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Abstract—Sequences of linear systems arise in the predictor-
corrector method when computing the Pareto front for multi-
objective optimization. Rather than discarding information gen-
erated when solving one system, it may be advantageous to
recycle information for subsequent systems. To accomplish this,
we seek to reduce the overall cost of computation when solving
linear systems using common recycling methods. In this work, we
assessed the performance of recycling minimum residual (RMIN-
RES) method along with a map between coefficient matrices. For
these methods to be fully integrated into the software used in
Enouen et al. (2022), there must be working version of each in
both Python and PyTorch. Herein, we discuss the challenges we
encountered and solutions undertaken (and some ongoing) when
computing efficient Python implementations of these recycling
strategies. The goal of this project was to implement RMINRES
in Python and PyTorch and add it to the established Pareto front
code to reduce computational cost. Additionally, we wanted to
implement the sparse approximate maps code in Python and
PyTorch, so that it can be parallelized in future work.

Index Terms—MINRES, Sparse Approximate Maps, Python,
PyTorch, Multiobjective Optimization, Recycling

I. INTRODUCTION

Issues of fairness often arise in graphical neural networks
used for misinformation detection. Accurately reducing unfair-
ness when satisfying more than one constraint can come at
a significant computational cost. Multi-objective optimization
(MOO) methods allow us to explore different trade-offs by
generating a set of solutions, known as the Pareto front [1].
Traditional first-order MOO methods, such as multi-gradient
descent (MGD) [2], are computationally expensive on large
graphs due to the gradient computation at each iteration, and
may require many iterations to generate a Pareto front. Using
the predictor-corrector method introduced in [3], and iterative
methods like MINRES [4] and Conjugate Gradient (CG) [5],
the linear systems arising in the predictor step can be solved
efficiently.

We specifically focus on the iterative method MINRES [4]
and recycling MINRES (RMINRES) [6] for solving the linear
systems arising in the predictor step. In [3], the authors found
that the computational cost associated with solving this se-
quence of systems can be reduced by dramatically limiting the
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maximum number of iterations when using MINRES, while
still achieving an accurate Pareto front [3]. In the current work,
we are interested in assessing the performance of recycling
strategies across the sequence of linear systems to further
reduce the total number of iterations. In this project, we also
consider a mapping strategy between the coefficient matrices
that may allow us to reuse previous solutions. Specifically, we
explore the potential for a parallel version of the precondi-
tioner update reported in [7] to further reduce computational
costs associated with many preconditioners for long sequences
of systems arising in the predictor step. In particular, we seek
to implement both RMINRES and the preconditioner updates
in Python and PyTorch [8], using the respective language and
libraries when computing the Pareto front’s predictor-corrector
methods. We provide preliminary results related to our work,
noting that the implementation is still in progress. Aiming to
help other groups working on the same topic, we also detail
the complications encountered.

II. PRELIMINARIES
A. Predictor Corrector Method

Given a point of a function, the predictor-corrector method
allows us to approximate the value of that function at a nearby
point. This method consists of two steps (see Figure 1). First,
in the predictor step, we determine an approximate direction to
a neighboring point, and then move along that direction based
on a predetermined, fixed step size. Then, we refine this initial
approximation in the corrector step.

To determine the direction in which to move in the predictor
step, we solve for the vector v in Equation 1,

H(xg)v =V f(x5)8 (M

where x{ is a starting Pareto optimal point, and H (z{)) and
V f(z§) are the Hessian and Jacobian of our loss functions
at zj, respectively; and [ is a weighting vector. Intuitively,
this approach works by finding a suitable direction to move
along the tangent plane of f at zj as depicted in Figure
1. While more information on this method can be found in
[3]; this report focuses on the reducing costs associated with
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Fig. 1: The predictor step (yellow) and corrector step (green)
given an initial point (red).

solving the sequence of systems of the form (1) that arise in
the predictor step. Directly solving the linear systems of the
form (1) requires O(n?) time, which is generally expensive,
even for modest matrix dimensions, n. Furthermore, in this
application, H is not explicitly known, so a matrix-free
method, such as MINRES is required [3]. Thus, we consider
solvers whereby the solution is approximated iteratively (i.e.,
iterative solvers). Since the coefficient matrix H is symmetric,
we use a symmetric solver such as MINRES, which requires
only a linear operator to compute a matrix-vector (the main
computational cost in such iterative methods). Instead of
starting the computation of MINRES from scratch for each
new linear system, the recycling approach allows us to reuse
information from previous solutions to accelerate convergence
and reduce computational costs by reducing the total number
of iterations to solve the sequence of linear systems. To
accomplish this, we consider the RMINRES method [6].

III. ITERATIVE METHODS SOLVING LINEAR SYSTEMS

Iterative methods compute an approximate solution to a
linear system by repeating a series of calculations to update
the initial guess until convergence is achieved. Unlike direct
methods, which compute an exact solution, iterative methods
progressively refine an approximate solution until the accuracy
is below the pre-determined tolerance. The processes includes
taking an initial guess, which will be the starting vector for
the rest of the iteration process.

The MINRES algorithm [4] is a Krylov iterative method
used to solve systems of linear equations when the coefficient
matrix is symmetric and possibly indefinite. MINRES was
developed as an alternative to other well-known symmetric
solvers, such as the CG algorithm [5], which requires the
coefficient matrix to be symmetric, positive, and definite. A
distinguishing features of MINRES is its ability to handle
indefinite matrices. In contrast to positive definite matrices,
which have all positive eigenvalues, indefinite matrices might
have both positive and negative eigenvalues.

Central to MINRES is the emphasis on minimizing the
residual vector norm, |ri|l2, at each iteration, where the
residual of an approximate solution xj, is defined as r, =

Fig. 2: Normwise difference between each pair of matrices in
a sequence of 100 systems extracted from [1]. Note that the
y-axis shows log (|| Ax — Ak—1]|F).

Axyp — b. The Krylov subspace of dimension % is defined
as KF(A,ro) = span{ro, Arg, ..., A*“1ry}, where A is our
coefficient matrix from the linear system Az = b, ro = b— Az
is the initial residual, and x( is the initial guess. K*(A,r)
is expanded by one vector with each iteration of MINRES.
The k'" iteration k& of MINRES computes z;, € K¥(A,rg)
and updates zj as xp = g + 2z such that the residual
norm ||7x||2 = ||Azx — bl|2 is minimized. This continues until
lrkll2 is within a predefined tolerance. More information on
MINRES and other Krylov methods can be found in [12].
This process ensures that convergence can be achieved in
n iterations, but ideally an accurate-enough solution can be
achieved in m < n iterations. To further reduce the number
of iterations even more, we can recycle some of the Krylov
vectors generated for a previous system to start the next call
to the solver for a subsequent system rather than starting with
just one vector. This new set of vectors is stored in the columns
of a matrix we refer to as U, called the recycle space [6].

For linear systems that are close to one another, recycling
subspaces (i.e., U) can be advantageous to reduce the total
number of iterations of the iterative solver across the entire
sequence. We provide iteration comparisons in the next sec-
tion, but refer to Figure 2 to demonstrate how closely related
the systems are using 100 matrices extracted from [3]. We
plot the norm-wise difference between each pair of matrices
[|Ax — Ag—1|l2, for k= 2,3,...,100. The dimension of these
systems is n = 1234. The peaks generally occur at each new
iteration of the predictor-corrector method; as noted in [3] and
references within. Even in cases of these “larger” peaks, the
differences between the matrices are quite small, motivating
our conjecture that the subspaces generated by one call to
MINRES will be a close approximation to the subspace for
the next call (and thus will serve as a good recycle space for
RMINRES).

IV. RECYCLING STRATEGIES

The iterative nature of the MINRES algorithm enables it
to handle large-scale linear systems that might be computa-
tionally expensive to solve using direct methods. By gradually
refining the approximate solution with each iteration, MINRES
offers an attractive compromise between accuracy and compu-
tational efficiency. Many algorithms also use preconditioners
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as part their computation to further accelerate convergence
when the matrix is ill-conditioned, that is || Al/[[A7]| > 1.
However, because of the computational cost associated with
computing a good preconditioner, we can instead recycle
preconditioners by updating a previous preconditioner to then
be reuse for the next system.

Preconditioners are used in iterative methods to speed up
the convergence of linear systems when the coefficient matrix
is ill-conditioned. By transforming the original system into a
better-conditioned one, preconditioners reduce the number of
iterations required to reach an accurate solution. More details
on preconditioning techniques can be found in [9] and refer-
ences therein. Preconditioners can enhance the robustness of
iterative solvers, making them more tolerant to ill-conditioned
or difficult-to-solve problems. They can handle cases where
the original system matrix is poorly conditioned or close to
singular. However, they can be expensive to compute and so
we consider preconditioner updates, specifically the sparse
approximate map [7].

The authors in [7] present the central concept behind SAMs:
the mapping of one matrix to another for which we have a
good preconditioner (i.e., one that facilitates fast convergence
of the iterative solver) [7]. For instance, consider a matrix
Ay, in a sequence of matrices, we want to compute a map
Ny, to another matrix Ay with the constraint of an imposed
sparsity pattern to limit the cost of computing and applying
Np. In particular, the equation A, N, = Ag expresses the exact
mapping, where Ay represents the current system matrix, Ag
is the target system matrix, and NV is the map. The objective
is to find an approximate NN such that it approximates Ay well
enough. Due to the iterative nature of performing SAMs, we
can reduce the computational cost of solving linear systems
and increase efficiency of our implementation by exploring
the potential of a parallel implementation. As shown in Figure
3, the condition numbers (i.e., || A[|[|A[]) of our systems is
relatively low, so while the use of a preconditioner in this
application was ultimately not necessary, we still consider
a Python implementation for future use in cases where the
matrices are, in fact, ill-conditioned. In section VI-B, we
give the explicit mathematical expressions that define a SAM
and discuss the corresponding implementation challenges and
(proposed) solutions.

3.85
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Fig. 3: Condition number (y-axis) of matrices from a sequence
of 100 systems extracted from [1].

There is often a trade-off between accuracy and the cost of

~%-MINRES
-6~ Recycling MINRES

Iterations

Fig. 4: Iterations for MINRES and RMINES for a sequence
of 100 systems extracted from [1].

(preconditioned) iterative methods. Iterative methods typically
allow control over the accuracy by specifying a convergence
criterion (e.g., a tolerance level or maximum iterations al-
lowed). Achieving higher accuracy may require more iter-
ations, leading to increased computational cost. Choosing
an appropriate iterative method, setting suitable convergence
criteria, and considering the resources available are crucial in
striking the right balance between accuracy and cost. Krylov
methods, such as MINRES and RMINRES, are particularly
useful in our case since these methods do not require the
matrix to be explicitly defined, and are often referred to as
‘matrix-free methods’ [10]. In our case, H in 2 is not known
explicitly, only its action on a vector.

The goal of this project is to implement RMINRES in
Python and add it to the established Pareto front code used in
[3] to reduce the computational cost. Additionally, the project
aimed to implement the sparse approximate maps code in
Python so that in future work, it can be parallelized. We
ran initial experiments using a MATLAB implementation of
MINRES and RMINRES on the same sequence of linear
systems as in Figures 2 and 3. In Figure 4, we compare the
iterations for the two methods. We see that RMINRES reduces
total iterations from 828 to 796, and we observe the largest
reduction in iterations for the linear systems arising earlier
in the sequence. These results motivate our implementation
of RMINRES in Python/PyTorch as the cost of the Hessian-
vector products impose a significant computational computa-
tional bottleneck. As the size of the systems grow (i.e., as
the number of constraints increase in the optimization), such
reductions become critical.

V. IMPLEMENTATION

It is important to have iterative solver methods in an
industry-standard computer science language. For the code
implemented in this project, the Python language and several
libraries were used. NumPy, KryPy, and SciPy [11] packages
played a significant role in these implementations. PyTorch is
an integral tool in machine learning and parallel computing. It
allows for scalable distributed training and performance opti-
mization in research. However, like all tools, it has limitations.
Initially, when implementing RMINRES in PyTorch, an error
within the implementation occurred. However we discovered
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that the sparse tensor data structure and operations required
for this project, are not developed enough for the scale of our
research. The PyTorch linear algebra solver, torch.linalg.solve,
often used to find the solution of systems of linear equations,
is compatible with float, double, cfloat, and cdouble dtypes
[8]. This limitation in the PyTorch operations caused errors
in the implementation when solving the incomplete Cholesky
factorization of coefficient matrix. This implementation in
PyTorch presented many challenges when trying to compute
matrix-vector multiplication. Therefore, the alternative choice
was to implement the code in Python initially, then integrate it
into PyTorch from Python. Python has many packages capable
of handling large-scale computing, matrices, linear algebra,
and iterative methods.

KryPy, a Krylov subspace methods package [11], includes
many of the functions called into our implementations. Among
these packages is krypy.recycling, which allows for the com-
putation of solutions of linear systems using recycling. Calling
krypy.recycling allows us to build the U subspace and return it
to be implemented in the next call to RMINRES. Many com-
binations of KryPy functions were attempted before coming
to the conclusion that KryPy’s recycling functions are limited
to the number of iterations allowed, and many times does not
converge within those iterations for the computations done
in this project. The SciPy library has a package that allows
for the computation of sparse linear systems, for example
the compressed sparse column format used in this project, as
well as functions used to process matrices, like returning a
sparse matrices from diagonals and performing linear algebra
operations. NumPy is commonly used for scientific compu-
tation in Python. While these libraries were important in the
development of the code for recycling strategies, their data
structures are sometimes not compatible with PyTorch, and
therefore require significant modification.

VI. WORKFLOW AND STEPS

As the goal for the project is to integrate these com-
monly used methods to improve performance of the predictor-
corrector method, we began with sequential implementations
of our methods. When referencing MINRES, it is important
to again emphasize that it begins with an initial vector, while
RMINRES begins with many vectors, or a subspace generally
defined by vectors from the Krylov space built for the previous
linear system in the sequence. This often leads to a reduction in
solver iterations compared with standard MINRES (as shown
in Figure 4). The reader can refer to [10] for the detailed
algorithm for RMINRES.

A. Recycling Minimum Residual (RMINRES)

In our case, several functions are required to implement
RMINRES. We also need to calculate the k eigenvalue-
eigenvector pairs, referred to as Ritz pairs (see e.g., [12]),
that correspond to the smallest eigenvalues of the coefficient
matrix. Then, we generate a sparse matrix A and right-hand-
side b from test matrices. Algorithm 1 gives the conjugate
residual method [10], an equivalent version of MINRES; we

Algorithm 1 Conjugate Residual Method for Hv =b

1O =p— gV,
: p© = p©
i =0.
- while i < mazIter and |[r™| > tol do
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use this algorithm for simplicity, but refer the reader to [4] for
an in depth discussion of the MINRES algorithm.

RMINRES function requires several initial inputs: A (from
Ax = b), b (again from Az = b), an initial guess (zg), a
convergence tolerance, the maximum number of iterations, a
preconditioner (if available/desired), and the recycle space U.
The code checks if a preconditioner and a recycle space were
provided, then computes the initial residual (corresponding
to line 1 of Algorithm 1), r = b — Axg. It then computes
the norm of the initial residual and checks if the initial
guess x( is a converged solution. If yes, it returns the result
(but generally this is not the case). If a recycle space U is
provided, it orthogonalizes it against the current approximation
to the solution (current approximation computed on line 6
of Algorithm 1), updates the initial guess and residual, and
checks for convergence again. The symmetric tridiagonal
matrix 1" generated by the Lanczos method [12] is not given
in Algorithm 1, but we note that this is the procedure used by
MINRES and RMINRES to build an orthogonal basis for the
Krylov space using successive matrix-vector products. These
are fairly easy to implement in Python, however we must
compute the QR factorization of 7" to compute the update
to the approximate solution.

The code continues this iterative loop to refine the solution
while monitoring convergence. Within the loop, several key
things happen. (1) It applies (right) preconditioning, if neces-
sary, (2) It computes a matrix-vector product to expand the
Krylov space, and (3) It orthogonalizes the new vector against
the recycle space as well as the Krylov space. Finally, (4) it
computes the elements of the tridiagonal matrix, 7', arising in
the Lanczos iteration. After computing the QR factorization
of T' to compute an update to the approximate solution xj
at the kth iteration, we must compute the eigenvalues of T,
and update the solution. We have pointed out key steps in the
algorithm that posed particular challenges when implementing
the RMINRES algorithm. There are other steps that are fairly
straightforward and that we omit for brevity. For instance, the
code updates various variables for the next iteration, including
values related to the Lanczos method. Upon convergence at
iteration m, it returns the approximate solution x,,, as well
as a number of other outputs, if requested by the user (e.g.,
a vector relres containing the residuals at each iteration). It
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also provides the new recycle space to then use for the next
linear system as the set of vectors we have referred to as U.

B. Sparse Approximate Maps Implementation

We seek to eventually integrate SAMs as part of the larger
predictor-corrector method code to explore their use as a
mapping between matrices to recycle preconditioners when
they are necessary. We again note that they were not required
for the linear systems discussed in Figures 2 - 4, but in
cases when the systems may become ill-conditioned, the role
of SAMs will become vital to reduce costs associated with
preconditioning many linear systems in a long sequence; see
[7] for experiments demonstrating how SAMs reduced such
costs. The update scheme in [7] solves

Ny, = argminyes||ArN — Aol|r 2)

and defines the updated preconditioner as P, = N Fy. Here,
S represents the subspace defined by a selected sparsity pattern
[7]. We assume the matrices Ay and Ay are part of a given
sequence and are relatively close to each other.

The code first allows the user to set a sparsity pattern, S, that
is imposed on the SAM. The code computes a map to trans-
form one system matrix into another matrix in the sequence
using equation (2), which defines the full least squares problem
(e.g., n x n). However, with a judiciously chosen sparsity
pattern (i.e., one that balances a small number of nonzeros
with the accuracy as a map), the least squares equation given
in (2) results n independent (and thus parallel), very small least
squares problems. Specifically, it computes the least squares
solution n; for the equation G'n; = Asg, where G and Asg are
submatrices of Ay and Ay, respectively, that respect the chosen
sparsity pattern. Each solution, n;, for the n least squares
problems defines the " column of the approximate map Nj.
The algorithms for SAMs and an analysis of the choice in
sparsity pattern for several applications can be found in [7]
(see Algorithms 4.1 and 4.2).

VII. CHALLENGES AND PROPOSED SOLUTIONS

We first discuss challenges we encountered while imple-
menting the RMINRES algorithm in Python and PyTorch.
Python requires a series of preprocessing steps to initialize
appropriate data structures, variables, and parameters before
beginning the algorithm directly. One example is what happens
after loading the files supplied (i.e., csv files storing the matrix
elements), where the data must then be converted to arrays to
perform calculations. Anther key difference is often the data
must be reshaped to fit the variety of the SciPy sparse library
and to suit user/application necessity (e.g., compressed sparse
column or compressed sparse row).

We use compressed sparse column, and so the scipy.sparse
function is used. The section of code seen in Figure 5
includes the first attempts at using torch.linalg.solve function
for solving the systems of matrices. However, as seen in Figure
6, the function does not execute. The error provided in Figure
6 is longer than shown below, however the most significant
comments are provided.

if (existM1):

r = torch.linalg.solve(M1, r)
if (existM1):

b = torch.tensor(b)

normb = torch.linalg.norm(torch.linalg.solve(M1, b))
else:

normb = torch.norm(b)

Fig. 5: Code from RMINRES that fails due to underdevelop-
ment of sparse tensors and torch.linalg.solve function.

NotimplementedError
Cell In[28], line 33
31 A1 = torch.from_numpy(A1) #sparse tensor
32 b1 = torch.from_numpy(b1) #tensor
-->33x, flag, relres, iter, resvec = rminres(r, A1, bi, x0, tol, 1000, L1, L1_t, [], cycle, recycle)
36 NRBE = torch.norm(b1 - A1 @ x) / (torch.norm(b1 - A1 @ x0) + torch.norm(A1, float('inf’)) * torch.norm(x))
38 plot = np.log10(resvec / resvec[0])

Traceback (most recent call last)

Cell In[27], line 165, in
164 if (existM1):
~>165  r - torchilinalgsolve(r, M) # - M1\r
166 if (existM1):
167 normb = torch.linalg.matrix_norm(torch.linalg.solve(M1, b))

(r, A, b, x0, tol, maxiter, M1, M2, U, dim, k)

NotimplementedError: Could not run ‘aten::_linalg_solve_ex' with arguments from the 'SparseCPU' backend. Th
is could be because the operator doesn't exist for this backend, or was omitted during the selective/custom buil
d process (if using custom build). If you are a Facebook employee using PyTorch on mobile, please visit https://f
burl.com/ptmfixes for possible ‘aten::_linalg_solve_ex' is only available for these backends: [CPU, C
UDA, HIP, MPS, IPU, XPU, HPU, VE, Meta, MTIA, PrivateUse1, PrivateUse2, PrivateUse3, FPGA, ORT, Vulkan, Met

al, QuantizedCPU, QuantizedCUDA, QuantizedHIP, Quanti , QuantizedIPU, Quanti U, QuantizedHPU
, Quanti; , Quanti; Quanti 1A, Quanti i Jsel, Quanti i Jse2, Q i
eUse3, CustomRNGKeyld, MkldnnCPU, SparseCsrCPU, SparseCsrCUDA, Python, Func’
micLayerBackMode, Functionalize, Named, Conjugate, Negative, ZeroTensor, ADInplaceOrView, AutogradOther,
AutogradCPU, AutogradCUDA, g , A, ), 8! U, AutogradXPU, Autograd
HPU, AutogradVE, AutogradLazy, 1A, AutogradPrivateUse1 gradPrivateUse2, A
g i Jse3, Autogr Tracer, AutocastCPU, AutocastCUDA, FuncTorchBatched, FuncTorc
Batched, FuncTorcl pper, PythonTL D icLayerFron

tMode, PythonDispatcher].

Fig. 6: NotlmplementedError after attempting to run
torch.linalg.solve function in RMINRES implementation

The use of additional operations is fundamental to this pre-
dictor corrector method, as the matrices within this code must
be in a format that allows for the solution of systems of linear
equations and vector multiplication. In our implementations,
it became clear that more development of the sparse tensor
data structure is needed in order to successfully incorporate
RMINRES into PyTorch.

Additionally, creating functions within PyTorch with diverse
data type compatibility will allow for solving a larger range
of calculations within the PyTorch language and environment.
This also includes different ways to compute matrix-vector
multiplication for the predictor-corrector code, as Hv is de-
fined as a function and H is not explicitly known. In the
RMINRES code, we require not just matrix-vector multipli-
cation, but matrix-matrix products (i.e, when orthogonalizing
the subspace). More development is needed in this area, and
part of ongoing work. While the predictor-corrector method
and RMINRES solvers are implemented in Python [13], the
development of PyTorch sparse tensor data structure and
compatible functions to complete the remaining portions of
the RMINRES implementation is part of the ongoing work.

Within the SAMs code, the issues we have encountered are
related to mismatched data types, allocation of the appropriate
data structure, and errors within called functions. As matrices
are imported and converted to a sparse data structure, the
updated matrices and data collected from computation needs
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to be converted and reshaped for the function at each step of
the call. As with RMINRES, changes to the shape of the data
are also required. Many of these issues have been resolved,
however issues within the NumPy linalg.solve function called
to solve linear systems are ongoing. An example of this is
resolving data type matching errors for the implementation
of the solver. Transitions between many data types occurs
during the SAMs implementation that play a large role in the
output. The segment of code shown in Figure 7 is part of the
preprocessing of data for the functionality within the SAMs
implementation.

data = np.ones(np.shape(rows))

rows = np.array(rows)

cols= np.array(cols)

msk = scipy.sparse.csc_matrix((data, (cols, rows)))
rows rows.reshape(-1, 1)

cols = cols.reshape(-1, 1)

j, i= As.nonzero()

findA = scipy.sparse.csc_matrix((np.ones(np.shape(i)), (i, j)))
PP1 = findA !'= 0

PP = PP1.multiply(msk)

PP2 = PP.copy()

Fig. 7: Examples of the data type agreement in Python.

Lastly, to parallelize the code, we can utilize the Python
multiprocessing library. This library allows us to create sep-
arate processes for individual tasks, which can run simulta-
neously and speed up the computation. We will divide the
loop into separate tasks that can run concurrently. The code
must be rewritten to reflect the parallel structure, particularly
in the loop that computes the n small least squares problems.
Parallelizing the existing code is also part of ongoing work.

VIII. DISCUSSION

In comparing the computational costs expected from our
ongoing implementation, an important note is assessing the
efficiency gains offered by RMINRES in contrast to the
conventional MINRES method. RMINRES has the poten-
tial to significantly reduce computational cost when solving
sequences of linear systems by reducing the total number
of iterations to converge to an accurate-enough approximate
solution. This method updates iteratively to refine solutions,
capitalizing on the shared data between consecutive linear
systems. However, it is still important to note that the compu-
tational cost and time savings will depend on factors such as
the size and sparsity of the linear systems, the nature of the
coefficient matrices, and the specific problem at hand. SAMs
can be useful when dealing with ill-conditioned matrices by
reducing costs associated with computing a preconditioner
from scratch for every linear system in the sequence.

IX. CONCLUSIONS AND FUTURE WORK

We seek to reduce the overall cost of computing the linear
systems arising in the predictor step of the predictor-corrector
method utilized in [3] using recycling methods for both the
iterative solver as well as for preconditioners. In this work,
we considered the linear solver RMINRES and a map between

coefficient matrices, the sparse approximate map. SAMs allow
us to map closely related matrices, and may allow us to
recycle previously computed preconditioners. However, these
methods do not yet exist in PyTorch, and thus have not yet
been implemented in the Pareto front code described in [3].
While the predictor-corrector method and RMINRES solvers
are implemented in Python, the development of PyTorch sparse
tensor data structure and compatible functions is part of the
ongoing and future work. With development in PyTorch linear
algebra solver and sparse tensor data structure, we expect that
the RMINRES and SAMs implementations will help to reduce
computational cost in the overall predictor-corrector method
for computing an optimal Pareto front [3].
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