
Implementing Recycling Methods for Linear
Systems in Python with an Application to Multiple

Objective Optimization

Ainara Garcia
College of Engineering, Computing & Applied Sciences

Clemson University
Clemson, SC, USA

ainarag@clemson.edu

Sihong Xie
Thrust of AI
HKUST-GZ

Guangzhou, China

xiesihong1@gmail.com

Arielle Carr
Computer Science & Engineering

Lehigh University
Bethlehem, PA, USA

arg318@lehigh.edu

Abstract—Sequences of linear systems arise in the predictor-
corrector method when computing the Pareto front for multi-
objective optimization. Rather than discarding information gen-
erated when solving one system, it may be advantageous to
recycle information for subsequent systems. To accomplish this,
we seek to reduce the overall cost of computation when solving
linear systems using common recycling methods. In this work, we
assessed the performance of recycling minimum residual (RMIN-
RES) method along with a map between coefficient matrices. For
these methods to be fully integrated into the software used in
Enouen et al. (2022), there must be working version of each in
both Python and PyTorch. Herein, we discuss the challenges we
encountered and solutions undertaken (and some ongoing) when
computing efficient Python implementations of these recycling
strategies. The goal of this project was to implement RMINRES
in Python and PyTorch and add it to the established Pareto front
code to reduce computational cost. Additionally, we wanted to
implement the sparse approximate maps code in Python and
PyTorch, so that it can be parallelized in future work.

Index Terms—MINRES, Sparse Approximate Maps, Python,
PyTorch, Multiobjective Optimization, Recycling

I. INTRODUCTION

Issues of fairness often arise in graphical neural networks

used for misinformation detection. Accurately reducing unfair-

ness when satisfying more than one constraint can come at

a significant computational cost. Multi-objective optimization

(MOO) methods allow us to explore different trade-offs by

generating a set of solutions, known as the Pareto front [1].

Traditional first-order MOO methods, such as multi-gradient

descent (MGD) [2], are computationally expensive on large

graphs due to the gradient computation at each iteration, and

may require many iterations to generate a Pareto front. Using

the predictor-corrector method introduced in [3], and iterative

methods like MINRES [4] and Conjugate Gradient (CG) [5],

the linear systems arising in the predictor step can be solved

efficiently.

We specifically focus on the iterative method MINRES [4]

and recycling MINRES (RMINRES) [6] for solving the linear

systems arising in the predictor step. In [3], the authors found

that the computational cost associated with solving this se-

quence of systems can be reduced by dramatically limiting the

maximum number of iterations when using MINRES, while

still achieving an accurate Pareto front [3]. In the current work,

we are interested in assessing the performance of recycling

strategies across the sequence of linear systems to further

reduce the total number of iterations. In this project, we also

consider a mapping strategy between the coefficient matrices

that may allow us to reuse previous solutions. Specifically, we

explore the potential for a parallel version of the precondi-

tioner update reported in [7] to further reduce computational

costs associated with many preconditioners for long sequences

of systems arising in the predictor step. In particular, we seek

to implement both RMINRES and the preconditioner updates

in Python and PyTorch [8], using the respective language and

libraries when computing the Pareto front’s predictor-corrector

methods. We provide preliminary results related to our work,

noting that the implementation is still in progress. Aiming to

help other groups working on the same topic, we also detail

the complications encountered.

II. PRELIMINARIES

A. Predictor Corrector Method

Given a point of a function, the predictor-corrector method

allows us to approximate the value of that function at a nearby

point. This method consists of two steps (see Figure 1). First,

in the predictor step, we determine an approximate direction to

a neighboring point, and then move along that direction based

on a predetermined, fixed step size. Then, we refine this initial

approximation in the corrector step.

To determine the direction in which to move in the predictor

step, we solve for the vector v in Equation 1,

H(x∗
0)v = ∇f(x∗

0)β (1)

where x∗
0 is a starting Pareto optimal point, and H(x∗

0) and

∇f(x∗
0) are the Hessian and Jacobian of our loss functions

at x∗
0, respectively; and β is a weighting vector. Intuitively,

this approach works by finding a suitable direction to move

along the tangent plane of f at x∗
0 as depicted in Figure

1. While more information on this method can be found in

[3]; this report focuses on the reducing costs associated with

1759

2023 International Conference on Machine Learning and Applications (ICMLA)

1946-0759/23/$31.00 ©2023 IEEE
DOI 10.1109/ICMLA58977.2023.00267

20
23

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 M

ac
hi

ne
 L

ea
rn

in
g

an
d

Ap
pl

ic
at

io
ns

 (I
CM

LA
) |

 9
79

-8
-3

50
3-

45
34

-6
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

M
LA

58
97

7.
20

23
.0

02
67

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on July 03,2024 at 17:46:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: The predictor step (yellow) and corrector step (green)

given an initial point (red).

solving the sequence of systems of the form (1) that arise in

the predictor step. Directly solving the linear systems of the

form (1) requires O(n3) time, which is generally expensive,

even for modest matrix dimensions, n. Furthermore, in this

application, H is not explicitly known, so a matrix-free

method, such as MINRES is required [3]. Thus, we consider

solvers whereby the solution is approximated iteratively (i.e.,

iterative solvers). Since the coefficient matrix H is symmetric,

we use a symmetric solver such as MINRES, which requires

only a linear operator to compute a matrix-vector (the main

computational cost in such iterative methods). Instead of

starting the computation of MINRES from scratch for each

new linear system, the recycling approach allows us to reuse

information from previous solutions to accelerate convergence

and reduce computational costs by reducing the total number

of iterations to solve the sequence of linear systems. To

accomplish this, we consider the RMINRES method [6].

III. ITERATIVE METHODS SOLVING LINEAR SYSTEMS

Iterative methods compute an approximate solution to a

linear system by repeating a series of calculations to update

the initial guess until convergence is achieved. Unlike direct

methods, which compute an exact solution, iterative methods

progressively refine an approximate solution until the accuracy

is below the pre-determined tolerance. The processes includes

taking an initial guess, which will be the starting vector for

the rest of the iteration process.

The MINRES algorithm [4] is a Krylov iterative method

used to solve systems of linear equations when the coefficient

matrix is symmetric and possibly indefinite. MINRES was

developed as an alternative to other well-known symmetric

solvers, such as the CG algorithm [5], which requires the

coefficient matrix to be symmetric, positive, and definite. A

distinguishing features of MINRES is its ability to handle

indefinite matrices. In contrast to positive definite matrices,

which have all positive eigenvalues, indefinite matrices might

have both positive and negative eigenvalues.

Central to MINRES is the emphasis on minimizing the

residual vector norm, ‖rk‖2, at each iteration, where the

residual of an approximate solution xk is defined as rk =

Fig. 2: Normwise difference between each pair of matrices in

a sequence of 100 systems extracted from [1]. Note that the

y-axis shows log (‖Ak −Ak−1‖F).

Axk − b. The Krylov subspace of dimension k is defined

as Kk(A, r0) = span{r0, Ar0, ..., Ak−1r0}, where A is our

coefficient matrix from the linear system Ax = b, r0 = b−Ax0

is the initial residual, and x0 is the initial guess. Kk(A, r0)
is expanded by one vector with each iteration of MINRES.

The kth iteration k of MINRES computes zk ∈ Kk(A, r0)
and updates xk as xk = x0 + zk such that the residual

norm ‖rk‖2 = ||Axk − b‖2 is minimized. This continues until

‖rk‖2 is within a predefined tolerance. More information on

MINRES and other Krylov methods can be found in [12].

This process ensures that convergence can be achieved in

n iterations, but ideally an accurate-enough solution can be

achieved in m � n iterations. To further reduce the number

of iterations even more, we can recycle some of the Krylov

vectors generated for a previous system to start the next call

to the solver for a subsequent system rather than starting with

just one vector. This new set of vectors is stored in the columns

of a matrix we refer to as U , called the recycle space [6].

For linear systems that are close to one another, recycling

subspaces (i.e., U) can be advantageous to reduce the total

number of iterations of the iterative solver across the entire

sequence. We provide iteration comparisons in the next sec-

tion, but refer to Figure 2 to demonstrate how closely related

the systems are using 100 matrices extracted from [3]. We

plot the norm-wise difference between each pair of matrices

‖Ak−Ak−1‖2, for k = 2, 3, . . . , 100. The dimension of these

systems is n = 1234. The peaks generally occur at each new

iteration of the predictor-corrector method; as noted in [3] and

references within. Even in cases of these “larger” peaks, the

differences between the matrices are quite small, motivating

our conjecture that the subspaces generated by one call to

MINRES will be a close approximation to the subspace for

the next call (and thus will serve as a good recycle space for

RMINRES).

IV. RECYCLING STRATEGIES

The iterative nature of the MINRES algorithm enables it

to handle large-scale linear systems that might be computa-

tionally expensive to solve using direct methods. By gradually

refining the approximate solution with each iteration, MINRES

offers an attractive compromise between accuracy and compu-

tational efficiency. Many algorithms also use preconditioners

1760

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on July 03,2024 at 17:46:21 UTC from IEEE Xplore. Restrictions apply.

as part their computation to further accelerate convergence

when the matrix is ill-conditioned, that is ‖A‖‖A−1‖ � 1.

However, because of the computational cost associated with

computing a good preconditioner, we can instead recycle

preconditioners by updating a previous preconditioner to then

be reuse for the next system.
Preconditioners are used in iterative methods to speed up

the convergence of linear systems when the coefficient matrix

is ill-conditioned. By transforming the original system into a

better-conditioned one, preconditioners reduce the number of

iterations required to reach an accurate solution. More details

on preconditioning techniques can be found in [9] and refer-

ences therein. Preconditioners can enhance the robustness of

iterative solvers, making them more tolerant to ill-conditioned

or difficult-to-solve problems. They can handle cases where

the original system matrix is poorly conditioned or close to

singular. However, they can be expensive to compute and so

we consider preconditioner updates, specifically the sparse

approximate map [7].
The authors in [7] present the central concept behind SAMs:

the mapping of one matrix to another for which we have a

good preconditioner (i.e., one that facilitates fast convergence

of the iterative solver) [7]. For instance, consider a matrix

Ak in a sequence of matrices, we want to compute a map

Nk to another matrix A0 with the constraint of an imposed

sparsity pattern to limit the cost of computing and applying

Nk. In particular, the equation AkNk = A0 expresses the exact

mapping, where Ak represents the current system matrix, A0

is the target system matrix, and Nk is the map. The objective

is to find an approximate Nk such that it approximates A0 well

enough. Due to the iterative nature of performing SAMs, we

can reduce the computational cost of solving linear systems

and increase efficiency of our implementation by exploring

the potential of a parallel implementation. As shown in Figure

3, the condition numbers (i.e., ‖A‖‖A−1‖) of our systems is

relatively low, so while the use of a preconditioner in this

application was ultimately not necessary, we still consider

a Python implementation for future use in cases where the

matrices are, in fact, ill-conditioned. In section VI-B, we

give the explicit mathematical expressions that define a SAM

and discuss the corresponding implementation challenges and

(proposed) solutions.

Fig. 3: Condition number (y-axis) of matrices from a sequence

of 100 systems extracted from [1].

There is often a trade-off between accuracy and the cost of

Fig. 4: Iterations for MINRES and RMINES for a sequence

of 100 systems extracted from [1].

(preconditioned) iterative methods. Iterative methods typically

allow control over the accuracy by specifying a convergence

criterion (e.g., a tolerance level or maximum iterations al-

lowed). Achieving higher accuracy may require more iter-

ations, leading to increased computational cost. Choosing

an appropriate iterative method, setting suitable convergence

criteria, and considering the resources available are crucial in

striking the right balance between accuracy and cost. Krylov

methods, such as MINRES and RMINRES, are particularly

useful in our case since these methods do not require the

matrix to be explicitly defined, and are often referred to as

‘matrix-free methods’ [10]. In our case, H in 2 is not known

explicitly, only its action on a vector.

The goal of this project is to implement RMINRES in

Python and add it to the established Pareto front code used in

[3] to reduce the computational cost. Additionally, the project

aimed to implement the sparse approximate maps code in

Python so that in future work, it can be parallelized. We

ran initial experiments using a MATLAB implementation of

MINRES and RMINRES on the same sequence of linear

systems as in Figures 2 and 3. In Figure 4, we compare the

iterations for the two methods. We see that RMINRES reduces

total iterations from 828 to 796, and we observe the largest

reduction in iterations for the linear systems arising earlier

in the sequence. These results motivate our implementation

of RMINRES in Python/PyTorch as the cost of the Hessian-

vector products impose a significant computational computa-

tional bottleneck. As the size of the systems grow (i.e., as

the number of constraints increase in the optimization), such

reductions become critical.

V. IMPLEMENTATION

It is important to have iterative solver methods in an

industry-standard computer science language. For the code

implemented in this project, the Python language and several

libraries were used. NumPy, KryPy, and SciPy [11] packages

played a significant role in these implementations. PyTorch is

an integral tool in machine learning and parallel computing. It

allows for scalable distributed training and performance opti-

mization in research. However, like all tools, it has limitations.

Initially, when implementing RMINRES in PyTorch, an error

within the implementation occurred. However we discovered

1761

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on July 03,2024 at 17:46:21 UTC from IEEE Xplore. Restrictions apply.

that the sparse tensor data structure and operations required

for this project, are not developed enough for the scale of our

research. The PyTorch linear algebra solver, torch.linalg.solve,

often used to find the solution of systems of linear equations,

is compatible with float, double, cfloat, and cdouble dtypes

[8]. This limitation in the PyTorch operations caused errors

in the implementation when solving the incomplete Cholesky

factorization of coefficient matrix. This implementation in

PyTorch presented many challenges when trying to compute

matrix-vector multiplication. Therefore, the alternative choice

was to implement the code in Python initially, then integrate it

into PyTorch from Python. Python has many packages capable

of handling large-scale computing, matrices, linear algebra,

and iterative methods.

KryPy, a Krylov subspace methods package [11], includes

many of the functions called into our implementations. Among

these packages is krypy.recycling, which allows for the com-

putation of solutions of linear systems using recycling. Calling

krypy.recycling allows us to build the U subspace and return it

to be implemented in the next call to RMINRES. Many com-

binations of KryPy functions were attempted before coming

to the conclusion that KryPy’s recycling functions are limited

to the number of iterations allowed, and many times does not

converge within those iterations for the computations done

in this project. The SciPy library has a package that allows

for the computation of sparse linear systems, for example

the compressed sparse column format used in this project, as

well as functions used to process matrices, like returning a

sparse matrices from diagonals and performing linear algebra

operations. NumPy is commonly used for scientific compu-

tation in Python. While these libraries were important in the

development of the code for recycling strategies, their data

structures are sometimes not compatible with PyTorch, and

therefore require significant modification.

VI. WORKFLOW AND STEPS

As the goal for the project is to integrate these com-

monly used methods to improve performance of the predictor-

corrector method, we began with sequential implementations

of our methods. When referencing MINRES, it is important

to again emphasize that it begins with an initial vector, while

RMINRES begins with many vectors, or a subspace generally

defined by vectors from the Krylov space built for the previous

linear system in the sequence. This often leads to a reduction in

solver iterations compared with standard MINRES (as shown

in Figure 4). The reader can refer to [10] for the detailed

algorithm for RMINRES.

A. Recycling Minimum Residual (RMINRES)

In our case, several functions are required to implement

RMINRES. We also need to calculate the k eigenvalue-

eigenvector pairs, referred to as Ritz pairs (see e.g., [12]),

that correspond to the smallest eigenvalues of the coefficient

matrix. Then, we generate a sparse matrix A and right-hand-

side b from test matrices. Algorithm 1 gives the conjugate

residual method [10], an equivalent version of MINRES; we

Algorithm 1 Conjugate Residual Method for Hv = b

1: r(0) = b −Hv(0).
2: p(0) = r(0).
3: i = 0.
4: while i < maxIter and ‖r(i)‖ > tol do
5: αi =

(Hr(i))�r(i)

‖Hp(i)‖2 .

6: x(i+1) = x(i) + αip(i).
7: r(i+1) = r(i) − αiHp(i).

8: βi =
(Hr(i+1))�r(i+1)

(Hr(i))�r(i)
.

9: p(i+1) = r(i+1) + βip(i).
10: i = i+ 1.
11: end while

use this algorithm for simplicity, but refer the reader to [4] for

an in depth discussion of the MINRES algorithm.

RMINRES function requires several initial inputs: A (from

Ax = b), b (again from Ax = b), an initial guess (x0), a

convergence tolerance, the maximum number of iterations, a

preconditioner (if available/desired), and the recycle space U .

The code checks if a preconditioner and a recycle space were

provided, then computes the initial residual (corresponding

to line 1 of Algorithm 1), r = b − Ax0. It then computes

the norm of the initial residual and checks if the initial

guess x0 is a converged solution. If yes, it returns the result

(but generally this is not the case). If a recycle space U is

provided, it orthogonalizes it against the current approximation

to the solution (current approximation computed on line 6

of Algorithm 1), updates the initial guess and residual, and

checks for convergence again. The symmetric tridiagonal

matrix T generated by the Lanczos method [12] is not given

in Algorithm 1, but we note that this is the procedure used by

MINRES and RMINRES to build an orthogonal basis for the

Krylov space using successive matrix-vector products. These

are fairly easy to implement in Python, however we must

compute the QR factorization of T to compute the update

to the approximate solution.

The code continues this iterative loop to refine the solution

while monitoring convergence. Within the loop, several key

things happen. (1) It applies (right) preconditioning, if neces-

sary, (2) It computes a matrix-vector product to expand the

Krylov space, and (3) It orthogonalizes the new vector against

the recycle space as well as the Krylov space. Finally, (4) it

computes the elements of the tridiagonal matrix, T , arising in

the Lanczos iteration. After computing the QR factorization

of T to compute an update to the approximate solution xk

at the kth iteration, we must compute the eigenvalues of T ,

and update the solution. We have pointed out key steps in the

algorithm that posed particular challenges when implementing

the RMINRES algorithm. There are other steps that are fairly

straightforward and that we omit for brevity. For instance, the

code updates various variables for the next iteration, including

values related to the Lanczos method. Upon convergence at

iteration m, it returns the approximate solution xm, as well

as a number of other outputs, if requested by the user (e.g.,

a vector relres containing the residuals at each iteration). It

1762

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on July 03,2024 at 17:46:21 UTC from IEEE Xplore. Restrictions apply.

also provides the new recycle space to then use for the next

linear system as the set of vectors we have referred to as U .

B. Sparse Approximate Maps Implementation

We seek to eventually integrate SAMs as part of the larger

predictor-corrector method code to explore their use as a

mapping between matrices to recycle preconditioners when

they are necessary. We again note that they were not required

for the linear systems discussed in Figures 2 - 4, but in

cases when the systems may become ill-conditioned, the role

of SAMs will become vital to reduce costs associated with

preconditioning many linear systems in a long sequence; see

[7] for experiments demonstrating how SAMs reduced such

costs. The update scheme in [7] solves

Nk = argminN∈S ||AkN −A0||F (2)

and defines the updated preconditioner as Pk = NkP0. Here,

S represents the subspace defined by a selected sparsity pattern

[7]. We assume the matrices A0 and Ak are part of a given

sequence and are relatively close to each other.

The code first allows the user to set a sparsity pattern, S, that

is imposed on the SAM. The code computes a map to trans-

form one system matrix into another matrix in the sequence

using equation (2), which defines the full least squares problem

(e.g., n × n). However, with a judiciously chosen sparsity

pattern (i.e., one that balances a small number of nonzeros

with the accuracy as a map), the least squares equation given

in (2) results n independent (and thus parallel), very small least

squares problems. Specifically, it computes the least squares

solution nj for the equation Gnj = As0, where G and As0 are

submatrices of Ak and A0, respectively, that respect the chosen

sparsity pattern. Each solution, nj , for the n least squares

problems defines the jth column of the approximate map Nk.

The algorithms for SAMs and an analysis of the choice in

sparsity pattern for several applications can be found in [7]

(see Algorithms 4.1 and 4.2).

VII. CHALLENGES AND PROPOSED SOLUTIONS

We first discuss challenges we encountered while imple-

menting the RMINRES algorithm in Python and PyTorch.

Python requires a series of preprocessing steps to initialize

appropriate data structures, variables, and parameters before

beginning the algorithm directly. One example is what happens

after loading the files supplied (i.e., csv files storing the matrix

elements), where the data must then be converted to arrays to

perform calculations. Anther key difference is often the data

must be reshaped to fit the variety of the SciPy sparse library

and to suit user/application necessity (e.g., compressed sparse

column or compressed sparse row).

We use compressed sparse column, and so the scipy.sparse

function is used. The section of code seen in Figure 5

includes the first attempts at using torch.linalg.solve function

for solving the systems of matrices. However, as seen in Figure

6, the function does not execute. The error provided in Figure

6 is longer than shown below, however the most significant

comments are provided.

Fig. 5: Code from RMINRES that fails due to underdevelop-

ment of sparse tensors and torch.linalg.solve function.

Fig. 6: NotImplementedError after attempting to run

torch.linalg.solve function in RMINRES implementation

The use of additional operations is fundamental to this pre-

dictor corrector method, as the matrices within this code must

be in a format that allows for the solution of systems of linear

equations and vector multiplication. In our implementations,

it became clear that more development of the sparse tensor

data structure is needed in order to successfully incorporate

RMINRES into PyTorch.

Additionally, creating functions within PyTorch with diverse

data type compatibility will allow for solving a larger range

of calculations within the PyTorch language and environment.

This also includes different ways to compute matrix-vector

multiplication for the predictor-corrector code, as Hv is de-

fined as a function and H is not explicitly known. In the

RMINRES code, we require not just matrix-vector multipli-

cation, but matrix-matrix products (i.e, when orthogonalizing

the subspace). More development is needed in this area, and

part of ongoing work. While the predictor-corrector method

and RMINRES solvers are implemented in Python [13], the

development of PyTorch sparse tensor data structure and

compatible functions to complete the remaining portions of

the RMINRES implementation is part of the ongoing work.

Within the SAMs code, the issues we have encountered are

related to mismatched data types, allocation of the appropriate

data structure, and errors within called functions. As matrices

are imported and converted to a sparse data structure, the

updated matrices and data collected from computation needs

1763

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on July 03,2024 at 17:46:21 UTC from IEEE Xplore. Restrictions apply.

to be converted and reshaped for the function at each step of

the call. As with RMINRES, changes to the shape of the data

are also required. Many of these issues have been resolved,

however issues within the NumPy linalg.solve function called

to solve linear systems are ongoing. An example of this is

resolving data type matching errors for the implementation

of the solver. Transitions between many data types occurs

during the SAMs implementation that play a large role in the

output. The segment of code shown in Figure 7 is part of the

preprocessing of data for the functionality within the SAMs

implementation.

Fig. 7: Examples of the data type agreement in Python.

Lastly, to parallelize the code, we can utilize the Python

multiprocessing library. This library allows us to create sep-

arate processes for individual tasks, which can run simulta-

neously and speed up the computation. We will divide the

loop into separate tasks that can run concurrently. The code

must be rewritten to reflect the parallel structure, particularly

in the loop that computes the n small least squares problems.

Parallelizing the existing code is also part of ongoing work.

VIII. DISCUSSION

In comparing the computational costs expected from our

ongoing implementation, an important note is assessing the

efficiency gains offered by RMINRES in contrast to the

conventional MINRES method. RMINRES has the poten-

tial to significantly reduce computational cost when solving

sequences of linear systems by reducing the total number

of iterations to converge to an accurate-enough approximate

solution. This method updates iteratively to refine solutions,

capitalizing on the shared data between consecutive linear

systems. However, it is still important to note that the compu-

tational cost and time savings will depend on factors such as

the size and sparsity of the linear systems, the nature of the

coefficient matrices, and the specific problem at hand. SAMs

can be useful when dealing with ill-conditioned matrices by

reducing costs associated with computing a preconditioner

from scratch for every linear system in the sequence.

IX. CONCLUSIONS AND FUTURE WORK

We seek to reduce the overall cost of computing the linear

systems arising in the predictor step of the predictor-corrector

method utilized in [3] using recycling methods for both the

iterative solver as well as for preconditioners. In this work,

we considered the linear solver RMINRES and a map between

coefficient matrices, the sparse approximate map. SAMs allow

us to map closely related matrices, and may allow us to

recycle previously computed preconditioners. However, these

methods do not yet exist in PyTorch, and thus have not yet

been implemented in the Pareto front code described in [3].

While the predictor-corrector method and RMINRES solvers

are implemented in Python, the development of PyTorch sparse

tensor data structure and compatible functions is part of the

ongoing and future work. With development in PyTorch linear

algebra solver and sparse tensor data structure, we expect that

the RMINRES and SAMs implementations will help to reduce

computational cost in the overall predictor-corrector method

for computing an optimal Pareto front [3].

REFERENCES

[1] Ma, P., Du, T., & Matusik, W. (2020, November). Efficient continuous
pareto exploration in multi-task learning. In International Conference on
Machine Learning (pp. 6522-6531). PMLR.

[2] Liu, S., & Vicente, L. N. (2019). The stochastic multi-gradient algo-
rithm for multi-objective optimization and its application to supervised
machine learning.

[3] Enouen, Eric & Mathesius, Katja & Wang, Sean & Carr, Arielle
& Xie, Sihong. (2022). Efficient first-order predictor-corrector
multiple objective optimization for fair misinformation detection.
10.48550/arXiv.2209.07245.

[4] Paige, Christopher C and Saunders, Michael A. Solution of sparse
indefinite systems of linear equations. SIAM Journal on Numerical
Analysis, Volume 12, 617–629, (1975).

[5] Hestenes, M.R., & Stiefel, E. (1952). Methods of conjugate gradients
for solving linear systems. Journal of research of the National Bureau
of Standards, 49, 409-435.

[6] Wang, Shun and de Sturler, Eric and Paulino, Glaucio H. Large-scale
topology optimization using preconditioned Krylov subspace methods
with recycling. International Journal for Numerical Methods in Engi-
neering, Volume 69, Number 12, 2441–2468, (2007).

[7] Carr, Arielle, & de Sturler, Eric, & Gugercin, Serkan Gugercin. Pre-
conditioning Parameterized Linear Systems. SIAM Journal on Sci-
entific Computing, Volume 43, Number 3, A2242-A2267, (2021).
https://doi.org/10.1137/20M1331123.

[8] PyTorch Development Team. (2023). torch.linalg.solve
— PyTorch documentation. PyTorch.
https://pytorch.org/docs/stable/generated/torch.linalg.solve.html

[9] Benzi, Michele. Preconditioning techniques for large linear systems: a
survey. Journal of Computational Physics, Volume 182, 418–477, (2002).

[10] Saad, Yousef (2003). Iterative methods for sparse linear systems (2nd
ed.). SIAM. ISBN 0-89871-534-2. OCLC 51266114.

[11] Narchy, A. (2020). KryPy: A Python Library for Krylov Subspace
Methods. Version 1.2. GitHub. https://github.com/andrenarchy/krypy

[12] Yousef Saad. Iterative Methods for Sparse Linear Systems, 2nd Ed.
SIAM, 2003.

[13] Krypy. (n.d.). RecyclingMinres. In Krypy Documentation. From
https://krypy.readthedocs.io/en/latest/krypy.recycling.RecyclingMinres

[14] Gargiani, M., Zanelli, A., Diehl, M., & Hutter, F. (2020). On the promise
of the stochastic generalized Gauss-Newton method for training DNNs.
arXiv preprint arXiv:2006.02409.

X. ACKNOWLEDGMENTS

We thank the National Science Foundation for funding

the Lehigh University Intelligent and Scalable Systems REU.

Ainara Garcia is supported by the National Science Foundation

under Grants NSF CNS-2051037. Any opinions, findings,

conclusions, or recommendations expressed in this document

are those of the author(s) and should not be interpreted as the

views of the National Science Foundation.

We also thank Sean Wang and Rishad Islam for their helpful

consultations on this project.

1764

Authorized licensed use limited to: LEHIGH UNIVERSITY. Downloaded on July 03,2024 at 17:46:21 UTC from IEEE Xplore. Restrictions apply.

