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ABSTRACT

Zero-Knowledge proofs are a cryptographic technique to reveal
knowledge of information without revealing the information it-
self, thus enabling systems optimally to mix privacy and trans-
parency, and, where needed, regulatability. Application domains
include health and other enterprise data, financial systems such
as central-bank digital currencies, and performance enhancement
in blockchain systems. The challenge of zero-knowledge proofs
is that, although they are computationally easy to verify, they are
computationally hard to produce. This paper examines the scala-
bility limits of leading zero-knowledge algorithms and addresses
the use of parallel architectures to meet performance demands of
applications.
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1 INTRODUCTION

The cryptograhic theory of zero-knowledge(ZK)[17] arose in the
1980s and led to a 2012 Turing Award for Goldwasser and Micali.
ZK-proofs employ the mathematics of cryptography to enable one
party (P, the prover) to prove to another party (V, the verifier) the
P knows some particular secret (a fact, data item, etc.) without
P revealing that secret to V. Practical application of this concept
grew rapidly with the rise of blockchain technology, initially for
privacy-focused blockchains such as Zcash([2], and several others
that followed. A more recent application is blockchain speedup us-
ing ZK techniques to aggregate a large number of transactions into
one, a process called a ZK-rollup. A third application domain is to
apply ZK and blockchain technology to large reports and databases
so that applications can commit cryptographically to data that are
kept secret while proving that those data have certain properties,
such as compliance with regulatory constraints or being internally
consistent with some other set of data to which a cryptographic
commitment exists.

That third application domain opens a powerful new concept
of information management in which privacy, transparency, and
compliance can be achieved with minimal compromise. We elab-
orate on this in Section 2. These applications generate a need to
produce ZK-proofs pertaining to large-scale executions over large
data volumes, which presents a challenge since although ZK-proofs
are relatively easy to verify, they are computationally hard to gen-
erate. This demand for scalability has been addressed in part by
new algorithms (e.g., [16]), use of specialized hardware (e.g., [30]),
and use of commodity parallel architectures (e.g., [20, 21, 29]), but
significant limitations remain.

After exploring the application domain in Section 2, and pro-
viding a fuller introduction to ZK in Section 3, we overview ZK
proving systems in Section 4 followed by our benchmarking results
and analysis in Section 5. Section 6 discusses the use of commodity
parallel architectures to accelerate ZK-proofs so that they can scale
up to the level of emerging applications.
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2 APPLICATION DOMAIN

Traditional databases serve as an official record of enterprise infor-
mation, but the degree to which they are truly “official” is based on
trust of the owner/administrator of the database. Some commercial
database vendors have incorporated hash-protected, immutable
data in append-only tables. Here, immutability and privacy still
rests in part on some degree of centralized trust. Such trust is
often reasonable in enterprise settings (thus the frequent use of
permissioned blockchains), but becomes problematic for public data
stores (such as public blockchains), multi-enterprise data (where a
trust/contract-based business relationship exists, but participants
fear that future circumstances like a product recall might stress that
trust to the breaking point), and global digital-currency applications
where users may not trust the currency provider with details of
their transaction data.

For these reasons, even blockchain-enhanced versions of tradi-
tional database platforms may require too much trust. Privacy is
often of paramount concern. In business relationships, certain data
may be considered proprietary (e.g., pricing in a supply chain) and
must be disclosed selectively. Public-facing systems face stricter
privacy challenges that go beyond user preferences to include man-
dates by governments. Privacy in a public setting is often viewed
as a fundamental right with individuals reasonably valuing a right
to privacy even if they “have nothing to hide”

Applications of ZK technology can be divided into three classes:

o The first, and oldest, is private transactions within a public
blockchain. Whereas all transactions on a public blockchain
like Ethereum or Bitcoin are public, chains such as Zcash
enable the option of privacy. In public blockchains, if person
A knows person B’s wallet address, then A knows B’s entire
financial history on-chain. ZK-based blockchains allow for
secret transactions, thus enhancing privacy. Such chains
have raised concerns among government regulators, but
it is possible to design such private chains with ZK-based
compliance tools to alleviate those concerns.

e The second relates to blockchain speedup, where ZK tech-
niques can be used to aggregate a large number of transac-
tions into one, a process called a ZK-rollup. Aside from the
single node performing aggregation, all other nodes then
need only validate a single proof of that aggregation. This
results in a significant performance enhancement since that
one validation is less costly than re-executing full set of
transactions. There are other ZK applications in blockchain
infrastructure including state-proofs for light clients and
cross-chain bridges[5, 18], and proof-of-storage in decentral-
ized storage services[26].

o The third is the ability to provide proofs of general facts about
secret information. Those proofs can then be verified at low
computational cost by any node. Here, information can be
kept secret, but desired metadata can be securely published.
This is a powerful tool that can be applied in identity proofs,
accounting systems, health records, regulatory compliance in
financial applications, and global-scale central-bank digital
currencies.

The range of real-world uses for this third class of application is
virtually limitless. We give three examples here:
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(1) A simple application (to introduce the concept) is proof-of-
age for bars and other age-controlled venues without a need
to reveal exact date-of-birth, drivers’ license number, etc.

(2) A more complex application allows proof that corporate tax

returns, government-mandated regulatory reports, etc., all

come from the same set of accounting records. Thus, only
the base ledger need be audited in the traditional manner,
while all reports arising from that ledger can be audited via

ZK and related technologies, including Merkle proofs[23]. A

similar scenario exists around health records.

Central-bank digital currencies (CBDCs) are gaining inter-

est globally. China has begun deployment of its centrally-

controlled digital e-CNY. Open societies such as the U.S.

would most certainly seek a much less centralized frame-

work, but full decentralization would raise risks regarding
regulation and control of monetary policy. Nearly all of the

G20 nations are taking some action in this regard. Prototypes

are being developed in industry and government-led part-

nerships like Project Hamilton[13]. For digital currencies,

ZK-proofs make it possible to have transactions with the

same privacy as cash, while also proving compliance with

regulations such as sanctions. They also serve as a means for

a stablecoin issuer to provide proof of reserves and compli-

ance with other regulatory requirements, while preserving

privacy regarding the details of those reserves.

—
SY)
=

The second and third examples result in very large ZK-proofs and
large volumes of medium-size ZK-proofs, respectively. The feasibil-
ity of these applications depends, respectively, upon cost-effective
frameworks to generate large proofs and resource-efficient frame-
works that allow high parallelism in proof generation.

With those needs in mind, we focus not on special-purpose
hardware as in [30], but rather on high-performance commodity
CPUs and GPUs. Our application-based motivation also guides our
choice of algorithms, a matter we discuss in more detail in Section 4.

3 A BRIEF INTRODUCTION TO ZERO
KNOWLEDGE

As we noted in the introduction, ZK-proofs employ the mathemat-
ics of cryptography to enable one party (P, prover) to prove to
another party (V, verifier) that P knows some particular secret (a
fact, data item, etc.) without P revealing that secret to V. At that
point, we relied on the intuitive idea of proving “some particular
secret,” but indeed ZK can be used to show P knows the input (a
witness) such that a given program generates a particular output.
That given program must be compiled into a circuit representing
its execution. A circuit is a computational structure of gates with
inputs and outputs and wires connecting the output of a gate to the
input of others. These circuits are then transformed into polyno-
mials that form the basis for the proving system. For details see
[4, 25, 27]. The most intuitive view of a ZK proving system is one in
which the verifier interacts with the prover, presenting a series of
challenges that, when met by the prover, provides the verifier con-
fidence in the prover that increases with each iteration. Interactive
proofs, however, are not only slow, but also fail to provide a means
for public verification. Removing the interaction adds complexity
both in terms of the proof-generation and verification time (which
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depends on the proof size). To keep verification time constant, both
the prover and verifier must maintain secrets that are not part of the
published proof. Those secrets depend on an initial trusted setup of
the proof system. The widely used, but older, Groth16[19] system
requires a new setup for each circuit. The newer PlonK[16] system
requires just one setup (universal trusted setup) that can then be
reused across any set of circuits. Others in that category include
Marlin[7] and Sonic[22].

The setup procedure is an elaborate process involving multi-
ple independent parties selecting a secret random value that they
contribute to the “ceremony” and then destroy[24]. The setup is
designed such that as long as one trusts that at least one member
in the setup has securely destroyed their contributed value, then
the setup can be provably trusted.

4 ZK-PROVING SYSTEMS

There are a wide variety of ZK proving systems [27]. ZK-proof
systems vary in:

o Proof size: constant for the Groth16 algorithm and the PlonK
variants we are studying, but other algorithms have proof
sizes that depend on the circuit (program execution code)
over which the proof is being computed.

e Prover-secret size: Linear in circuit size for Groth16 algo-
rithm and the PlonK variants, but constant for some others.

o Verification time: Constant for the Groth16 algorithm and
the PlonK variants, but usually logarithmic in circuit size for
others (though some are linear).

o Degree of setup required: While some algorithms require no
setup[1], PlonK requires a single initial trusted setup, and
Groth16 requires a separate setup for each circuit.

e Operation set: Groth16 operates over executions expressed
as circuits with addition and multiplication operations, as
does PlonK. TurboPLONK][15] reduces the number of gates
in a circuit by allowing more operation types than just ad-
dition and multiplication. The added operations could be
simple as exemplified by an exclusive OR operation(XOR), or
highly complex, as exemplified by operations that perform
arithmetic over elliptic curves (which are used in many cryp-
tographic hash functions). Reducing the circuit size promises
faster proofs since the prover must read the entire circuit.

e Supplemental data structures: UltraPLONK, like TurboPLONK,
allows operations beyond addition and multiplication. Be-
yond just computational operations, UltraPLONK includes
a table-lookup operation that operates in the style of a key-
value store. These tables are called plookup tables[14].

The tradeoffs among ZK proving systems are not as clear as the
above list might suggest. Trading added memory requirements for
improving performance may make sense given present-day mem-
ory capacity. But for sizable proofs, memory consumption is large
enough not only to exceed the total available in the system, but also
to inhibit effective parallelization of proof generation. An impor-
tant first step in the creation of highly scalable proof-generation
algorithms is to understand these tradeofts.

In earlier work[28], our research group focused on the Groth16
algorithm and its execution on a modern GPU. While GPUs offer a
high degree of parallelism, memory became a barrier at only 220
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constraints'. The word “only” here might seem to be a strange
characterization of 22° until one realizes that each gate represents
a simple arithmetic operation and modern applications easily reach
higher numbers of constraints that go well beyond 23°. The appli-
cations we envisioned in Section 2 will result in further complexity
growth.

Groth’s constant verification time is attractive, but the per-circuit
setup overhead makes it less desirable than the PlonK variants. For
the scale of our applications, the one initial setup for PlonK is
quite acceptable. The strongest factor in our focus on PlonK is the
variants that use powerful techniques to reduce the circuit size and
thus offer the promise of better overall performance. But since that
promise comes at the price of additional memory consumption,
the intuition that PlonK should perform best is not an obvious
conclusion.

5 BENCHMARKING ZK ALGORITHMS

We have run an extensive study of Groth16, PlonK, TurboPLONK,
and UltraPLONK on a CPU[10].2 This study forms a basis for our
evaluation of the PlonK family on a GPU, further plans for which
are discussed in Section 6.

5.1 Benchmarking Groth16

Using a more powerful platform than that in [28], we evaluated
Groth16 in terms of (1) parameter generation, (2) preprocessing
generation, (3) CPU proof generation, and (4) GPU proof genera-
tion. Our platform is the following bare-metal machine instantiated
on Oracle Cloud: 64-core Intel(R) Xeon(R) Platinum 8358 CPU @
2.60GHz, NVIDIA A10 (Ampere) with 24 GB GDDRé, NVIDIA P100
(Pascal) with 16 GB GDDR6, 1024 GB DDR4 DRAM, 2 TB SSD.
Parameter generation, performed entirely on the CPU, describes
the trusted-setup phase that produces the proving and verification
keys. In addition to generating the parameters, execution on the
GPU requires an additional preprocessing step that precomputes
multiples of the base points (preprocessing generation). The pre-
computation can be reused over multiple multi-scalar multiplication
(MSM) steps (described below) with different parameters, saving
enough work to justify the precomputation. The parameter and
preprocessing phase is done entirely on the CPU. Proof generation
describes generating ZK-proofs on CPUs and GPUs, involving MSM
operations over elliptic curves and fast Fourier transforms (FFTs)
over large fields. MSM requires multiplications over large vectors
and dominates 75-80% of the proof-generation time. FFTs require
complex polynomial calculations accounting for about 10-15% of
the time. Finally, witness-generation consumes the remaining time.
We report the main results here, with full details in [10]. All
benchmarks were run using the MNT4_753 pairing-friendly elliptic
curve over a finite field. The MSMs were executed on a single GPU,
while the non-blocking FFTs were performed on the CPU in parallel.
The maximum constraint size for a program was 22> constraints. A
MNT4_753 curve field element is 753 bits in size, which is the main
reason why computations are consumptive of processing power.

1Following custom, we reference the number of constraints in the rank-1 constraint
system, which corresponds to the number of gates in the corresponding circuit.

2We show the most relevant data here and refer to https://github.com/TalDerei/Masters-
Research/blob/main/Groth16-and-Plonk-Raw-Benchmarks.pdf for the full set of raw
benchmark data.
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Execution Time vs. Constraints
B Execution Time (Parameters) [l Execution Time (Preprocessing)
25000
20000

15000 +

10000 +

Execution Time (s)

5000

-
2M5 2M6  2M7  2M8 2M9 24200 221 2A22 2723 2724 2°25

Constraints

Figure 1: Groth16 CPU performance on parameter and pre-
processing generation as a function of number of constraints.
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Figure 2: Groth16 memory consumption for parameter and
preprocessing generation as a function of number of con-
straints.

Figures 1 and 2 show results for parameter and preprocessing
generation as a function of the number of constraints. Execution
time grows exponentially, but memory requirements grow super
exponentially, driven by the size of the preprocessing file. CPU uti-
lization was at 100% in all runs. The primary concern for practicality
here is memory rather than runtime since prepreprocessing is done
just once, but the files produced need to be loaded into memory
every time we run the proving system. With further research, we
seek to flatten this curve so that, despite the asymptotics, the range
of applicability can extend several powers of 2 further.

We turn next to proof generation in Figures 3 through 5. Here,
we compare CPU and GPU performance on our platform, both
overall and broken down for MSM and FFT computations.

The results show that the GPU-based prover executes roughly
two times faster than the CPU-based prover at the point where
we hit the limits of our platform. Additionally, execution time and
memory utilization grow log-linearly with respect to the number
of constraints in the program. For programs larger than 2'° con-
straints, the P100’s 16 GB of GPU VRAM is maxed out, which
induces a spike in the system’s main memory demands. Since the
preprocessed parameter file is loaded into main memory, the pa-
rameters are then paged between host and device memory. Moving
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Figure 3: Groth16 CPU and GPU (A10) performance on proof
generation as a function of number of constraints.

MSM and FFT Execution Time vs. Constraints
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Figure 4: Groth16 CPU and GPU (A10) execution time for
multi-scalar multiplication and fast Fourier transforms as a
function of number of constraints.
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Figure 5: Groth16 system memory consumption for proof
generation as a function of number of constraints, shown
for CPU prover, GPU prover (P100), and GPU VRAM.

from the P100 to the more powerful A10 GPU allowed us to extend
these memory figures to 2%° constraints, where the GPU prover
maxes out the 24 GB of VRAM and consumes around 900 GB of
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system memory. The MSMs and FFTs execute in parallel making
it challenging to decouple their CPU and memory utilizations. On
the CPU, the MSM dominates with 80% of the prover runtime, FFTs
consume 10-15%, and witness generation consumes about 5%. On
the GPU, the MSM and FFT runtimes are closer together since
they execute in parallel. The results ultimately indicate that prover
tradeoffs depend on the computing platform. CPU-based provers
use a smaller parameter file and less system memory, but execute
slower. GPU-based provers use a larger preprocessed parameter
file requiring more system memory and VRAM, but execute faster.
While the exact results we show depend on the platform used,
minor changes to the platform would not affect our results signifi-
cantly. However, parallel GPUs remain an interesting domain for
design studies. They offer both more performance and larger GPU
memory capacities (40 GB on the NVIDIA A100). The size of the
elliptic curve affects prover runtime and raises the issue of the opti-
mal balance between security and performance. The elliptic curve
cannot be small enough to allow successful brute force attacks, but
cannot be too large and unnecessarily reduce performance.

5.2 Benchmarking PlonK

In this section, we consider the original PlonK algorithm, with
variants deferred to the next subsection. The results we show here
are for the following bare-metal machine instantiated on Oracle
Cloud: 32-core Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz
Base Frequency, 1024 GB DDR4 DRAM, 128 GB SSD. Since compiler
optimization settings represent a tradeoff between memory and
speed, we ran our tests in (1) normal (unoptimized) mode, (2) ASM
(assembly instructions) mode, and (3) Full (-03) mode with both
assembly instructions and clang compiler optimizations enabled.

We conducted benchmarks that fall into three distinct workloads:
arithmetic, polynomial, and prover. The arithmetic benchmarks
measure the performance of finite-field arithmetic and elliptic-
curve operations over the bn254 elliptic curve. The polynomial
benchmarks test the execution time and memory efficiency of the
MSM and FFT. The prover benchmarks measured the performance
of the entire proof generation process. Full details of our results
are in [11]. Here, we show results only for the prover, since those
data show where PlonK hits feasibility limits on our platform. Fig-
ures 6 and 7 show that the performance barrier for our hardware
platform arises at 22° constraints, at which point proof generation
took roughly 100 seconds (using full optimization) with 255 GB of
system memory used. Executing a single MSM for 226 constraints,
of which PlonK computes multiple in generating a proof, took 6.7
seconds and consumed 46 GB of memory. The execution-time curve
shows that selecting the proper optimization tradeoffs is clearly
valuable in pushing the (still log-linear) curve rightward.

We note that GPU data is still a work-in-progress, pending com-
pletion of our project to port PlonK to a GPU. Those results are
thus the subject of future work. The matter of porting PlonK to a
GPU is nontrivial as we explain in Section 6.

5.3 Benchmarking TurboPLONK and UtraPlonk

We discuss our results using the same CPU platform as in the pre-
vious section, but focus now on the tradeoffs among members of

VDBS 2023, June 23, 2023, Seattle, WA, USA

Proof Generation vs. Constraints
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Figure 6: PlonK performance on proof generation as a func-
tion of number of constraints.

Prover Memory Consumption vs. Constraints
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Figure 7: PlonK performance on memory consumption as a
function of number of constraints.

the PlonK family. As we noted in Section 4, TurboPLONK[15] gen-
eralizes the constraint system by introducing custom gates that
represent complicated statements, allowing the same computation
to be expressed in a circuit with fewer gates. Custom gates repre-
sent more complex operations in a single gate, reducing the number
of total gates in the circuit. For instance, cryptographic primitives
like a fixed-base elliptic-curve scalar-multiplication, elliptic-curve
point arithmetic, and bitwise XOR and AND can be expressed and
evaluated with a single custom gate®. Consequently, it uses an ad-
ditional wire, requiring an additional commitment to be computed.
Incorporation of more operations comes at a price, however, since
the polynomials produced from a circuit are more complex as they
must be able to encode selection of the (now several) operations.
UltraPLONK][14] extends this construction with precomputed
lookup tables, which represent efficient key-value mappings. This
enables a prover to prove that a witness is in a table instead of prov-
ing the computation itself. Said differently, by storing precomputed
values, the circuit must encode only a table lookup rather than the

3This is a more substantial reduction in the number of gates than it might initially
appear. These are not standard int computations, but rather are performed over large
finite fields whose elements do not fit in an int nor a long,
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Witness Generation vs. Constraints
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Figure 8: Comparing the PlonK family in performance on
the witness-generation component of ZK-proof generation.

collection of gates and wires that would represent a re-execution of
the computation. This results in a reduction in the circuit size. The
protocol preprocesses a table T and a lookup operation that checks
if a value x is in T. Lookup tables in this context are commonly
used to avoid expensive bit-decompositions for bitwise operations.
For example, rather than computing an XOR operation bit by bit,
you can instead encode the 8-bit result in the table and perform a
lookup operation. Bit decompositions are expensive because each
bit is represented as a finite field element.

5.3.1 Performance Using Only Addition and Multiplication Gates.
We first ran experiments on all three versions using only the same
operations as in PlonK, addition and multiplication. This obviously
wastes the entire set of advantages of TurboPLONK and Ultra-
PLONK but serves the purpose of allowing us to gain insight into
the overhead imposed by their additional infrastructure. We then
ran experiments to test the practical benefits of the enhancements
in TurboPLONK and UltraPLONK.

The benchmark consists of (1) constructing the arithmetic circuit,
(2) calculating witness polynomials, (3) computing the proving key,
(4) computing the verifier key, (5) generating the proof, and (6)
verifying the proof. In [12], we break down costs at a detailed
level, but for space consideration here, we show only results for
witness generation (Figure 8) and proof generation (Figure 9) as
they represent extremes in differentiating performance.

TurboPLONK and UltraPLONK exhibit worse performance be-
cause they are structured to optimize performance in the presence
of custom gates, which were not used here. In general, performance
and memory are proportional to the number of gates in the circuit.

For 2%° constraints, generating a TurboPLONK proof (running
at roughly 138 seconds) is 37% slower and UltraPLONK (running at
roughly 165 seconds) is 63% slower compared to generating a PlonK
proof (running at roughly 101 seconds). UltraPLONK is 19% slower
than TurboPLONK in the same setting. TurboPLONK and Ultra-
PLONK further display larger memory consumption footprints than

4We note that our charts display only the x-axis in logarithmic scale to highlight
the execution time rather than time complexity. Presenting these charts in log-scale
accentuates a O(n log n) growth rate, but excludes some of our data on the y-axis.
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Figure 9: Comparing the PlonK family in performance on
the final step in the generation of a ZK proof.

PlonK. For 2?° constraints, generating a TurboPLONK proof con-
sumed 29.5% more memory (330 GB) and UltraPLONK consumed
nearly twice the memory (506 GB) with respect to generating a
PlonK proof (255 GB). In this setting with only addition and mul-
tiplication gates, PlonK is more efficient because it requires fewer
group exponentiations. Consequently, less prover work translates
to reduced proof generation and memory consumption.

Let N represent the number of gates in the circuit, and let P repre-
sent the polynomial. Then PlonK requires 9N scalar multiplications
and a proof size of approximately 9 curve elements, TurboPLONK
requires 11N scalar multiplications and a proof size of approxi-
mately 11 curve elements, and UltraPLONK requires 13N scalar
multiplications and a proof size of 13 curve elements. Group expo-
nentiation dominates approximately 70-80% of the prover runtime.
All three proving systems compute a collection of polynomials and
stores each in 3 forms:

(1) Coefficient form: N * P
(2) Lagrange form: N % P
(3) Coset-FFT form: 4N % P

One could run the PlonK prover storing just the coefficient form,
which would reduce the memory consumption by a factor of 6. This
comes at an additional runtime computational cost resulting from
not pre-computing and storing the polynomials in all three forms.

5.3.2  Performance Using the Full Power of TurboPLONK and Ul-
traPLONK. In using the full power of each member of the PlonK
family, we expect performance to improve for TurboPLONK and Ul-
traPLONK, compared to the results shown above since custom gates
replace gates used in the circuit. We expect further improvement in
UltraPLONK since repeated computations are replaced with a table
lookup operation. If we have a custom gate to calculate y = f(x)
for some complex function, or a lookup table to encode y = g(x)
mapping, these improvements should improve performance. But
if these operations are sparsely used in large circuits, then Tur-
boPLONK and UltraPLONK will actually be slower compared to
PlonK.

With our goal here of showing the power of additional oper-
ations, we focus on the computation of Pedersen hashes, which
are used to map a bit string to a compressed point on an elliptic
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Figure 10: Comparing the PlonK family in performance on
witness generation.

curve. This is a highly complex cryptographic computation con-
suming a large number of addition and multiplication gates. It is
important to note here that although we continue our pattern of
showing graphs with the x-axis as “number of constraints,” each
algorithm now requires a different number of constraints for the
same computation, with PlonK requiring more than TurboPLONK,
and TurboPLONK requiring more than UltraPLONK. Our discus-
sion below will enable a conversion between number-of-constraints
and number-of-hashes.

We show in Figures 10 and 11, results for witness and proof
generation that can be compared to the similar curves for the base-
line case of only addition and multiplication gates that we showed
earlier (Figures 8 and 9). Figure 12 shows a comparison of memory
consumption. A full set of performance data appears in [12]. For
8K hashes, generating a TurboPLONK proof (at roughly 8 seconds)
is about 12 times faster and UltraPLONK (at roughly 3 seconds)
is about 38 times faster compared to generating a standard PlonK
proof (at roughly 100 seconds). UltraPLONK is 3 times faster than
TurboPLONK in the same setting. PlonK further displays a larger
memory consumption. Generating a TurboPLONK proof consumed
about 16 times less memory (16 GB) and UltraPLONK consumed
about 32 times less memory (8 GB) compared to generating a stan-
dard PlonK proof (254 GB). The memory of PlonK is greater than
TurboPLONK, as expected. But the memory of TurboPLONK is
greater compared to UltraPLONK, which is contrary to what one
might expect given the need for UltraPLONK to store lookup tables.
This is due to the fact that, in our discussion here, we are evaluating
the proof systems based on the same task size, i.e., 8K hashes, rather

225 constraints.

than the same problem size, e.g.,

The task sizes used above generated a number of constraints that
stressed PlonK to its limits on our platform. We therefore abandoned
PlonK in pursuing larger task sizes in a further exploration of the
relative performance of TurboPLONK and UtraPlonk over a range
of 4k to 128k Pedersen hashes.

We show results for proof generation (Figure 13), and mem-
ory consumption (Figure 14). See [12] for our full set of results.
At the highest number of hashes shown, prover times for Ultra-
PLONK (roughly 42 seconds) were about 3 times faster than Tur-
boPLONK (roughly 125 seconds), and the memory consumption
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Figure 11: Comparing the PlonK family in performance on
the final step in the generation of a ZK proof.
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Figure 12: Comparing the PlonK family in memory consump-
tion.

for UltraPLONK (about 130 GB) was about 2.5 times lower than
TurboPLONK (about 330 GB). The verification time (not shown)
for UltraPLONK is slightly slower than TurboPLONK since there
is a tradeoff between proof-generation time and verification time.
There is an inverse relationship where faster proof generation yields
slower proof verification, and vice versa. In general, fast provers
have large proofs with slow verifiers, while slow provers have small
proofs with fast verifiers.

Generating a proof for 128K hashes requires radically different
circuit sizes between TurboPLONK and UltraPLONK:

e UltraPLONK: 13,191,211 constraints / 103 gates per hash =
128K hashes

e TurboPLONK: 44,184,152 constraints / 345 gates per hash =
128K hashes

These figures are comparable because they compute the same num-
ber of hash operations. TurboPLONK ultimately has roughly 2.5
times increased memory consumption than UltraPLONK when eval-
uating 128K hashes because it exhibits about a 3.3 times increase
in circuit size. TurboPLONK has more gates per hash than Ultra-
PLONK, since UltraPLONK employs lookup tables that reduce the
circuit’s constraint size. Therefore, 128K hashes in TurboPLONK is
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Figure 13: Comparing final proof generation time in Turbo-
PLONK and UtraPlonk over an extended range of task sizes.

more expensive than 128K hashes in UltraPLONK in terms of the
number of gates, execution time, and memory.

In general, custom gates increase the degree of the identity to
be proven, which increases the computational work for the prover.
This is in tandem with the reduction in circuit size. For example,
the degree of the identity may double, leading to increased compu-
tational work for the prover, while the circuit size may be cut by
half. This simultaneously increases prover work for the custom gate
operation, and reduces the circuit size. If the latter has a greater
effect on reducing the prover work than the increase in prover time
incurred by the former, this is a net positive effect. Although we
have not yet benchmarked this relationship directly, the tradeoffs
need to be considered for different applications and use cases.

If we instead compare these proving systems based on circuit
size rather than task size (number of hashes), we see that for the
same circuit sizes, UltraPLONK exhibits 1.5x larger memory foot-
print than TurboPLONK for the same number of constraints. When
examining the throughput based on the circuit size as a function of
the number of hashes it can process, PlonK requires 5113 gates per
hash, TurboPLONK requires 345 gates per hash, and UltraPLONK
requires 103 gates per hash. For circuits with 22° constraints, PlonK
processed 6,562 hashes, TurboPLONK processed 97,259 hashes,
and UltraPLONK processed 325,771 hashes. TurboPlonk and Ul-
traPLONK were able to prove 14.8x and 49.6x more hashes than
PlonK respectively for the same circuit size. UltraPLONK was able
to prove 3.4x more hashes than TurboPLONK. In summary, if the
circuit sizes of TurboPLONK and UltraPLONK are the same, they
must compute a different number of hashes.

6 PARALLELIZATION AND FUTURE WORK

At present, we are converting Aztec’s Barretenberg cryptographic
library and backend to be compatible with GPUs[8, 9]. Porting
CPU-based code to a GPU framework is not straightforward since
computations are not over normal int and float data types but
rather over large finite fields whose range exceeds the capacity
of standard numeric datatypes. Since these computations are key
to the proof process, they must be implemented with care in re-
gards to performance. As a result, validating the correctness of
computations is nontrivial. We have implemented a majority of the
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Figure 14: Comparing memory consumption in TurboPLONK
and UtraPlonk over an extended range of task sizes.

underlying mathematical structures over which our proving system
operates: primarily finite-field arithmetic and elliptic-curve oper-
ations. We use Cuda-Fixnum, a fixed-precision SIMD library that
targets CUDA. We are porting Supranational’s MSM kernel (Pip-
penger’s Bucket Method[3]) over the bn254 elliptic curve in order
to be compatible with our GPU proving system. Once the GPU port
of PlonK is complete, we can benchmark it against both the CPU
version and Groth16. With a working PlonK GPU implementation
in hand, we can extend it to an implementation of TurboPLONK
and UltraPLONK. HyperPlonk[6] is a new member of the PlonK
family that we plan also to benchmark and port to a GPU.

With a deeper understanding of how the PlonK family behaves
in a GPU setting, future work entails seeking higher parallelism
with multiple GPUs and devising algorithms for effectively transfer-
ring intermediate results among the memories of the GPUs. These
memory managemnent issues may, in turn, lead to consideration
of alternatives to current algorithms that are more amenable to
extreme parallelization. Further improvements appear feasilbe by
designing numerical algorithms specifically for GPU computation.
This, too, is a component of our future work.

While much future work remains, these approaches offer the
prospect of significant extension of practical problem sizes for ZK
systemns, enabling the deployment of ZK in large scale information
management applications that require privacy, transparency, and
regulatability.
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