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ABSTRACT

Zero-Knowledge proofs are a cryptographic technique to reveal

knowledge of information without revealing the information it-

self, thus enabling systems optimally to mix privacy and trans-

parency, and, where needed, regulatability. Application domains

include health and other enterprise data, financial systems such

as central-bank digital currencies, and performance enhancement

in blockchain systems. The challenge of zero-knowledge proofs

is that, although they are computationally easy to verify, they are

computationally hard to produce. This paper examines the scala-

bility limits of leading zero-knowledge algorithms and addresses

the use of parallel architectures to meet performance demands of

applications.
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1 INTRODUCTION

The cryptograhic theory of zero-knowledge(ZK)[17] arose in the

1980s and led to a 2012 Turing Award for Goldwasser and Micali.

ZK-proofs employ the mathematics of cryptography to enable one

party (P, the prover) to prove to another party (V, the verifier) the

P knows some particular secret (a fact, data item, etc.) without

P revealing that secret to V. Practical application of this concept

grew rapidly with the rise of blockchain technology, initially for

privacy-focused blockchains such as Zcash[2], and several others

that followed. A more recent application is blockchain speedup us-

ing ZK techniques to aggregate a large number of transactions into

one, a process called a ZK-rollup. A third application domain is to

apply ZK and blockchain technology to large reports and databases

so that applications can commit cryptographically to data that are

kept secret while proving that those data have certain properties,

such as compliance with regulatory constraints or being internally

consistent with some other set of data to which a cryptographic

commitment exists.

That third application domain opens a powerful new concept

of information management in which privacy, transparency, and

compliance can be achieved with minimal compromise. We elab-

orate on this in Section 2. These applications generate a need to

produce ZK-proofs pertaining to large-scale executions over large

data volumes, which presents a challenge since although ZK-proofs

are relatively easy to verify, they are computationally hard to gen-

erate. This demand for scalability has been addressed in part by

new algorithms (e.g., [16]), use of specialized hardware (e.g., [30]),

and use of commodity parallel architectures (e.g., [20, 21, 29]), but

significant limitations remain.

After exploring the application domain in Section 2, and pro-

viding a fuller introduction to ZK in Section 3, we overview ZK

proving systems in Section 4 followed by our benchmarking results

and analysis in Section 5. Section 6 discusses the use of commodity

parallel architectures to accelerate ZK-proofs so that they can scale

up to the level of emerging applications.
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2 APPLICATION DOMAIN

Traditional databases serve as an official record of enterprise infor-

mation, but the degree to which they are truly “official” is based on

trust of the owner/administrator of the database. Some commercial

database vendors have incorporated hash-protected, immutable

data in append-only tables. Here, immutability and privacy still

rests in part on some degree of centralized trust. Such trust is

often reasonable in enterprise settings (thus the frequent use of

permissioned blockchains), but becomes problematic for public data

stores (such as public blockchains), multi-enterprise data (where a

trust/contract-based business relationship exists, but participants

fear that future circumstances like a product recall might stress that

trust to the breaking point), and global digital-currency applications

where users may not trust the currency provider with details of

their transaction data.

For these reasons, even blockchain-enhanced versions of tradi-

tional database platforms may require too much trust. Privacy is

often of paramount concern. In business relationships, certain data

may be considered proprietary (e.g., pricing in a supply chain) and

must be disclosed selectively. Public-facing systems face stricter

privacy challenges that go beyond user preferences to include man-

dates by governments. Privacy in a public setting is often viewed

as a fundamental right with individuals reasonably valuing a right

to privacy even if they “have nothing to hide.”

Applications of ZK technology can be divided into three classes:

• The first, and oldest, is private transactions within a public

blockchain. Whereas all transactions on a public blockchain

like Ethereum or Bitcoin are public, chains such as Zcash

enable the option of privacy. In public blockchains, if person

A knows person B’s wallet address, then A knows B’s entire

financial history on-chain. ZK-based blockchains allow for

secret transactions, thus enhancing privacy. Such chains

have raised concerns among government regulators, but

it is possible to design such private chains with ZK-based

compliance tools to alleviate those concerns.

• The second relates to blockchain speedup, where ZK tech-

niques can be used to aggregate a large number of transac-

tions into one, a process called a ZK-rollup. Aside from the

single node performing aggregation, all other nodes then

need only validate a single proof of that aggregation. This

results in a significant performance enhancement since that

one validation is less costly than re-executing full set of

transactions. There are other ZK applications in blockchain

infrastructure including state-proofs for light clients and

cross-chain bridges[5, 18], and proof-of-storage in decentral-

ized storage services[26].

• The third is the ability to provide proofs of general facts about

secret information. Those proofs can then be verified at low

computational cost by any node. Here, information can be

kept secret, but desired metadata can be securely published.

This is a powerful tool that can be applied in identity proofs,

accounting systems, health records, regulatory compliance in

financial applications, and global-scale central-bank digital

currencies.

The range of real-world uses for this third class of application is

virtually limitless. We give three examples here:

(1) A simple application (to introduce the concept) is proof-of-

age for bars and other age-controlled venues without a need

to reveal exact date-of-birth, drivers’ license number, etc.

(2) A more complex application allows proof that corporate tax

returns, government-mandated regulatory reports, etc., all

come from the same set of accounting records. Thus, only

the base ledger need be audited in the traditional manner,

while all reports arising from that ledger can be audited via

ZK and related technologies, including Merkle proofs[23]. A

similar scenario exists around health records.

(3) Central-bank digital currencies (CBDCs) are gaining inter-

est globally. China has begun deployment of its centrally-

controlled digital e-CNY. Open societies such as the U.S.

would most certainly seek a much less centralized frame-

work, but full decentralization would raise risks regarding

regulation and control of monetary policy. Nearly all of the

G20 nations are taking some action in this regard. Prototypes

are being developed in industry and government-led part-

nerships like Project Hamilton[13]. For digital currencies,

ZK-proofs make it possible to have transactions with the

same privacy as cash, while also proving compliance with

regulations such as sanctions. They also serve as a means for

a stablecoin issuer to provide proof of reserves and compli-

ance with other regulatory requirements, while preserving

privacy regarding the details of those reserves.

The second and third examples result in very large ZK-proofs and

large volumes of medium-size ZK-proofs, respectively. The feasibil-

ity of these applications depends, respectively, upon cost-effective

frameworks to generate large proofs and resource-efficient frame-

works that allow high parallelism in proof generation.

With those needs in mind, we focus not on special-purpose

hardware as in [30], but rather on high-performance commodity

CPUs and GPUs. Our application-based motivation also guides our

choice of algorithms, a matter we discuss in more detail in Section 4.

3 A BRIEF INTRODUCTION TO ZERO

KNOWLEDGE

As we noted in the introduction, ZK-proofs employ the mathemat-

ics of cryptography to enable one party (P, prover) to prove to

another party (V, verifier) that P knows some particular secret (a

fact, data item, etc.) without P revealing that secret to V. At that

point, we relied on the intuitive idea of proving “some particular

secret,” but indeed ZK can be used to show P knows the input (a

witness) such that a given program generates a particular output.

That given program must be compiled into a circuit representing

its execution. A circuit is a computational structure of gates with

inputs and outputs and wires connecting the output of a gate to the

input of others. These circuits are then transformed into polyno-

mials that form the basis for the proving system. For details see

[4, 25, 27]. The most intuitive view of a ZK proving system is one in

which the verifier interacts with the prover, presenting a series of

challenges that, when met by the prover, provides the verifier con-

fidence in the prover that increases with each iteration. Interactive

proofs, however, are not only slow, but also fail to provide a means

for public verification. Removing the interaction adds complexity

both in terms of the proof-generation and verification time (which
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depends on the proof size). To keep verification time constant, both

the prover and verifier must maintain secrets that are not part of the

published proof. Those secrets depend on an initial trusted setup of

the proof system. The widely used, but older, Groth16[19] system

requires a new setup for each circuit. The newer PlonK[16] system

requires just one setup (universal trusted setup) that can then be

reused across any set of circuits. Others in that category include

Marlin[7] and Sonic[22].

The setup procedure is an elaborate process involving multi-

ple independent parties selecting a secret random value that they

contribute to the “ceremony” and then destroy[24]. The setup is

designed such that as long as one trusts that at least one member

in the setup has securely destroyed their contributed value, then

the setup can be provably trusted.

4 ZK-PROVING SYSTEMS

There are a wide variety of ZK proving systems [27]. ZK-proof

systems vary in:

• Proof size: constant for the Groth16 algorithm and the PlonK

variants we are studying, but other algorithms have proof

sizes that depend on the circuit (program execution code)

over which the proof is being computed.

• Prover-secret size: Linear in circuit size for Groth16 algo-

rithm and the PlonK variants, but constant for some others.

• Verification time: Constant for the Groth16 algorithm and

the PlonK variants, but usually logarithmic in circuit size for

others (though some are linear).

• Degree of setup required: While some algorithms require no

setup[1], PlonK requires a single initial trusted setup, and

Groth16 requires a separate setup for each circuit.

• Operation set: Groth16 operates over executions expressed

as circuits with addition and multiplication operations, as

does PlonK. TurboPLONK[15] reduces the number of gates

in a circuit by allowing more operation types than just ad-

dition and multiplication. The added operations could be

simple as exemplified by an exclusive OR operation(XOR), or

highly complex, as exemplified by operations that perform

arithmetic over elliptic curves (which are used in many cryp-

tographic hash functions). Reducing the circuit size promises

faster proofs since the prover must read the entire circuit.

• Supplemental data structures: UltraPLONK, like TurboPLONK,

allows operations beyond addition and multiplication. Be-

yond just computational operations, UltraPLONK includes

a table-lookup operation that operates in the style of a key-

value store. These tables are called plookup tables[14].

The tradeoffs among ZK proving systems are not as clear as the

above list might suggest. Trading added memory requirements for

improving performance may make sense given present-day mem-

ory capacity. But for sizable proofs, memory consumption is large

enough not only to exceed the total available in the system, but also

to inhibit effective parallelization of proof generation. An impor-

tant first step in the creation of highly scalable proof-generation

algorithms is to understand these tradeoffs.

In earlier work[28], our research group focused on the Groth16

algorithm and its execution on a modern GPU. While GPUs offer a

high degree of parallelism, memory became a barrier at only 220

constraints1. The word “only” here might seem to be a strange

characterization of 220 until one realizes that each gate represents

a simple arithmetic operation and modern applications easily reach

higher numbers of constraints that go well beyond 230. The appli-

cations we envisioned in Section 2 will result in further complexity

growth.

Groth’s constant verification time is attractive, but the per-circuit

setup overhead makes it less desirable than the PlonK variants. For

the scale of our applications, the one initial setup for PlonK is

quite acceptable. The strongest factor in our focus on PlonK is the

variants that use powerful techniques to reduce the circuit size and

thus offer the promise of better overall performance. But since that

promise comes at the price of additional memory consumption,

the intuition that PlonK should perform best is not an obvious

conclusion.

5 BENCHMARKING ZK ALGORITHMS

We have run an extensive study of Groth16, PlonK, TurboPLONK,

and UltraPLONK on a CPU[10].2 This study forms a basis for our

evaluation of the PlonK family on a GPU, further plans for which

are discussed in Section 6.

5.1 Benchmarking Groth16

Using a more powerful platform than that in [28], we evaluated

Groth16 in terms of (1) parameter generation, (2) preprocessing

generation, (3) CPU proof generation, and (4) GPU proof genera-

tion. Our platform is the following bare-metal machine instantiated

on Oracle Cloud: 64-core Intel(R) Xeon(R) Platinum 8358 CPU @

2.60GHz, NVIDIA A10 (Ampere) with 24 GB GDDR6, NVIDIA P100

(Pascal) with 16 GB GDDR6, 1024 GB DDR4 DRAM, 2 TB SSD.

Parameter generation, performed entirely on the CPU, describes

the trusted-setup phase that produces the proving and verification

keys. In addition to generating the parameters, execution on the

GPU requires an additional preprocessing step that precomputes

multiples of the base points (preprocessing generation). The pre-

computation can be reused overmultiple multi-scalar multiplication

(MSM) steps (described below) with different parameters, saving

enough work to justify the precomputation. The parameter and

preprocessing phase is done entirely on the CPU. Proof generation

describes generating ZK-proofs on CPUs and GPUs, involving MSM

operations over elliptic curves and fast Fourier transforms (FFTs)

over large fields. MSM requires multiplications over large vectors

and dominates 75-80% of the proof-generation time. FFTs require

complex polynomial calculations accounting for about 10-15% of

the time. Finally, witness-generation consumes the remaining time.

We report the main results here, with full details in [10]. All

benchmarks were run using the MNT4_753 pairing-friendly elliptic

curve over a finite field. The MSMs were executed on a single GPU,

while the non-blocking FFTs were performed on the CPU in parallel.

The maximum constraint size for a program was 225 constraints. A

MNT4_753 curve field element is 753 bits in size, which is the main

reason why computations are consumptive of processing power.

1Following custom, we reference the number of constraints in the rank-1 constraint
system, which corresponds to the number of gates in the corresponding circuit.
2We show themost relevant data here and refer to https://github.com/TalDerei/Masters-
Research/blob/main/Groth16-and-Plonk-Raw-Benchmarks.pdf for the full set of raw
benchmark data.
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