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A B S T R A C T

Material extrusion additive manufacturing enables the rapid fabrication of complex structures for a wide
range of applications, including within the aerospace and healthcare sectors. Optimizing the performance of
additively manufactured polymer structures depends on the ability to predict residual stress induced by the
sequential solidification of the extruded layers. Self-equilibrated residual stresses are influenced by the thermal
history of the part during the manufacturing process. This work introduces a novel numerical framework for
the process modeling of material extrusion additive manufacturing. The numerical modeling is based on higher-
order finite elements derived from the Carrera Unified Formulation (CUF), which enables accurate prediction
of the stress field while reducing the associated computational overheads. Element activation is adopted to
model the evolving structure during material extrusion and deposition. Heat exchange mechanisms such as
conduction (filament/filament, filament/build platform), convection, and radiation are included in the model.
A transient thermal analysis is performed in this new framework to predict the temperature distribution within
the part during its fabrication. Multiple numerical assessments are presented for the material extrusion additive
manufacturing of parts ranging in size from 30 mm to over 1500 mm. The predicted thermal profiles are
in excellent agreement with reference experimental observations, thereby validating the proposed numerical
framework and demonstrating its capability to model the printing process accurately. Results from this work
are a milestone toward optimizing additively manufactured polymer parts.
1. Introduction

Additive Manufacturing (AM) is an emerging processing technology
that has gained significant prominence over the past two decades for
its capability in fabricating complex parts whose geometries are beyond
that of conventional manufacturing techniques [1]. Material extrusion
dditive manufacturing [2], commonly referred to as Fused Filament
abrication (FFF), is one of the most popular forms of AM wherein
molten thermoplastic filament is extruded through a moving nozzle
nd deposited along a predefined path, thereby creating the required
eometry. Because of its capabilities, the FFF processing technique has
een adopted for a diverse range of applications within the automotive,
erospace, and medical device industries [3].
FFF involves high-temperature gradients within the printed com-

onent as it undergoes rapid heating due to the deposition of the
emi-molten material and subsequently cools down via heat transfer
ith adjacent layers and the environment [4]. Localized regions in the
icinity of the deposition zone may also experience various levels of re-
eating due to the heat supplied by the deposition of the semi-molten
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material. The temperature gradients resulting from repetitive heating
and cooling can lead to the development of residual stresses within the
manufactured component, which impacts both its dimensional accuracy
as well as mechanical performance [5–8]. Processing conditions direct
the evolution of material properties in polymer-based material sys-
tems [9–15], and can subsequently influence the mechanical response
of the fabricated component [16–18]. In the case of FFF, the changes
in temperature during the heating and cooling phases influences the
crystalline morphology (microstructure) of the thermoplastic material,
which significantly affects its mechanical properties [19,20]. Length
and time scales involved in the material extrusion process can also
significantly impact the final print quality. This is seen in large-scale
additive manufacturing processes, such as Big Area Additive Manu-
facturing (BAAM), where the thermal mass of the printed structure is
orders of magnitude larger than FFF processes [21]. The associated
heat transfer and thermal gradients have an impact on the interlayer
bond strength, and thermal stresses can often lead to delamination
and warping [22,23]. BAAM structures are also prone to slumping,
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i.e. collapsing under their self-weight, since they require long time
periods to cool down and attain sufficient structural stiffness [24].

The temperature distribution within the printed part during its
processing therefore drives its geometrical accuracy and mechanical
performance. The thermal profile of a printed component is a function
of process parameters, such as filament extrusion temperature and
deposition path, print speed, and the ambient environmental state [25,
26]. These process parameters can be optimized to induce thermal
profiles with minimal variations to limit residual stresses and, in turn,
ensure optimal print quality and mechanical performance over the
component’s service life. Optimizing FFF process parameters through
trial-error experimental approaches is inefficient in terms of cost and
lead times due to the large number of involved parameters [27,28].
Therefore, virtual testing methodologies are becoming the preferred
approach for process optimization [29,30].

Costa et al. investigated the heat transfer mechanisms relevant to
FFF to develop guidelines for numerical modeling [4]. Some early
3D models based on the Finite Element Method (FEM) for process
simulation were proposed by Zhang and Chou [31,32]. Considering
the importance of accurately predicting the thermal profile during the
printing process, several numerical approaches have been proposed in
the literature to model heat transfer during FFF process modeling [21,
22,33–39]. In recent years, 3D-FE models have also been developed
to investigate the influence of FFF thermal state on residual stress
development and part distortion [5,6,40]. However, traditional physics-
based numerical techniques to model the FFF process often incur high
computational costs due to the need to model each deposition layer,
limiting the capability to establish digital twins [35,41]. The significant
limitations of traditional FE approaches become even more relevant for
large-scale structures 3D-printed via Big Area Additive Manufacturing
(BAAM), which requires the deposition of hundreds of layers [24,42,
43]. Recent investigations have proposed alternative numerical models
for FFF simulation to reduce computational overheads. Owens et al.
proposed a scalable 2D finite volume model to simulate thermal histo-
ries for FFF and BAAM processes rapidly [44]. Roy and Wodo recently
developed a data-driven surrogate model for the thermal modeling of
AM processes [45].

This work establishes a novel and computationally efficient numeri-
cal framework to model material extrusion-based additive manufactur-
ing processes, which can be used to optimize process parameters for
FFF. The computational model is based on higher-order finite elements
and is developed using the Carrera Unified Formulation (CUF) [46].
CUF is a hierarchical mathematical framework capable of deriving
structural theories of any polynomial order which, combined with 1D
and 2D finite elements, leads to a 3D modeling approach whose accu-
racy is comparable to that of traditional 3D-FE models at significantly
reduced computational cost [47]. CUF models have been successfully
employed in various applications such as contact modeling [48], pro-
gressive damage and impact analysis of composite structures [49–51],
and the micromechanical modeling and analysis of fiber-reinforced
polymer composites [52,53]. CUF models have also been successfully
combined with the global-local technique for computationally efficient
nonlinear structural analysis [54–56]; however, its potential has never
been explored for 3D printing process modeling. The present work pro-
poses a CUF-based numerical framework where Lagrange polynomial
expansions are implemented to model the FFF and BAAM processes and
to predict the evolving thermal profile of the 3D-printed part.

The organization of this article is as follows: Section 2 describes
he numerical modeling approach for the process modeling of material
xtrusion additive manufacturing. A series of numerical assessments are
resented in Section 3 as validation cases compared to experimental
ata, and the main conclusions are summarized in Section 4.

. Computational methods

This section provides an overview of the higher-order finite ele-
ent approach used in the present work, and the modeling techniques
2

dopted for AM simulation and thermal analysis.
2.1. Higher-order structural modeling

Structural modeling in the proposed numerical framework is based
on higher-order structural theories derived using the Carrera Unified
Formulation and implemented using the Finite Element Method [46].
In this approach, additional 2D interpolation terms – known as Ex-
pansion functions 𝐹𝜏 – are employed to improve the kinematics of
1D finite elements (B2 and B3 beam elements with 2 and 3 nodes,
respectively), respectively, as shown in Fig. 1, and are defined over the
1D element cross-section. This mathematical representation results in
a 3D description of the displacement field, leading to numerical solu-
tions comparable to 3D-FE models in accuracy but with significantly
reduced computational effort [47]. A brief overview of 1D-CUF and its
extension to model time-dependent property evolutions for 3D printing
is presented hereinafter.

Considering the 1D-CUF model shown in Fig. 1, the displacement
field u is defined as

𝐮 = 𝐹𝜏 (𝑥, 𝑧)𝐮𝜏 (𝑦), 𝜏 = 1, 2,… ,𝑀 (1)

here 𝑀 is the number of terms within the expansion function 𝐹𝜏
nd 𝐮𝜏 represents the generalized displacements. Expansion functions
ased on Lagrange polynomials are used in the present work, and are
mplemented in the form of 2D quadrilateral elements as shown in
ig. 1 (L4 and L9 section elements with 4 and 9 nodes, respectively).
his allows for the explicit modeling of the beam cross-section, and
esults in the Component-Wise modeling approach [57,58].

inite element formulation
The stress and strain fields are defined as

= {𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑧𝑧, 𝜎𝑥𝑦, 𝜎𝑥𝑧, 𝜎𝑦𝑧}

𝜺 = {𝜀𝑥𝑥, 𝜀𝑦𝑦, 𝜀𝑧𝑧, 𝜀𝑥𝑦, 𝜀𝑥𝑧, 𝜀𝑦𝑧}
(2)

The linear displacement-strain relationship is given by

𝜺(𝑡) = 𝐃𝐮(𝑡) (3)

where (𝑡) indicates a dependency on time due to the printing process.
The differentiation operator D is defined as

𝐃 =

⎡
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The constitutive relation is

𝝈(𝑡) = 𝐂(𝑡)𝜺(𝑡) (4)

where the material stiffness tensor is denoted by the 6 × 6 Cmatrix, and
evolves as a function of time due to changes in the material properties
during the processing phase. Defining the displacement field in terms
of the finite element shape functions 𝑁𝑖(𝑦) and the cross-sectional
expansion functions 𝐹𝜏 (𝑥, 𝑧) leads to the following 3D form

(𝑥, 𝑦, 𝑧) = 𝐹𝜏 (𝑥, 𝑧)𝑁𝑖(𝑦)𝐮𝜏𝑖 (5)

here i and 𝜏 are nodal indices for the 1D finite element and 2D
ectional element, respectively. According to the principle of virtual
ork

𝐿𝑖𝑛𝑡 = 𝛿𝐿𝑒𝑥𝑡 (6)

here 𝛿𝐿𝑖𝑛𝑡 is the virtual variation of the internal strain energy and is
efined as

𝐿𝑖𝑛𝑡 = 𝛿𝜺𝑇 ∶𝝈 (7)
∫𝑉
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Fig. 1. 1D-CUF modeling of the deposited filament track for additive manufacturing simulation.
s
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Fig. 2. Assembly of global matrices using fundamental nuclei in CUF.

Combining Eqs. (4), (5) and (7), Eq. (6) can be written as

𝛿𝐿𝑖𝑛𝑡 = 𝛿𝐮𝑇𝑠𝑗𝐤𝑖𝑗𝜏𝑠𝐮𝜏𝑖 (8)

where 𝐤𝑖𝑗𝜏𝑠 is

𝐤𝑖𝑗𝜏𝑠 = ∫𝑙 ∫𝐴
𝐃𝑇 (𝑁𝑖(𝑦)𝐹𝜏 (𝑥, 𝑧))𝐂𝐃(𝑁𝑗 (𝑦)𝐹𝑠(𝑥, 𝑧)) 𝑑𝐴 𝑑𝑙 (9)

Eq. (9) represents a 3 × 3 matrix, termed the Fundamental Nucleus
(FN), whose definition remains invariant with respect to the choice
of finite element and expansion function used to derive the structural
theory. Assembling the structural FN over the nodal indices {𝑖, 𝑗, 𝜏, 𝑠}
results in the element stiffness matrix, which can subsequently be
assembled to develop the global stiffness matrix as seen schematically
in Fig. 2.

2.2. Process simulation with element activation

The evolution of the printed domain that occurs due to continuous
material deposition in FFF needs to be modeled to represent the ad-
ditive manufacturing process accurately. A popular approach to model
the evolving structural domain is via the element activation strategy,
e.g., Ref. [5], which is adopted in this work. Element activation is
combined with a voxelization technique, wherein the physical structure
is modeled using cuboidal finite elements [59], as shown in Fig. 3 for
the case of an ‘L-shaped’ structural domain. The filament cross-section
is elliptical in reality, but is commonly simplified to a rectangular
cross-section in computational models. This allows for a discretization
3

Fig. 3. Element activation strategy to simulate the FFF deposition process.

trategy based on the use of a single voxelized cuboid finite element
o represent the filament cross-section, thereby avoiding the computa-
ional expense of modeling a true elliptical geometry [5,6,35]. A study
on relevant heat transfer mechanisms for FFF by Costa et al. compares
the influence of the considered cross-sectional geometry on the thermal
profile during the printing process, and provides justification on the
use of a simplified rectangular filament cross-section geometry [4]. In
addition, perfect thermal contact is assumed at the filament–filament
interface, and is based on the works of Lepoivre et al. which determined
a weak influence of thermal contact resistance on the thermal behavior
for a considered range of values [36].

In this approach, a finite element model of the entire structure is
developed, and each element is initially set to be deactivated, i.e., the
element does not transfer thermal or mechanical loads. During the
time-based analysis, the tool’s current position (extruder) is computed
based on input parameters such as print velocity, current time, and
the prescribed tool path. The relevant information is obtained from the
G-code data associated with the specific printed geometry. Once the
current tool position is evaluated, a check is performed to identify the
elements through which the tool traverses with respect to its position at
the previous time step, and the elements thus identified are activated,
i.e., the tool-path is traced along the finite element model, and elements
are activated according to the tool traversal between consecutive time-
steps. The value of the time increment (𝑑𝑡) is determined as the ratio
of the length of the individual finite element (in the print direction)
and the print velocity, i.e., 𝑑𝑡 = 𝐿𝑓𝑒

𝑉𝑝𝑟𝑖𝑛𝑡
(refer Fig. 1). This ensures that a

single finite element is activated within a time increment.

2.3. Heat transfer mechanisms

The thermal profile of a component fabricated via FFF depends on
the printed part’s thermal interactions with the extrusion nozzle, build
platform, and the surrounding environment [4]. A schematic view of
the relevant heat transfer mechanisms is shown in Fig. 4.

Heating occurs due to the deposition of the molten filament at
elevated temperatures, while cooling occurs due to heat loss from the
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Fig. 4. Heat transfer mechanisms active during the FFF process and modeled within
the proposed framework.

external surfaces of the structure to the surroundings via convection
and radiation. Heat is transferred within a deposited filament and
between consecutive layers via conduction. The part also interacts
with the build platform through heat conduction, as shown in Fig. 4.
These mechanisms and environmental factors, such as the presence of
a heated print chamber or cooling fans, determine the temperature
distribution within the printed domain. In the present work, all the
aforementioned thermal mechanisms are accounted for during the FFF
simulation by updating the numerical model’s thermally available vol-
ume and surface area, which evolve according to the set of activated
elements within a time step. A simple two-element model is schemat-
ically shown in Fig. 5 to illustrate the heat exchange mechanisms
modeled.

In Fig. 5, a single element is initially active at time 𝑡1. Therefore,
ooling occurs via convection and radiation from the side and top faces,
hereas conduction is responsible for interactions between the element
nd the build platform via the bottom face. The adjacent element is
ctivated in a subsequent time step, time 𝑡2. The shared face between
he two elements, earlier an external surface area, is now interior to the
tructure and, therefore, no longer available for convection and radia-
ion. Conduction through this shared face is responsible for the thermal
nteraction between the two elements in the current configuration. The
emaining element faces exposed to the environment allow convective
nd radiative heat loss while the bottom faces conduct heat with the
uild platform, as shown in Fig. 5 at time 𝑡2.

.4. Transient thermal analysis

The temperature distribution within the printed domain evolves
ith time as molten filament is continuously deposited. An accu-
ate evaluation of the temperature gradients and thermal state during
rinting requires the quantification of the relevant heat transfer mech-
nisms depicted in Fig. 4. A transient thermal analysis is performed to
etermine the thermal state within the printed domain [5,6]

𝑐𝑝
𝛿𝑇
𝛿𝑡

= ∇ ⋅ (𝜅∇𝑇 ) (10)

where 𝜌, 𝑐𝑝 and 𝜅 represent the density, specific heat capacity, and
thermal conductivity of the deposited filament, respectively, and 𝑇 is
the temperature. The temperature of newly deposited material at time
𝑡 is specified as an initial condition

𝑇 (𝐱, 𝑡) = 𝑇𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝐱 ∈ 𝛺𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (11)

where 𝑇𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is the deposition temperature and 𝛺𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is the
domain of the deposited material. The build platform temperature is
specified as a boundary condition
4

𝑇 (𝐱) = 𝑇𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚, 𝐱 ∈ 𝛺𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 (12)
where 𝑇𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 is the temperature of the build platform 𝛺𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚. The
boundary conditions of the deposited domain are defined as

𝜅 𝛿𝑇
𝛿𝐧

+ 𝑞𝑐 + 𝑞𝑟 = 0, 𝐱 ∈ 𝑆(𝑡) (13)

here 𝑆(𝑡) is the evolving external surface of the deposited domain (see
ig. 5) with 𝐧 denoting its outward normal vector. The convective heat
lux 𝑞𝑐 and radiative heat flux 𝑞𝑟 are evaluated as follows

𝑐 = ℎ(𝑇 − 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡) (14)

𝑟 = 𝜎𝜖(𝑇 4 − 𝑇 4
𝑎𝑚𝑏𝑖𝑒𝑛𝑡) (15)

here ℎ and 𝜖 are the convective heat transfer coefficient and emis-
ivity of the material, respectively. 𝜎 is the Stefan–Boltzmann constant,
nd 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 is the ambient temperature.
The numerical solution of the transient thermal problem requires

he discrete form of the heat transfer equation as follows

𝐓̇ +𝐊𝐓 = 𝐅 (16)

here M is the thermal capacitance matrix, and F denotes the thermal
oads. K represents the thermal stiffness matrix and includes con-
uctive, convective, and radiative contributions [60]. Applying the
ackward Euler approach to Eq. (16)
(𝐓𝑛+1 − 𝐓𝑛

𝛥𝑡

)

+𝐊𝐓𝑛+1 = 𝐅𝑛+1 (17)

Rearranging the above leads to
(𝐌
𝛥𝑡

+𝐊
)

𝐓𝑛+1 =
(𝐌
𝛥𝑡

)

𝐓𝑛 + 𝐅𝑛+1 (18)

Eq. (18) is solved to obtain the evolving temperature field within the
extant structure during the printing process. Within the CUF modeling
approach (see Section 2.1), the fundamental nuclei, required for the
assembly of M and K matrices, are respectively as follows [46,61]

𝐦𝑖𝑗𝜏𝑠 = 𝜌∫𝑙 ∫𝐴
𝑁𝑖(𝑦)𝐹𝜏 (𝑥, 𝑧) ⋅𝑁𝑗 (𝑦)𝐹𝑠(𝑥, 𝑧) 𝑑𝐴 𝑑𝑙 (19)

𝐤𝑖𝑗𝜏𝑠 = 𝜅 ∫𝑙 ∫𝐴
𝛁𝑇 (𝑁𝑖(𝑦)𝐹𝜏 (𝑥, 𝑧)) ⋅ 𝛁(𝑁𝑗 (𝑦)𝐹𝑠(𝑥, 𝑧)) 𝑑𝐴 𝑑𝑙 (20)

3. Results and discussion

This section presents a set of experimentally validated numerical
studies to evaluate the performance of the proposed framework for
AM simulation. Results are presented in terms of evolving temperature
fields of the printed component under the influence of FFF and BAAM
processing conditions. The simulations were performed (in serial) on
an Intel(R) Core(TM) i7-10700 2.9 GHz Desktop Workstation with
32 GB RAM, and the analysis time spanned approximately 1–32 min
depending on the geometry and model discretization. The computa-
tional performance of the proposed approach for AM process modeling,
compared to existing numerical methods, is discussed at the end of
Section 3.3.

3.1. Modeling of a single-filament wall

The numerical assessment considered herein is the FFF process mod-
eling of a printed wall with a single-filament thickness, schematically
shown in Fig. 6. The selected case is based on the work of Lepoivre
et al. [36], which provides experimental reference data and numerical
solutions. The present analysis aims to conduct an initial verification
and validation of the proposed numerical framework for FFF process
modeling. The thermoplastic filament is composed of Acrylonitrile
butadiene styrene (ABS), with a filament thickness (𝑑𝑍) and width (𝑑𝑌 )
of 0.8 mm and 1.25 mm, respectively. The voxelized numerical model,
therefore, consists of finite elements of dimensions 𝑑𝑋 × 1.25 mm ×
0.8 mm, where 𝑑𝑋 is the finite element length along the filament
direction. The thermal properties of the ABS filament and the build
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a

Fig. 5. Evolution of structural domain to implement the heat transfer mechanisms induced by FFF.
Fig. 6. Schematic representation of (a) the single-filament wall (dimensions in mm). The dashed lines indicate the tool travel path, and the highlighted 𝑑𝑋×𝑑𝑌 ×𝑑𝑍 voxel domain
represents an individual finite element, (b) an example of the linear and quadratic discretization used in the numerical analysis (summary of all models in Table 3).
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Table 1
Thermal properties of the materials used in the numerical modeling of the single-wall
[36].
Property ABS PEKK build platform

Density [kg/m3] 1050.0 1140.0 2210.0
Thermal conductivity [W/m K] 0.2 0.5 1.4
Specific heat capacity [J/kg K] 2100.0 2200.0 730.0
Emissivity 𝜀 0.91 0.94 –
Filament width (dY) [mm] 1.25 2.20 –
Filament thickness (dZ) [mm] 0.80 0.80 –

Table 2
FFF process parameters used in the numerical modeling of the single-wall [36].
Parameter ABS PEKK

Extrusion temperature [◦C] 255.0 356.0
Chamber temperature [◦C] 95.0 139.0
build platform temperature [◦C] 100.0 160.0
Convection coefficient [W/m2 K] 30.0 30.0
Print velocity [mm/s] 6.741 6.12

platform are listed in Table 1. The process parameters used in the
nalysis are summarized in Table 2.
A series of linear and quadratic CUF models have been devel-

oped by progressively refining the mesh along the filament direction,
i.e., decreasing the 1D element length dX as shown in Fig. 6. A single
sectional element (with dimensions 𝑑𝑌 × 𝑑𝑍) is used to represent
the filament cross-section. The temperature profile at the midspan of
Layer-6, i.e., the point P1 (30, 0, 4.4) (refer to Fig. 6), as predicted
by the linear and quadratic CUF models, is plotted in Fig. 7(a) and
(b), respectively. Reference experimental measurements and FE-based
5

Table 3
Summary of CUF models used in the single-wall thermal analysis.
Model Discretization Beam length (dX) [mm] DOF

CUF - Linear 1 12 B2, 61 L4 5.0 1,612
CUF - Linear 2 20 B2, 61 L4 3.0 2,604
CUF - Linear 3 24 B2, 61 L4 2.5 3,100
CUF - Quadratic 1 6 B3, 61 L9 10.0 4,797
CUF - Quadratic 2 10 B3, 61 L9 6.0 7,749
CUF - Quadratic 3 12 B3, 61 L9 5.0 9,225

numerical predictions are also overlaid in the figure for comparison. A
summary of the CUF models is provided in Table 3.

The temperature evolution within a single-wall structure printed
using high melting-point thermoplastics such as PEKK (𝑇𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =
56 ◦C) was also experimentally investigated by Lepoivre et al. [36],
nd has been modeled in this work. This study aims to assess the model
erformance under high-temperature processing conditions. The PEKK
aterial properties and process parameters are listed in Table 1 and
able 2, respectively. The CUF models used in the previous case (with
BS filament), as listed in Table 3, are retained for the FFF process
odeling of the PEKK single-wall. The thermal profile predicted by the
inear and quadratic CUF models at the midspan of Layer-6, P1 (30,
, 4.4), with reference experimental and numerical data overlaid for
omparison, is shown in Fig. 8. Numerical results based on the ‘Linear-
3’ and ‘Quadratic-3’ models (see Table 3) have been omitted for the
sake of brevity since they do not lead to a significant improvement in
accuracy. The temperature distribution over the PEKK single-wall at
various stages of the printing process, as predicted by the ‘CUF - Linear

2’ model, is shown in Fig. 9.
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Fig. 7. Thermal profile of the ABS single-filament wall at Point P1 (see Fig. 6) as predicted by (a) the linear CUF models, and (b) the quadratic CUF models (see Table 3 for
model details). Reference experimental and 2D-FE numerical data obtained from [36].
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Fig. 8. Thermal profile of the PEKK single-filament wall at point P1 (see Fig. 6) as
redicted by the CUF models (see Table 3 for model details). Reference experimental
nd 2D-FE numerical data obtained from [36].

It is seen from the predicted thermal profiles of the ABS single-wall,
lotted in Fig. 7, that the CUF models are in excellent agreement with
oth experimental measurements and the reference numerical results.
he mesh convergence analysis for both linear and quadratic CUF mod-
ls indicates the coarsest discretization, i.e., the ‘CUF - Linear 1’ and
he ‘CUF - Quadratic 1’ models slightly overestimate the temperature.
n contrast, the more refined numerical models lead to an accurate
valuation of the temperature state. This case study provides an ini-
ial verification and validation of the proposed CUF-based numerical
ramework for FFF process modeling and transient thermal analysis.
Similarly, the CUF predictions for the case of the PEKK single-wall

re also in excellent agreement with experimental data, as evidenced
n Fig. 8. A discrepancy is observed before the 20-second time-mark,
hich corresponds to the secondary re-heating peak due to the deposi-
ion of adjacent layers. It is seen from the plot that this error reduces
ith further refinement of model discretization. The predicted thermal
istory is in contrast to the numerical results provided by the original
tudy, which deviate from the experimental curve after approximately
0 s of the simulated time. The accuracy of the CUF predictions,
elative to the 2D-FE reference simulation, likely stems from the fact
hat the current modeling approach is fully 3D in nature and can
herefore model surface heat transfer mechanisms more accurately.
his is supported by investigating the thermal profile along the filament
eposition length for both ABS and PEKK cases. The temperature along
he length of Layer-6 for both cases has been plotted in Fig. 10, and is
snapshot of the thermal profile at the end of Layer-6 deposition. It
s seen from the plot that the PEKK case experiences an initial cooling
ate of 3.12 ◦C∕mm and a spatial temperature change of approximately
6

Table 4
PLA material properties used in the open-box analysis [6,39].
Property PLA

Density [kg/m3] 1250.0
Thermal conductivity [W/m K] 0.195
Specific heat capacity [J/kg K] 1950.0
Emissivity 𝜀 0.78
Filament width (dY) [mm] 1.0
Filament thickness (dZ) [mm] 0.6

Table 5
FFF process parameters used in the open-box analysis [39].
Parameter PLA

Extrusion temperature [◦C] 200.0
Chamber temperature [◦C] 25.0
build platform temperature [◦C] 25.0
Convection coefficient [W/m2 K] 8.5
Print velocity [mm/s] 5.0

105 ◦C, which are significantly higher than the corresponding values
or the ABS case. The temperature gradients along the filament length,
hich are more pronounced at the higher processing temperatures of
he PEKK case, could explain the relative error between the ABS and
EKK predictions by the 2D reference numerical model. The results in
ig. 7 and Fig. 8 demonstrate the capability of CUF models in modeling
FFF over a wide range of processing temperatures.

3.2. Modeling of an open-box

This numerical assessment models the FFF processing of an open
box, i.e., a box without the top and bottom faces. The structure and test
setup are based on the works of Zhang et al. [39,62], which provide ref-
erence experimental and numerical data. A schematic representation of
the printed structure is shown in Fig. 11. The structure is printed using
polylactic acid (PLA) filaments of width 1.0 mm and height 0.6 mm.
The PLA material properties, obtained from Trofimov et al. [6], are
used in the present analysis and are reported in Table 4. The FFF
process parameters are summarized in Table 5.

As in the previous case, a series of linear and quadratic CUF models,
with an incremental refinement of the voxelized filament length (dX),
has been used in the analysis. A single Lagrange sectional element
of dimensions 𝑑𝑌 × 𝑑𝑍 is used to model the filament cross-section.
The CUF model predictions of the temperature profile at point P1
(15.0, 30.0, 0.9), i.e., the center of Layer-2 in the open-box side BC
(refer Fig. 11), are plotted in Fig. 12. Experimental measurements
and numerical predictions from Zhang et al. [39,62] have also been

compared. The temperature distribution of the structure at various
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Fig. 9. Temperature distribution [◦C] of the PEKK single-filament wall at various stages of print as predicted by the ‘CUF - Linear 2’ model (view from 𝑥 − 𝑧 plane, see Fig. 6).
.
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Fig. 10. CUF model prediction of the temperature along the length of Layer-6 of the
single-wall, at the end of its deposition.

Fig. 11. Schematic representation of the open-box structure with dashed lines
indicating the tool travel path (dimensions in mm).

Table 6
Summary of CUF models used in the open-box thermal analysis.
Model Discretization Beam length (dX) [mm] DOF

CUF - Linear 1 8 B2, 168 L4 4.67 1,870
CUF - Linear 2 12 B2, 252 L4 2.80 2,310
CUF - Linear 3 14 B2, 294 L4 2.33 2,530
CUF - Quadratic 1 6 B3, 126 L9 7.00 5,307
CUF - Quadratic 2 8 B3, 168 L9 4.67 7,587

stages of print is visualized in Fig. 13. A summary of the CUF models
is presented in Table 6.

It is seen from Fig. 12 that all the CUF model predictions (apart from
the coarsest ‘CUF - Linear 1’ model) are in good general agreement with
the experimental reference data and perform better than the reference
simulation results while capturing the secondary temperature peaks
arising from subsequent layer deposition. The discrepancy between the
numerical and experimental curves is attributed to the sensitivity of
7

Table 7
ABS/CF composite material properties used in the BAAM double-wall analysis [22].
Property ABS/CF

Density [kg/m3] 1140.0
Thermal conductivity [W/m K] 0.17
Specific heat capacity [J/kg K] 1640.0
Emissivity 𝜀 0.87
Track width (dY) [mm] 10.0
Track thickness (dZ) [mm] 4.064

Table 8
FFF process parameters used in the numerical modeling of the BAAM double-wall [22]
Parameter ABS/CF

Extrusion temperature [◦C] 200.0
Chamber temperature [◦C] 18.0
build platform temperature [◦C] 65.0
Convection coefficient [W/m2 K] 8.5
Layer build time [s] 39.0

the temperature field to the thermal properties considered in the anal-
ysis [39]. Section 3.3 presents a further investigation of the sensitivity
of the thermal analysis to variations in material properties.

3.3. Modeling of a composite double-wall

The last assessment investigates the capability of the proposed
framework towards the modeling and thermal analysis of material ex-
trusion AM of large-scale structures, i.e., those fabricated using BAAM
processes. A wall-like structure is considered based on the works of
Compton et al. [22], which also provides reference experimental data.
The wall, as modeled, is two tracks wide and consists of 40 layers;
the track width (dY) and height (dZ) are 10.0 mm and 4.064 mm,
respectively. A schematic representation of the structure is shown in
Fig. 14. The print material is ABS reinforced with 20% carbon fiber
(ABS/CF), and its thermal properties, as suggested in [22], are listed in
Table 7. The BAAM process parameters are summarized in Table 8.

The BAAM process simulation is performed using both linear and
uadratic CUF models, as shown in Fig. 14(b) and (c), respectively. As
eported in [22], no thermal gradients were experimentally observed
long the length of the wall. This observation infers a the lack of
ensitivity of the model results as a function of its numerical discretiza-
ion along the track direction (𝑑𝑋), which has been confirmed by a
mesh convergence analysis not reported for the sake of brevity. As a
result of the convergence study, results are presented for two types of
discretization: linear (CUF - model 1, 12 elements), and quadratic (CUF
- model 2, 6 elements). The thermal profile predicted by the two CUF
models at the midspan of layer 1, point P1 (771.0, 20.0, 2.03); layer 15,
P2 (771.0, 20.0, 58.92); and layer 30, P3 (771.0, 20.0, 119.88), have
been plotted in Fig. 15. Reference experimental data from [22] and
numerical simulation results based on a 2D finite volume approach [44]
have also been overlaid for comparison. The temperature distribution
within the double-wall cross-section, at its midspan, is visualized in
Fig. 16 and demonstrates the thermal gradients which can exist across
BAAM track cross-sections during the printing process of large-scale

structures.
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Fig. 12. Thermal profile of the PLA open-box at Point P1 (see Fig. 11) as predicted by (a) the linear CUF models, and (b) the quadratic CUF models (see Table 6 for model
details). Reference experimental and numerical data based on the Finite Difference Method (FDM) obtained from Zhang et al. [39,62].

Fig. 13. Temperature distribution [◦C] of the open-box at various stages of print as predicted by the ‘CUF - Linear 3’ model.

Fig. 14. Schematic representation of (a) the BAAM wall (dimensions in mm). The dashed lines indicate the tool travel path within a layer, and the highlighted 𝑑𝑋 × 𝑑𝑌 × 𝑑𝑍
voxel domain represents an individual finite element, (b) the linear CUF model, and (c) the quadratic CUF model.
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Fig. 15. Thermal profile of the ABS/CF composite double-width wall (layers 1, 15,
nd 30) as predicted by the CUF models. Reference experimental data obtained from
ompton et al. [22], and numerical simulation results based on a 2D finite volume
odel from Owens et al. [44].

Fig. 16. Temperature distribution [◦C] within the midspan cross-section of the BAAM
wall at various stages of print as predicted by the (quadratic) CUF Model-2.

As seen in Fig. 15, the CUF model predictions are in qualitative
agreement with the experimental curves and follow the same trend but
do not correctly evaluate the temperature profile. Additionally, CUF
results compare better to the experimental results than the numerical
approach proposed in the original reference. The discrepancy between
the experimental and numerical data likely stems from the choice of
material thermal properties considered in the analysis (see Table 7,
hereinafter referred to as ‘nominal’ values). Therefore, the influence
of the specific heat capacity 𝐶𝑝 and thermal conductivity 𝜅 – on the
thermal profile of the BAAM process model has been investigated
to determine the effect of the material properties on temperature
prediction.

The nominal 𝐶𝑝 value of the ABS/CF composite has been considered
1640 J∕kg K in [22]. Such a value apparently neglects the presence
of the reinforcement within the thermoplastic. It is seen from Table 1
that the 𝐶𝑝 of neat ABS is about 2100 J∕kg K, while that of commer-
cially available carbon fiber is in the range 880–1100 J∕kg K [63,64].
9

Table 9
Summary of CUF models used in the BAAM double-width wall analysis.
Model Discretization Beam length (dX) [mm] DOF

CUF Model-1 (Linear) 12 B2, 82 L4 128.5 1,638
CUF Model-2 (Quadratic) 6 B3, 82 L9 257.0 5,395

Assuming a general 𝐶𝑝 value of 900 J∕kg K for CF, and applying the
Rule of Mixtures, the effective 𝐶𝑝 of 20% ABS/CF is estimated to
be approximately 1860 J∕kg K. The sensitivity of the thermal profile
between the nominal and modified 𝐶𝑝 values, as predicted by the CUF
models at Layer-15, is plotted in Fig. 17(a). Similarly, the nominal
thermal conductivity 𝜅 of the ABS/CF composite is 0.17 W∕m K, while
that of neat ABS at elevated temperatures is generally in the range
0.19–0.20 W∕m K (see Table 1). Thermally conductive reinforcements
such as CF generally have transverse conductivity values over 1.0
W∕m K [65]. Their presence in ABS would result in a net increase
in the effective thermal conductivity, even when assuming that fibers
are aligned along the extruded material, and evaluating the effective
composite conductivity in the transverse direction. The effective 𝜅 of
the ABS/CF composite was therefore estimated to be approximately
0.27 W∕m K following the works of Bard et al. [66]. The sensitivity
of the thermal profile between the nominal and modified 𝜅 values, as
predicted by the CUF models at Layer-15, is plotted in Fig. 17(b).

From Fig. 17(a, b), it is seen that individually modifying 𝐶𝑝 and
𝜅 leads to a closer agreement between the CUF predictions and the
experimental data when compared to the numerical results based on
nominal composite thermal properties. However, a discrepancy in the
temperature values is still observed and is likely due to the modification
of only a single thermal property in each analysis. Considering the
modified values of both 𝐶𝑝 and 𝜅, the CUF predictions of the thermal
profile at Layer-15 are plotted in Fig. 17(c). In this case, the CUF pre-
dictions are in excellent agreement with the experimental curves and
are significantly more accurate when compared to the predictions based
on nominal thermal properties. It is noted that applying the modified
material properties in the numerical approach of Ref. [44] would likely
improve the discrepancy between their predictions and experimental
data, but would not exceed the accuracy of the CUF models based
on the trends seen in Fig. 15. In particular, it is observed from the
figure that the quadratic CUF Model-2 is more accurate than the linear
CUF Model-1. As seen in Fig. 16, the BAAM process involves extruded
tracks whose cross-sectional dimensions are an order of magnitude
larger than those used in FFF, and a non-negligible thermal gradient
thus exists within the section. The second-order expansion function
used in the quadratic CUF analysis to model the track cross-section
can better capture these thermal gradients than the first-order functions
used in the linear model and explains the relative performance of the
two CUF models. The predicted thermal profiles at layers 1, 15, and
30, considering the modified values of 𝐶𝑝 and 𝜅, have been shown in
Fig. 18. A summary of the linear and quadratic CUF models used in
the BAAM analysis is presented in Table 9. The predicted results in
Fig. 18 demonstrate the capability of the proposed higher-order models
in accurately simulating the BAAM process and evaluating the evolving
temperature field as a function of the process conditions.

A comparison of the computational cost in terms of analysis time
is finally performed, to obtain an initial evaluation of the proposed
framework’s performance. The reference numerical approach based on
a 2D Finite Volume Method (FVM), proposed by Owen et al. [44],
requires an analysis time of approximately 96 min (Supplementary
Information, Table A2) to simulate the 40-layer BAAM model, on an
Intel(R) Core(TM) i7-8850 laptop with 16 GB RAM. Performing the
corresponding analysis with the same time-increment as the reference
numerical case (dt = 0.1 s), the CUF analysis requires approximately
16 min, i.e., a 6𝑥 improvement. Even though this is an indirect compar-
ison (due to differing employed computational resources) from which

limited conclusions can be drawn, the order-of-magnitude speed-up
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Fig. 17. Sensitivity of numerically predicted thermal profiles to variation in thermal
properties.
10
Fig. 18. Thermal profile of the ABS/CF composite double-width wall (layers 1, 15,
and 30) as predicted by the CUF models considering nominal and modified thermal
properties. Reference experimental data obtained from Compton et al. [22], and
numerical simulation results based on a 2D finite volume model from Owens et al. [44].

exhibited by the CUF model is suggestive of its superior performance,
and is consistent with previous works based on the CUF modeling
approach, where a 10–20𝑥 reduction in computational size and analysis
time was demonstrated when compared with traditional numerical
approaches [47,49,52,67].

4. Conclusion

A novel numerical framework for the process modeling of mate-
rial extrusion additive manufacturing is introduced in this work. The
numerical model is developed using higher-order structural theories
derived from the Carrera Unified Formulation and implemented within
the Finite Element Method. The element activation strategy is imple-
mented within the higher-order FE numerical framework to model the
evolution of the structure during the printing process, and a transient
thermal analysis is performed to evaluate the temperature field. A
series of numerical assessments was carried out to evaluate the capa-
bilities and performance of the proposed numerical framework. Process
modeling simulations of a single filament-width wall and an open-box
were carried out for initial verification and validation. The obtained
results were in excellent agreement with experimental data, thereby
validating the framework for the process modeling of material extrusion
additive manufacturing. The framework’s capability in modeling Big
Area Additive Manufacturing was also assessed by modeling a large-
scale wall. The thermal profiles predicted by the higher-order models
correlated very well with the experimental data, thus validating it
for BAAM process modeling applications. A sensitivity study was also
performed to investigate the influence of material thermal proper-
ties on the thermal profile of the BAAM wall. The obtained results
demonstrate the capabilities of the numerical framework in accurately
modeling the thermal profile evolution of material extrusion additive
manufacturing processes at different structural scales using higher-
order finite elements, proving the potential of the proposed approach
as an optimization framework to estimate favorable process parameters.
Future works include extending the framework to thermo-mechanical
analysis to evaluate process-induced residual stress development and
distortion in AM thermoplastic parts, as well as using multiscale tech-
niques to investigate the relation between material microstructure and

manufacturing conditions.
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