistency model is part of the proces-
sor instruction set specification and specifies how
loads and stores are ordered—in effect, specifying
what value a load must return.8 Sequential consistency
(SC), for example, requires that there should appear to
be a total order of all loads and stores that respects
the program order at every thread. Modern processors
do not support SC.  Intel and AMD processors support
the x86-total store order (TSO) consistency model,
whereas ARM and RISC-V processors support variants
of release consistency (RC).

The manner in which stores propagate their values
to other processors is crucial in memory models. In
multicopy atomic (MCA) memory models, store values
propagate atomically: as soon as the value becomes
visible to another processor, no future load (in logical
time) can access an earlier value. This work focuses on
MCA memory models, supported by commercial archi-
tectures such as x86, ARM, and RISC-V.

C a c h e  C o h e r e n c e  Protocols
The cache coherence protocol is a critical widget in
shared memory multiprocessors that helps enforce the
memory model by keeping caches consistent.8 These
protocols can be divided into two categories: those
that enforce the single-writer, multiple-reader (SWMR)

invariant by invalidating sharers on writes, typically
used in CPUs, and those that rely on writebacks and
self-invalidations, favored in GPUs.

C O M P O U N D  C O N S I S T E N C Y
M O D E L S

Given that the coherence protocols of the different
devices that make a heterogeneous computer could
be different and enforce distinct consistency models,
what should be the correctness criterion of their
composition? We propose a solution: a compositional
approach to heterogeneous consistency called com-
pound memory consistency models.

Intuit ion
Consider a heterogeneous computer with n clusters, C1

to Cn , each with its own per-cluster coherence protocol
that enforces a per-cluster consistency model Mi.
When we combine the clusters into a heterogeneous
processor, the compound consistency model guaran-
tees that operations from each cluster C i  continue to
adhere to its per-cluster consistency model Mi.

To understand compound consistency better, assume
that cluster C1  supports S C  and cluster C2  supports
TSO. Compound consistency mandates that operations
from threads belonging to C1  adhere to SC,  while opera-
tions from threads belonging to C2  adhere to TSO.

Consider Dekker’s litmus test, shown in Figure 2(a),
which shows thread T1 from the S C  cluster and thread
T2 from the TSO cluster. For this example, note that it
is possible for both loads Ld1 and Ld2 to read zeroes.
This is because the TSO cluster does not enforce the
store-to-load (St2 !  Ld2) ordering, even though the
S C  cluster enforces the St1 !  Ld1 ordering.

However, as shown in Figure 2(b), once a FENCE
instruction is inserted between St2 and Ld2, the two
loads cannot both read zeroes anymore. Note, how-
ever, that a FENCE instruction is not required between
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recent write before it in the program order. In the fol-
lowing, we consider only legal executions.

FIGURE 2. (a) Ld1 and Ld2 can both return zero. (b) Only one

of Ld1 and Ld2 can return zero.

St1 and Ld1 from T1 because the S C  cluster already
guarantees this ordering.

Multicopy Memory  Model
An MCA memory model is specified in terms of the pre-
served program order relation ! ,  which relates pairs of
operations from any thread whose ordering is pre-
served in any execution.

Specifically, an execution is said to conform to a
given memory model (M  ! )  if there exists a global
memory order implied by the execution that is consis-
tent with the preserved program order promised by the
memory model—that is,

F o r m a l i s m
Starting with the axiomatic framework of Alglave et al.,1

which can capture any MCA model, we then formally
define the compound consistency model enforced
when combining a set of given MCA models.

acyclicð! U !  U !  U ! Þ : (2)

For example,

S C  ! ¢ ! .
86-TSO ! ¢ ! n  stðxÞ !  ldðyÞ,8x,y.

Prel imi nar ie s
We start by defining some basic relations:

!  is the program order relation, the per-thread
total order that specifies the order in which mem-
ory operations appear in each thread.
!  is the program order relation on a per-
address basis.

Consider the execution of a multithreaded program
on a shared-memory computer. Such an execution can
be captured by the following communication relations:

!  is the write-serialization relation, which
relates two writes of the same address that are
serialized in the order specified.
!  is the read-from relation, which relates a
write and read of the same address such that
the read returns the value of the write.
!  is the read-from-external relation, which
relates a write and read of the same address
from two different threads, such that the read
returns the value of the write.
!  is the derived from-read relation, which
relates a read r  and a write w such that the
read returns a value of some write that was
serialized before w (in ! )  .

An execution is said to be legal if S C  is satisfied on
a per-address basis—that is,

a c y c l i c ð !  U !  U !  U ! Þ : (1)

Legality of execution is the axiom that ensures,
among other things, that a read always reads the most

C o m p o u n d  Memory  Model
We axiomatically define the compound consistency
model enforced by a heterogeneous computer with n
clusters, C1  to Cn , where each cluster adheres to its
per-cluster MCA memory model Mi  ! .

Consider a multithreaded execution on this hetero-
geneous computer consisting of a set of threads T . We
again characterize the execution using the communi-
cation relations we defined earlier ( ! ,  !  and ! ) .  Note
that we treat intracluster and intercluster com-
munication relations identically.

Let us partition the threads into n subsets:
T1, T2; ::: Tn such that all of the threads belonging to
the set Ti are mapped to the processor cores belong-
ing to cluster Ci .  Let us define a new relation called
! ,  dubbed “preserved program order compound,”
which specifies the program order preserved for a
given thread in the heterogeneous computer. Specifi-
cally, the preserved program order of a thread t is the
same as the !  of the memory model of the cluster in
which the thread is mapped to

! j t  2  Ti  ! :

We now specify the compound consistency model
as the one that preserves ppocom as defined earlier. In
other words, an execution is said to conform to the
compound memory model if the global memory order
implied by the execution is consistent with the pre-
served program orders of the threads belonging to
each of the clusters:

a c y c l i c ð !  U !  U !  U ! Þ : (3)
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E x a m p l e
Let us go back to Figure 2(b), which shows Dekker’s lit-
mus test with threads T1 from the S C  cluster and T2
from the TSO cluster. The following sequence of edges

St1 
ppo 

Ld1 !  St2 !  Ld2 (4)

implies that Ld2 will read the value of St1, reading a
one. Note that the L d 1 !  St2 edge in (4) relates two
operations from different clusters; recall that the com-
pound memory model treats intracluster and interclus-
ter communication relations identically, and, thus, this
edge is part of the global memory order.

P r o g r a m m i n g  W i t h  C o m p o u n d
C o n s i s t e n c y
How does one program with compound consistency
models? Because the compound consistency model
honors the memory orderings of the original model of
each of the clusters, programmers/compilers need only
be aware of the cluster to which a thread is mapped;
when a thread is mapped to C i ,  the programmer can
program that thread assuming that the memory model
is Mi, that cluster’s memory model. Note that, if each
of the clusters supports a distinct instruction set archi-
tecture (ISA), the programmer/compiler must already
know which cluster each thread is mapped to for code
generation.

We do not necessarily advocate for programmers to
program against the low-level compound consistency
model. In fact, we argue that compound consis-
tency makes it easy to support language-level consis-
tency models on the heterogeneous computer. One of
the key challenges in supporting a new hardware mem-
ory model is to discover correct compiler mappings
from language-level atomics to that memory model.
Fortunately, with compound consistency models, there
is no need to discover new mappings. When compiling
language-level atomics down to the compound consis-
tency model, depending on where (i.e., which cluster) a
thread is mapped to, the existing compiler mappings
for that cluster’s memory model can be used.

H E T E R O G E N
At a high level, HeteroGen performs the integration
illustrated in Figure 1. Given two distinct directory
coherence protocols, each of which enforces a poten-
tially distinct consistency model, HeteroGen produces
a single heterogeneous protocol.

HeteroGen does this by merging the two directories
into one single merged directory while leaving the
cache controllers unchanged. The merged directory
presents a directory1-like interface to the caches of

type cache1 and a directory2-like interface to the
caches of type cache2. From the point of view of clus-
ter1 (i.e., directory1 and its caches), cluster2 behaves as
if it were a single cache1. Similarly, cluster2 views clus-
ter1 as if it were a single cache2.

Within the merged directory, there is bridging logic,
such that a request from cache1 has the appropriate
impact on caches of type cache2 (and vice versa).
There are two logical aspects to bridging between the
protocols: proxy caches9 and consistency model trans-
lation.7 We explain how these work together. However,
before that, we explore what compound consistency
means operationally.

Operat ional  Intuit ion
HeteroGen is informed by the operational intuition
behind compound consistency models.

One way to specify memory models is via abstract
state machines that exhibit the memory model’s behav-
iors. For example, S C  can be expressed as a bunch of
in-order processors connected via a switch to an
atomic memory. If a first-in, first-out store buffer and/or
a load buffer is introduced between each processor
and the memory, we get TSO. In general, any MCA
memory model can be expressed as processors with
local buffers connected to atomic memory, with each
memory model having its unique buffering logic.11

Given the state machine representations of the
two memory models as described, the compound
model can be realized by merging the memory compo-
nents into one, leaving the buffering logic untouched.
This is the high-level insight that drives HeteroGen.

E x a m p l e
Figure 3 illustrates the compound SC/RC machine
obtained by fusing S C  and RC. Because processors P1
and P2 are part of the original S C  machine, they do not
have any local buffers. Because P3 and P4 are part of
the RC machine, they have local store buffers and load
buffers. (Stores write to the local store buffer, which is
flushed on a release. Loads are allowed to read poten-
tially stale values from the local load buffer, which is
invalidated upon an acquire.)

Ref in ing  the  Intuit ion
Now we return to the original problem of merging two
different coherence protocols (the “concrete prob-
lem”). Compare this problem against the more abstract
version we just introduced (dubbed post hoc as the
“abstract problem”).

Whereas each input in the concrete problem is still
a state machine that enforces a memory model, the
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FIGURE 3. Operational intuition of combining sequential con-

sistency (SC) and release consistency (RC). Processors P1 and

P2 belong to the S C  machine, whereas P3 and P4 belong to

the RC machine.

state machine is more detailed, with caches and a
directory coming into the mix. Each input of the con-
crete problem is, thus, a refinement of an input of
the abstract problem. Naturally, we must ensure that
the concrete problem’s output, too, is a refinement of
the abstract problem’s output. In other words, we must
merge the directories such that the merging has the
same operational effect as merging the memory com-
ponents into one (but leaving the buffering compo-
nents untouched).

In contrast to the abstract problem, where merging
the memory components is conceptually simple, merg-
ing directories is not. This is because the directory is
not just an interface to memory; each directory, in
conjunction with the caches, implements a (distinct)
coherence protocol. Fundamentally, a coherence pro-
tocol allows for cache lines to be obtained with read
and/or write permissions. When a cache line obtains
read permissions, it is essentially spawning a local rep-
lica of the global memory location. When a cache line
obtains write permissions, it is essentially obtaining
ownership of the global memory location. Thus, for
every memory location, there are potentially multiple
replicas of the location across both clusters. In fusing
the directories, we must ensure that all of the memory
replicas behave like there is just one copy. How can we
ensure this “compound consistency invariant”?

HeteroGen ensures the invariant as follows. When-
ever a write is made globally visible in one of the clus-
ters (say, cluster1), HeteroGen makes the write globally
visible in cluster2 as well.

To propagate writes between the two clusters, Het-
eroGen must automatically synthesize the bridging
logic. Specifically, when a write is made globally visible
in cluster1, HeteroGen must automatically identify and

trigger the exact request in directory2’s specification
for making that write globally visible within cluster2.
HeteroGen does this with two mechanisms: consis-
tency model translation and proxy caches.

First, HeteroGen identifies the access sequence in
cluster2’s consistency model for an SC-equivalent store
using ArMOR.7 For example, the equivalent of an S C
store in RC would be a release. Why an SC-equivalent
store? Because that is guaranteed to trigger a write
request that propagates globally before the write’s
completion.

Second, HeteroGen consults cluster2’s cache spec-
ification and identifies the sequence of coherence
requests that would be triggered for the SC-equivalent
access sequence. For example, in the lazy RC coher-
ence protocol,2 a release would trigger an ownership
request for that cache line, and HeteroGen introduces
a proxy cache to issue that request to the directory.
Logically, the proxy cache is a clone of a cluster2 cache
controller that HeteroGen leverages for issuing this
request transparently. (Logically, there is one proxy
cache per cluster.) In reality, proxy caches are part of
the merged directory that HeteroGen generates, and a
cluster’s (say, cluster1’s) “proxy cache” represents the
transient states that bridge the protocol flows from
cluster2 to cluster1.

To summarize, as shown in Figure 4, when a write is
made globally visible in cluster1—i.e., when directory1
receives a write permissions request or a writeback
request—HeteroGen propagates that write by translat-
ing it into an appropriate request (with the help of
ArMOR) and then issuing that request in cluster2 via
its proxy cache. Once the request has completed, the
proxy cache evicts the line, marking the location as
invalid in cluster2. Then, directory1 resumes by com-
pleting the original write request within cluster1.

A future load to that location from cluster2 will
con-tact directory2 and find that the block is invalid
in clus-ter2. At this point, HeteroGen has
cluster1’s proxy cache take over and trigger an
SC-equivalent read from directory1. Once the value
comes back, the proxy cache evicts the line and
relinquishes control to direc-tory2, which completes
the original read request.

U s i n g  HeteroGen
He te ro Ge n- C o m pat i b l e  Protoc ols
We have confirmed that HeteroGen works for a wide
variety of protocols, encompassing protocols that sat-
isfy SWMR as well as those that are targeted to relaxed
consistency models. HeteroGen cannot fuse any two
protocols, however. Some protocols are incompatible
in important ways that make it hard to compose them
automatically and efficiently. For example, HeteroGen
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FIGURE 4. HeteroGen protocol flow for a write issued by the pipeline. Note the red box: directory1, proxy-cache2, and directory2

are one merged directory.

cannot fuse an invalidation-based protocol with an
update-based protocol because the notion of write
permissions is not compatible with update protocols.

Cons i s ten c y  Models  of  Inpu t  Protocols
For HeteroGen to select the appropriate ArMOR trans-
lations at the merged directory, it must know the con-
sistency models of the input protocols. Although we
could ask the user to specify these consistency mod-
els, HeteroGen uses extensive litmus testing of each
input protocol to infer its consistency model.

C A S E  S T U D I E S  A N D  V A L I D A T I O N
To explore HeteroGen’s ability to create performant, cor-
rect protocols, we used it to generate heterogeneous
protocols from a wide range of homogeneous protocols.

C a s e  S tud ies
We consider seven homogeneous protocols: two SWMR-
enforcing protocols (MESI and MSI) and five protocols
that are designed for weaker consistency models (RCC,
RCC-O, GPU, TSO-CC, and PLO-CC).

RCC8 is a simple protocol that enforces RC by buff-
ering writes in the cache, writing back the cache con-
tents on a release, and self-invalidating the cache on
an acquire. RCC-O2,8 is a block-granular variant of
DeNovo4 that obtains ownership on all writes. GPU is a
simple GPU protocol as specified in Spandex,3 where

Val idat ion
We validated all of our generated protocols with litmus
tests. Litmus testing is a time-tested technique for
detecting whether a system is capable of behaving in
ways that violate the desired consistency model. Suites
of litmus tests exist for validating that a homogeneous
protocol satisfies a (noncompound) memory consis-
tency model.

To extend litmus testing to heterogeneous proto-
cols, we generated heterogeneous litmus tests that
can reveal whether a system violates a compound con-
sistency model. Our process automatically transforms
existing (homogeneous) litmus tests for existing (non-
compound) consistency models. In a system with two
protocol clusters, we take the litmus test for the
weaker of the two consistency models and use consis-
tency model translation7 to remove any synchroniza-
tion operations (e.g., fences) that are not required for
the stronger consistency model. This approach scales
to an arbitrary number of clusters.

Using the herd7 tool,1 we generated 111 litmus tests,
and, for each test, we explored all possible mappings of
threads to cores. We used the Murphi model checker5

to perform the validation of each litmus test. For each

TABLE 1. Case studies with their respective HeteroGen
directory states and transitions.

stores write through to the shared cache. GPU, RCC-O,
and RCC enforce RC. PLO-CC is a variant of RCC-O
without a release, and it enforces a memory model
called partial load order7 that enforces the W !  W and
the R !  W orderings but not the other two. TSO-CC6 is
a protocol tailored to enforce TSO; we model the
basic version of the protocol without timestamps.
These protocols represent a wide range of protocols,
highlighting the generality of HeteroGen.

Table 1 lists the pairs of protocols that we com-
posed with HeteroGen. For each fused protocol, we
show the number of states and transitions.

Case study

1 MSI and MESI

2 MESI and TSO-CC

3 MESI and PLO-CC

4 MESI and RCC-O

5 MESI and RCC

6 MESI and GPU

7 RCC-O and RCC

8 RCC and RCC

States/transitions

25/171

17/88

17/88

27/117

23/109

23/101

12/43

3/16
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litmus test, Murphi exhaustively searches the reach-
able state space of possible executions and deter-
mines whether the system is capable of violating the
consistency model. All of our HeteroGen-generated
protocols were validated; none ever permitted behav-
iors that violated the compound consistency models.

Finally, we also used Murphi to validate that every
protocol—both the constituent protocols and the gen-
erated protocols—is deadlock free.

P R O T O C O L  P E R F O R M A N C E
Although we had no reason to believe that the gener-
ated protocols would perform worse than manually
developed protocols, we performed experiments to
study this issue. Our baseline protocol is HCC,12 a pub-
licly available protocol that is similar to Spandex3; we
focus on the heterogeneous protocol obtained by man-
ually combining the DeNovo protocol with MESI. We
compare this baseline to the HeteroGen-produced
RCC-O/MESI protocol.

We simulated the protocols with gem5, using the
same simulation parameters as those used in HCC. We
simulated a 64-core system with two clusters: 60 “tiny”
cores and four “big cores.” The big cluster uses the
MESI protocol, whereas the tiny cluster uses DeNovo.
We used the same 13 applications with fine-grained
synchronization as in HCC. Experimental results show
that HCC and HeteroGen perform comparably, with
HeteroGen performing similarly to the manually gener-
ated HCC on average.

T H E  F U T U R E
C o h ere n c e  Protocol  D e s i g n
A u t o m a t i o n
Design automation has long been a transformative
technology in processor design. Early processors were
designed entirely manually, transistor by transistor.
The scale and complexity of such processors were
limited not just by transistor budgets but by the ability
of architects to design and verify them. Major advan-
ces in design automation—including gate-level design
tools, hardware design languages (e.g., Verilog), and
high-level synthesis—have each led to major advances
in the processors that could be designed and veri-
fied. Modern processors are far more complicated
than could be reasonably designed at the transistor or
gate level.

As we enter an era of processor heterogeneity—
with a multitude of new cores and accelerators that
are often designed independently—the challenges of
design and verification are only increasing. Creating a
single homogeneous multicore processor is already a

multiyear task for large corporations like Intel, AMD,
and Nvidia. Now, we face the added complexity of het-
erogeneity. In the same way that prior design automa-
tion techniques enabled the creation of complicated
processor cores, computer architects now need a new
tool to facilitate the creation of heterogeneous multi-
core processors.

A S  W E  E N TE R  A N  E R A  O F
P R O C E S S O R  HETEROGENEITY—WITH
A  MULTITUDE O F  N E W  C O R E S  A N D
A C C E L E R A T O R S  THAT A R E  O F T E N
D E S I G N E D  IN D E P E N D E N TL Y—TH E
C H A L L E N G E S  O F  D E S I G N  A N D
VERIFICATION A R E  O N L Y
INCREASIN G.

Furthermore, the community wants to “democratize”
the development of processors, such that they can be
produced by smaller companies and academic research-
ers. The open source hardware movement (e.g., Open-
Piton) could be a boon to the community, but only if
design automation tools exist to enable rapid design
and verification.

The impact of HeteroGen’s design automation will
be on the industrial and academic architects who
design protocols. If adopted, HeteroGen would greatly
simplify and shorten the design and verification pro-
cesses for the heterogeneous coherence protocols
that will predominate in a market of heterogeneous
processors [also known as systems on chip (SoCs)].
Given the extraordinary amount of effort—hours and
money—that goes into protocol design and verification
today, this benefit would be significant.

HeteroGen is starting to see industrial impact. Pro-
tocols generated by HeteroGen are being evaluated by
a major company designing mobile SoCs. A team from
NVIDIA Research is building upon HeteroGen for ongo-
ing research and development. Furthermore, to help
with the goal of the democratization of processor
design, we have publicly released HeteroGen.10

Prec ise  H e t ero g e n e o u s  C o n s i s t e n c y
Specif icat ion
The introduction of clear, precise specifications of sys-
tem correctness have often had transformative effects
on the field of computer architecture. As one example,
the introduction of precise ISAs was revolutionary for
many reasons. An ISA enabled architects to clearly
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define the functional behavior of their processor, in an
implementation-independent way, and create families
of microarchitectures that all conform to it. Equally
important, an ISA provided a clear specification for ver-
ification (validation). Verifying any system requires a
precise definition of correctness.

Another notable example was the introduction of
memory consistency models. Prior to that, there was
no implementation-independent definition of memory
system behavior. Today, it seems inconceivable that
architects designed memory systems without a consis-
tency model—almost all ISAs have precisely defined
memory models—and that verification teams had to
reason about correctness without a clear, hardware-
independent specification of it.

This is the era of heterogeneity in both mobile SoCs
and the server space. Industry is standardizing cache
coherence frameworks for gluing different processors
together and providing a shared memory interface.
Meanwhile, the programming languages community is
developing heterogeneous programming frameworks,
often with well-defined shared-memory consistency
models. Until this article, however, the heterogeneous
processors themselves have been lacking precise defi-
nitions of their consistency models.

THIS IS THE  E R A  O F  HE T ER O G E N EIT Y
IN B O T H  MOBILE  S O C S  A N D  TH E
S E R V E R  S P A C E .

We expect our introduction of compound consis-
tency to change the way that consistency is specified
in heterogeneous processors, which would have a sig-
nificant impact on architects and verification teams. It
will simplify design by making it clear what invariants
must be maintained when gluing the heterogeneous
processor together, and it will facilitate verification by
providing a correctness specification against which to
compare the behavior of the glued heterogeneous pro-
cessor. Finally, last but not least, it will also provide a
viable path to get to language-level memory consis-
tency models such as C  and OpenCL. It is worth noting
that we are working with NVIDIA Research on the
problem of specifying a compound GPU/CPU consis-
tency model, integrating a GPU memory consistency
model with scopes (e.g., PTX) with a CPU memory con-
sistency model (e.g., ARM). It is possible that, years
from now, architects will look back and wonder how
heterogeneous shared memory processors were ever

created before compound consistency models, much
like we look back today to the time before memory
consistency models.
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