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Abstract. The classical theta correspondence, based on the Weil representation, allows
one to lift automorphic representations on symplectic groups or their double covers to au-
tomorphic representations on special orthogonal groups. It is of interest to vary the orthog-
onal group and describe the behavior in this theta tower (the Rallis tower). In prior work,
the authors obtained an extension of the classical theta correspondence to higher degree
metaplectic covers of symplectic and special orthogonal groups that is based on the tensor
product of the Weil representation with another small representation. In this work we study
the existence of generic lifts in the resulting theta tower. In the classical case, there are two
orthogonal groups that may support a generic lift of an irreducible cuspidal automorphic
representation of a symplectic group. We show that in general the Whittaker range consists
of r+1 groups for the lift from the r-fold cover of a symplectic group. We also give a period
criterion for the genericity of the lift at each step of the tower.

1. Introduction

The classical theta correspondence gives a systematic way to lift automorphic representa-
tions on one group to automorphic representations on another. This correspondence is based
on restricting the theta representation on the metaplectic double cover of a symplectic group
to a reductive dual pair in the symplectic group (or, more accurately, its inverse image in
the double cover). In [F-G3] the authors introduced an extension of the notion of reductive
dual pair that allows the construction of correspondences using the tensor product of two
theta representations. We used this to construct a theta lift between genuine automorphic
representations on higher degree metaplectic covers of symplectic and orthogonal groups.
Our lift matches the classical theta lift for the trivial cover of the orthogonal group, as in
that case one of the theta representations in the tensor product is trivial. In this paper we
study the question of when the generalized theta lift of a given automorphic representation
is globally generic. We shall show that the theory for the classical theta lift is the first case
of a broader theory that, in general, involves more possibilities.

Let r ≥ 1 be an odd integer, F denote a global field which contains a full set of r-th roots
of unity µr, and A denote the ring of adeles of F . Let Sp(r)2n (A) denote the r-fold metaplectic
cover of the symplectic group Sp2n(A), which is a topological central extension of Sp2n(A) by
µr. The construction of such a covering group goes back to Matsumoto [Mat]. Let ⇡(r) denote
a genuine irreducible cuspidal automorphic representation of Sp(r)2n (A). In [F-G3] the authors
constructed, via the generalized theta lift described above, an automorphic representation
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�(r) of the r-fold metaplectic cover SO(r)k (A) of the split special orthogonal group SOk(A),
with  = 1 if k is even and  = 2 if k is odd. The authors studied the Rallis tower (i.e. the
lift for fixed ⇡(r) and varying k), proved that the first nontrivial occurrence in the tower is
cuspidal, and showed that the unramified local lift is functorial in the equal rank case.

Here we concentrate on the tower of split even orthogonal groups SO2k, so that  = 1;
we recall the construction of the lift in this case in equation (3.3). Denote the automorphic

representation so-obtained by �(r)n,k. Let  be a fixed nontrivial additive character of F �A.
The main objects of study here are the Whittaker coe�cients attached to �(r)n,k. These
coe�cients are introduced below in equation (4.2) and denoted Wk,�(f). Here � ∈ F ∗, and
f is a function in the space of �(r)n,k. The class of � modulo (F ∗)2 indexes an orbit of generic
characters modulo the action of the rational split torus by conjugation. (One could also
obtain these orbits by setting � = 1 and varying  in (4.1).) If Wk,�(f) is not zero for some

choice of data and some �, we say that �(r)n,k is (globally) generic. Note that when we use
‘generic,’ we do not insist that the Whittaker model be unique, only that it exists. Also,
here and below the phrase “choice of data” indicates a choice of smooth functions in the
space of the automorphic representation or representations that appear.

In this paper we will give conditions on ⇡(r) and k so that Wk,�(f) is not zero for some f
and relate this question to certain periods of ⇡(r). We will determine the locations k in the
Rallis tower such that �n,k can be generic, the k for which it must be generic provided that
⇡(r) is generic, and the k for which it can never be generic. In [F-G3] we did not prove that
a nonvanishing lift of ⇡(r) always occurs, but we will establish this for generic automorphic
representations here.

Before stating our main results, it will be useful to describe the situation in the case when
r = 1, that is, in the case of the classical global theta correspondence. Let ✓(2)4kn be a theta

series defined on the classical metaplectic group Sp(2)4kn(A), the double cover of the symplectic
group Sp4nk(A). See for example [G-R-S2], Section 1, part 6. These theta series depend on
a choice of  as above and a Schwartz function �. (We always suppress � from the notation,

but sometimes write ✓(2), 4kn .) Let ◆1 be the tensor product embedding ◆1 ∶ SO2k×Sp2n → Sp4nk.
The double cover splits over the image of ◆1, as in Kudla [Ku1]. (See also Sweet [Sw].) Let ⇡
be an irreducible cuspidal automorphic representation of Sp2n(A). For any algebraic group
G defined over F , let [G] denote the automorphic quotient [G] ∶= G(F )�G(A). Denote by

�n,k the representation of [SO2k] generated by all functions f(h) obtained by using ✓(2)4kn as
an integral kernel,

f(h) = �
[Sp2n]

'(g)✓(2)4kn(◆1(h, g))dg,

with ' in ⇡ and all Schwartz functions �. The map from ⇡ to �n,k is the classical theta
correspondence. See for example Howe [Ho].

The properties of the classical theta correspondence of concern to us here are the following,
established by Ginzburg, Rallis and Soudry [G-R-S1].

Theorem 1. Suppose that r = 1, so that �n,k is the classical theta lift of the irreducible
cuspidal automorphic representation ⇡ on Sp2n(A) to SO2k(A).

(1) Suppose that k ≠ n,n+ 1. Then Wk,�(f) is zero for all choices of data and all �, that
is, the representation �n,k is not generic.
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(2) Suppose that k = n + 1. Then the coe�cient Wk,�(f) is not zero for some choice of
data if and only if ⇡ is a generic representation with respect to �.

(3) Suppose that k = n. Then the coe�cient Wk,�(f) is not zero for some choice of data if
and only if a certain period integral depending on � (given by (1.2) below with m = 1)
is nonzero for some choice of data.

The condition on genericity in part 2 once again reflects that the specific choice of generic
character for ⇡ is related to � ∈ F ∗, and is needed since there is more than one orbit of
generic characters for [Sp2n] under the action by conjugation of the standard maximal torus
of Sp2n(F ). For more details see [G-R-S1], Theorem 2.1.

In view of Theorem 1, we refer to the numbers k = n,n + 1 as the Whittaker range of
the theta lift from Sp2n to SO2k. Also, it follows that a generic representation appears in
the tower of theta lifts of ⇡, i.e., the representation �n,k is generic for some k, some �, and
some choice of data, if and only if ⇡ is generic. Here, if �n,n is generic, the genericity of ⇡

is deduced by observing that the period (1.2) with m = 1 involves a theta function ✓(2), �

2

which is the residue of an Eisenstein series on the double cover of SL2. If the period is not

zero, then replacing ✓(2), �

2 by this Eisenstein series, the integral is necessarily nonzero for
Re(s) large. Unfolding, one obtains a Whittaker integral of ' as an inner integral. Hence it
must be nonzero.

In this paper we extend these properties to the general case, that is, all r ≥ 1, r odd. We
require two hypotheses. The first, the Orbit Conjecture (Conjecture 1 in Section 2 below),

concerns the Fourier coe�cients associated to the theta representation ⇥(r)r−1 on the r-fold
cover of Spr−1. It holds when r = 3, F = Q(e2⇡i�3) by work of Patterson [Pat]. We give the
context for this conjecture in Section 2. The second, the Descent Conjecture, concerns the
descent of the theta representation ⇥(r)2l . It is formulated in Section 7, Conjecture 2, below.
A slightly stronger version is also proposed in [F-G1], Conjecture 4.2. Replacing the Descent
Conjecture by a local version, which is known, we obtain in Proposition 12 slightly weaker
results without assuming this.

Let ⇡(r) and �(r)n,k be as above. We shall establish the following result.

Theorem 2. Let r ≥ 1 be an odd integer. Suppose that the Orbit and Descent Conjectures
are satisfied. Then the following statements hold.

(1) Suppose that k ≠ n − r−1
2 , n − r−3

2 , . . . , n + r+1
2 . Then Wk,�(f) is zero for all choices of

data and all �, that is, the representation �(r)n,k is not generic.

(2) Suppose that k = n + r+1
2 . Then the coe�cient Wk,�(f) is not zero for some choice of

data if and only if ⇡(r) is a generic representation with respect to �.
(3) Suppose that k is one of the values n − r−1

2 , n − r−3
2 , . . . , n + r−1

2 . Then the coe�cient
Wk,�(f) is not zero for some choice of data if and only if a certain period integral,
depending on k and � (and given in Proposition 4 below), is nonzero for some choice
of data.

Note that Theorem 2 asserts that the Whittaker range expands from k = n,n + 1 for the
classical theta lift from Sp2n to SO2k , i.e. the case r = 1, to k = n− r−1

2 , n− r−3
2 , . . . , n+ r+1

2 for

the generalized theta lift from Sp(r)2n to SO(r)2k . We will describe the related period integrals
momentarily. In the general case a new phenomenon appears: the shape of the period
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integral changes as we pass from the interval 2 ≤ k ≤ r+1
2 to the interval r+3

2 ≤ k ≤ n+
r−1
2 ; the

first interval does not appear if r = 1.
It follows that, as in the classical case, a generic representation appears in the tower of

theta lifts of ⇡(r), i.e., the representation �(r)n,k is generic for some k, some �, and some choice
of data, if and only if ⇡(r) is generic. See Corollary 1.

We remark that if r > 1 we do not know whether or not the full Whittaker range is attained,
equivalently whether or not for each k in the Whittaker range there exists an automorphic
representation on Sp(r)2n (A) such that the corresponding period is nonzero for some choice of
data and some �. We suspect that this is the case. We also remark that one may fix the
automorphic representation on the orthogonal group and consider the tower of symplectic
groups, introduced by Rallis [R]. For r = 1 and even orthogonal groups the question of
nonvanishing of the theta lift is treated by Roberts [Ro].

Before outlining the proof for general r, let us review the proof of Theorem 1 and also the
connection to period integrals in the classical case. We break the proof of this result into
four parts. The first two are:

Proposition 1. Suppose that r = 1, so that �n,k is the classical theta lift of ⇡ on Sp2n to
SO2k.

(1) [Classical-1] Suppose that k ≥ n+ 2. Then Wk,�(f) is zero for all choices of data and
all �.

(2) [Classical-2] When k = n + 1, the coe�cient Wk,�(f) is not zero for some choice of
data if and only if ⇡ is a generic representation with respect to �.

The proof of Proposition 1 is based on a direct calculation of the Whittaker integral Wk,�(f)
by unfolding the theta series and using root exchange. The vanishing in part 1 makes use of
the cuspidality of '.

To describe the remaining steps, we introduce the following notation. For 0 ≤ m ≤ n,
let Un,m denote the unipotent radical of the parabolic subgroup of Sp2n whose Levi part is
GLm

1 ×Sp2(n−m). When m = 0, we define Un,m to be the trivial group. When n =m, the group
Un,m is the maximal unipotent subgroup of Sp2n. Fix  a nontrivial additive character of A
trivial on F , and let  Un,m denote the character of [Un,m] given on u = (ui,j) ∈ Un,m(A) by
(1.1)  Un,m(u) =  (u1,2 + u2,3 +� + um−1,m).
The group Un,m has a structure of a generalized Heisenberg group, and one can define a
homomorphism l from Un,m onto the Heisenberg group H2(n−m)+1. (See (6.1) below.) Let

✓(2), �

2m be a theta function on Sp(2)2m(A) formed using the Weil representation with additive

character  � given by  �(x) =  (�x). The function ✓(2), �

2m is a function on the semidirect

product H2m+1(A) � Sp(2)2m(A). We then introduce the period integral

(1.2) �
[Sp2m]

�
[Un,n−m]

'
�
�
�
u
�
�
�

In−m
h

In−m

�
�
�

�
�
�
✓(2), �

2m (l(u)h)✓(2), �

2m (h) Un,n−m(u)dudh.

In the integrand, the product of the two theta functions is not a genuine function of h, and
so gives a function on the group Sp2n(A) itself. We have

Proposition 2. Suppose that r = 1, so that �n,k is the classical theta lift of ⇡ on Sp2n to
SO2k.
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(1) [Classical-3] Assume 2 ≤ k ≤ n, and write m = n − k + 1. Then 1 ≤ m ≤ n − 1. The
Fourier coe�cient Wk,�(f) of the representation �n,k is zero for all choices of data if
and only if the period integral (1.2) is zero for all choices of data.

(2) [Classical-4] Suppose that k ≤ n − 1. Then the representation �n,k is not generic.

The proof of Proposition 2, part 1, follows from a direct calculation of the integralWk,�(f)
To deduce part 2, one then uses the theory of Fourier-Jacobi coe�cients as established by

Ikeda [I1]. Indeed, it follows from this reference that ✓(2), �

2m (h) is the residue at a point

s0 of the Eisenstein series E(2), �(⋅, s) defined on Sp(2)2m(A) that is induced from the trivial
representation of GLm(A). (The induction depends on a Weil factor that in turn depends
on the choice of additive character  �.) Hence if (1.2) is not zero for some choice of data,
then the integral

(1.3) �
[Sp2m]

�
[Un,n−m]

'
�
�
�
u
�
�
�

In−m
h

In−m

�
�
�

�
�
�
✓(2), �

2m (l(u)h)E(2), �(h, s) Un,n−m(u)dudh

is not zero for Re(s) large. However, one may unfold this integral as in [G-R-S2], and doing
so, one obtains an integral with the Whittaker coe�cient of the identity representation of
GLm(A) as an inner integration. Since this coe�cient is zero if m ≥ 2, part 2 follows.

The proof of Theorem 2 will be given by generalizing Propositions 1 and 2 to the case of
general r. To generalize Proposition 1 we will show

Proposition 3. Let r ≥ 1 be an odd integer. Then the following statements hold.

(1) [General-1] Suppose that k ≥ n+ r+3
2 . Then Wk,�(f) is zero for all choices of data and

all �.
(2) [General-2] Suppose that the Orbit Conjecture is true. When k = n + r+1

2 , the coef-
ficient Wk,�(f) is not zero for some choice of data if and only if ⇡(r) is a generic
representation with respect to �.

Proposition 8 below formulates the dependence of the genericity on � precisely, and gives
an unconditional statement as well. The second step is to generalize Proposition 2. We will
show

Proposition 4. Let r ≥ 1 be an odd integer. Suppose that the Descent Conjecture holds.
Then the following statements hold.

(1) [General-3] Suppose that 2 ≤ k ≤ r+1
2 . Then the coe�cient Wk,�(f) is not zero for

some choice of data if and only if there exists a choice of data such that the period
integral

(1.4) �
[Sp2n]

�
[U

n+ r+1
2 −k, r+12 −k]

'(r)(h) ✓(2), �

2n (l2n(u)h) ✓(2r), �

2n+r−2k+1
�
��
�
u
�
��
�

I r+1
2 −k

h
I r+1

2 −k

�
��
�

�
��
�

 U
n+ r+1

2 −k, r+12 −k(u)dudh

is not zero. Here the function ✓(2r), �

2n+r−2k+1 is in the space of the theta representation

⇥(2r), �

2n+r−2k+1 that is obtained from the residues of Eisenstein series on Sp(2r)2n+r−2k+1(A).
The remaining notation will be defined below.
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Suppose instead that r+3
2 ≤ k ≤ n +

r−1
2 . Then the coe�cient Wk,�(f) is not zero for

some choice of data if and only if there exists a choice of data such that the period
integral

(1.5) �
[Sp2n−2k+r+1]

�
[U

n,k− r+1
2
]
'(r)
�
��
�
u
�
��
�

I
k− r+12

h
I
k− r+12

�
��
�

�
��
�

✓(2), �

2n+r−2k+1(l2n+r−2k+1(u)h) ✓(2r), 
�

2n+r−2k+1(h) U
n,k− r+1

2

(u)dudh

is not zero.
(2) [General-4] Suppose that k ≤ n − r+1

2 . Then the representation �(r)n,k is not generic.

In the integrals above, the unipotent groups embed in their covers by means of the trivial
section u � (u,1). The integrands are independent of the central subgroup as a function of
h, so integration over the adelic quotients of the symplectic groups makes sense. (In greater
detail, we integrate in h over the full 2r-fold cover of the indicated symplectic group and
in evaluating '(r) and ✓(2) we first project h from the 2r-fold cover to the r-fold and 2-fold
covers, resp., as in [F-G3], Section 3. But as the integrand is ultimately independent of µ2r it
is more natural to regard it as simply a function on the group.). Also, the theta representation

⇥(2r), �

2n+r−2k+1 is defined in [F-G1], pg. 93; the dependence on the additive character is explained
in [F-G2], pg. 1926.

Though this work focusses on global genericity, one may also study genericity in the
context of the local generalized theta correspondence ([F-G3], Section 6). See for example
Bakić [Bak] for the classical theta correspondence. We remark that some of the methods
developed here could also be transported to the local situation.

We now describe the proofs in brief and also the structure of this paper. In Section 2 we
introduce the groups of concern, discuss the Fourier coe�cients of the theta representation,
and provide a brief review of root exchange. We state Theorem 3 (proved in [F-G3]) that
gives information about these coe�cients, and the Orbit Conjecture that is used in the
sequel. Section 3 describes the construction of the generalized theta lift of [F-G3]. Then
in Section 4 we introduce the family of Whittaker coe�cients that are to be studied, and
compute them for f ∈ �(r)n,k. To do so, we unfold the classical theta function and then use
root exchange extensively. We also use the vanishing of the Fourier coe�cients for the theta
representation that are attached to certain unipotent orbits (Theorem 3, part 1). This allows
us to establish an inductive process that terminates in the integral L(j) given by (4.8) with
j =min(k − 2, (r − 3)�2). We then analyze each case for this minimum.

In Section 5, the case that min(k − 2, (r − 3)�2) = k (i.e., k ≤ (r + 1)�2) is studied; note
that this case does not arise in the classical theta correspondence. Here we use further
root exchanges and the results of Ikeda mentioned above to arrive at the period (1.4). The
case that min(k − 2, (r − 3)�2) = (r − 3)�2 (i.e., k > (r + 1)�2) is studied in Section 6. The
analysis here is roughly similar but uses additional Fourier expansions over certain unipotent
subgroups of symplectic groups. We conclude that in this case the Whittaker coe�cient
Wk,�(f) is nonzero if and only if the integral L(j) given by (6.5) is nonzero when j =
min(n, k − (r + 1)�2). This allows us to prove Proposition 3, part 1, using once again the
vanishing of the Fourier coe�cients of the theta representation (Theorem 3, part 1), and
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Proposition 3, part 2 after using the non-vanishing that is the Orbit Conjecture. It also allows
us to establish Proposition 4, part 1, assuming the Descent Conjecture (whose discussion is
deferred to Section 7). The concluding Section 7 discusses the Descent Conjecture and the
relation of this conjecture to a strong multiplicity one statement, establishes Proposition 4,
part 2 and Corollary 1 under it, and explains how we can show part 2 without the Descent
Conjecture by imposing an additional condition on ⇡(r) (Proposition 12).

We thank the referee for helpful comments.

2. Notation, Fourier Coefficients of the Theta Representation, Root

Exchange

In this section we fix some notations, discuss the Fourier coe�cients of the theta repre-
sentation, and provide a brief review of root exchange. Let Mata×b be the algebraic group of
all matrices of size a × b and write simply Mata for Mata×a. For m ≥ 1 let Jm ∈Matm be the
matrix

Jm =
�
�
�

1
�

1

�
�
�
.

Let Sp2m denote the symplectic group

Sp2m = �g ∈ GL2m � tg � 0 Jm
−Jm 0

� g = � 0 Jm
−Jm 0

��

and for k ≥ 2 let SOk denote the split special orthogonal group

SOk = {g ∈ GLk � tg Jk g = Jk} .
Let H2l+1 be the Heisenberg group in 2l + 1 variables, realized as in [F-G3] as all elements
of the form (X,Y, z) where X,Y ∈ Mat1×l and z ∈ Mat1. This group may be embedded
into Sp2l+2 as in [F-G3], p. 1537. We also define Mat0a = {Z ∈ Mata ∶ ZtJa = JaZ} and
Mat00a = {Z ∈Mata ∶ ZtJa = −JaZ}.

Let ei,j denote the square matrix, whose size will be clear by context, with (i, j)-th entry
1 and all other entries 0. When we work with Sp2l, we let e′i,j = ei,j ± e2l−j+1,2l−i+1 with the
sign chosen so that e′i,j ∈ Sp2l. When we work with SO2k we let e′i,j = ei,j − e2k−j+1,2k−i+1 for
all choices of (i, j).

Let F be a global field and A denote its ring of adeles. Let ⇥(2)2l denote the theta rep-

resentation on the group H2l+1(A) � Sp(2)2l (A); this representation depends on a choice of a
nontrivial additive character of F �A. See [G-R-S2], Section 1, part 6, for the definition and
the action of the Weil representation. Fix r ≥ 1 odd and suppose that F contains a full group
of r-th roots of unity, µr, and fix an embedding ✏ ∶ µr � C×. Let G denote one of the groups
Sp2l or SO2k, and G(r)(A) the r-fold metaplectic covering group of G(A). We work with

functions and representations that are genuine with respect to ✏. Let ⇥(r)2l denote the theta

representation on Sp(r)2l (A). The functions in this space are obtained as residues of Eisenstein

series on Sp(r)2l (A). For more details, see [F-G1] Section 2, where we give basic properties of
these representations. These are similar to the properties of theta representations on covers
of the general linear group, treated in [K-P].

To each unipotent orbit of the group Sp2l one may associate a set of Fourier coe�cients, as
described in [G]. Unipotent groups lift canonically to a central extension ([M-W], Appendix
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I), so one may also consider Fourier coe�cients of functions defined on any cover of Sp2l.
Given an automorphic representation ⇡ we let O(⇡) denote the set of unipotent orbits O
that are maximal with respect to the property that there is a function f ∈ ⇡ that has a
nonzero Fourier coe�cient for O. The unipotent orbits are indexed by partitions of 2l such
that every odd part has even multiplicity (see [C-M]). In this paper we are mainly interested

in the set O(⇥(r)2l ).
The structure of the set O(⇥(r)2l ) is described in [F-G3], Section 4. Let r > 1 be an odd

integer, and write 2l = ↵r + � where 0 ≤ � < r. Let Oc(⇥(r)2l ) denote the unipotent orbit

Oc(⇥(r)2l ) = �
(r↵�) if ↵ is even

(r↵−1(r − 1)(� + 1)) if ↵ is odd.

Conjecture 1 of [F-G3] (also made in [F-G1]) states that the set O(⇥(r)2l ) is a singleton, and

is precisely the set {Oc(⇥(r)2l )}. That is, all Fourier coe�cients of functions in ⇥(r)2l which

are attached to unipotent orbits that are greater than or not comparable to Oc(⇥(r)2l ) are
zero, and for some function in ⇥(r)2l there is a nonzero coe�cient attached to this orbit. We
mention that the local analogue of this conjecture has been extended to other groups and
described conceptually by Gao and Tsai [G-T].

In [F-G3], we establish the following result concerning the unipotent orbit of ⇥(r)2l .

Theorem 3. (1) For all positive integers l, if O ∈ O(⇥(r)2l ), then O ≤ Oc(⇥(r)2l ).
(2) Assume that l = 0,1,2, r − 3, r − 2, r − 1. Let n denote a non-negative integer, and

assume that if l = 0, then n ≥ 1. Then O(⇥(r)2(l+nr)) = {Oc(⇥(r)2(l+nr))}. In particular, if

r = 3 or r = 5 then O(⇥(r)2l ) = {Oc(⇥(r)2l )} holds for all l.

Thus the vanishing properties of Fourier coe�cients implied by [F-G3], Conjecture 1, are
known, but the non-vanishing properties are known in full only for r = 3,5. We do not need
this non-vanishing in general, but only in the case 2l = r − 1, but there to give the optimal
results we need more. In that case, [F-G3], Conjecture 1 asserts that ⇥(r)r−1 is generic, i.e. that
there is some function in the space of ⇥(r)r−1 that has a nonvanishing Whittaker coe�cient
with respect to some Whittaker character of Spr−1. Such characters are given by

e�(u) =  (u1,2 + ⋅ ⋅ ⋅ + ur1−1,r1 + �ur1,r1+1)
with r1 = (r − 1)�2 and � ∈ F ∗. We conjecture this nonvanishing for every class of Whittaker
characters modulo the action of the rational split torus.

Conjecture 1 (Orbit Conjecture). For each class in F ∗�(F ∗)2, there is a representative

� ∈ F ∗ and a function ✓ in ⇥(r)r−1 such that the Whittaker integral of ✓ with respect to the
character e� is nonzero.

We remark that by a result of Gao [Gao], for any choice of additive character, or equiva-
lently for any � ∈ F ∗, the local Whittaker functional for each nonarchimedean local compo-
nent of ⇥(r)r−1 exists and is unique up to scalars. We also mention that for even degree covers
an analogous statement is not expected to hold (after all, the process of induction in the
even cover case requires the Weil factor, which depends on a choice of additive character).
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Next we describe the groups at hand in more detail, following the same notation as in
[F-G3]. All parabolic subgroups we use are standard parabolic subgroups whose unipotent
radical consists of upper triangular unipotent matrices. Let Pa,b,c denote the parabolic sub-
group of Sp2(ab+c) whose Levi part is GLa × . . .×GLa ×Sp2c where GLa appears b times. Let
Ua,b,c denotes the unipotent radical of Pa,b,c.

We have the following matrices and subgroups of Ua,b,c. For 1 ≤ i ≤ b − 1, let

(2.1) ui
a,b,c(Xi) =

�
����������
�

I↵
Ia Xi

Ia
I�

Ia X∗i
Ia

I↵

�
����������
�

, Xi ∈Mata.

Here ↵ = a(i − 1), and � = 2(ab + c) − 2a(i + 1). Here and below, we use an asterisk to
indicate that the entries are determined by the condition that the matrix is symplectic (here
the entries of X∗i are determined by those of Xi.) We denote the subgroup consisting of all
matrices ui

a,b,c(Xi) with Xi ∈Mata by U i
a,b,c. Let

(2.2) u′a,c(Y,Z) =
�
�����
�

I2a(b−1)
Ia Y Z

I2c Y ∗
Ia

I2a(b−1)

�
�����
�

, Y ∈Mata×2c, Z ∈Mat0a,

and let U ′a,c be the subgroup Ua,b,c of matrices of this form.
Each matrix u ∈ Ua,b,c may be factored uniquely as

u = ui
a,b,c(Xi)u′

with ui
a,b,c(Xi) ∈ U i

a,b,c, u
′ ∈ Ua,b,c and where u′ has entry zero at each location (p, j) with

↵ + 1 ≤ p ≤ ↵ + a, ↵ + a + 1 ≤ j ≤ ↵ + 2a. We refer to ui
a,b,c(Xi) as the i-th coordinate of u.

Similarly, we define the u′a,c(Y,Z) coordinate of u. Every u ∈ Ua,b,c has a factorization of the
form

(2.3) u = u′a,c(Y,Z)
b−1
�
i=1

ui
a,b,c(Xi)u1

where u1 ∈ Ua,b,c has zeroes in the first b a×a blocks directly above the main diagonal and in
positions Y and Z in (2.2) (and thus is also zero in the corresponding last b blocks directly
above the main diagonal and in Y ∗), and the matrices Xi, Y and Z are uniquely determined.
Using this factorization, we define a character  Ua,b,c

of Ua,b,c(A) trivial on Ua,b,c(F ) by
 Ua,b,c

(u) =  (tr(X1 +� +Xb−1)).
The group U ′2k,n has the structure of a generalized Heisenberg group. We make use of a

homomorphism l4kn ∶ U2k,r1,n → H4kn+1 given as follows. First, on the center of U ′2k,n, which
consists of all matrices (2.2) such that Y = 0, let l4kn(u′2k,n(0, Z)) = (0,0, tr′(Z)). Here, for

Z = (Zi,j) ∈Mat02k we write

tr′(Z) = Z1,1 +Z2,2 + . . . +Zk,k.
9



Since U ′2k,n modulo its center is isomorphic to H4kn+1 modulo its center, one may extend
l4kn to U ′2k,n by taking any isomorphism between these two quotients. We postpone a more
precise description of which extension we choose until Section 4 where it is needed (see below
(4.6)). After defining l4kn on U ′2k,n we extend it trivially to U2k,r1,n.

We conclude this section with a review of root exchange, following Ginzburg, Rallis and
Soudry ([G-R-S4], Section 7.1), as this technique will be used extensively below. Suppose
that H is a symplectic or split special orthogonal group, C is a unipotent subgroup of H
defined over F , and X,Y are additional unipotent subgroups over F with the properties that
each normalizes C, X ∩C �X, Y ∩C � Y , the quotients XC ∶=X�X ∩C and YC ∶= Y �Y ∩C
are abelian, and [X,Y ] ⊂ C. Suppose that  C is a nontrivial additive character of C(A)
trivial on C(F ) such that X(A) and Y (A) preserve  C when acting via conjugation,  C is
trivial on (X ∩C)(A) and (Y ∩C)(A), and such that the pairing XC(A)×YC(A)→ C� given
by (x, y) �  C([x, y]) is multiplicative in each coordinate, non-degenerate, and identifies
XC(F ) (resp. YC(F )) with the dual of Y (F )�YC(A) (resp. X(F )�XC(A)). Let B = CY and
D = CX and extend the character  C to characters  B on B(A) (resp.  D on D(A)), so
 B is trivial on Y (A) and  D is trivial on X(A). Let A = CXY . Let H(r)(A) be an r-fold
cover as above. All unipotent groups split canonically over H(r)(A) and we use the same
notations for their embedded images in H(r)(A). Then Ginzburg, Rallis and Soudry show

Proposition 5 (Root Exchange). Let f be a smooth automorphic form on H(r)(A) that is
of uniform moderate growth.

(1) The following two integrals are equal:

�[B] f(v) B(v)dv = �
YC(A)�[D] f(uy) D(u)dudy.

(The convergence of the right hand side is discussed in [G-R-S4], Lemma 7.1.)
(2) The integral ∫[B] f(va) B(v)dv vanishes for all a ∈ A(A) if and only if the integral

∫[D] f(ua) D(u)du vanishes for all a ∈ A(A).

3. The Generalized Theta Lifting

In this section we review the basic integral construction introduced in [F-G3], Section 1.
We require two embeddings. First, as in the classic theta lift, let ◆1 ∶ SO2k × Sp2n → Sp4nk
be the tensor product embedding. Second, for given r, let ◆2 ∶ SO2k × Sp2n → Sp2n+2k(r−1) be
the embedding

(3.1) ◆2(h, g) = diag(h, . . . , h, g, h∗, . . . , h∗)
where each of the matrices h,h∗ is repeated r1 times and h∗ is chosen so that the matrix is
in the symplectic group. We recall that r1 = (r − 1)�2.

These maps may be extended to covering groups, but this requires some care. As ex-
plained in [F-G3], Section 2, by properly choosing cocycles that realize the covering groups,

composing with the projections from SO(r)2k (A) to SO2k(A) and from Sp(r)2n (A) to Sp2n(A),
and using the splitting of Kudla [Ku1] and Sweet [Sw], the map ◆1 may be extended to a map

◆1 ∶ SO(r)2k (A)×Sp
(r)
2n (A)→ Sp(2)4nk(A) (we use the same notation for this extension). Also, the

map ◆2 may be extended to a map ◆2 ∶ SO(r)2k (A) × Sp
(r)
2n (A)→ Sp(r)2n+2k(r−1)(A).
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Let ✓(r)2n+2k(r−1) be a vector in the space of the representation ⇥(r)2n+2k(r−1), and ✓(2), 4kn be a

vector in the space of the representation ⇥(2)4kn with additive character  . Let h ∈ SO(r)2k (A)
and g ∈ Sp(r)2n (A). Consider the Fourier coe�cient

(3.2) �
[U2k,r1,n

]
✓(2), 4kn (l4kn(u)◆1(h, g))✓

(r)
2n+2k(r−1)(u◆2(h, g)) U2k,r1,n

(u)du.

The idea is then to use this Fourier coe�cient as an integral kernel.
Let ⇡(r) denote a genuine irreducible cuspidal automorphic representation of Sp(r)2n (A),

and let '(r) be a vector in the space of ⇡(r). Let �(r)n,k denote the representation of SO(r)2k (A)
generated by all functions f(h) given by the integrals
(3.3)

�
Sp2n(F )�Sp(r)2n (A)

�
[U2k,r1,n

]
'(r)(g)✓(2), 4kn (l4kn(u)◆1(h, g))✓

(r)
2n+2k(r−1)(u◆2(h, g)) U2k,r1,n

(u)dudg

as '(r), ✓(2), 4kn and ✓(r)2n+2k(r−1) vary over their representation spaces. (A choice of these func-

tions is a “choice of data” below.) This defines a mapping from the set of irreducible cuspidal

genuine automorphic representations of Sp(r)2n (A) to the set of genuine representations of the

quotient SO2k(F )�SO(r)2k (A). This is the map that we shall study in the sequel. We remark

that as a function of g = (g1, ⇣) ∈ Sp(r)2n (A), with g1 ∈ Sp2n(A), ⇣ ∈ µr, the integrand in (3.3)
is independent of ⇣, so the integrand can also be pushed down to a function on the group
Sp2n(A) and the integration taken over the adelic quotient [Sp2n] of this group.

4. The Whittaker coefficients of the representation �(r)n,k

In this Section we compute the Whittaker coe�cients of the representation �(r)n,k. Let V2k

denote the maximal unipotent subgroup of SO2k. Let � ∈ F ∗. For v = (vi,j) ∈ V2k(A), define
(4.1)  V2k,�(v) =  (v1,2 + v2,3 + . . . + �vk−1,k + vk−1,k+1).
Then  V2k,� is a Whittaker character of V2k(A) that is trivial on V2k(F ). Up to conjugation
by the rational split torus all generic characters of [V2k] are of this form, and in view of this
action it su�ces to consider � ∈ F ∗�(F ∗)2. Our goal in this section is to study the integrals

(4.2) Wk,�(f) = �
[V2k]

f(vh) V2k,�(v)dv

for f(h) a function in the space of the representation �(r)n,k.
We start by fixing some notations. Given u ∈ U2k,r1,n, let

(4.3) u = u′2k,n(Y,Z)
r1−1
�
i=1

ui
2k,r1,n(Xi)u1

be its factorization as in equation (2.3). Write Y ∈ Mat2k×2n as Y = �Y1

Y2
� where Y1, Y2 ∈

Matk×2n. Let U0
2k,r1,n

denote the subgroup of U2k,r1,n consisting of all matrices of the form
(4.3) such that Y2 = 0.

11



For every 0 ≤ j ≤min(k − 2, r1 − 1) we define a unipotent subgroup Uj of Sp2(n+k(r−1)−jr) as
follows. Let P j

2k,r1,n
denote the standard parabolic subgroup of Sp2(n+k(r−1)−jr) whose Levi

part is GLj
2k−2j−1 × GLr1−j

2k−2j × Sp2n. Let U1,j
2k,r1,n

denote the standard unipotent radical of

P j
2k,r1,n

. Similarly to (4.3), an element u ∈ U1,j
2k,r1,n

has a factorization

(4.4) u = u′2k−2j,n(Y,Z)uj
aj ,bj ,cj ,dj

(Xj)
r1−1
�
i=1
i≠j

ui
ai,bi,ci,di

(Xi)u1

with Y ∈Mat(2k−2j)×2n, Z ∈Mat02k−2j, Xj ∈Mat(2k−2j−1)×(2k−2j), Xi ∈Mat2k−2j−1 if 1 ≤ i ≤ j − 1,
and Xi ∈Mat2k−2j if j + 1 ≤ i ≤ r1 − 1. Here for each i, 1 ≤ i ≤ r1 − 1, we denote

(4.5) ui
a,b,c,d(Xi) =

�
����������
�

Ia
Ib Xi

Ic
Id

Ic X∗i
Ib

Ia

�
����������
�

and the indices ai, bi, ci, di are given as follows. If 1 ≤ i ≤ j − 1, then ai = (2k − 2j − 1)(i − 1),
bi = ci = 2k − 2j − 1; if i = j then aj = (2k − 2j − 1)(j − 1), bj = 2k − 2j − 1, cj = 2k − 2j;
and if j + 1 ≤ i ≤ r1 − 1, then ai = (2k − 2j)(i − 1) − j, bi = ci = 2k − 2j. In all cases

di = 2(n + k(r − 1) − jr) − 2(ai + bi + ci). For Y ∈ Mat2(k−j)×2n write Y = �Y1

Y2
� where Y1, Y2 ∈

Mat(k−j)×2n. We define the group Uj to be the subgroup of U1,j
2k,r1,n

consisting of all matrices
of the form (4.4) such that Y2 = 0. Note that U0 = U0

2k,r1,n
.

Let  Uj denote the character of Uj(A) defined as follows. Write u ∈ Uj as in equation
(4.4). Then

(4.6)  Uj(u) =  
�
�
tr0(Xj) + tr′(Z) +

r1−1
�
i=1
i≠j

tr(Xi)
�
�
.

Here if Xj[a, b] denotes the (a, b) entry of Xj, then

tr0(Xj) =Xj[1,1] +Xj[2,2] + . . . +Xj[2k − 2j − 1,2k − 2j − 1]

(we remind the reader that Xj is not a square matrix). The character  Uj is trivial on Uj(F ).
We start the computation of (4.2) by first unfolding the theta series ✓(2), 4kn . Choosing

l4kn(u′2k,n(Y,Z)) = (Y2, Y1, tr′(Z)), we deduce that the embedding ◆1 of (v, g) ∈ V2k × Sp2n in
Sp4kn preserves this choice of polarization. Indeed, the group ◆1(V2k × Sp2n) is contained in
the maximal parabolic subgroup of Sp4kn whose Levi part is GL2kn. Thus,

✓(2), 4kn (l4kn(u′2k,n(Y,Z))(v, g)) = �
⇠∈Matk×2n(F )

! (l4kn(u′2k,n(Y,Z))◆1(v, g))�(⇠)

= �
⇠∈Matk×2n(F )

! (l4kn(u′2k,n(⇠′ + Y,Z))◆1(v, g))�(0).
12



Here ⇠′ = �0
⇠
�. Plugging this into integral (4.2), collapsing the summation over ⇠ with the

corresponding integration over U2k,r1,n(F )�U2k,r1,n(A), integral (4.2) is equal to

�
Matk×2n(A)

�
[Sp2n]

�
[V2k]

�
[U0

2k,r1,n
]
'(r)(g)! (l4kn(u)(◆1(v, g)l4kn(u′2k,n(Y ′,0)))�(0)

✓(r)2n+2k(r−1)(u◆2(v, g)u′2k,n(Y ′,0)) U0
2k,r1,n

(u) V2k,�(v)dv dudg dY ′.

Here, we write Y ′ = � 0
Y2
�.

From the action of the Weil representation (see, for example, [G-R-S2] Section 1, part
6), we have the identity ! (l4kn(u)◆1(v, g))�(0) = �(0). Since � is an arbitrary Schwartz
function, we deduce that the integral (4.2) is zero for all choices of data if and only if the
integral

(4.7) �
[Sp2n]

�
[V2k]

�
[U0

2k,r1,n
]
'(r)(g) ✓(r)2n+2k(r−1)(u◆2(v, g)) U0

2k,r1,n
(u) V2k,�(v)dudv dg

is zero for all choices of data.
For every 0 ≤ j ≤min(k − 2, r1 − 1), define the integral

(4.8) L(j) = �
[Sp2n]

�
[V2k−2j]

�
[Uj]

'(r)(g) ✓(r)2(n+k(r−1)−jr)(u◆3,j(v, g)) Uj(u) V2k−2j ,�(v)dudv dg.

Here for v = � v0 B
1 � ∈ V2k−2j(A), g ∈ Sp2n(A), the matrix ◆3,j(v, g) ∈ Sp2(n+k(r−1)−jr)(A) is

given by

(4.9) ◆3,j(v, g) = diag(v0, . . . , v0, v . . . , v, g, v∗, . . . , v∗, v∗0 , . . . , v∗0),
where on the right the matrix v appears r1 − j times and the matrix v0 appears j times.
Notice that since v is an upper unipotent matrix, so is v0; however, v0 is not an orthogonal
matrix. Also, ◆3,0(v, g) is exactly the embedding introduced in (3.1): ◆3,0(v, g) = ◆2(v, g). In
(4.8), we first extend ◆3,j(⋅, ⋅) to covering groups in the usual way. That is, we observe that
V2k−2j(A) is unipotent, so canonically embeds in its cover by means of the trivial section,

and if g = (g1, ⇣) ∈ Sp(r)2n (A), g1 ∈ Sp2n(A), ⇣ ∈ µr, then we set ◆3,j(v, g) = (◆3,j(v, g1), ⇣) ∈
Sp(r)2(n+k(r−1)−jr)(A). Then as a function of g = (g1, ⇣) ∈ Sp(r)2n (A), the integrand in (4.8) is

independent of ⇣ ∈ µr, so the integrand descends to the group Sp2n(A) (and is then integrated
over this group). Also, L(0) is equal to the integral (4.7).

We introduce additional notation. For any index a and composition (n1, . . . , nk) of a, let
Un1,...,nk

be the unipotent radical of the standard parabolic subgroup of GLa with Levi part
GLn1 × ⋅ ⋅ ⋅ × GLnk

. Also we write La for the full subgroup of upper triangular unipotent
matrices of GLa (so La = U1,...,1, but we use the less adorned notation).

Lemma 1. For each j with 0 ≤ j <min(k − 2, r1 − 1), the integral L(j) is zero for all choices
of data if and only if integral L(j + 1) is zero for all choices of data.

Proof. The first step is to perform a certain root exchange. Fix j. We start by defining
unipotent groups M1 and Q1 of Sp2(n+k(r−1)−jr). These will be the first groups on which we
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carry out the root exchange process. We define M1 to be the image of U1,2k−2j−3,1 inside
Sp2(n+k(r−1)−jr) under the embedding u1 → diag(u1, I, u∗1) where I is the identity matrix of
size 2(n+ (k − j)(r − 3)− (j − 1)). The group Q1 is defined to be the group of all matrices of
the form

(4.10) u1
0,2k−2j−1,2k−2j−1,d1(X1); X1 =

�
�
�

0
d 02k−2j−3
e f 0

�
�
�
, dt, f ∈Mat1×(2k−2j−3), e ∈Mat1

where d1 = 2(n + k(r − 1)− 4(2k − 2j − 1)− jr) and 0↵ denotes the zero square matrix of size
↵. Notice that Q1 is a subgroup of Uj.

We now carry out root exchange between the groups M1 and Q1. In the notation of
Proposition 5, we let B = Uj, D denote the semi-direct product of M1 and Q1�Uj, and
Y = Q1. We conclude that integral (4.8) is equal to

�
Q1(A)

� �
[M1]

�
Q1(A)Uj(F )�Uj(A)

'(r)(g)

✓(r)2(n+k(r−1)−jr)(um1◆3,j(v, g)q1) j(u) V2k−2j ,�(v)dudm1 dv dg dq1.

Here, the domains of integration of the variables v and g are the same as for integral L(j) in
(4.8) above. Applying Proposition 5, we deduce that the integral L(j) is zero for all choices
of data if and only if the integral

� �
[M1]

�
Q1(A)Uj(F )�Uj(A)

'(r)(g)

✓(r)2(n+k(r−1)−jr)(um1◆3,j(v, g)) Uj(u) V2k−2j ,�(v)dudm1 dv dg

is zero for all choices of data.
For 2 ≤ i ≤ r1 we define the subgroups Mi of Sp2(n+k(r−1)−jr) as follows (these also depend

on j but we suppress this dependence). First, for 2 ≤ i ≤ j, the group Mi is the image of
U1,2k−2j−3,1 in Sp2(n+k(r−1)−jr) under the embedding

ui → diag(I↵, ui, I�, u
∗
i , I↵), ↵ = (2k − 2j − 1)(i − 1)

with � chosen so that the embedding is into Sp2(n+k(r−1)−jr). The group Mj+1 is the image
of U1,1,2k−2j−3,1 in Sp2(n+k(r−1)−jr) under the map

(4.11) uj+1 → diag(I↵, uj+1, I�, u∗j+1, I↵), ↵ = (2k − 2j − 1)j.

For i in the range j + 2 ≤ i ≤ r1 − 1, Mi is the image of U1,2k−2j−2,1 under the map

ui → diag(I↵, ui, I�, u
∗
i , I↵), ↵ = (2k − 2j)(i − 1) − j.

Finally, the group Mr1 is the image of the group U1,2k−2j−1 under the embedding

ur1 → diag(I↵, ur1 , I�, u
∗
r1 , I↵) ↵ = (2k − 2j)(r1 − 1) − j.

In each embedding above, � is chosen such that the resulting matrix is in Sp2(n+k(r−1)−jr).
Next, for 2 ≤ i ≤ r1 and j fixed, we define groups Qi. For 2 ≤ i < r1, Qi is the group of all

matrices of the form ui
ai,bi,ci,di

(Xi) (see (4.5)), where Xi is specified as follows. If 2 ≤ i < j
14



then Xi runs over all matrices of the form X1 that appear in equation (4.10). For i = j, j +1,
Xi consists of matrices of the following forms:

Xj =
�
�
�

0
a 02k−2j−3
b c 0 0

�
�
�
, Xj+1 =

�
���
�

0
d 02k−2j−3
e f 0
g h s 0

�
���
�

where at, dt, c, f, h ∈Mat1×(2k−2j−3) and b, e, g, s ∈Mat1. For j + 1 < i < r1,

Xi =
�
�
�

0
a 02k−2j−2
b c 0

�
�
�

at, c ∈Mat1×(2k−2j−2), b ∈Mat1.

Finally, we define the group Qr1 to be all the matrices u′2k−2j,n(0, Z) (see (4.4)) where Z is
of the form

Z =
�
�
�

0
a 02k−2j−2
b a∗ 0

�
�
�

a ∈Mat1×(2k−2j−2), b ∈Mat1.

Let M0 be the group M0 = ∏iMi. Perform a root exchange similar to the one above.
Using Proposition 5, we deduce that the integral L(j) is zero for all choices of data if and
only if the integral

� �
[M0]

�
Qr1(A)...Q2(A)Q1(A)Uj(F )�Uj(A)

'(r)(g)

✓(r)2(n+k(r−1)−jr)(um0◆3,j(v, g)) Uj(u) V2k−2j ,�(v)dudm0 dv dg

is zero for all choices of data. Here, the domains of integration of the variables v and g are
the same as for integral L(j) above.

Let V ′2k−2j be the unipotent radical of the standard parabolic of SO2k−2j with Levi part
GL1 × SO2k−2j−2, and let  V ′2k−2j be the Whittaker character restricted to this subgroup:

 V ′2k−2j(v
′) =  (v′1,2). Let ◆3 ∶ SO2k−2j−2 → SO2k−2j be the embedding ◆3(v) = diag(1, v,1).

Then every matrix v in V2k−2 has a unique factorization v = v′◆3(v′′) with v′ ∈ V ′2k−2j and
v′′ ∈ V2k−2j−2. Since j <min{k−2, r1−1}, we have 2k−2j > 4. Hence we have the factorization
 V2k−2j ,�(v) =  V ′2k−2j(v

′) V2k−2j−2,�(v′′).
Define the group M =M0V ′2k−2j. After changing variables, we obtain that L(j) is zero for

all choices of data if and only if the integral

(4.12) � �
[V2k−2j−2]

�
[M]

�
Qr1(A)...Q2(A)Q1(A)Uj(F )�Uj(A)

'(r)(g)

✓(r)2(n+k(r−1)−jr)(um◆3,j(v, g)) Uj(u) V2k−2j−2,�(v) M(m)dudmdv dg

is zero for all choices of data. Here if m ∈Mj(A) ⊆M(A) is the image of uj+1 under the map
(4.11) then  M(m) =  (uj+1[2k−2j −1,2k−2j]), and the character  M is extended trivially
from Mj(A) to M(A).
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The next step is to define certain monomial matrices wj
0 ∈ Sp2(n+k(r−1)−jr) whose non-zero

entries are ±1. These matrices are of the form

(4.13) wj
0 =
�
�
�

w1 w2

I2n
w3 w4

�
�
�
, wi ∈Matk(r−1)−jr for 1 ≤ i ≤ 4.

Since these matrices are symplectic, it is enough to specify the non-zero entries in the matrix
�w1 w2�. Let ↵ = 2n + k(r − 1) − jr. The nonzero entries of the first r rows of this matrix
are as follows. The matrix has entry 1 at position (i, (i − 1)(2k − 2j − 1) + 1) for 1 ≤ i ≤
j; at position (i, (2k − 2j − 1)j + (2k − 2j)(i − j − 1) + 1) for j + 1 ≤ i ≤ r1; at position
(r1 + i,↵+ (i−1)(2k −2j)+1) for 1 ≤ i ≤ r1 − j; at position (r− j,↵+ (r1 − j −1)(2k −2j)+2);
and at position (r − j + i,↵+ (r1 − j)(2k − 2j)+ (i− 1)(2k − 2j − 1)+ 1) for 1 ≤ i ≤ j. The next
k(r−1)− (j +1)r rows of the matrix �w1 w2� are zero in positions in w2. As for the matrix
w1, let w0

1 denote the matrix obtained from w1 by omitting the first r rows. Then

w0
1 = �

w0
1,1 0
0 w0

2,2
� w0

1,1 ∈Mat(j+1)�×(j+1)(�+2), w0
2,2 ∈Mat(r1−j−1)�×((r1−j−1)(�+2)+1),

with � = 2k − 2j − 3 and � = 2k − 2j − 2. The matrix w0
1,1 is given by

(4.14) w0
1,1 =

�
�����
�

0 I� 0 0 0� . . .
0 0� 0 0 I� 0 0 0� . . .
0 0� 0 0 0� 0 0 I� 0 . . .
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ . . .
0 0� 0 0 0� 0 0 0� 0 . . . 0 I� 0

�
�����
�

,

where this block matrix has j + 1 rows each of height �, the unadorned 0 is the zero matrix
in Mat�×1, and the identity matrix I� appears in the i-th row of the block matrix above in
the (3i − 1)-th column, 1 ≤ i ≤ j + 1. The matrix w0

2,2 is given by

w0
2,2 =

�
�����
�

0 0 I� 0 0 0� . . .
0 0 0� 0 0 I� 0 0 0� . . .
0 0 0� 0 0 0� 0 0 I� 0 . . .
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ . . .
0 0 0� 0 0 0� 0 0 0� 0 . . . 0 I� 0

�
�����
�

.

This block matrix has r1−j −1 rows each of height �, each unadorned 0 is the zero matrix in
Mat�×1, and for 1 ≤ i ≤ r1 − j − 1, the identity matrix I� appears in the i-th row in the 3i-th
column.

We remark that though wj
0 is defined here for j in the range 1 ≤ j < (r − 3)�2, the same

description makes sense for j = (r − 3)�2. We will make use of w(r−3)�20 in Section 6 below.

Since the function ✓(r)2(n+k(r−1)−jr) is invariant under Sp2(n+k(r−1)−jr)(F ), we have

✓(r)2(n+k(r−1)−jr)(um◆3,j(v, g)) = ✓(r)2(n+k(r−1)−jr)(wj
0um◆3,j(v, g)(w

j
0)−1wj

0).
16



After conjugation, we deduce that the integral (4.12) is zero for all choices of data if and
only if the integral

(4.15) � '(r)(g)✓(r)2(n+k(r−1)−jr)
�
�
�

�
�
�

A B C
Ia B∗

A∗
�
�
�

�
�
�

Ir
D Ia
E D∗ Ir

�
�
�
u◆3,j+1(v, g)

�
�
�

 ̃(A) Uj+1(u) V2k−2j−2,�(v) ′(D) d(...)
is zero for all choices of data. Here a = 2(n+k(r−1)−(j+1)r), and the domains of integration
and characters in this integral are given as follows.

First, the variables v and g are integrated as in (4.12). The variable u is integrated over
[Uj+1]. The embedding of these groups in Sp2(n+k(r−1)−jr) is given by

u◆3,j+1(v, g)→ diag(Ir, u◆3,j(v, g), Ir).
This means that we can view these groups as subgroups of Sp2(n+k(r−1)−(j+1)r) embedded in
Sp2(n+k(r−1)−jr) by the map h → diag(Ir, h, Ir) (we do not introduce notation). Also, let Lr

denote the upper triangular maximal unipotent subgroup of GLr. Then the variable A is
integrated over [Lr]. The character  ̃ is the Whittaker character of the group Lr, given for
A = (Ai,j) ∈ Lr by  ̃(A) =  (A1,2 +A2,3 +� +Ar−1,r).

To give the domain of integration of the variable C, for a positive integer b, let Tb denote the
group of all upper triangular matrices in Matb. Let Tb,0 denote the subgroup of Tb consisting
of all upper triangular matrices with zero entries on the diagonal. Let T 0

b,0 = Tb,0 ∩Mat0b . Let

C(r) denote the subgroup of Mat0r consisting of all matrices

C =
�
�
�

C1 C2 C3

C4 C∗2
C∗1

�
�
�
, C1 ∈ Tj, C2 ∈Matj×(r−2j), C3 ∈Mat0j , C4 ∈ T 0

r−2j,0.

The variable C in integral (4.15) is integrated over [C(r)].
To give the integration domain of the variable E, let Tb,0,0 be the group consisting of all

matrices in Tb,0 such that the all entries of the diagonal immediately above the main diagonal
are zero. Let E(r) be the group of all matrices in Mat0r of the form

E =
�
�
�

E1 E2 E3

E4 E∗2
E∗1

�
�
�
, E1 ∈ Tj+1,0,0,E2 ∈Mat(j+1)×(r−2j−2),E3 ∈Mat0j+1,E4 ∈ T 0

r−2j−2,0.

Then E is integrated over [E(r)].
Let B(r, a) denote the subgroup of Matr×a consisting of all matrices B = (B↵,�) such that

B↵,� = 0 for the following pairs of integers (↵,�). First, if 1 ≤ ↵ ≤ j + 2, then 1 ≤ � ≤
(↵ − 1)(2k − 2j − 3). When j + 3 ≤ ↵ ≤ (r − 1)�2 we have 1 ≤ � ≤ (↵ − 1)(2k − 2j − 2)− (j + 1).
When ↵ = (r + 1)�2 we have 1 ≤ � ≤ n + a�2. For 1 + (r + 1)�2 ≤ ↵ ≤ r − j − 2 we have 1 ≤ � ≤
(2↵−r−1)(k−j−1)+n+a�2. When ↵ = r−j−1, r−j we have 1 ≤ � ≤ (r−2↵−3)(k−j−1)+n+a�2,
and finally, for r − j + 1 ≤ ↵ ≤ r we have 1 ≤ � ≤ (r − 3− 2j)(k − j − 1)+ (↵+ j − r)(2k − 2j − 3).
Then, the variable B in integral (4.15) is integrated over [B(r, a)].

Finally, to define the integration domain of the variable D, let D(a, r) denote the subgroup
of Mata×r defined as follows. Given B ∈ B(r, a), let B′ denote the matrix obtained from B
by omitting the last row. Then a matrix D ∈ Mata×r is in D(a, r) if all entries of its first
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column are zeros, and for all B ∈ B(r, a) we have D′B′ = 0. Then D in integral (4.15) is
integrated over [D(a, r)]. (In (4.15) there is also a character on the group D(a, r); however,
since it will not be needed below, we will not specify it.)

The situation here is very similar to the integral studied in [G-R-S3] Lemma 2.4, equation
(2.4). As in that reference we now perform a root exchange in integral (4.15), exchanging
the non-trivial columns in the matrices D and E with corresponding rows in the matrices B
and C. We give some details.

Let I be the identity matrix of size 2(n + k(r − 1) − jr), and consider the two unipotent
groups {I+∑2k−2j−3

i=1 mie′r+i,3+m2k−2j−2e′a+r+1,3} and {I+∑2k−2j−3
i=1 lie′2,r+i+l2k−2j−2e′2,a+r+1}. Notice

that the first group is a subgroup of the group of matrices of the form

�
�
�

Ir
D Ia
E D∗ Ir

�
�
�
, D ∈D(a, r),E ∈ E(r).

Then the conditions of Proposition 5 are satisfied. We perform a root exchange between
these two groups. Proceeding in this way, and using the vanishing of the Fourier coe�cients
of the representation ⇥(r)2(n+k(r−1)−jr) given in Theorem 3, part 1, we deduce that the integral

(4.15) is equal to

(4.16) � '(r)(g)✓(r)2(n+k(r−1)−jr)
�
�
�

�
�
�

A B C
Ia B∗

A∗
�
�
�
u◆3,j+1(v, g)

�
�
�

Ir
D Ia
E D∗ Ir

�
�
�

�
�
�

 ̃(A) Uj+1(u) V2k−2j−2,�(v) ′(D)d(...)
where now the variable D is integrated over D(a, r)(A), and E is integrated over E(r)(A).
Also, the variable B is now integrated over [Matr×a], and C is integrated over [Mat0r]. All
other variables in (4.16) are integrated as in integral (4.15). We remark that the conjugation
of u◆3,j+1(v, g) across the matrix involving D and E is possible since the corresponding groups
normalize the group generated by the symplectic matrices involving these two variables.

Applying Proposition 5, we deduce that integral (4.15) is zero for all choices of data if and
only if the integral

(4.17) � '(r)(g)✓(r)2(n+k(r−1)−jr)
�
�
�

�
�
�

A B C
Ia B∗

A∗
�
�
�
u◆3,j+1(v, g)

�
�
�
 ̃(A) Uj+1(u) V2k−2j−2,�(v)d(...)

is zero for all choices of data. Here B is integrated over [Matr×a], and C is integrated over
[Mat0r]. Notice that the group generated by all matrices

�
�
�

Ir B C
Ia B∗

Ir

�
�
�
, B ∈Matr×a, C ∈Mat0r

is the unipotent radical of the maximal parabolic subgroup of Sp2(n+k(r−1)−jr) whose Levi part
is GLr × Spa. Hence, we can apply Proposition 1 in [F-G1]. Since the theta representation

of the group GL(r)r (A) is generic, it follows that integral (4.17) is zero for all choices of data
if and only if the integral

(4.18) � '(r)(g)✓(r)2(n+k(r−1)−(j+1)r)(u◆3,j+1(v, g)) Uj+1(u) V2k−2j−2,�(v)dudv dg
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is zero for all choices of data. Here all variables are integrated as in integral (4.17). Since
integral (4.18) is equal to L(j + 1) the Lemma follows. ⇤

As mentioned before Lemma 1, the integral L(0) is equal to (4.7), which is zero for
all choices of data if and only if the integral (4.2) is zero for all choices of data. Thus
it follows from Lemma 1 that (4.2) is zero for all choices of data if and only if the integral
L(min(k−2, r1−1)) is zero for all choices of data. We analyze the two cases for this minimum
separately.

5. The case k ≤ (r + 1)�2

Before stating the result we will prove in this Section, we fix some notation. Recall that the
unipotent groups U1,j

2k,r1,n
were defined for 0 ≤ j ≤ min(k − 2, r1 − 1) = k − 2 above (following

(4.3)). For the computations we will carry out now, we need to extend the definition to
j = k − 1 and introduce a suitable character of this group.

If k < (r+1)�2, then we define U1,k−1
2k,r1,n

to be the unipotent radical of the standard parabolic

subgroup of Sp2(n+r−k) whose Levi part is GLk−1
1 ×GLr1−k+1

2 ×Sp2n. (Note that r1 −k+1 > 0.)
This unipotent group has the same factorization as in (4.4), and once again we define Uk−1
to be the subgroup of U1,k−1

2k,r1,n
consisting of all matrices of the form (4.4) such that Y2 = 0.

For u ∈ Uk−1, the factorization (4.4) is given by

(5.1) u = u′2,n(Y,Z)uk−1
k−2,1,2,dk−1(Xk−1)

k−2
�
i=1

ui
i−1,1,1,di(Xi)

r1−1
�
i=k

u1,i
2i−k−1,2,2,di(Xi)u1

with Y = � Y1
0 �, Y1 ∈Mat1×n. Here each dj is defined so that the matrix is in Sp2(n+r−k). The

matrix Xk−1 has size 1 × 2, and we write Xk−1 = �x1 x2�. Define a character of the group
Uk−1 as follows. Given u ∈ Uk−1 with the factorization (5.1), set

(5.2)  Uk−1,�(u) =  
�
�
�−1x1 + x2 + tr′(Z) +

r1−1
�
i=1

i≠k−1
tr(Xi)

�
�
.

Here  (tr′(Z)) is defined as in (4.6), and � ∈ F × (see (4.2)).
When k = (r+1)�2, we define U1,k−1

2k,r1,n
to be the unipotent radical of the standard parabolic

subgroup of Sp2(n+k−1) whose Levi part is GLk−1
1 × Sp2n. The corresponding factorization is

now

(5.3) u = u′1,n(Y,Z)
k−2
�
i=1

u1,i
1,r1,n
(Xi)u1

where Xi and Z are scalars. The subgroup U0,k−1
2k,r1,n

consists of all matrices u as in (5.3) such
that Y = 0; this is also Uk−1. We define the character  U0,k−1

2k,r1,n,�
by

(5.4)  U0,k−1
2k,r1,n,�

(u) =  (�−1Z) (X1 +X2 +� +Xk−2).
In this section we prove the following Lemma.
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Lemma 2. Suppose that k ≤ (r + 1)�2. Then the integral (4.2) is zero for all choices of data
if and only if the integral

(5.5) �
[Sp2n]

�
[U0,k−1

2k,r1,n
]
'(r)(g)✓(r)2(n+r−k)(u◆3,k−1(1, g)) U0,k−1

2k,r1,n,�
(u)dudg

is zero for all choices of data.

Proof. Since k ≤ (r + 1)�2, we have k − 2 ≤ r1 − 1. Thus it follows from Lemma 1 that the
integral (4.2) is zero for all choices of data if and only if the integral L(k − 2) is zero for all
choices of data. Substituting j = k − 2, we may write L(k − 2) as

(5.6) �
[Sp2n]

�
[V4]

�
[U0,k−2

2k,r1,n
]
'(r)(g) ✓(r)2(n+2r−k)(u◆3,k−2(v, g)) U0,k−2

2k,r1,n
(u) V4,�(v)dudv dg.

The proof is now similar to the proof of Lemma 1. First, for 1 ≤ i ≤ r1 define the groups Mi

and Qi as in the proof of Lemma 1, with j = k − 2. As in that Lemma define M = V ′4 ∏iMi.
Thus M consists of all matrices

(5.7) diag(m1,m2, . . . ,mk−2,mk−1, . . . ,mr1 , I2n,m
∗
r1 , . . . )

where the matrix mi (for 1 ≤ i ≤ r1) is of the form

mi =
�
�
�

1 a b
I↵−2 c

1

�
�
�

a, ct ∈Mat1×(↵−2); b ∈Mat1×1

with ↵ = 3 for 1 ≤ i ≤ k − 2, ↵ = 4 for k − 1 ≤ i ≤ r1. Performing similar root exchanges, we
deduce that the integral (5.6) is zero for all choices of data if and only if the integral

(5.8) �
[Sp2n]

�
[M]

�
Qr1(A)...Q1(A)U0,k−2

2k,r1,n
(F )�U0,k−2

2k,r1,n
(A)

'(r)(g)

✓(r)2(n+2r−k)(um◆3,k−2(1, g)) U0,k−2
2k,r1,n

(u) M,�(m)dudmdg

is zero for all choices of data. The character  M,� is non-trivial only on the variable mk−1 in
(5.7), and if

mk−1 =
�
���
�

1 a b c
1 d

1 e
1

�
���
�
∈ GL4(A)

then  M,�(m) =  M,�(mk−1) =  (d + �e).
The next step is to define a Weyl element wk−2

0 as in (4.13). In this case the wi are matrices
in Mat2r−k, and it is enough to specify the matrix �w1 w2�. We first describe the first r rows
of this matrix. This matrix has the value 1 at the locations (i,3(i − 1) + 1) for 1 ≤ i ≤ k − 2;
(i,4i−k−1) for k−1 ≤ i ≤ r1; (i,2n−k+4i−1) for r1+1 ≤ i ≤ r−k+1; (r−k+2,2n+4r−5k+5);
and at (i,2n+r−2k+3i−1) for r−k+3 ≤ i ≤ r. All other entries in these rows are 0. For the
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next r − k rows of the matrix �w1 w2� the entries in w2 are all 0. As for w1, let w0
1 denote

the matrix obtained from w1 by omitting the first r rows. Then we choose

w0
1 = �

w0
1,1 0
0 w0

2,2
� , w0

1,1 ∈Mat(k−1)×3(k−1), w0
2,2 ∈Mat(r−2k+1)×(2r−4k+3).

For 1 ≤ i ≤ k − 1, the matrix w0
1,1 has the value 1 at the (i,3i) locations and 0 otherwise. If

k < (r + 1)�2, the matrix w0
2,2 is given by

w0
2,2 =

�
�����
�

0 0 I2 0 0 0 . . .
0 0 0 0 0 I2 0 0 0 . . .
0 0 0 0 0 0 0 0 I2 0 . . .
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ . . .
0 0 0 0 0 0 0 0 0 0 . . . 0 I2 0

�
�����
�

.

This block matrix has r1 − k + 1 rows, and the identity matrix I2 at the i-th row is in the
3i-th column. Each zero represents the zero matrix in Mat2×1 or Mat2×2. When k = (r+1)�2,
then w0

1 = �w0
1,1 0� where the zero represents the zero matrix in Mat(k−1)×1.

We use the left invariance property of the function ✓(r)2(n+2r−k) to conjugate by the Weyl

element wk−2
0 . In a similar way to arriving at (4.15), we deduce that the integral (5.8) is zero

for all choices of data if and only if the integral

(5.9) � '(r)(g)✓(r)2(n+2r−k)
�
�
�

�
�
�

A B C
Ia B∗

A∗
�
�
�

�
�
�

Ir
D Ia
E D∗ Ir

�
�
�
u◆3,k−2(1, g)

�
�
�

 ̃(A) U0,k−1
2k,r1,n,0

(u) 1,�(B) ′(D)d(...)

is zero for all choices of data. Here a = 2(n + r − k). The variable g is integrated as in (5.8),
and the variable u is integrated over [U0,k−1

2k,r1,n
]. The character  U0,k−1

2k,r1,n,0
is defined by

 U0,k−1
2k,r1,n,0

(u) =
���������

 �x2 + tr′(Z) +∑r1−1
i=1

i≠k−1
tr(Xi)� if k < (r + 1)�2

 (X1 +X2 +� +Xk−2) if k = (r + 1)�2.

Here the notation is as in (5.2) and (5.4). The variable A and the character  ̃(A) are as in
(4.15), and the variables B,C,D and E are defined in a similar way to integral (4.15). If
B = (B↵,�) ∈Matr×a(A) then  1,�(B) =  (�Br−k+1,2n+2r−3k+2). IfD = (D↵,�) ∈Mata×r(A) then
 ′(D) =  (D2n+2r−3k+1,r−k+2) when k < (r+1)�2 and  ′(D) =  (Dk−1,r−k+2) when k = (r+1)�2.

At this point the argument deviates from the prior case, more precisely in handling column
r − k + 2 of D, as the character  1,�(B) is not trivial on row r − k + 1 of B. We proceed as
follows. Define the matrix x1(�) = I2(n+2r−k) + �−1e′2n+3r−3k+2,r−k+2 in Sp2(n+2r−k)(F ). By auto-

morphicity, we have ✓(r)2(n+2r−k)(h) = ✓(r)2(n+2r−k)(x1(�)h) for all h ∈ Sp(r)2(n+2r−k)(A). Conjugating
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the matrix x1(�) to the right and changing variables, integral (5.9) is equal to

(5.10) � '(r)(g)✓(r)2(n+2r−k)
�
�
�

�
�
�

A B C
Ia B∗

A∗
�
�
�

�
�
�

Ir
D Ia
E D∗ Ir

�
�
�
u◆3,k−2(1, g)x1(�)

�
�
�

 ̃(A) U0,k−1
2k,r1,n,�

(u) ′(D)d(...).
Notice that here the character  1,�(B) has been omitted (it has been cancelled out), and
also  U0,k−1

2k,r1,n,0
has been replaced by  U0,k−1

2k,r1,n,�
. Both of these changes are the result of the

change of variables required to move the matrix x1(�) to the right.
We may now perform root exchanges similar to those carried out in analyzing (4.15). As

in that case, we proceed by the columns of the matrices D and E starting from the first
non-zero column and then in increasing order. Using the smallness of the representation
⇥(r)2(n+2r−k), i.e. Theorem 3, part 1, we deduce that the integral (5.10) is zero for all choices
of data if and only if the integral

� '(r)(g)✓(r)2(n+2r−k)
�
�
�

�
�
�

A B C
Ia B∗

A∗
�
�
�
u◆3,k−2(1, g)

�
�
�
 ̃(A) U0,k−1

2k,r1,n,�
(u)d(...)

is zero for all choices of data. Here, B is integrated over the quotient [Matr×a], and C is
integrated over [Mat0r]. Now arguing as above (after (4.17)), the Lemma follows. ⇤

Now we present a criterion for the vanishing of all Whittaker coe�cients Wk,�(f). This
criterion depends on the Descent Conjecture, which was described briefly in the Introduction.
To avoid disrupting the continuity of the proofs, we do not give additional details about it
now, but defer its formulation and discussion to Section 7, Conjecture 2 below. For the
criterion, we require the unipotent group U1,r1−k+1,n and its character  U1,r1−k+1,n , defined
in Section 2. Also, we now write ln for the projection from the group U1,r1−k+1,n onto the
Heisenberg group H2n+1. The criterion is this.

Proposition 6. Suppose that the Descent Conjecture holds. Suppose that k ≤ (r + 1)�2.
Then the Whittaker coe�cients Wk,�(f) are zero for all choices of data f if and only if the
integral

(5.11) �
[Sp2n]

�
[U1,r1−k+1,n]

'(r)(g) ✓(2), �

2n (l2n(u)g)

✓(2r), �

2n+r−2k+1
�
��
�
u
�
��
�

I r+1
2 −k

g
I r+1

2 −k

�
��
�

�
��
�
 U1,r1−k+1,n(u)dudg

is zero for all choices of data.

Equivalently, the Whittaker coe�cient (4.2) is not zero for some choice of data if and only
if the integral (1.4) that appears in Proposition 4 is not zero for some choice of data.

Proof. By Lemma 2, it su�ces to prove that the integral (5.5) is zero for all choices of data
if and only if the integral (5.11) is zero for all choices of data.
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Suppose first that k < (r + 1)�2. Let a = 2(n + r − k) and let x(�) denote the unipotent
element x(�) = Ia − ∑r1−k

i=1 �−1e′k+2i,k+2i+1 ∈ Sp2(n+r−k)(F ). By automorphicity, the function

✓(r)2(n+r−k)(h) is left-invariant under this element. Moving this matrix from left to right and

changing variables in U0,k−1
2k,r1,n

, it follows that (5.5) is zero for all choices of data if and only
if the integral

(5.12) �
[Sp2n]

�
[U0,k−1

2k,r1,n
]
'(r)(g)✓(r)2(n+r−k)(u◆3,k−1(1, g)) ′U0,k−1

2k,r1,n,�

(u)dudg

is zero for all choices of data. Here the character  ′
U0,k−1
2k,r1,n,�

is defined, using the factorization

(5.1), by

 ′
U0,k−1
2k,r1,n,�

(u) =  
�
�
x2 + tr′�(Z) +

r1−1
�
i=1

i≠k−1
tr(Xi)

�
�

where for Z = �z1 z2
z3 z1

� ∈Mat02, we define tr′�(Z) = z1 + �−1z3.
Let w ∈ Sp2(n+r−k) be given by w = diag(Ik−1, w1, I2n, w∗1 , Ik−1) where w1 ∈Matr−2k+1(F ) is

given as follows. Write w1 = �
w1,1

w1,2
� where w1,i ∈Mat(r1−k+1)×(r−2k+1)(F ). The matrix w1,1 has

a 1 at the positions (i,2i) and w1,2 has a 1 at the positions (i,2i−1) for each i, 1 ≤ i ≤ r1−k+1,
and all other entries of the matrix w1 are 0.

Conjugating in (5.12) by w, we deduce that this integral is zero for all choices of data if
and only if the integral

(5.13) � '(r)(g)✓(r)2(n+r−k)
�
�
�

�
�
�

A B C
Ia B∗

A∗
�
�
�

�
�
�

Ir1
D Ia

D∗ Ir1

�
�
�

�
�
�

Ir1
u

Ir1

�
�
�

�
�
�

Ir−k
g

Ir−k

�
�
�

�
�
�

 ̃(A) U1,r1−k+1,n(u) 
′(B) �(C)d(...)

is zero for all choices of data. Here a = 2n + r − 2k + 1. The domain of integration and
characters here are described as follows. The variable u is integrated over [U1,r1−k+1,n], and
g is integrated over [Sp2n]. The variable A is integrated over [Lr1], where we recall that Lr1

is the maximal upper unipotent subgroup of GLr1 . The character  ̃(A) is the Whittaker
character, defined following (4.15). Let B(r1, a) denote the subgroup of Matr1×a of matrices
B = (B↵,�) such that B↵,� = 0 for all k − 1 ≤ ↵ ≤ r1 − 1 and 1 ≤ � ≤ ↵ − k + 2, and for ↵ = r1
and 1 ≤ � ≤ 2n + r1 − k + 1. Then the variable B is integrated over [B(r1, a)]. The character
 ′(B) is given by  ′(B) =  (Br1,2n+r1−k+2). The variable C is integrated over [Mat0r1], and
the character  � is given by  �(C) =  (�−1Cr1,1). Finally, let D(a, r1) denote the subgroup

of Mata×r1 consisting of all matrices of the form D = �0 D′
0 0

� such that D′ ∈ Matr1−k+1 and

D′↵,� = 0 for all 1 ≤ ↵ ≤ r1 − k + 1 and � ≤ ↵. Then D is integrated over [D(a, r1)].
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Next, we perform a root exchange that is similar to the one performed before (4.16). This
implies that the integral (5.13) is zero for all choices of data if and only if the integral

(5.14) � '(r)(g)✓(r)2(n+r−k)
�
�
�

�
�
�

A B C
Ia B∗

A∗
�
�
�

�
�
�

Ir1
u

Ir1

�
�
�

�
�
�

Ir−k
g

Ir−k

�
�
�

�
�
�

 ̃(A) U1,r1−k+1,n(u) 
′(B) �(C)d(...)

is zero for all choices of data. Here the variable B is integrated over [B̃(r1, a)] where B̃(r1, a)
is the subgroup of Matr1×a consisting of all matrices B = (B↵,�) such that Br1,� = 0 for all
1 ≤ � ≤ 2n + r1 − k + 1. All other variables are integrated as in (5.13).

Write B̃(r1, a) = B̃1(r1, a)B̃2(r1, a) where B̃1(r1, a) consists of all matrices in B̃(r1, a) with
bottom row zero, and B̃2(r1, a) consists of all matrices (B↵,�) ∈ B̃(r1, a) such that B↵,� = 0
for all ↵ with 1 ≤ ↵ ≤ r1 − 1, and for ↵ = r1 and all � with 1 ≤ � ≤ 2n + r1 − k + 1. Recall
that the group U1,r1,n−k+r1+1 was defined in Section 2 and each element u ∈ U1,r1,n−k+r1+1 has
a factorization (2.3). Let U0

1,r1,n−k+r1+1 denote the subgroup of U1,r1,n−k+r1+1 consisting of u
such that in the factorization (2.3), Y = 0. It is not hard to check that this is the subgroup
of Sp2(n+r−k) consisting of all matrices

(5.15) v =
�
�
�

A B C
Ia B∗

A∗
�
�
�
, A ∈ Lr1 , B ∈ B̃1(r1, a), C ∈Mat0r1 .

Thus integral (5.14) is equal to

(5.16) � '(r)(g)✓(r)2(n+r−k)
�
�
�
v
�
�
�

Ir1 B
Ia B∗

Ir1

�
�
�

�
�
�

Ir1
u

Ir1

�
�
�

�
�
�

Ir−k
g

Ir−k

�
�
�

�
�
�

 U0,�
1,r1,n−k+r1+1

(v) U1,r1−k+1,n(u) 
′(B)dv dB dudg.

Here v is integrated over [U0
1,r1,n−k+r1+1] and

 U0,�
1,r1,n−k+r1+1

(v) =  ̃(A) �(C)

on matrices v given by (5.15). The variable B is integrated over [B̃2(r1, a)] and the character
 ′ is the restriction of the character of B(r1, a) to the subgroup B̃2(r1, a). The variables u
and g are integrated as before.

We observe that the set of all matrices of the form

�
�
�

Ir1 B
Ia B∗

Ir1

�
�
�

�
�
�

Ir1
u

Ir1

�
�
�

�
�
�

Ir−k
g

Ir−k

�
�
�

with B ∈ B̃2(r1, a), u ∈ U1,r1−k+1,n, g ∈ Sp2n is a subgroup of Ha+1 �Spa, and the integration in
(5.16) over the adelic quotient [U0

1,r1,n−k+r1+1] is a Fourier coe�cient which corresponds to the
unipotent orbit ((r − 1)1a). Thus we may apply Ikeda’s work on Fourier-Jacobi coe�cients
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[I1]. This implies that the space of functions

(5.17) (B,u, g)→ ✓(2), �

2n+r−2k+1
�
��
�
l2n+r−2k+1(B)u

�
��
�

I r+1
2 −k

g
I r+1

2 −k

�
��
�

�
��
�

�
[U1,r1,n+r1−k]

✓(2), �

2n+r−2k+1
�
��
�
l2n+r−2k+1(v′)u

�
��
�

I r+1
2 −k

g
I r+1

2 −k

�
��
�

�
��
�

✓(r)2(n+r−k)
�
�
�
v′u
�
�
�

Ir−k
g

Ir−k

�
�
�

�
�
�
 U1,r1,n+r1−k(v

′)dv′

is a dense subspace of the space of functions
(5.18)

(B,u, g)→ � ✓(r)2(n+r−k)
�
�
�
v
�
�
�

Ir1 B
Ia B∗

Ir1

�
�
�

�
�
�

Ir1
u

Ir1

�
�
�

�
�
�

Ir−k
g

Ir−k

�
�
�

�
�
�
 U0,�

1,r1,n−k+r1+1
(v)dv

where v is integrated as in (5.16). It follows from Conjecture 2 that, as a function of ug, the
integral in (5.17) is equal to a function of the form

✓(2r), �

2n+r−2k+1
�
��
�
u
�
��
�

I r+1
2 −k

g
I r+1

2 −k

�
��
�

�
��
�

with ✓(2r), �

2n+r−2k+1 in the space attached to the corresponding theta representation.
We deduce that the integral (5.16) is zero for all choices of data if and only if the integral

(5.19) �
[Sp2n]

�
[U1,r1−k+1,n]

'(r)(g) ✓(2r), �

2n+r−2k+1
�
��
�
u
�
��
�

I r+1
2 −k

g
I r+1

2 −k

�
��
�

�
��
�
 U1,r1−k+1,n(u)

�
[B̃2(r1,a)]

✓(2), �

2n+r−2k+1
�
��
�
l2n+r−2k+1(B)u

�
��
�

I r+1
2 −k

g
I r+1

2 −k

�
��
�

�
��
�
) ′(B)dB dudg

is zero for all choices of data.
To complete the proof of the Proposition we need to compute the inner integration in

(5.19). We do this by unfolding the theta series. Recall that the action of the Weil repre-
sentation is normalized as in [G-R-S2], Section 1, part 6. From the definition of B̃2(r1, a)
we deduce that

l2n+r−2k+1(B) = (02n+r1−k+1,Br1,2n+r1−k+2,Br1,2n+r1−k+3, . . . ,Br1,2n+r−2k+2,0).
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With this notation,  ′(B) =  (Br1,2n+r1−k+2). Unfolding the theta series, the inner integration
in integral (5.19) is equal to

(5.20) � �
⇠∈Fn+r1−k+1

! �

�
��
�
l2n+r−2k+1(B)u

�
��
�

I r+1
2 −k

g
I r+1

2 −k

�
��
�

�
��
�
�(⇠) ′(B)dB

= �
⇠∈Fn

! �

�
��
�
u
�
��
�

I r+1
2 −k

g
I r+1

2 −k

�
��
�

�
��
�
�(0r1−k, �, ⇠)

where we have used the action of the Weil representation to derive this last equality. However,
for an appropriate Schwartz function, the right hand side of equation (5.20) is equal to

✓(2), �

2n (l2n(u)g). This completes the proof of the Proposition for the case when k < (r+1)�2.
When k = (r + 1)�2, the proof is simpler. Starting with integral (5.5), from the definition

of the character (5.4) we see that no conjugation by a Weyl element is needed. The first step
is to use the result of [I1] as described in (5.17) and (5.18). Notice that in this case B = 0.
Thus we obtain (5.11) as claimed. ⇤

6. The case k > (r + 1)�2

We study this case using a similar approach to the case k ≤ (r + 1)�2. First, for 0 ≤ j ≤
min(n, k−(r+1)�2) we define a family of integrals denoted by L(j). Then we prove that L(j)
is zero for all choices of data if and only if L(j+1) is zero for all choices of data. However, this
case requires a new ingredient, namely the Fourier expansion along a unipotent subgroup of
a symplectic group, and makes use of the cuspidality of ⇡ in an essential way.

We start by fixing some notation. Fix an integer j in the range 1 ≤ j ≤min(n, k−(r+1)�2).
Recall that the group Un,j and its character  Un,j were defined in Section 1. We let l2n−2j
denote the homomorphism from Un,j onto H2n−2j+1, the Heisenberg group of 2n − 2j + 1
variables, given on u = (u↵,�) ∈ Un,j by

(6.1) l2n−2j(u) = �(uj,j+1, uj,j+2, . . . , uj,2n−2j, uj,2n−2j+1) for j < n
un,n+1 for j = n.

We identify H2n−2j+1 with an upper subgroup of Sp2n−2j+2 as in [G-R-S4], p. 8.
Recall that L2k−r−2j+2 denotes the maximal unipotent subgroup ofGL2k−r−2j+2 and V2k−r−2j+1

denotes the maximal unipotent subgroup of SO2k−r−2j+1. Let V0,2k−r−2j+2 be the subgroup of
L2k−r−2j+2 generated by all matrices of the form

(6.2) v0 = �
1 a

v
� , a ∈Mat1×(2k−r−2j+1), v ∈ V2k−r−2j+1.

Let  V0,2k−r−2j+2,� be the character of [V0,2k−r−2j+2] which arises from the trivial extension of
the Whittaker character of V2k−r−2j+1(A), i.e.  V0,2k−r−2j+2,�(v0) =  V2k−r−2j+2,�(v). Also, let
 ′0,V2k−r−2j ,� be the character of the group [V0,2k−r−2j] defined as follows. Write v0 as in (6.2)
with j + 1 in place of j. Then we set

(6.3)  ′0,V2k−r−2j ,�(v0) =  (a1,1) V2k−r−2j−1,�(v).
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Finally, we define a unipotent subgroup of a symplectic group, denoted U0,j, and a char-
acter  U0,j of the adelic quotient of this group, as follows. Consider the unipotent group
Ua,b,c where a = 2k − r − 2j + 2, b = r1 and c = n − j + 1. For u ∈ Ua,b,c, we have the
factorization (2.3). Let R denote the subgroup of Mat(2k−r−2j+2)×2(n−j+1) of all matrices
Y = (Y↵,�) ∈Mat(2k−r−2j+2)×2(n−j+1) such that Y↵,� = 0 for all (2k−r−2j+5)�2 ≤ ↵ ≤ 2k−r−2j+2
and 1 ≤ � ≤ 2n − 2j + 1, and such that Y↵,1 = 0 for all 2 ≤ ↵ ≤ (2k − r − 2j + 3)�2. We define
U0,j to be the subgroup of Ua,b,c such that if u is factored as in (2.3), then Y ∈ R. Also, for
Y ∈ R(A) let  R(Y ) =  (Y1,1 + Y2k−r−2j+2,2n−2j+2) and for Z = (Z↵,�) ∈ Mat02k−r−2j+2(A), let
 0(Z) =  (Z2,1 +� +Z(2k−r−2j+3)�2,(2k−r−2j+1)�2). Then we let  U0,j be the character of [U0,j]
given by

(6.4)  U0,j(u) =  (tr(X1 +� +Xr1)) R(Y ) 0(Z).
We now introduce the integrals L(j) for each j, 0 ≤ j ≤ min(n, k − (r + 1)�2). First,
L(0) is defined to be the integral L(r1 − 1) = L((r − 3)�2); see equation (4.8). Next, for
1 ≤ j ≤min(n, k−(r+1)�2), let aj = 2(n−j)+(2k−r−2j+2)(r−1)+2, and for v0 ∈ V0,2k−r−2j+2
and h ∈ Sp2(n−j+1), let

◆4,j(v0, h) = diag(v0, . . . , v0, h, v∗0 . . . , v∗0) ∈ Spaj .
Here, v0 appears r1 times. The map ◆4,j is identical to ◆2 except for the size of the groups
(which, in each variable, depends on j) and that v0 is not necessarily orthogonal. Since
v0 is upper unipotent, it is split in the covering group by the trivial section, and the
map ◆4,j extends to a one-to-one homomorphism (which we continue to denote ◆4,j) from

V0,2k−r−2j+2(A) × Sp(r)2(n−j+1)(A) to Sp(r)aj (A). Then we define

(6.5) L(j) = �
[Sp2n−2j]

�
[Un,j]

�
[V0,2k−r−2j+2]

�
[U0,j]

'(r)
�
�
�
u
�
�
�

Ij
g

Ij

�
�
�

�
�
�

✓(r)aj

�
�
�
u0◆4,j

�
�
�
v0, l2n−2j(u)

�
�
�

1
g

1

�
�
�

�
�
�

�
�
�

 U0,j(u0) V0,2k−r−2j+2,�(v0) Un,j(u)du0 dv0 dudg.

In (6.5), the integrand is a function of g = (g1, ⇣) ∈ Sp(r)2n (A), but, as earlier in this paper,
the integrand is independent of ⇣ ∈ µr. Thus we write the integral over the group and need
not keep additional track of the cover.

The analysis of these integrals is by induction, and is given by the following key Lemma.

Lemma 3. For 0 ≤ j <min(n, k − (r + 1)�2), the integral L(j) is zero for all choices of data
if and only if the integral L(j + 1) is zero for all choices of data.

Proof. We start by establishing the Lemma for j = 0. That is, we prove that L(0) is zero
for all choices of data if and only if L(1) is zero for all choices of data. By definition,
L(0) = L((r − 3)�2). Using the value j = (r − 3)�2 in (4.8), we have

(6.6) L(0) = �
[Sp2n(A)]

�
[V2k−r+3]

�
[Ur0 ]

'(r)(g) ✓(r)a0 (u◆3,r0(v, g)) Ur0
(u) V2k−r+3,�(v)dudv dg.
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Here a0 = 2n + 2k(r − 1) − r(r − 3), r0 = r1 − 1, and for v ∈ V2k−r+3 and g ∈ Sp2n we recall that
◆3,r0(v, g) = diag(v0, . . . , v0, v, g, v∗, v∗0 . . . , v∗0) where each v0 is repeated r0 times (see (4.9)).

The first part of the computation here is similar to the first part of the proof of Lemma 1.
For ↵ = 1,2, let M↵ denote the unipotent subgroup of L2k−r+1+↵ consisting of all matrices of
the form

�1 a
I2k−r+↵� , a ∈Mat1×(2k−r+↵).

As in the proof of Lemma 1, let M be the subgroup of Spa0 of matrices of the form

m = diag(m1,m2,�,mr1 , I2n,m
∗
r1 ,�,m

∗
2,m

∗
1)

with mi ∈M1 for 1 ≤ i ≤ (r − 3)�2 and mr1 ∈M2. Also, let Qi, 1 ≤ i ≤ r1, denote the following
subgroups of Spa0 . For 1 ≤ i ≤ (r − 5)�2, Qi is the subgroup of all matrices of the form

ui(2k−r+2)(i−1),2k−r+2,2k−r+2,ai(Xi), Xi = �
0
a 02k−r+1� , a ∈Mat(2k−r+1)×1

with ai = a0 − 2(2k − r + 2)(i + 1) (see (4.4)); for i = (r − 3)�2, the group Qi is generated by

ui(2k−r+2)(r−5)�2,2k−r+2,2k−r+3,ai(Xi), Xi = �
0
a 02k−r+2� , a ∈Mat(2k−r+2)×1

with ai = a0 − (2k − r + 2)(r − 3) − 2(2k − r + 3); and for i = (r − 1)�2, Qi is the subgroup of
matrices of the form

u′2k−r+3,n(0, Z), Z =
�
�
�

0
a 02k−r+1
b a∗ 0

�
�
�
, b ∈Mat1, a ∈Mat(2k−r+1)×1.

Performing root exchange between these two groups, we obtain that L(0) is zero for all
choices of data if and only if an integral similar to (4.12) is zero for all choices of data with
j = (r − 3)�2. We write this integral after conjugating by a certain Weyl element. The Weyl
elements wj

0 were defined above in equation (4.13) for j in the range 1 ≤ j < (r − 3)�2. As
mentioned there, that description still determines the matrix uniquely if j = (r − 3)�2. We

use the Weyl element w(r−3)�20 now.

Performing the above root exchange, and then conjugating by w(r−3)�20 , we deduce that
integral (6.6) is zero for all choices of data if and only if the integral

(6.7) � '(r)(g) ̃(A) U(u) ′0,V2k−r,�(v0) 
′(D)

✓(r)a0

�
�
�

�
�
�

A B C
Ia1 B∗

A∗
�
�
�

�
�
�

Ir B(v0)
Ia1 B∗(v0)

Ir

�
�
�

�
�
�

Ir
D Ia1
E D∗ Ir

�
�
�

�
�
�

Ir
u◆4,1(v0, g)

Ir

�
�
�

�
�
�
d(...)

is zero for all choices of data. In (6.7), the variables A,B,C,D and E are integrated over
the same domain as in (4.15) with j = (r − 3)�2. We describe them explicitly. First A is
integrated over [Lr]. The character  ̃(A) is the Whittaker character. Let B(r, a0) denote
the subgroup of Matr×(a0−2r) which consists of all matrices B = B↵,� such that Bi,(i−1)(2k−r) = 0
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for all 1 ≤ i ≤ r1 and Bi,(i−1)(2k−r)+2n = 0 for all r1 + 1 ≤ i ≤ r. The variable B is integrated
over [B(r, a0)]. Let C(r) denote the subgroup of Mat0r consisting of all matrices

C = �C1 C2

C3 C∗1� , C1 ∈Matr1,r1+1, C2 ∈Mat0r1 , C3 ∈Mat0r1+1
such that C3 = 0, and such that, writing C1 = (C1[↵,�]), one has C1[↵,�] = 0 for all 1 ≤ ↵ ≤ r1
and � < ↵. The variable C is integrated over [C(r)]. The matrices D and E are integrated
over [D(r, a0)] and [E(r)], respectively, defined following (4.15). The character  ′(D) is
given by  ′(D) =  (D↵,�) where ↵ = 1 + (2k − r)(r − 3)�2 and � = (r + 3)�2. The variable u
is integrated over [U], where U is the subgroup of U2k−r,r1,n ⊆ Sp2n+(2k−r)(r−1) consisting of
all matrices (2.3) such that Y ∈Mat(2k−r)×2n has bottom (2k − r − 1)�2 rows all zeroes. The
character  U is given by

(6.8)  U(u) =  (tr(X1 +� +Xr1−1)) 0(Z)
(using the factorization (2.3) of u with a = 2k− r, b = r1, c = n). The variable v0 is integrated
over [V0,2k−r]; the character  ′0,V2k−r,� was defined in (6.3). The g variable is integrated over
[Sp2n].

Finally, we describe the matrix B(v0) ∈Matr×(a0−2r). The first n + a0�2 columns of B(v0)
are all zero. Write B = �0 B1� where B1 ∈ Matr×(a0�2−n−2r). Then the first (r + 1)�2 rows

of B1 are zero. Write B1 = � 0
B1,1
� where B1,1 ∈ Mat(r−1)�2×(a0�2−n−2r). Recall that in (6.6),

v = (v↵,�) is a matrix in V2k−r+3. For such a matrix, write

(6.9) a(v0) = (v2,2k−r+2, v3,2k−r+2, . . . , v2k−r+1,2k−r+2) ∈Mat1×(2k−r).
Then

B1,1 =
�
���
�

a(v0) 0 0 . . . 0
0 a(v0) 0 . . . 0
⋮ ⋮ ⋮ � ⋮
0 0 0 . . . a(v0)

�
���
�
.

To simplify the notation and for later use as well, for 0 ≤ j < min(n, k − (r + 1)�2), given a
matrix B(v0) ∈Matr×aj+1(A), we write

(6.10) pj(B(v0)) =
�
�
�

Ir B(v0)
Iaj+1 B∗(v0)

Ir

�
�
�
∈ Spaj(A).

We now proceed in the same way as we did in analyzing (4.15) above. That is, we perform
root exchange between variables in the D and E matrices and suitable upper triangular
matrices. The process for the first r1 rows is similar to the one performed for (4.15). Similarly,
we exchange the last a0�2+n entries of the (r+1)�2-th row. However, in the case at hand it
is not possible to perform root exchange for the entries in positions ((r + 1)�2, a0�2 − n + ↵)
of the left-most matrix in the argument of ✓(r)a0 in the integral (6.7), for 1 ≤ ↵ ≤ 2n.

We conclude that the integral L(0) is zero for all choices of data if and only if an integral,
denoted I, is zero for all choices of data. The integral I has the same form as integral
(6.7) but with a di↵erent domain of integration. For I, the variable B is integrated over
[B1(r, a0)], where B1(r, a0) is defined as follows. If B = (B↵,�) ∈ B1(r, a0), then B(r+1)�2,� = 0
for all 1 ≤ � ≤ 2n + (2k − r)r1, and the bottom r1 rows of B satisfy the same vanishing
conditions as for B(r, a0). The variable C is now integrated over [C1] where C1(r) is the

29



subgroup of Mat0r such that C↵,� = 0 for all r1 ≤ ↵ ≤ r and 1 ≤ � ≤ r1. The variable D is
integrated over [D1(r, a0)] where D1(r, a0) is the subgroup of D(r, a0) of all matrices whose
first r1 + 1 columns are zeros, and similarly we define the group E1(r).

Let S0 denote the subgroup of Spa0 consisting of all matrices of the form

Ia0 +
2n

�
i=1
↵ie

′
r1+1,a0�2−n+i + �er1+1,a0−r1 .

Its center, denoted by Z(S0), is the group generated by all the above matrices such that
↵i = 0 for all i. It is a subgroup of C1(r). This means that we may expand integral I along
S0(F )Z(S0)(A)�S0(A). The group Sp2n(F ) acts on this expansion with two orbits.

First, we consider the contribution from the trivial orbit. In this case, we can further
perform a root exchange similar to the analysis of integral (4.15) above. Arguing as in (4.16)–
(4.18), the vanishing of this contribution is equivalent to the vanishing of the integral

(6.11) � '(r)(g)✓(r)a1 (u◆4,1(v0, g)) U(u) ′0,V2k−r,�(v0)dudv0 dg,

with the domain of integration as in (6.7). The proof that integral (6.11) is zero for all
choices of data is similar to the computations we performed above. It will be convenient to
postpone the proof and give the details later. We do so after Proposition 9 below.

Assuming this vanishing, we conclude that the integral I is equal to the integral

(6.12) �
Un,1(F )Sp2n−2(F )�Sp2n(A)

� '(r)(g) ̃(A) U(u) ′0,V2k−r,�(v0) 
′(D) 1(B)

✓(r)a0

�
�
�

�
�
�

A B C
Ia1 B∗

A∗
�
�
�
p0(B(v0))

�
�
�

Ir
D Ia1
E D∗ Ir

�
�
�

�
�
�

Ir
u◆4,1(v0, g)

Ir

�
�
�

�
�
�
d(...).

Here, all variables except the g and B variables, are integrated as in the integral I. The
B variable is integrated over [B2(r, a0)], where B2(r, a0) = B1(r, a0)(Z(S0)�S0). The group
B2(r, a0) may be identified with all B = (B↵,�) ∈ Matr,a0 such that Br1+1,� = 0 for all 1 ≤
� ≤ (2k − r)r1. All other rows are the same as for matrices in B1(r, a0). Also, the character
 1(B) =  (Br1+1,(2k−r)r1+1).

Write

�
Un,1(F )Sp2n−2(F )�Sp2n(A)

= �
Un,1(A)Sp2n−2(A)�Sp2n(A)

�
Un,1(F )Sp2n−2(F )�Un,1(A)Sp2n−2(A)

.

Arguing as in [G-S], Section 7, we deduce that the integral (6.12) is zero for all choices of
data if and only if the integral

(6.13) �
[Sp2n−2]

�
[Un,1]

� '(r)
�
�
�
u1

�
�
�

1
g

1

�
�
�

�
�
�
 ̃(A) U(u) ′0,V2k−r,�(v0) 

′(D) 1(B)

✓(r)a0

�
�
�

�
�
�

A B C
Ia1 B∗

A∗
�
�
�
p0(B(v0))

�
�
�

Ir
D Ia1
E D∗ Ir

�
�
�

�
�
�

Ir
u◆4,1(v0, l2n−2(u1)g)

Ir

�
�
�

�
�
�
d(...)

is zero for all choices of data.
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Let x(1) = Ia0 − e′1+a0�2,r1+2. Then ✓(r)a0 (h) = ✓
(r)
a0 (x(1)h). Using this in integral (6.13) and

then conjugating x(1) to the right, we obtain the integral

(6.14) �
[Sp2n−2]

�
[Un,1]

� '(r)
�
�
�
u1

�
�
�

1
g

1

�
�
�

�
�
�
 ̃(A) ′U(u) ′0,V2k−r,�(v0) 

′(D)

✓(r)a0

�
�

�
�
�

A B C
Ia1 B∗

A∗
�
�
�
p0(B(v0))

�
�
�

Ir
D Ia1
E D∗ Ir

�
�
�

�
�
�

Ir
uu′2k−r,n(Y (v0),0)

Ir

�
�
�

◆4,1(v0, l2n−2(u1)g)x(1)
�
�
d(...).

We highlight the changes in the characters. First  1(B) is cancelled. Second, the character
 ′U is defined as follows. Given the decomposition of u ∈ U2k−r,r1,n(A) as in (2.3), we have
 ′U(u) =  U(u) (Y1,1). Also, we note that the matrix u′2k−r,n(Y (v0),0) has the property that
Y (v0) ∈ Mat2k−r,2n(A) has all entries zero except the last column; this last column is equal
to J2k−ra(v0)t. (The vector a(v0) is given in (6.9).)

At this point we carry out a root exchange between variables in D and E with suitable
upper triangular matrices. This is similar to the steps in the proof of Lemma 1 that go from
(4.15) to (4.16). We then argue as in that proof, from (4.16) to (4.18). We conclude that in
the case at hand, the integral (6.14) is zero for all choices of data if and only if the integral

(6.15) �
[Sp2n−2]

�
[Un,1]

� '(r)
�
�
�
u1

�
�
�

1
g

1

�
�
�

�
�
�
 ′U(u) ′0,V2k−r,�(v0)

✓(r)a1 (uu′2k−r,n(Y (v0),0)◆4,1(v0, l2n−2(u1)g))d(...)

is zero for all choices of data. (All other domains of integration here are the same as in
(6.14).)

We perform one final root exchange, as follows. Let R1 denote the subgroup of V0,2k−r
consisting of all matrices of the form

�
�
�

1 a 0
I(2k−r−1)�2 0

I(2k−r−1)�2

�
�
�
, a ∈Mat1×(2k−r−1)�2.

Let R2 denote the subgroup of U consisting of all elements of the form

u′2k−r,n(Y,0), Y = ↵1e2,1 + ↵2e3,1 +� + ↵(2k−r−1)�2e(2k−r−1)�2,1

where e↵,� is the (2k − r) × 2n matrix whose (↵,�) entry is 1 and with all other entries 0.
Using  ′U , we perform a root exchange between R1 and R2. From this we deduce that the
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integral (6.15) is zero for all choices of data if and only if the integral

(6.16) � �
R2(A)U(F )�U(A)

�
[R]

'(r)
�
�
�
u1

�
�
�

1
g

1

�
�
�

�
�
�
 ′U(u) 0,V2k−r,�(v0) R(u′2k−r,n(Y0,0))

✓(r)a1 (uu′2k−r,n(Y0,0)◆4,1(v0, l2n−2(u1)g))d(...)

is zero for all choices of data. Here R ≅ Mat(2k−r−1)�2×1 is the group of all matrices of the
form

u′2k−r,n(Y0,0) = ↵1e(2k−r+3)�2,2n + ↵2e(2k−r+5)�2,2n +� + ↵2k−re2k−r,2n,
and  R(u′2k−r,n(Y0,0)) =  (↵2k−r). (Notice that in (6.16), the character  ′0,V2k−r,� of (6.15) is
replaced by  0,V2k−r,�.) The domains of integration of the variables v0 and g are the same as
in (6.15).

The group generated by R2�U and R is isomorphic to U0,1 (defined before integral (6.5)
above). Also, under this identification the product of the characters  ′U and  R is equal to
the character  U0,1 . Thus integral (6.16) is equal to integral L(1). This completes the proof
that L(0) is zero for all choices of data if and only if L(1) is zero for all choices of data.

Next we prove that for 1 ≤ j < min(n, k − (r + 1)�2), L(j) is zero for all choices of data
if and only if L(j + 1) is zero for all choices of data. Many steps are similar to the proof
for j = 0 above. Starting with L(j), we again define the group M and the groups Qi, and
perform a root exchange between them. We then define a Weyl element w0(j) ∈ Spaj(F ).
Its definition is slightly di↵erent for j > 0, so we give it here. We let

w0(j) =
�
�
�

w1 w2

I2(n−j)
w3 w4

�
�
�
, w1, w2, w3, w4 ∈Matr1(2k−r−2j+2)+1.

The matrix w0(j) is symplectic, so it su�ces to specify �w1 w2�. The first r rows of this
matrix have entry 1 at positions (i, (i−1)(2k−r−2j+2)+1) for 1 ≤ i ≤ r1+1, and at positions
(r1 + i, (r1 + i − 1)(2k − r − 2j + 2) + 1) for 2 ≤ i ≤ r1. For the next r1(2k − r − 2j + 2) + 1 − r
rows, all entries in w2 are zero, while for w1, these rows form the matrix w0

1,1 in (4.14) with
� = 2k − r − 2j.

Introducing w0(j) and conjugating, we conclude that L(j) is zero for all choices of data
if and only if the integral

� '(r)
�
�
�
u
�
�
�

Ij
g

Ij

�
�
�

�
�
�
 ̃(A) U(u0) ′0,V2k−r,�(v0) Un,j(u) ′(D)

✓(r)aj

�
�

�
�
�

A B C
Iaj+1 B∗

A∗
�
�
�
pj(B(v0))

�
�
�

Ir
D Iaj+1
E D∗ Ir

�
�
�

�
�
�

Ir
u0◆4,j+1(v0,1)

Ir

�
�
�

w0(j)◆4,j(1, l2n−2j(u)g)��d(...)

is zero for all choices of data. The variables A,B,C,D and E, and their characters are
integrated over the same regions as in (6.7). The variable v0 is integrated over the quotient
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[V0,2k−r−2j]; its character  ′0,V2k−r−2j ,� is defined similarly to (6.3). The variable u0 is integrated

over [U], where U is the subgroup of U2k−r−2j,r1,n−j ⊂ Spaj+1 consisting of u0 with factorization
(2.3) such that Y ∈Mat(2k−r−2j)×(2n−2j) has bottom (2k−r−2j−1)�2 rows all zero. Notice that
u0 ∈ Spaj+1 . The character  U is given by the same formula as (6.8), using the factorization
(2.3) of u0 with a = 2k − r − 2j, b = r1, c = n − j. Finally, u and g are integrated as in (6.5).

We again proceed as we did in analyzing (4.15) above (also see following (6.10)). We carry
out a root exchange between root groups appearing in the D,E variables and suitable upper
triangular matrices. Then let Sj be the subgroup of Spaj of matrices of the form

Ia0 +
2n−2j
�
i=1

↵ie
′
r1+1,a0�2−n−j+i + �er1+1,a0−r1 .

The center of Sj, Z(Sj), is the group generated by the matrices above such that ↵i = 0 for
all i. Then Z(Sj) is a subgroup of C1(r), the same group as defined above in treating L(0).
Hence we may expand the integral along Sj(F )Z(Sj)(A)�Sj(A). The group Sp2n−2j(F )
acts on this expansion with two orbits. First we consider the contribution from the con-
stant term. The group Sj is isomorphic to the Heisenberg group H2n−2j+1. Also, we have
w0(j)(1, l2n−2j(u))ajw0(j)−1 ∈ Sj. Changing variables in Sj, we obtain the constant term

of '(r) along the unipotent radical of the maximal parabolic subgroup of Sp2n whose Levi
part is GLj ×Sp2n−2j. From the cuspidality of '(r), it follows that the contribution from the
constant term along Sj is zero.

We are left with the contribution of the non-trivial orbit. Arguing as in the case j =
0 (beginning with (6.12)) we obtain the integral L(j + 1). This concludes the proof of
Lemma 3. ⇤

We conclude from Lemma 3 that for k > (r + 1)�2, the Whittaker coe�cient (4.2) is zero
for all choices of data if and only if the integral L(min(n, k−(r+1)�2)) is zero for all choices
of data. We analyze the two possibilities for this minimum separately.

Proposition 7. Suppose that k ≥ n + (r + 3)�2. Then the Whittaker coe�cient (4.2) is zero
for all choices of data.

Proof. The integral L(min(n, k − (r + 1)�2)) = L(n) is equal to

�
[Un,n]

� '(r)(u)✓(r)an (u0◆4,n(v0, l0(u))) U0,n(u0) ′0,V2k−r−2n+2,�(v0) Un,n(u)d(...).

Here the variables u0 and v0 are integrated as in (6.5) with j = n. By definition (see
(6.1)), if u = (ui,j) ∈ Un,n, then l0(u) = un,n+1 ∈ H1; in the above expression we embed
this degenerate Heisenberg group in the group Sp2 as the matrix � 1 un,n+1

1 �. Thus we have
◆4,n(1, l0(u)) = Ian + un,n+1ean�2,an�2+1. Expand the above integral along the one parameter
subgroup Sn of Span defined by Sn = {Ian + ↵ean�2,an�2+1}. Then the contribution from each
nontrivial orbit is zero. Indeed, each such contribution may be expressed as an integral of
a Fourier coe�cient of ✓(r)an which corresponds to the unipotent orbit ((r + 1)1an−r−1). By
Theorem 3, part 1, this Fourier coe�cient is zero. As for the constant term along Sn, after
a suitable change of variables, we obtain as inner integration the constant term of '(r) along
the unipotent radical of the parabolic subgroup of Sp2n whose Levi part is GLn. By the
cuspidality of '(r), this constant term is zero. Thus L(n) is zero for all choices of data. ⇤
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Next we examine the case n ≥ k−(r+1)�2. From our work above, the Whittaker coe�cient
(4.2) is zero for all choices of data if and only if the integral L(k−(r+1)�2) is zero for all choices
of data. In this case, 2n−2j = 2n−2k + r+1, 2k − r−2j +2 = 3, and ak−(r+1)�2 = 2(n−k +2r).
Thus

(6.17) L(k − (r + 1)�2) = � '(r)
�
�
�
u
�
�
�

Ik−(r+1)�2
g

Ik−(r+1)�2

�
�
�

�
�
�
 Un,k−(r+1)�2(u)

✓(r)2(n−k+2r)(u0◆4,k−(r+1)�2(v0, l2n−2k+r+1(u)g)) U0,k−(r+1)�2,�(u0) 0,V3(v0)du0 dudv0 dg,

where g is integrated over [Sp2n−2k+r+1], u is integrated over [Un,k−(r+1)�2], u0 is integrated
over [U0,k−(r+1)�2], and v0 is integrated over [V0,3] with

V0,3 =
���������
v0 =
�
�
�

1 x1 x2

1 0
1

�
�
�

���������
.

The characters in (6.17) are given by  0,V3(v0) =  (x2) (see (4.2)) and

 U0,k−(r+1)�2,�(u) =  (tr(X1 +� +Xr1)) R,�(Y ) 0(Z)

with  R,�(Y ) =  (Y1,1 + �Y3,2n−2k+r+3) (compare (6.4)).
We now establish the following lemma.

Lemma 4. The integral L(k − (r + 1)�2) vanishes for all choices of data if and only if the
integral (6.24) given below vanishes for all choices of data.

Proof. To simplify the notation, let a = 2(n − k + 2r). As in the previous cases, we start
with a root exchange. For 1 ≤ i ≤ r1 − 1, let Mi denote the subgroup of Spa consisting of all
matrices Ia + ↵e′3i−2,3i−1 + �e′3i−2,3i. Let M = V0,3M1 . . .Mr1−1. Let  M denote the character
of M defined by  M(m) =  M(Ia + �e′3r1−2,3r1) =  (�). For 1 ≤ i ≤ r1 − 1, let Qi denote the
subgroup of U0,k−(r+1)�2 generated by all matrices

ui
3(i−1),3,3,a−6(i+1)(Xi), Xi = �

0
b 02

� , b ∈Mat2×1.

Then (6.17) is zero for all choices of data if and only if the integral

(6.18) � '(r)
�
�
�
u
�
�
�

Ik−(r+1)�2
g

Ik−(r+1)�2

�
�
�

�
�
�
✓(r)a (u0m◆4,k−(r+1)�2(1, l2n−2k+r+1(u)g))

 U0,k−(r+1)�2(u0) M,�(m) Un,k−(r+1)�2(u)du0 dudmdg

is zero for all choices of data, where M is integrated over [M] and u0 is integrated over
Q1(A) . . .Qr1−1(A)Un,k−(r+1)�2(F )�Un,k−(r+1)�2(A).

Let x(1) = Ia + e′3r1,3r1+1. Let w0 denote the Weyl element of Spa

w0 = diag(w, I2n−2k+r+1, w∗)
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where w is the Weyl element of GL3r1+1 specified as follows. The first r1 + 1 rows of w have
the entry 1 at position (i,2i+1) and 0 elsewhere. The next 2r1 rows are given by the matrix

�
���
�

0 I2 0 0 � 0
0 0 0 I2 � 0
⋮ ⋮ ⋮ ⋮ � ⋮
0 0 0 0 � I2

�
���
�
.

We have ✓(r)a (h) = ✓(r)a (w0x(1)h). Conjugating w0x(1) to the right, integral (6.18) is equal
to

(6.19) � '(r)
�
�
�
u
�
�
�

Ik−(r+1)�2
g

Ik−(r+1)�2

�
�
�

�
�
�
 ̃(A) U(u0) Un,k−(r+1)�2(u) �(B)

✓(r)a

�
�
�

�
�
�

A B C
Ia′ B∗

A∗
�
�
�

�
�
�

Ir1+1
D Ia′

D∗ Ir1+1

�
�
�

�
�
�

Ir1+1
u0

Ir1+1

�
�
�
w0x(1)◆4,k−(r+1)�2(1, l2n−2k+r+1(u)g)

�
�
�

d(...).

Here a′ = 2n−2k+3r−1 and A is integrated over [Lr1+1]. The character  ̃(A) is the Whittaker
character. The matrix B is integrated over [B(r1 + 1, a′)], where B(r1 + 1, a′) is the group
of matrices (B↵,�) ∈ Mat(r1+1)×a′ such that B↵,2↵−2 = 0 for all 1 ≤ ↵ ≤ r1, and Br1+1,� = 0 for
all 1 ≤ � ≤ 2(n − k + r). The character  �(B) is given by

 �(B) =  (Br1+1,2(n−k+r)+1 + �Br1+1,2(n−k+r)+2).
The variable C is integrated over [C(r1+1)], where C(r1+1) consists of all C ∈Mat0r1+1 such
that Cr1+1,1 = 0. The variable D is integrated over [D(a′, r1 + 1)] where D(a′, r1 + 1) is the
subgroup of Mata′×(r1+1) defined in a similar way to the group that appears following (4.15).
Finally, the variable u0 is integrated over [U0

2,r1,n−k+r1+1], where the group U0
2,r1,n−k+r1+1 ⊂ Spa′

was defined after (4.3). Its character  U(u0) is defined similarly to equation (4.6). The
variables u and g are integrated as before.

Carrying out a root exchange between the group D(a′, r1 + 1) and a suitable group of
upper triangular matrices involving roots in the first r1 rows, we deduce that (6.19) is zero
for all choices of data if and only if the integral

(6.20) � '(r)
�
�
�
u
�
�
�

Ik−(r+1)�2
g

Ik−(r+1)�2

�
�
�

�
�
�
 ̃(A) U(u0) Un,k−(r+1)�2(u) �(B)

✓(r)a

�
�
�

�
�
�

A B C
Ia′ B∗

A∗
�
�
�

�
�
�

Ir1+1
u0

Ir1+1

�
�
�
w0x(1)◆4,k−(r+1)�2(1, l2n−2k+r+1(u)g)

�
�
�
d(...)

is zero for all choices of data. Here C is integrated over [Mat0r1+1] and B is integrated over
[B1(r1 + 1, a′)], where B1(r1 + 1, a′) is the subgroup of Mat(r1+1)×a′ of all matrices B such
that Br1+1,� = 0 for all 1 ≤ � ≤ 2(n − k + r). All other variables are integrated as before.
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Let y(�) = Ia +∑r1
i=1 �e′2i−1,2i. Let w1 denote the Weyl element of Spa given by

w1 =

�
�����
�

Ir1+1
w1,1 w1,2

I2n−2k+r+1
w2,1 w2,2

Ir1+1

�
�����
�

.

Here, w↵,� ∈Matr−1 for all ↵,� ∈ {1,2}. To define w1 we need only specify the matrices w1,1

and w1,2. We do so as follows. The matrix w1,1 has the entry 1 at position (r1 + i,2i) for
1 ≤ i ≤ r1 and all other entries zero. The matrix w1,2 has the entry 1 at position (i,2i + 1)
for 1 ≤ i ≤ r1 and all other entries zero.

Introducing w1y(�) and conjugating, integral (6.20) is equal to

(6.21) � '(r)
�
�
�
u
�
�
�

Ik−(r+1)�2
g

Ik−(r+1)�2

�
�
�

�
�
�
 ̃(A) U,�(u0) Un,k−(r+1)�2(u) ′(D)

✓(r)a

�
�
�

�
�
�

A B C
Ia′′ B∗

A∗
�
�
�

�
�
�

Ir
D Ia′′
E D∗ Ir

�
�
�

�
�
�

Ir
u0

Ir

�
�
�
w1y(�)w0x(1)◆4,k−(r+1)�2(1, l2n−2k+r+1(u)g)

�
�
�

d(...)

Here, a′′ = a − 2r = 2(n − k + r). The variable A is now integrated over [Lr], and  ̃(A) is
the Whittaker character of Lr. The variable B is integrated over a subgroup of Matr×a′′ .
Similarly, for the variables C,D and E. We omit the precise descriptions. The variable
u0 is integrated over [U0

1,r1,n−k+r1+1]. For u0 = (u0[↵,�]) ∈ U0
1,r1,n−k+r1+1(A) ⊂ Spa′′(A), the

character  U,� is given for k ≤ n + (r + 1)�2 by

(6.22)  U,�(u0) =  (u0[1,2] +� + u0[r1 − 1, r1] + �u0[r1,2n − 2k + 3(r + 1)�2]).

We now carry out a root exchange between the root subgroups appearing in D,E and
suitable upper triangular matrices. We deduce that integral (6.21) is zero for all choices of
data if and only if the integral

(6.23) � '(r)
�
�
�
u
�
�
�

Ik−(r+1)�2
g

Ik−(r+1)�2

�
�
�

�
�
�
 ̃(A) U,�(u0) Un,k−(r+1)�2(u)

✓(r)a

�
�
�

�
�
�

A B C
Ia′′ B∗

A∗
�
�
�

�
�
�

Ir
u0

Ir

�
�
�
w1y(�)w0x(1)◆4,k−(r+1)�2(1, l2n−2k+r+1(u)g)

�
�
�
d(...)

is zero for all choices of data. In (6.23), B is integrated over [Matr×a′′], and C is integrated
over [Mat0r]. Observe that the integration over the B and C variables give rise to the
constant term along the unipotent radical of the parabolic subgroup of Spa whose Levi part
is GLr × Spa′′ .

Next, we conjugate w1y(�)w0x(1) across ◆4,k−(r+1)�2(1, l2n−2k+r+1(u)g). Note that the ma-
trix ◆4,k−(r+1)�2(1, g) commutes with w1y(�)w0x(1). Also, when conjugating the element
◆4,k−(r+1)�2((1, l2n−2k+r+1(u)) by w1y(�)w0x(1), we obtain u′◆4,k−(r+1)�2((1, l2n−2k+r+1(u)) where
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u′ is an element in the unipotent radical that we are integrating over in (6.23). We conclude
that the integral (6.23) is zero for all choices of data if and only if the integral

(6.24) � '(r)
�
�
�
u
�
�
�

Ik−(r+1)�2
g

Ik−(r+1)�2

�
�
�

�
�
�

✓(r)2(n−k+r)
�
�
�
u0

�
�
�

Ir1−1
◆4,k−r1(1, l2n−2k+r+1(u)g)

Ir1−1

�
�
�

�
�
�
 U,�(u0) Un,k−(r+1)�2(u)du0 dudg

is zero for all choices of data. Here, all variables are integrated as in (6.23). In particular,
the domain of integration of the variable u0 is the quotient [U0

1,r1,n−k+r1+1]. Note that the

Fourier coe�cient of ✓(r)2(n−k+r) given by this integration is attached to the unipotent orbit

((r − 1)12n−2k+r+1). Also, this is the same Fourier coe�cient as in integral (5.16). (There we
denoted the integration variable by v, but the integration domain and the character are the
same.) This concludes the proof of Lemma 4. ⇤

We now obtain consequences from the expression (6.24). Suppose first that 2n−2k+r+1 = 0;
that is k = n+(r+1)�2. In this case there is no g integration and l2n−2k+r+1(u) = l0(u) = un,n+1.
The character  Un,n(u), given by (1.1) with m = n, is independent of un,n+1, but after making
the variable change u0[n,n + 1] � u0[n,n + 1] − un,n+1, we obtain the generic (Whittaker)
character attached to Sp2n given by

 Wh,−�(u) =  (u1,2 + ⋅ ⋅ ⋅ + un−1,n − �un,n+1) .
Let W

'(r),−�(g) denote the value of the Whittaker coe�cient of '(r) with respect to  Wh,−�.
Thus integral (6.24) is thus equal to

W
'(r),−�(e) �

[U0
1,r1,n−k+r1+1]

✓(r)2(n−k+r)(u0) U,�(u0)du0.

The complex conjugate of  Wh,−� is in the same class as  Wh,� modulo the conjugation
action of the rational torus. Also, since k = n + (r + 1)�2, the character  U,� is a Whittaker
character of Sp2(n−k+r). We arrive at the following statement.

Proposition 8. Suppose that k = n+ (r+1)�2 and r > 1. Fix a nontrivial additive character
 of F �A. Then the Whittaker coe�cient Wk,�(f) is not zero for some choice of data if and
only if

(1) ⇥(r)r−1 has a nonzero Whittaker coe�cient with respect to the Whittaker character  U,�

of Spr−1 and
(2) ⇡(r) is generic with respect to the Whittaker character  Wh,� of Sp2n.

In this statement, condition (1) does not depend on the automorphic representation ⇡(r).
Thus if there exists a � such that the Whittaker coe�cient of any function in ⇥(r)r−1 with
respect to  U,� is zero, then Wk,�(f) = 0 always. As explained in Section 2, we do not expect
this. Moreover, by Theorem 3 above, condition (1) is known to be satisfied for some � when
r = 3,5.

Next, suppose that 2n − 2k + r + 1 > 0. Since we are in the case k > (r + 1)�2, this implies
that (r + 3)�2 ≤ k ≤ n + (r − 1)�2. In this case, as noted above, the integration over the
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quotient [U0
1,r1,n−k+r1+1] is attached to the unipotent orbit ((r − 1)12n−2k+r+1). We may use

the result of [I1] and Conjecture 2 and then argue as in the treatment of equations (5.17)
and (5.18). We obtain the following result (we suppress the details, as they are similar to
the treatment there).

Proposition 9. Suppose that (r + 3)�2 ≤ k ≤ n + (r − 1)�2 and that the Descent Conjecture
(Conjecture 2) holds. Then the Whittaker coe�cient (4.2) is not zero for some choice of
data if and only if the integral (1.5) is not zero for some choice of data.

To conclude this Section, we now return to the point we deferred above, and prove that
the integral (6.11) is zero for all choices of data. To do this we will define a family of integrals
K(j), where 0 ≤ j ≤min(r1−1, (2k−r−3)�2). Recall that k > (r+1)�2. Hence, 2k−r−3 ≥ 0,
and the set of such j is non-empty. We will prove that for 0 ≤ j <min(r1 − 1, (2k − r − 3)�2),
the integral K(j) is zero for all choices of data if and only if the integral K(j +1) is zero for
all choices of data. The idea is similar to the proof of Lemma 1.

First, we define K(0) to be the integral (6.11). To define the integrals K(j) for j ≥ 1, we
introduce unipotent groups U2,j

2k−r,r1,n. Let bj = 2n+ (2k − r)(r − 1)− 2jr (so bj = aj − 2r). Let
Qj

2k−r,r1,n denote the parabolic subgroup of Spbj whose Levi part is GLr1−j
2k−r−2j ×GLj

2k−r−2j−1 ×
Sp2n. Let U

2,j
2k−r,r1,n denote the unipotent radical of Qj

2k−r,r1,n. The matrices in U2,j
2k−r,r1,n have

a factorization that is similar to (4.4). We define the subgroup U ′′2,j of U2,j
2k−r,r1,n by imposing

the same condition Y2 = 0 used to specify the subgroup Uj of U
1,j
2k,r1,n

. Moreover, let  U ′′2,j be
the character of the quotient [U ′′2,j] given as in (4.6) with respect to the factorization here.

Recall that the group V2k−2j−r−1 is the upper triangular maximal unipotent subgroup of
SO2k−2j−r−1. Embedding V2k−2j−r−1 in V2k by v � diag(Ir1+1, v, Ir1+1), we define the charac-
ter  V2k−2j−r−1,� to be the restriction of  V2k,� (see equation (4.1)) to the embedded image
of the group V2k−2j−r−1. We consider the semidirect product of the groups V2k−2j−r−1 and
Mat1×(2k−2j−r−1) realized as the set of matrices v(a) = ( 1 a

v ) ∈ L2k−2j−r with v ∈ V2k−2j−r−1, and
a ∈Mat1×(2k−2j−r−1). If 2k−2j−r ≠ 3, define a character on V2k−2j−r−1(A)�Mat1×(2k−2j−r−1)(A)
by

 ′V2k−2j−r−1,�(v(a)) =  (a1,1) V2k−2j−r−1,�(v).
If 2k−2j−r = 3, then V2k−2j−r−1 consists of only the identity matrix, and in that case we define
 ′V2k−2j−r−1,�(v(a)) =  (�a1,1+a1,2). We define an embedding ◆5,j ∶ V2k−2j−r−1�Mat1×(2k−2j−r−1) →
Spbj by the formula

◆5,j(v(a)) = diag(v(a), . . . , v(a), v, . . . , v, I2n, v∗, . . . , v∗, v(a)∗ . . . , v(a)∗),
where v appears j times and v(a) appears r1−j times. (Since 1 ≤ j ≤min(r1−1, (2k−r−3)�2),
all indices appearing in ◆5,j are positive integers.)

For 1 ≤ j ≤min(r1 − 1, (2k − r − 3)�2) define

K(j) = � '(r)(g)✓(r)bj

�
�
�
u◆5,j(v(a))

�
�
�

Icj
g

Icj

�
�
�

�
�
�
 U ′′2,j(u) 

′
V2k−2j−r−1,�(v(a))dudv(a)dg.

Here, u is integrated over [U ′′2,j], v(a) is integrated over [V2k−2j−r−1 �Mat1×(2k−2j−r−1)], g is
integrated over [Sp2n], and the integer cj = (2k − r)r1 − jr.

We now prove that for 0 ≤ j < min(r1 − 1, (2k − r − 3)�2), the integral K(j) is zero
for all choices of data if and only if integral K(j + 1) is zero for all choices of data. If
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j < (2k − r − 3)�2 it follows that 2k − r − 2j ≥ 5. We start with a root exchange that is
similar to the one performed just prior to equation (6.18). Let M1 denote the subgroup of
L2k−2j−r consisting of all matrices of the form ( 1 a

I ) where a ∈Mat1×(2k−2j−r−1). (Thus we may
identify the group V2k−2j−r−1�Mat1×(2k−2r−2j−1) with V2k−2j−r−1 ⋅M1.) Let M be the subgroup of
Spbj consisting of all matrices of the form diag(m1, . . . ,mr1−j, Ic,m∗r1−j, . . . ,m∗1) where each
mi ∈ M1 and c = 2(n + 2k − 2j − r − 1). Define the subgroups Qi of U ′′2,j for 1 ≤ i ≤ r1 − j − 1
similarly to the definition of Qi above (6.18). Each such Qi is isomorphic to Mat(2k−2j−r−1)×1.
Performing this root exchange, we deduce that K(j) is zero for all choices of data if and
only if the integral

(6.25) � '(r)(g)✓(r)bj

�
�
�
um◆5,j(v(0))

�
�
�

Icj
g

Icj

�
�
�

�
�
�
 U ′′2,j(u) V2k−2j−r−1,�(v) M(m)dudmdv dg

vanishes for all choices of data. Here, m is integrated over [M], and the character  M is
defined as follows. Let m = diag(m1, . . . ,mr1−j, Ic,m∗r1−j, . . . ,m∗1) ∈ M(A). Then  M(m) =
 (mr1−j[1,2]). The variable u is integrated over Q1(A) . . .Qr1−j−1(A)U ′′2,j(F )�U ′′2,j(A). The
variable v is integrated over [V2k−2j−r−1], and the character  V2k−2j−r−1,� is the restriction of
the Whittaker character (4.1). The variable g is integrated as before.

Now we repeat the same steps as in the proof of Lemma 1. First, we define a Weyl element
w,j

0 of Spbj as in (4.13). However, in the case at hand we need to interchange j and r1 − j, to
interchange � and �, and to replace 2k by 2k − r. After conjugating by this Weyl element,
we obtain

(6.26)

� '(r)(g)✓(r)bj

�
�
�

�
�
�

A B C
Ibj+1 B∗

A∗
�
�
�

�
�
�

Ir
D Ibj+1
E D∗ Ir

�
�
�

�
�
�

Ir
u◆5,j+1(v(a))

Ir

�
�
�

�
�
�

Icj
g

Icj

�
�
�

�
�
�

 ̃(A) U ′′2,j+1(u) 
′
V2k−2j−r−3,�(v(a))d(...)

(this is similar to (4.15)). Here u is integrated over [U ′′2,j+1], the variable v(a) is integrated
over [V2k−2j−r−3 �Mat1×(2k−2j−r−3)] and g is integrated over [Sp2n]. The variables A,B,C,D
and E are integrated over the groups that are defined in a way similar to (4.15).

After performing further root exchanges, we deduce that (6.26) is zero for all choices of
data if and only if the integral

(6.27) � '(r)(g)✓(r)bj

�
�
�

�
�
�

A B C
Ibj+1 B∗

A∗
�
�
�

�
�
�

Ir
u◆5,j+1(v(a))

Ir

�
�
�

�
�
�

Icj
g

Icj

�
�
�

�
�
�

 ̃(A) U ′′2,j+1(u) 
′
V2k−2j−r−3,�(v(a))d(...)

is zero for all choices of data. Here B is integrated over [Matr×bj+1], and C over [Mat0r].
The integration over B and C gives the constant term along the unipotent radical of the
parabolic group whose Levi part is GLr × Spbj+1 . (See the discussion following (4.17).) We
deduce that the integral (6.27) is zero for all choices of data if and only if K(j + 1) is zero
for all choices of data. This completes the proof that K(j) is zero for all choices of data if
and only if K(j + 1) is zero for all choices of data.
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We deduce that the integral (6.11) is zero for all choices of data if and only if the integral
K(min(r1 − 1, (2k − r − 3)�2)) is zero for all choices of data. We now consider each case for
the minimum. Suppose first that (2k − r − 3)�2 ≤ r1 − 1. Then

(6.28) K((2k − r − 3)�2) = � '(r)(g)✓(r)2(n+2r−k)
�
�
�
u◆5,(2k−r−3)�2(v(a))

�
�
�

I2r−k
g

I2r−k

�
�
�

�
�
�

 U ′′
2,(2k−r−3)�2(u) 

′
V2,�(v(a))dudv(a)dg.

In this integral u is integrated over [U ′′2,(2k−r−3)�2]. We recall that the group U ′′2,(2k−r−3)�2 is a
subgroup of the unipotent radical of the parabolic subgroup of Sp2n+4r−2k whose Levi part
is GLr−k+1

3 ×GL(2k−r−3)�22 ×Sp2n. The group V2 in (6.28) is the identity group while a ranges
over 1 × 2 matrices, and the character  ′V2,�

(v(a)) =  (�a1,1 + a1,2). Defining the group M
and the groups Qi, and then performing root exchange as immediately before integral (6.25),

we obtain as inner integration the Fourier coe�cient of ✓(r)2(n+2r−k) which corresponds to the

unipotent orbit ((r+1)(2k− r−1)12(n+2r−2k)). By Theorem 3, part 1, this Fourier coe�cient
is zero. Thus, integral K((2k − r − 3)�2), and hence integral (6.11), are both zero for all
choices of data.

Suppose instead that (2k − r − 3)�2 > r1 − 1. Then we must analyze

K(r1 − 1) = � '(r)(g)✓(r)br1−1
�
�
�
u◆5,r1−1(v(a))

�
�
�

Icr1−1
g

Icr1−1

�
�
�

�
�
�

 U ′′2,r1−1(u) 
′
V2(k−r+1),�(v(a))dudv(a)dg

where br1−1 = 2n + (2k − r)(r − 1) − r(r − 3). Here u is integrated over U ′′2,r1−1, a subgroup
of the unipotent radical of the parabolic subgroup of Spbr1−1 whose Levi part is GL2k−2r+3 ×
GLr1−1

2(k−r+1) × Sp2n. We do not need to do any root exchange at the first step. Defining a

suitable Weyl element, we deduce that the integral K(r1 − 1) is equal to an integral similar
to integral (6.7). In other words, we obtain a matrix similar to B(v0). However, in this
case, after a suitable change of variables, we obtain as inner integration an integral of the
type ∫  (x)dx, with x integrated over F �A. This integral is zero. We omit the details. We
deduce that the integral K(r1 − 1) is zero for all choices of data. This completes the proof
that integral (6.11) is zero for all choices of data.

7. The case k ≤ n − r+1
2 and the Descent Conjecture.

In this section we study the case k ≤ n− r+1
2 . By the results of Section 4, the integral (4.2)

is zero for all choices of data if and only if the integral (5.16) is zero for all choices of data.
Our goal is to prove the vanishing of this integral when k ≤ n − r+1

2 . We explain how this
follows from a Descent Conjecture; that is, we formulate and establish Proposition 4, part 2.
We also indicate how one may establish slightly weaker results without this.

The proofs of Proposition 3, part 2 and Proposition 4, part 1, relied on studying the
integral (5.17) (see (5.16) to (5.20) above). This is a descent integral in the sense of [G-R-S4]
and of [F-G1], Section 3. With the notation as in (5.17), consider the representation ⇢ of
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Sp(2r)2n+r−2k+1(A) whose underlying vector space is generated by the functions

(7.1) f(m) = �
[U1,r1,n+r1−k]

✓(2), �

2n+r−2k+1(l2n+r−2k+1(v′)m)✓(r)2(n+r−k)(v′m) U1,r1,n+r1−k(v
′)dv′.

Note that since r is odd, each function f is a genuine function on the 2r-fold cover, and
each f is invariant under Sp2n+r−2k+1(F ). This construction was analyzed in [F-G1], and we
established the following result there ([F-G1], Proposition 4.1).

Proposition 10. Suppose r is an odd integer such that the Conjecture 1 (the Orbit Conjec-
ture) holds. Then the representation ⇢ is a subrepresentation of the Hilbert space

L2(Sp(2r)2n+r−2k+1(F )�Sp(2r)2n+r−2k+1(A))
and it has nonzero projection to the residual spectrum.

We make the stronger Descent Conjecture:

Conjecture 2 (The Descent Conjecture). The representation ⇢ is in the residual spectrum,

and each irreducible summand of ⇢ is the representation ⇥(2r)2n+r−2k+1.
In [F-G1], Conjecture 4.2, we conjectured that ⇢ is in fact exactly the theta representation

⇥(2r)2n+r−2k+1. The slightly weaker statement of Conjecture 2 su�ces for our applications. We
also remark that the local version of Conjecture 2 is true. This is given precisely in Lemma 5
below. As a consequence the Descent Conjecture would follow from a strong multiplicity one
theorem for Sp(2r)2n+r−2k+1(A).

We recall that the theta representation ⇥(2r)2n+r−2k+1 on Sp(2r)2n+r−2k+1(A) is obtained from the

residue of the Eisenstein series E(2r)2n+r−2k+1(⋅, s) that is associated with the induced representa-

tion Ind
Sp(2r)2n+r−2k+1(A)
P (A) ⇥(r)GLn+r1−k+1�

s
P . Here P is the maximal parabolic subgroup of Sp2n+r−2k+1

whose Levi part is GLn+r1−k+1 and ⇥(r)GLn+r1−k+1 is the theta representation of GL(r)n+r1−k+1(A).
See [F-G1], pg. 94. Using this, Conjecture 2 allows us to establish the following result.

Proposition 11. Assume Conjecture 2 holds. Then Proposition 4, part 2 is true.

Proof. Under this hypothesis, the argument is similar to the linear case r = 1 (see (1.2) and
(1.3)). That is, we replace the theta function by an Eisenstein series and unfold in order to
obtain zero. Indeed, it follows from Conjecture 2 that the integral (4.2) is zero for all choices
of data if and only if the integrals (1.4) and (1.5) are zero for all choices of data. Suppose
2 ≤ k ≤ r+1

2 . Consider the integral

(7.2) �
[Sp2n]

�
[U

n+ r+1
2 −k, r+12 −k]

'(r)(g)

✓(2), �

2n (l(u)g)E(2r)2n+r−2k+1
�
��
�
u
�
��
�

I r+1
2 −k

g
I r+1

2 −k

�
��
�
, s
�
��
�
 U

n+ r+1
2 −k, r+12 −k(u)dudg.

We can unfold this integral, and the unfolding process is exactly as in the linear group
case. See [G-R-S2]. Doing so, and using the cuspidality of '(r), we deduce that integral
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(7.2) unfolds to an integral which has as inner integration the Whittaker coe�cient of the

representation ⇥(r)GLn+r1−k+1 . However, if r < n + r1 − k + 1, then by [K-P], Theorem I.3.5 and

II.2.1, this representation is not generic. A similar argument applies to integral (1.5). The
Proposition follows. ⇤

We have the following Corollary.

Corollary 1. Suppose that the Orbit and Descent Conjectures are satisfied. A generic rep-
resentation appears in the tower of theta lifts of ⇡(r), i.e., the representation �(r)n,k is generic
for some k, some �, and some choice of data, if and only if ⇡(r) is generic.
Proof. If ⇡(r) is generic, then �(r)

n,n+ r+1
2

is generic by Theorem 2, part 2. Conversely, suppose

that �(r)n,k is generic for some k in the Whittaker range. The case k = n + r+1
2 is treated in

Theorem 2. For the remaining cases, the existence of a nonzero Whittaker coe�cient implies
the nonvanishing of integral (1.4) or (1.5). Similarly to the proof of Proposition 11, we may

replace the theta representation ✓(2r), �

2n+r−2k+1 by an Eisenstein series E(2r)(⋅, s), and the integral
is necessarily nonzero for Re(s) large. Unfolding this integral as in [G-R-S2] one obtains a
Whittaker integral of '(r) as inner integral. The result follows. ⇤

To conclude, we observe that one may obtain somewhat weaker results towards Proposi-
tion 4, part 2 without Conjecture 2.

Proposition 12. Suppose that ⇡(r) is an irreducible cuspidal representation of Sp(r)2n (A)
with the property that it has at least one unramified constituent which is in general position.
Suppose that k ≤ n− r+1

2 . Then the representation �(r)n,k is not generic. That is, Proposition 4,
part 2 holds for ⇡(r).

We sketch the proof. First, suppose that the Whittaker coe�cient Wk,�(f) is nonzero for
some choice of data and some � ∈ F ×. The arguments above show that the integral (4.2) is
nonzero if and only if integrals similar to (1.4) and (1.5) are nonzero, where in those integrals

the functions ✓(2r), �

2n+r−2k+1 are known only to be functions of the form f(m) as in (7.1), that

is, functions obtained by the descent process that uses the theta representation ⇥(r)2(n+r−k)
to construct automorphic functions on Sp(2r)2n+r−2k+1(A). The nonvanishing of this integral
allows us to conclude that a local Hom space is nonzero. Indeed, choose vectors such that
the integral is nonzero, and choose a finite place ⌫ such that all data are unramified. Since
the local groups at ⌫ act on the representations, we obtain a nonzero trilinear form.

Suppose that 2 ≤ k ≤ r+1
2 so that we consider (1.4); the case corresponding to (1.5) is

treated in a similar way. Let ⇥ now denote the local theta representations with the groups

and covers notated as in the global case. Let U1,r1,n+r1−k(F⌫) act on ⇥(2), �

2n+r−2k+1 via the
embedding l2n+r−2k+1 of this group in H2n+r−2k+2(F⌫). Let

JU1,r1,n+r1−k(F⌫) �⇥(r)2(n+r−k)� = V �W

be the Sp(2r)2n+r−2k+1(F⌫)-module that arises from the local descent, that is, the twisted Jacquet

module. Here V is the vector space generated by vectors of the form v1⊗ v2, v1 ∈ ⇥(2), �

2n+r−2k+1,
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v2 ∈ ⇥(r)2(n+r−k), and W is the subspace

{(u ⋅ v1)⊗ (u ⋅ v2) − U1,r1,n+r1−k(u)v1 ⊗ v2 � v1 ∈ ⇥(2), �

2n+r−2k+1, v2 ∈ ⇥(r)2(n+r−k), u ∈ U1,r1,n+r1−k(F⌫)}.
Then JU1,r1,n+r1−k(F⌫)(⇥(r)2(n+r−k)) is an Sp2n(F⌫)-module via the embedding

h� diag(I r+1
2
−k, h, I r+1

2
−k)

of Sp2n(F⌫) in Sp2n+r−2k+1(F⌫). Under the assumption of nonvanishing of the integral (1.4),
we conclude that the Hom space

HomSp2n(F⌫)×Un+ r+1
2 −k, r+12 −k(F⌫)(⇡(r)⌫ ⊗⇥(2), �

2n ⊗ JU1,r1,n+r1−k(F⌫)(⇥(r)2(n+r−k)) U
n+ r+1

2 −k, r+12 −k ,C)

is nonzero, where the group Un+ r+1
2
−k, r+1

2
−k(F⌫) acts on ⇥(2), �

2n via l2n.

We now use information about the local descent of ⇥(r)2(n+r−k), namely that the local version
of Conjecture 2 is true. This is given the following lemma.

Lemma 5. Suppose that all data are unramified. Then

JU1,r1,n+r1−k(F⌫) �⇥(r)2(n+r−k)� ≅ ⇥(2r)2n+r−2k+1.
Though this is not formally stated in [F-G1], it follows from the local versions of the

arguments in Section 4 there. Let ⌫ be an unramified place and let O⌫ be the ring of
integers of F⌫ . The computation there is equivalent to showing that the Jacquet module
at ⌫ is nonzero and its exponent matches that of ⇥(2r)2n+r−2k+1. Recall that the local theta

representation ⇥(r)2(n+r−k) (resp. ⇥(2r)2n+r−2k+1) is generated by a nonzero K1-fixed vector with

K1 ≅ Sp2(n+r−k)(O⌫) a compact open subgroup of Sp(r)2(n+r−k)(F⌫) (resp. a nonzero K2-fixed

vector with K2 ≅ Sp2n+r−2k+1(O⌫) a compact open subgroup of Sp(2r)2n+r−2k+1(F⌫)). Since the
image of the K1-fixed vector in the Jacquet module is K2-fixed and the exponents match,
the Lemma follows.

It is su�cient to show that the representations in questions do not support such a local
trilinear form. This may be established the same way as the analysis of the integral (7.2)
above, but ported to local fields. For example, instead of unfolding we use Frobenius reci-
procity, and instead of a Fourier expansion we use the Geometrical Lemma of [B-Z], p. 448.
See [F-G3], Section 6, for an example of such an argument. The contribution from the terms
involving the constant terms will vanish by the assumption of general position. The result
follows.
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