
An Evaluation of Strategies to Train More Efficient
Backward-Chaining Reasoners

Yue-Bo Jia
JiaY25@hsc.edu

Hampden-Sydney College
Hampden-Sydney, Virginia, USA

Gavin Johnson
gjohnson25@murraystate.edu

Murray State University
Murray, Kentucky, USA

Alex Arnold
alexarnold2024@u.northwestern.edu

Northwestern University
Evanston, Illinois, USA

Jeff Heflin
heflin@cse.lehigh.edu
Lehigh University

Bethlehem, Pennsylvania, USA

ABSTRACT

Knowledge bases traditionally require manual optimization to en-

sure reasonable performance when answering queries. We build on

previous work on training a deep learning model to learn heuristics

for answering queries by comparing different representations of

the sentences contained in knowledge bases. We decompose the

problem into issues of representation, training, and control and

propose solutions for each subproblem. We evaluate different con-

figurations on three synthetic knowledge bases. In particular we

compare a novel representation approach based on learning to max-

imize similarity of logical atoms that unify and minimize similarity

of atoms that do not unify, to two vectorization strategies taken

from the automated theorem proving literature: a chain-based and

a 3-term-walk strategy. We also evaluate the efficacy of pruning

the search by ignoring rules with scores below a threshold.

KEYWORDS

backward chaining, efficient queries, knowledge bases, meta-reasoning,

machine learning, neurosymbolic AI

ACM Reference Format:

Yue-Bo Jia, Gavin Johnson, Alex Arnold, and Jeff Heflin. 2023. An Evalua-

tion of Strategies to Train More Efficient Backward-Chaining Reasoners.

In Knowledge Capture Conference 2023 (K-CAP ’23), December 5–7, 2023,

Pensacola, FL, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.

1145/3587259.3627564

1 INTRODUCTION

Despite recent developments in machine learning—in particular,

the advent of large language models—deep learning methods nev-

ertheless continue to suffer from the perennial complaint that there

is no explanation of how they know or accomplish their given task.

At the same time, although symbolic methods can produce human-

readable proofs, these methods nevertheless have difficulty with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

K-CAP ’23, December 5–7, 2023, Pensacola, FL, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0141-2/23/12. . . $15.00
https://doi.org/10.1145/3587259.3627564

both performance and scale. The goal of neuro-symbolic AI [7] is

to combine the strengths of these two approaches while avoiding

the weaknesses of both.

This paper expands on the research of Arnold and Heflin to im-

prove the performance of backward-chaining reasoning on knowl-

edge bases using machine learning [1]. A knowledge base (KB) is a

collection of facts and rules with which we make inferences; back-

ward chaining is a traditional algorithm used to answer queries

about what is true given the information stored in a KB. Backward-

chaining, like inference procedures in general, is a type of search. In

theory, machine learning can be used to train a model that can guide

this search, thereby minimizing fruitless paths and backtracking.

Our contributions are to provide a framework for analyzing such

problems, use this framework to propose solutions, and evaluate

those solutions across three different synthetic KBs. In particular, we

compare a unification-based approach for embedding logical atoms

to vectorization strategies used for proof guidance in automated

theorem proving (ATP). We also evaluate the use of a pruning

strategy based on the predicted scores made by a trained neural

model.

2 BACKGROUND

2.1 Neuro-Symbolic AI

As mentioned above, neuro-symbolic approaches attempt to com-

bine the strengths of both machine learning and symbolic ap-

proaches. This approach is partly inspired by human cognition,

which can both handle large amounts of input data and also use

planning and reasoning to decipher and infer using that raw data

[10]. Work such as Deep Reinforcement Learning with Symbolic

Logics exemplifies the utility of this approach, in which the rigidity

and transparency of logical reasoning is used in training a neural

network to improve the ultimate safety and reliability of an au-

tonomous driving system [8]. In essence, the idea is to use symbolic

approaches to improve a machine learning system; previous work

on using neuro-symbolic AI to conduct logical reasoning also uses

this approach. For example, the approach used in “First Order Logi-

cal Neural Networks” attempts to train a neural network to directly

perform reasoning in place of a traditional symbolic reasoner [5];

while NELLIE attempts to emulate an expert system using neural

NLP models [12].

K-CAP ’23, December 5–7, 2023, Pensacola, FL, USA Jia et al.

Additionally, large language models (LLMs) allow machine learn-

ing models to traverse KBs consisting of facts, rules, and queries

that are composed in the manner of human language. In doing so,

we may implement both forward-chaining reasoners and backward-

chaining reasoners within the context of our written statements

in human-readable language(s) via LLMs. For instance, Google de-

veloped an LLM that implements backward-chaining in order to

determine proofs of statements from initially given premises [4].

2.2 Proof Guidance

Unlike the neuro-symbolic approaches describe above, which at-

tempt to train a neural network to perform like a symbolic reasoner,

we aim to use machine learning to improve the performance and

scalability of a symbolic reasoning system. Our work more closely

resembles proof guidance in the automated theorem proving (ATP)

literature. This approach retains two import aspects of symbolic

AI: human readability and ensured safety. The “black box” nature

of deep learning methods make it harder to provide guardrails

for high impact/high risk decisions, but it is much easier to create

human-readable decisions and safety measures in symbolic systems

[9]. The worst case scenario in these kinds of frameworks is a less

efficient reasoner, not one with dangerous high-risk mistakes.

There are several examples of proof guidance in ATP. Wang et

al. [11] proposed to use Graph Convolutional Networks to identify

which mathematical statements were relevant to a given conjecture.

Jakubův and Urban’s ENIGMA is a learning-based method to train

a classification model to identify “useful and un-useful” clauses

for proof search [3]. Crouse et al. combine various embedding

strategies, including from ENIGMA, with a deep reinforcement

learning approach to proof search [2]. Our work follows from a

similar philosophy, but we note that query answering over KBs

does have significant differences from ATP. In particular, KBs are

usually described with less expressive logics, have much larger

vocabularies of symbols, and have an abundance of facts compared

to rules. Additionally, rather than just determining that a statement

is entailed, we are usually interested in a set of variable bindings

that constitute the answer to a query. Finally, KBs can be quite large.

When associated with an ontology of axioms, knowledge graphs,

can be seen as examples of large, real-world KBs containing billions

of statements [6].

2.3 Horn Logic and Backward Chaining

In Horn logic, a subset of first-order logic, all propositions are either

atoms—atomic propositions, or propositions without connectives—

or clauses, which take the form of a conditional with exactly one

atom as the consequent and the conjunction of arbitrarily many

atoms as the antecedent; the consequent is called the head, whereas

the antecedent is called the body. Following onArnold andHeflin [1],

we use Datalog’s syntax,1 in which the head is written on the left

and “:-” is used for implication. Likewise, we will use uppercase

letters to indicate variables and lowercase letters to indicate con-

stants.

The backward-chaining reasoning algorithm is founded on the

concept of unification. Two atoms are said to unify if one could

apply some substitution of terms to the variables such that the

1This syntax is based on Prolog.

two atoms would be made identical; for example, the propositions

? (-,.) and ? (0, 1) unify (with the substitution -/0 and ./1), but

the propositions ? (0,-) and ? (1,-) do not, as different constants

cannot be substituted for one another.

Given a query that consists of one or more subgoals —each an

atom—we can find an answer by successively performing Selective

Linear Definite (SLD) resolution with a subgoal in the query, and

a rule in the KB whose head unifies with the subgoal. The answer

can either be the query’s truth value if the query has no variables,

or a substitution for the query’s variables that would make it true.

The details of SLD resolution are not salient here; it suffices to

know that when a rule matches a subgoal, a new goal is created by

replacing the subgoal with the body of the rule, and the choice of a

subgoal and rule changes the ultimate outcome of this algorithm,.

Badly-chosen goal-rule pairs can result in failure to find an answer

or infinite loops. In Prolog, subgoals are typically evaluated from

left to right and rules are selected from top to bottom. With such

a guarantee, KB designers are expected to optimize their logical

statements. Such optimization can be difficult, however, as the range

of possible queries increase, and could create a significant workload

if two or more KBs must be integrated.

Arnold and Heflin’s approach therefore seeks to learn heuristics

for the choice of goal-rule pairs [1], training a model to classify

such pairs according to whether they are likely to lead to an answer

or not. They show that a guided reasoner using this strategy could

often achieve improvements of orders of magnitude onmost queries

using a small, randomly-generated KB.

3 APPROACH

3.1 Overview

We have identified three main issues that must be addressed in

order to train a more efficient reasoner: representation, training,

and control. Representation is the determination of how to express

symbolic information in a form that can be input to a neural archi-

tecture. Such architectures require inputs to be vectors of numbers.

Training is the mechanism by which the reasoner learns knowledge

to help guide decisions for future queries. For example, the system

might be trained by supervised learning or reinforcement learning.

Control determines how the knowledge is utilized. In particular, the

control mechanism dictates which choices the algorithm will make,

and when these choices will be made.

We now characterize Arnold and Heflin’s approach to training a

meta-reasoner [1],

(1) Representation: Use triplet loss to learn an embedding for

logical atoms that respects unification.

(2) Training: Use supervised learning to train a system that

can evaluate goal/rule pairs.

(a) Use forward-chaining to get candidate queries in the KB

for training.

(b) Use backward-chaining to answer the queries. For each

step, record the goal being attempted and rule applied.

Goal/rule pairs that eventually lead to a solution are as-

signed a positive label, while all other pairs are assigned a

negative label.

K-CAP ’23, December 5–7, 2023, Pensacola, FL, USA Jia et al.

people, this requirement would already result in an embedding

size of over one million, without even considering predicates and

variables. Thus, we reduce the size of the embedding by considering

the constraints of Datalog. In particular, 3-term-walks of Datalog

clauses expressed in the format we discuss above never begin with

a predicate, constant, or variable, all of which together account

for the majority of our symbol set; instead, it must always begin

with either +, ∨, or ¬. Thus, instead of a vector of size |Σ|3, we can

instead construct a vector of size 3 ∗ |Σ|2.

Crouse et al. proposed an alternative “chain-based” embedding

approach [2]. Similarly to Jakubuv and Urban, they begin by repre-

senting a logical proposition as a graph, as we depict in Figure 1,

albeit replacing every variable with the symbol ‘*’. Instead of enu-

merating term walks, they enumerate each “pattern,” or path of

symbols that begins at a predicate and bottoms out at a constant

or variable. An example of a pattern from Figure 1 would be “?∗.”

In order to create a 3-dimensional representation, they then ob-

tain the MD5 hash E of each pattern and set the element of the

3-dimensional vector at the position E mod 3 to the number of

occurrences of a pattern. Crouse et al. also distinguish between

patterns and their negations by doubling the size of the representa-

tion; a separate 3-dimensional vector is constructed to count the

occurrences of pattern negations. Since our KB is expressed in Dat-

alog which does not allow functions, all of our patterns contain one

predicate and one constant or variable. Finally, because Crouse et

al. do not specify a particular embedding size, for the sake of com-

parison we choose 3 such that the input size for the meta-reasoning

neural network will be the same as with the unification embedding

approach.

We identify two potential issues with the chain-based vectoriza-

tion strategy: (1) since all variables are replaced with the same sym-

bol, the representation does not distinguish between rules which

can be applied in fewer situations due to having the same variable

repeated, and rules which are more general; and (2) the hashing of

patterns means that completely unrelated patterns could have the

same representation.

3.3 Training

We have chosen to use a supervised learning approach to train

our models. To be consistent with Arnold and Heflin [1], we used

a simple neural model with one hidden layer. This hidden layer

has 30 units and uses a sigmoid activation function. The output

layer is a single unit with a sigmoid activation function. A Binary

Cross-Entropy function (also known as Binary Log Loss) computes

the loss for the model. In this paper, our main concern is how to

produce suitable training data for this network.

Arnold and Heflin [1] proposed to generate positive and negative

examples of goal/rule pairs. Given a set of training queries, they

executed a backward-chaining search and classified examples based

on the outcome of each path: if the path led to a solution, then for

each node (except the root) in the path, they created a training

example (6, A, 1) for the subgoal 6 and rule A that led to the node. If

the path failed to find a solution, then a training example (6, A, 0)

was created for each node. To ensure the search was not dependent

on a particular order of rules or rule bodies, these were randomized

with each choice. To ensure the search eventually terminated, a

Algorithm 1 BChainGuided(6>0;B, \, 34?Cℎ)

1: if 6>0;B = ∅ then

2: return \

3: else if 34?Cℎ > "0G�4?Cℎ then

4: return fail

5: else

6: >?CB ← {(6, A) |6 ∈ 6>0;B and Unify(6, head(A)) }

7: Sort >?CB by descend score(6, A) for each (6, A) ∈ >?CB

8: for all (6, A) ∈ >?CB do

9: if score(6, A) < "8=(2>A4 then

10: return fail

11: end if

12: \ ′ ←Unify(6, ℎ403 (A))

13: =4F6← Subst(1>3~ (A) ∪ 6>0;B − {6}, \ ′)

14: \ ′ ← Compose(\, \ ′)

15: if 34?Cℎ < �0;;102:�4?Cℎ then

16: 0=B ← BChainGuided(=4F6, \ ′, 34?Cℎ + 1)

17: else

18: 0=B ← BChainStd(=4F6, \ ′, 34?Cℎ + 1)

19: end if

20: if 0=B ≠ 5 08; then

21: return 0=B

22: end if

23: end for

24: end if

25: return 5 08;

depth limit of 15 was set. All duplicates were removed and then

oversampling of the smaller class and downsampling of the larger

class were used to achieve a balanced set of examples.

We observed that the strategy above leads to sub-optimal scor-

ing. In particular, a path that eventually fails may include several

successful subgoals, but the strategy will assign all such goal/rule

pairs a score of 0, since they were used on a path that was ultimately

unsuccessful due to a completely unrelated goal. Thus we propose a

new strategy for producing training examples: if subgoal 6 is even-

tually proven after applying rule A , then example (6, A, 1) is created,

otherwise, (6, A, 0) is created. We note that identifying these exam-

ples while backward-chaining is non-trivial, and requires additional

bookkeeping.

We note that for the random KBs we created a branching factor

of 3 to 4 was typical, and a cutoff depth of 15 could lead to searches

that took several minutes to complete. To support faster generation

of training data we changed the depth limit to 5 after 50, 000 nodes

were expanded. Since the algorithm randomly selects which subgoal

to prove and which rule to prove it, these cutoffs could often prevent

the search from completing successfully. Therefore, when the search

fails to find even one successful path, we restart up to two times.

3.4 Control

Our modified backward-chaining algorithm is shown in Algo-

rithm 1. Like the standard algorithm, it performs a depth-first search

by selecting a goal and a rule to achieve. In particular, it considers

all subgoals (as opposed to just the first) and all rules with heads

that unify with these subgoals. Each such (6, A) pair of goal 6 and

An Evaluation of Strategies to Train More Efficient Backward-Chaining Reasoners K-CAP ’23, December 5–7, 2023, Pensacola, FL, USA

unifying rule A is then scored by the meta-reasoning model and the

options are sorted by descending score (line 7). Thus, the highest

scoring (6, A) is used to continue the search, and if backtracking is

required, the next highest will be attempted. A new set of subogals

is formed by removing 6 from the original goals and preprending

the body of A . The algorithm is then called recursively. To avoid

infinite search, we use a cutoff limit"0G�4?Cℎ; in our experiments

this was set to 10.

Our control strategy has additional points of interest. First, be-

cause our strategy can consider any current subgoal at any point

in the tree, the potential branching factor is much larger than that

of standard backward-chaining. Furthermore, if rules with more

than one body atom are regularly applied, this branching factor can

continue to grow at deeper levels. In the rare case where the model

is unable to choose the right rules early on, the search space can

expand rapidly. To limit this, we have instituted a �0;;102:�4?Cℎ,

such that the algorithm will switch over to a standard backward-

chaining search once the depth is reached (line 15). In our experi-

ments, this depth is set to 5.

We have also experimented with pruning (6, A) pairs that appear

to be very unlikely to be useful. If (2>A4 (6, A) < "8=(2>A4 then the

path is immediately terminated (line 9). Note, since we are process-

ing (6, A) pairs in descending order of score, once we encounter

one pair that is below the threshold, all remaining pairs will also

be below the threshold. When we wish to compare this strategy to

one without minimum rule scoring, we simply set the "8=(2>A4

threshold to 0; this will consider all matching (6, A) pairs.

4 EVALUATION

We conduct experiments to compare the different vectorization

strategies and to compare the impact of minimum scoring on per-

formance. We evaluate the different system configurations on three

different sizes of randomly generated KBs: 100 statements, 150

statements and 200 statements. For each configuration, we run 100

queries that are distinct from the queries used to generate training

data.

When generating random KBs, we use a probability distribution

to determine the form of each statement: there is a 80% chance of a

fact, and 20% chance of a rule. The body of a rule can have one to

four atoms, where shorter bodies are more likely. We use the same

randomly generated vocabulary for all three KBs: 10 predicates

with arities from one to four, 10 variables, and 100 constants. The

properties of our randomKBs are given in Table 1. Since our training

and test queries are extracted from the facts the can be derived from

the KB, we report the number of inferred facts, as determined by a

forward-chaining process to compute the deductive closure.

Statements Non-inferred Facts Inferred Facts

100 82 11

150 122 718

200 161 468

Table 1: Properties of the three KBs evaluated

We trained the unification embeddings using the vocabulary of

the 150 statement KB and randomly generated atoms. Since we

Name Embedding MinScore

Standard n/a n/a

Unification Unification 0.00

3-term-walk 3-term-walk 0.00

Chain-based Chain-based 0.00

Unification-Min-Score Unification 0.01

Chain-based-Min-Score Chain-based 0.01

Table 2: The five configurations evaluated

used the same vocabulary for the other two KBs, this embedding

can be applied to the other KBs without having to map them into

the vocabulary.

We generated training data and trained each meta-reasoner as

described in Section 3.3. The number of goal/rule examples prior to

balancing for each KB was 639, 5181, and 3622. For consistency, we

used the same simple network architecture for all representation

strategies: a two-layer network with sigmoid activation functions

(see Section 3.3 for details). Each representation strategywas trained

for 1000 epochs on each KB. We note that the term-walk strategy

in particular takes an order of magnitude longer to train than the

other strategies.2 This is due to the larger number of parameters

of the model: even with our small vocabulary of 10 predicates, 10

variables and 100 constants, a rule requires a vector with 45387

dimensions!3 In contrast, the unification and chain-based strate-

gies can represent the same rule in 40 dimensions. The different

models achieve different training losses: for example, with the 100

statement KB, the term-walk representation gets to a training loss

of below 0.1 in 200 epochs, and eventually reaches below 0.05. We

believe the significantly larger number of parameters is what allows

it to achieve this, but we also suspect that the model is severely

overfitting (more on that issue later). The chain-based and unifi-

cation approaches are only able to achieve training losses of near

0.25. This suggests that improvements can be achieved by using

network architectures with larger layers and/or more layers.

In order to test each configuration, we ran 100 test queries using

the algorithm described in Section 3.4. We evaluated each rep-

resentation with and without a "8=(2>A4 cutoff of 0.1, We used

"0G�4?Cℎ = 10 and �0;;102:�4?Cℎ = 5 for all configurations. The

standard reasoner is a backward-chaining reasoner that always

evaluates subgoals from left-to-right and matches rules from top to

bottom (i.e., the same evaluation order that Prolog uses). Of course,

this configuration did not have a fallback depth.

Our first observation is that both chain-based and 3-term-walk

failed on many queries when the"8=(2>A4 cutoff was used. When

this occurred they often terminated search with much fewer nodes

explored than otherwise, but given that they would fail to correctly

answer a query, we excluded these configurations from further

consideration. We hypothesize that these failures are the result

of overfitting. The queries failed because useful paths received

scores under the"8=(2>A4 value of 0.01, meaning the model was

(mistakenly) very confident that they would not lead to solutions,

2It takes nearly 7 hours on a laptop with a 2.10 GHz Intel processor, an NVIDIA
GeoForce MX550 GPU and 32GB of memory to train a 3-term-walk model on our
simple network for 1000 epochs.
3The calculation accounts for three logical symbols, in addition to predicates, variables,
and constants for a total vocabulary size of 123.

K-CAP ’23, December 5–7, 2023, Pensacola, FL, USA Jia et al.

The fact In the case of 3-term-walk, this hypothesis is supported

by the fact that the model has many more parameters and that the

training loss reached diminishing returns far more quickly than the

other representations.

In what follows, we generally compare five configurations: Stan-

dard, Unification, 3-term-walk, Chain-based, and Unification-Min-

Score; we include the Chain-based-Min-Score configuration for the

the 150 statement KB, as it did not fail on any answerable query.

These configurations are summarized in Table 2.

An overall summary of the results is displayed in Figure 2. This

chart plots the average number of nodes explored by each configu-

ration on each KB. The error bars indicate standard deviations over

all of the queries. Test queries that the standard reasoner failed to

answer due to the maximum depth limit were excluded from these

results; there are 95, 100, and 94 successful queries for the 100, 150,

and 200 statement KBs, respectively. We additionally note that for

the 200 statement KB, both the chain-based and the 3-term-walk

approaches timed out on one query—although it was a different

query in each case—that the unification and standard reasoner suc-

cessfully answered. There are a few general observations from this

graph: first all meta-reasoning approaches are able to do much

better than the standard reasoner for the 100 statement KB. The

larger KBs require much larger searches for all reasoners, and when

just averages are considered, the meta-reasoners appear to perform

worse than the standard reasoner. We also see large standard de-

viations, however, and when we look more closely at the data, a

different picture emerges.

Figure 3 shows the median number of nodes explored for each

configuration on each KB. Here it is clearly shown that for typical

queries, all of the trained meta-reasoners are able to reduce the

search by several orders of magnitude. This means that the large

averages are due to outliers. For this reason, we now analyze the

data by looking at detailed comparisons across each KB.

First, consider the 100 statement KB. Table 3 shows the mean

nodes expanded, median nodes expanded, number of queries better

than the standard reasoner and number of queries worse than

the standard reasoner. All four meta-reasoning system explore on

average ≈ 2.8 nodes, which is 4G fewer than the number of nodes

explored by the standard reasoner. Chain-based and 3-term-walk

performed slightly better than the unification strategy (both with

and without minimum scoring): there were three queries where

they searched four nodes instead of six. Each of the meta-reasoning

system performed better than the baseline on 28 (out of 100) queries.

None of them performedworse on any queries. We note that this KB

only had 11 additional facts in its deductive closure, and as a result

there could be significant similarities between the training and test

queries. In such a case, all of the trained models would be able to

become almost perfect reasoners, with little to no backtracking,

Now, consider the results of the more complex 150 statement

KB as displayed in Table 4. This reinforces the observation from

above that although the means of each the meta-reasoners was

worse than the standard reasoner, the medians are significantly

better. The standard reasoner had a median of 144, 366 while the

other reasoners have medians of 4 or 5. This means that for most

queries, the meta-reasoners were able to find solutions with very

little search. However, because these systems consider many more

possible paths, when themeta-reasonermakes incorrect predictions,

the search can increase significantly, greatly increasing the mean.

All of the meta-reasoners had at least one query that explored

over 13 million nodes, while the standard reasoner’s maximum

was only 899, 922. We note that in terms of nodes explored, on

average, without the min-score cutoff the unification approach

performs best, followed by the 3-term-walk and then the chain-

based method. With the min-score cutoff, however, the mean nodes

explored are drastically reduced to significantly fewer than the

standard reasoner; here, the chain-based approach fared better than

the unification approach. When considering the number of queries

better or worse than the standard reasoner, however, we observe a

trade-off: although the Chain-based-Min-Score approach solves 66

queries faster compared to Unification-Min-Score’s 62, the former

also solves 17 queries slower in comparison to the latter’s 10. These

results are followed by the approaches that do not use the Min-

Score cutoff: Unification with 50 queries better than the standard,

3-term-walk with 51, and and Chain-based with 45.

Finally, we look at the 200 statement KB, as displayed in Table 5,

Due to the random nature of the KB, despite having more rules and

facts than the 150 statement KB, it had few inferred facts (468 v. 718,

see Table 1), Despite being a larger KB, queries can be answered

more quickly. For example, the standard reasoner had a mean of

≈ 62, 000 nodes, while the mean was nearly 4G as many on the

smaller 150 statement KB. We attribute this in part to random

chance ordering the rules and facts in a fairly efficient way for the

training queries that were selected. The most notable observation

is that similar to the experiment for the 150 statement KB, all of

the meta-reasoners had a significantly better number of median

nodes explored than the standard: 4 vs. over 32,000. These results

appear to be the least ambiguous: the unification approach appears

decisively superior to the 3-term-walk and chain-based approach

in terms of mean nodes explored, outperforming even the standard.

It had only one query that performed worse than the standard, and

with the Min-Score cutoff, the approach performed even better,

with a five-fold decrease in the mean nodes explored and with zero

queries that performed worse than the standard. By contrast, the

3-term-walk and chain-based results are more comparable to their

performance on the 150 statement KB, with mean node counts in

the millions and a more significant number of queries on which

they performed worse than the standard.

In summary, the data shows that there are significant opportu-

nities for meta-reasoners to make search for query answers more

efficient, often reducing the number of nodes explored by several

orders of magnitude. This effect is more likely with larger KBs, but

there are factors other than the size of a KB that play a role as well.

Unfortunately, there are occasional outliers that result in extremely

poor performance, and these outliers can greatly inflate the average

number of nodes explored. Future work is needed to more closely

examine these outliers and design solutions that can eliminate or

minimize them.

Of the approaches we evaluated, Unification-Min-Score is the

most promising. It improves over standard on more queries than the

other systems. 3-term-walk is worse than unification, but generally

better than chain-based. However, training time is excessive and

there is potential of overfitting. Furthermore, our goal is to eventu-

ally be able to answer queries over KBs with billions of statements

and millions of constants. Since 3-term-walk produces vectors with

K-CAP ’23, December 5–7, 2023, Pensacola, FL, USA Jia et al.

Embedding Method Mean Nodes Median Nodes Queries Better Queries Worse

Standard 244,366.5 146368 N/A N/A

Unification 2,895,708.2 4 50 19

3-term-walk 3,904,373.5 4 51 18

Chain-based 4,554,967.1 6 45 38

Unification-Min-Score 94,388.2 4 62 7

Chain-based-Min-Score 19,863.6 6 66 17

Table 4: Performance of the guided reasoner for the 150 rule KB

Embedding Method Mean Nodes Median Nodes Queries Better Queries Worse

Standard 62,235.8 32628.5 N/A N/A

Unification 1,002.6 4 59 1

3-term-walk 1,177,214.1 4 57 15

Chain-based 1,658,454.2 4 58 6

Unification-Min-Score 187.1 4 60 0

Table 5: Performance of the guided reasoner for the 200 rule KB

There are three sub-problems: representation, training, and control.

We have evaluated three different representation strategies and con-

sidered two variations of control. By evaluating the configurations

on KBs of three different sizes, we have determined that the trained

meta-reasoners are often able to outperform a baseline backward-

chaining reasoner, but that there are sometimes a small number

of outlier queries that are several orders of magnitude worse. Us-

ing a unification approach for vectorizing symbolic statements is

promising, often showing improvements on more queries than the

3-term-walk and chain-based alternatives. We suggest that this

difference comes from the nature of the backward-chaining algo-

rithm, whose success or failure is determined by whether atoms can

unify with one another. Furthermore, this appears to be the only

vectorization approach that can consistently benefit from using a

minimum score threshold to prune some paths without search. For

the other representation strategies, it can incorrectly prune useful

paths, leading to failed queries.

There are several avenues to continue this work. Given the vari-

ability across KBs, it is important to evaluate our approach on more

KBs, and to look not just at random KBs, but also real-world KBs.

Questions remain as to how best address the outliers: can these

be reduced by adding more or larger layers to the neural network,

or will changes to the control strategy be needed? One factor we

mentioned is the search can have a much larger branching fac-

tor than that of a standard backward-chaining reasoner because

instead of considering just one goal at any step, any goal can be

considered. This suggests that an improvement might be possible

by first evaluating and sorting the goals. Other important topics for

future work include handling queries with multiple answers and

transferring learning from one or more KBs to a new KB.

ACKNOWLEDGMENTS

This work was conducted as part of an REU site supported by the

National Science Foundation under Grant No. CNS- 2051037.

REFERENCES
[1] Alex Arnold and Jeff Heflin. 2022. Learning a More Efficient Backward-Chaining

Reasoner. In Tenth Annual Conference on Advances in Cognitive Systems (ACS-
2022). Cognitive Systems Foundation, Arlington, VA, 12 pages.

[2] Maxwell Crouse, Ibrahim Abdelaziz, Bassem Makni, Spencer Whitehead, Cristina
Cornelio, Pavan Kapanipathi, Kavitha Srinivas, Veronika Thost, Michael Wit-
brock, and Achille Fokoue. 2021. A Deep Reinforcement Learning Approach to
First-Order Logic Theorem Proving. 35th AAAI Conference on Artificial Intelli-
gence, AAAI 2021 7 (2021), 6279–6287. arXiv:1911.02065

[3] Jan Jakubův and Josef Urban. 2017. ENIGMA: Efficient Learning-Based Infer-
ence Guiding Machine. In Intelligent Computer Mathematics, Herman Geuvers,
Matthew England, Osman Hasan, Florian Rabe, and Olaf Teschke (Eds.). Springer
International Publishing, Cham, 292–302.

[4] Mehran Kazemi, Najoung Kim, Deepti Bhatia, Xin Xu, and Deepak Ramachandran.
2023. LAMBADA: Backward Chaining for Automated Reasoning in Natural
Language. arXiv:2212.13894 [cs.AI]

[5] Boonserm Kijsirikul and Thanupol Lerdlamnaochai. 2016. First-Order Logical
Neural Networks. International Journal of Hybrid Intelligent Systems 2, 4 (2016),
253–267. https://doi.org/10.3233/his-2005-2403

[6] Natasha Noy, Yuqing Gao, Anshu N. Jain, Anantha Narayanan, Alan Patterson,
and Jamie Taylor. 2019. Industry-scale knowledge graphs. Commun. ACM 62
(2019), 36 – 43. https://api.semanticscholar.org/CorpusID:153314008

[7] Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart, and Pascal Hitzler. 2021.
Neuro-Symbolic Artificial Intelligence: Current Trends. arXiv:2105.05330 [cs.AI]

[8] Iman Sharifi, Mustafa Yildirim, and Saber Fallah. 2023. Towards Safe Autonomous
Driving Policies using a Neuro-Symbolic Deep Reinforcement Learning Approach.
arXiv:2307.01316 [cs.RO]

[9] Amit Sheth, Manas Gaur, Kaushik Roy, Revathy Venkataraman, and Vedant
Khandelwal. 2022. Process Knowledge-Infused AI: Toward User-Level Explain-
ability, Interpretability, and Safety. IEEE Internet Computing 26, 5 (2022), 76–84.
https://doi.org/10.1109/MIC.2022.3182349

[10] Amit Sheth, Kaushik Roy, and Manas Gaur. 2023. Neurosymbolic AI- Why, What,
and How. arXiv preprint arXiv:2305.00813 (2023).

[11] Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng. 2017. Premise Selection for
Theorem Proving by Deep Graph Embedding. In Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Systems (Long Beach, Califor-
nia, USA) (NIPS’17). Curran Associates Inc., Red Hook, NY, USA, 2783–2793.

[12] Nathaniel Weir and Benjamin Van Durme. 2023. Dynamic Generation
of Grounded Logical Explanations in a Neuro-Symbolic Expert System.
arXiv:2209.07662 [cs.CL]

Received 4 September 2023

