ON THE WHITTAKER RANGE OF THE GENERALIZED
METAPLECTIC THETA LIFT

SOLOMON FRIEDBERG AND DAVID GINZBURG

ABSTRACT. The classical theta correspondence, based on the Weil representation, allows
one to lift automorphic representations on symplectic groups or their double covers to au-
tomorphic representations on special orthogonal groups. It is of interest to vary the orthog-
onal group and describe the behavior in this theta tower (the Rallis tower). In prior work,
the authors obtained an extension of the classical theta correspondence to higher degree
metaplectic covers of symplectic and special orthogonal groups that is based on the tensor
product of the Weil representation with another small representation. In this work we study
the existence of generic lifts in the resulting theta tower. In the classical case, there are two
orthogonal groups that may support a generic lift of an irreducible cuspidal automorphic
representation of a symplectic group. We show that in general the Whittaker range consists
of +1 groups for the lift from the r-fold cover of a symplectic group. We also give a period
criterion for the genericity of the lift at each step of the tower.

1. INTRODUCTION

The classical theta correspondence gives a systematic way to lift automorphic representa-
tions on one group to automorphic representations on another. This correspondence is based
on restricting the theta representation on the metaplectic double cover of a symplectic group
to a reductive dual pair in the symplectic group (or, more accurately, its inverse image in
the double cover). In [F-G3] the authors introduced an extension of the notion of reductive
dual pair that allows the construction of correspondences using the tensor product of two
theta representations. We used this to construct a theta lift between genuine automorphic
representations on higher degree metaplectic covers of symplectic and orthogonal groups.
Our lift matches the classical theta lift for the trivial cover of the orthogonal group, as in
that case one of the theta representations in the tensor product is trivial. In this paper we
study the question of when the generalized theta lift of a given automorphic representation
is globally generic. We shall show that the theory for the classical theta lift is the first case
of a broader theory that, in general, involves more possibilities.

Let r > 1 be an odd integer, F' denote a global field which contains a full set of r-th roots
of unity p,, and A denote the ring of adeles of F'. Let Spg;l)(A) denote the r-fold metaplectic
cover of the symplectic group Spa,(A), which is a topological central extension of Spo, (A) by
pr. The construction of such a covering group goes back to Matsumoto [Mat]. Let 7(") denote

a genuine irreducible cuspidal automorphic representation of S pg;) (A). In [F-G3] the authors
constructed, via the generalized theta lift described above, an automorphic representation
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o(5) of the kr-fold metaplectic cover S O,gm) (A) of the split special orthogonal group SO (A),
with k = 1 if k is even and k = 2 if k is odd. The authors studied the Rallis tower (i.e. the
lift for fixed 7(") and varying k), proved that the first nontrivial occurrence in the tower is
cuspidal, and showed that the unramified local lift is functorial in the equal rank case.
Here we concentrate on the tower of split even orthogonal groups SOq, so that k = 1;
we recall the construction of the lift in this case in equation (3.3). Denote the automorphic

representation so-obtained by 07(;,1. Let 1 be a fixed nontrivial additive character of F\A.

The main objects of study here are the Whittaker coefficients attached to 07(:,1. These
coefficients are introduced below in equation (4.2) and denoted W 5(f). Here § € F*, and
f is a function in the space of 0‘::11. The class of § modulo (F£*)? indexes an orbit of generic
characters modulo the action of the rational split torus by conjugation. (One could also
obtain these orbits by setting 6 = 1 and varying ¢ in (4.1).) If Wy 5(f) is not zero for some
choice of data and some §, we say that 07(:,1 is (globally) generic. Note that when we use
‘generic,” we do not insist that the Whittaker model be unique, only that it exists. Also,
here and below the phrase “choice of data” indicates a choice of smooth functions in the
space of the automorphic representation or representations that appear.

In this paper we will give conditions on 7(") and k so that Wi, s(f) is not zero for some f
and relate this question to certain periods of 7("). We will determine the locations k in the
Rallis tower such that o, can be generic, the k£ for which it must be generic provided that
7(") is generic, and the k for which it can never be generic. In [F-G3] we did not prove that
a nonvanishing lift of 7(") always occurs, but we will establish this for generic automorphic
representations here.

Before stating our main results, it will be useful to describe the situation in the case when
r =1, that is, in the case of the classical global theta correspondence. Let 0&23@ be a theta

series defined on the classical metaplectic group Spfé)n(A), the double cover of the symplectic
group Spyr(A). See for example [G-R-S2], Section 1, part 6. These theta series depend on
a choice of 1 as above and a Schwartz function ¢. (We always suppress ¢ from the notation,
but sometimes write Hﬁ)n’d’.) Let ¢ be the tensor product embedding ¢1 : SOgr X Spay, = SPank-
The double cover splits over the image of ¢, as in Kudla [Kul]. (See also Sweet [Sw]|.) Let 7

be an irreducible cuspidal automorphic representation of Sps,(A). For any algebraic group
G defined over F, let [G] denote the automorphic quotient [G] := G(F)\G(A). Denote by

onk the representation of [ SOy | generated by all functions f(h) obtained by using «95;21 as
an integral kernel,

1= [ @ (a(h.9)) dy.
[Span]
with ¢ in 7 and all Schwartz functions ¢. The map from 7 to o, is the classical theta
correspondence. See for example Howe [Ho].

The properties of the classical theta correspondence of concern to us here are the following,
established by Ginzburg, Rallis and Soudry [G-R-S1].

Theorem 1. Suppose that r = 1, so that o, is the classical theta lift of the irreducible
cuspidal automorphic representation m on Spa,(A) to SOqr(A).

(1) Suppose that k #n,n+1. Then Wy s(f) is zero for all choices of data and all §, that

is, the representation o,y is not generic.
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(2) Suppose that k =n+1. Then the coefficient Wy s(f) is not zero for some choice of
data if and only if ™ is a generic representation with respect to 6.

(3) Suppose that k =n. Then the coefficient Wy s(f) is not zero for some choice of data if
and only if a certain period integral depending on & (given by (1.2) below with m =1)
18 monzero for some choice of data.

The condition on genericity in part 2 once again reflects that the specific choice of generic
character for m is related to € F'*, and is needed since there is more than one orbit of
generic characters for [ Spy, ] under the action by conjugation of the standard maximal torus
of Spen(F'). For more details see [G-R-S1|, Theorem 2.1.

In view of Theorem 1, we refer to the numbers k& = n,n + 1 as the Whittaker range of
the theta lift from Sps, to SOs. Also, it follows that a generic representation appears in
the tower of theta lifts of 7, i.e., the representation o, is generic for some k, some ¢, and
some choice of data, if and only if 7 is generic. Here, if o,,,, is generic, the genericity of m

is deduced by observing that the period (1.2) with m = 1 involves a theta function 9;2”’6
which is the residue of an Eisenstein series on the double cover of SLs. If the period is not

zero, then replacing 9;2)71#5 by this Eisenstein series, the integral is necessarily nonzero for
Re(s) large. Unfolding, one obtains a Whittaker integral of ¢ as an inner integral. Hence it
must be nonzero.

In this paper we extend these properties to the general case, that is, all » > 1, r odd. We
require two hypotheses. The first, the Orbit Conjecture (Conjecture 1 in Section 2 below),

concerns the Fourier coefficients associated to the theta representation @@1 on the r-fold
cover of Sp,_1. It holds when r = 3, F' = Q(e?>™/3) by work of Patterson [Pat]. We give the
context for this conjecture in Section 2. The second, the Descent Conjecture, concerns the
descent of the theta representation @g’;). It is formulated in Section 7, Conjecture 2, below.
A slightly stronger version is also proposed in [F-G1], Conjecture 4.2. Replacing the Descent
Conjecture by a local version, which is known, we obtain in Proposition 12 slightly weaker
results without assuming this.
Let 7(") and 07(:,1 be as above. We shall establish the following result.

Theorem 2. Let r > 1 be an odd integer. Suppose that the Orbit and Descent Conjectures
are satisfied. Then the following statements hold.

(1) Suppose that k +n—"5*,n—-"52, ... ,n+ L. Then Wy 5(f) is zero for all choices of
data and all 9, that s, the representation aflrlz 1S not generic.
(2) Suppose that k =n -+, Then the coefficient Wi, s(f) is not zero for some choice of

data if and only if 7 is a generic representation with respect to .
(3) Suppose that k is one of the values n — %,n - ?, N+ % Then the coefficient

Wis(f) is not zero for some choice of data if and only if a certain period integral,
depending on k and 6 (and given in Proposition 4 below), is nonzero for some choice

of data.
Note that Theorem 2 asserts that the Whittaker range expands from k =n,n + 1 for the
classical theta lift from Sps, to SOy , ie. the case r =1, to k=n-"3,n-52 ... n+= for

the generalized theta lift from Spg;b) to 5052). We will describe the related period integrals

momentarily. In the general case a new phenomenon appears: the shape of the period
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integral changes as we pass from the interval 2 < k < %1 to the interval r—g?’ <k<n+ %; the
first interval does not appear if r = 1.
It follows that, as in the classical case, a generic representation appears in the tower of

theta lifts of ("), i.e., the representation aff,z is generic for some k, some ¢, and some choice

of data, if and only if 7(") is generic. See Corollary 1.

We remark that if » > 1 we do not know whether or not the full Whittaker range is attained,
equivalently whether or not for each k£ in the Whittaker range there exists an automorphic
representation on Spgl)(A) such that the corresponding period is nonzero for some choice of
data and some 0. We suspect that this is the case. We also remark that one may fix the
automorphic representation on the orthogonal group and consider the tower of symplectic
groups, introduced by Rallis [R]. For r = 1 and even orthogonal groups the question of
nonvanishing of the theta lift is treated by Roberts [Ro].

Before outlining the proof for general r, let us review the proof of Theorem 1 and also the
connection to period integrals in the classical case. We break the proof of this result into
four parts. The first two are:

Proposition 1. Suppose that r = 1, so that o, is the classical theta lift of ™ on Spa, to
SOy
(1) [Classical-1] Suppose that k> n+2. Then Wy s(f) is zero for all choices of data and
all d.
(2) [Classical-2] When k =n+ 1, the coefficient Wy 5(f) is not zero for some choice of
data if and only if ™ is a generic representation with respect to 6.

The proof of Proposition 1 is based on a direct calculation of the Whittaker integral Wi, s( f)
by unfolding the theta series and using root exchange. The vanishing in part 1 makes use of
the cuspidality of ¢.

To describe the remaining steps, we introduce the following notation. For 0 < m < n,
let U, denote the unipotent radical of the parabolic subgroup of Spy, whose Levi part is
GLT xSpan-m). When m =0, we define U, ,,, to be the trivial group. When n = m, the group
Unm is the maximal unipotent subgroup of Sps,. Fix ¢ a nontrivial additive character of A
trivial on F', and let vy, ,, denote the character of [U, ] given on u = (u; ;) € Uy n(A) by

(1-1) wUn,m (U) = ¢(U1,2 +Ugz+ -+ Um—l,m)-

The group U, ,, has a structure of a generalized Heisenberg group, and one can define a
homomorphism [ from U, ,, onto the Heisenberg group Ha(n-my+1. (See (6.1) below.) Let

Qéz’w be a theta function on Spéfr)L(A) formed using the Weil representation with additive
5
character ¢ given by %(x) = ¢(dz). The function 6533” is a function on the semidirect
product Haopm1(A) x Spéiz(A). We then introduce the period integral
Ly m -
a2 [ [ el on o5 ()OS (M., () dudh.
[Sme] [Un,n—m] In—m
In the integrand, the product of the two theta functions is not a genuine function of h, and
so gives a function on the group Spo,(A) itself. We have

Proposition 2. Suppose that v = 1, so that o, is the classical theta lift of ™ on Spa, to

SOy
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(1) [Classical-3] Assume 2 <k <n, and write m =n—-k+1. Then 1 <m <n-1. The
Fourier coefficient Wy s(f) of the representation o, is zero for all choices of data if
and only if the period integral (1.2) is zero for all choices of data.

(2) [Classical-4] Suppose that k <n—1. Then the representation o, is not generic.

The proof of Proposition 2, part 1, follows from a direct calculation of the integral Wi s( f)
To deduce part 2, one then uses the theory of Fourier-Jacobi coefficients as established by

Ikeda [I1]. Indeed, it follows from this reference that 9(2) wé(h) is the residue at a point

so of the Eisenstein series E(+°(-,s) defined on Spé )(A) that is induced from the trivial
representation of GL,,(A). (The induction depends on a Weil factor that in turn depends
on the choice of additive character 1/°.) Hence if (1.2) is not zero for some choice of data,
then the integral

ws) [ el h 6" (1)) E@ P (b, ), ., (u) dudh
Infm

Sp2m Un n— m

is not zero for Re(s) large. However, one may unfold this integral as in [G-R-S2], and doing
so, one obtains an integral with the Whittaker coefficient of the identity representation of
GL,,(A) as an inner integration. Since this coefficient is zero if m > 2, part 2 follows.

The proof of Theorem 2 will be given by generalizing Propositions 1 and 2 to the case of
general r. To generalize Proposition 1 we will show

Proposition 3. Let r > 1 be an odd integer. Then the following statements hold.
(1) [General-1] Suppose that k> n+"52. Then Wy s(f) is zero for all choices of data and
all 6.
(2) [General-2] Suppose that the Orbit Conjecture is true. When k = n+ =, the coef-
ficient Wy, s(f) is not zero for some choice of data if and only if =(") zs a genmeric
representation with respect to 9.

Proposition 8 below formulates the dependence of the genericity on § precisely, and gives
an unconditional statement as well. The second step is to generalize Proposition 2. We will
show

Proposition 4. Let r > 1 be an odd integer. Suppose that the Descent Conjecture holds.
Then the following statements hold.

(1) [General-3] Suppose that 2 < k < ™1, Then the coefficient Wy, s(f) is not zero for

some choice of data if and only if there exists a choice of data such that the period

integral
Ira
2)0° 2r) 0 2
I N A O A O L sy I .
Sp2n n 717 ’T17 IT;_I_IC
LA, (u) dudh

is not zero. Here the function eéi:);¢2k+1 s in the space of the theta representa,tion
Ggi?rw%ﬂ that is obtained from the residues of Eisenstein series on Spgnw o1 (A).

The remaining notation will be defined below.
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Suppose instead that % <k<n+ ’";21 Then the coefficient Wy s(f) is not zero for
some choice of data if and only if there exists a choice of data such that the period
integral

I r+1
k==~

(1.5) f f W u h ;

[Sp2n—2k+r+l] [U

+1] r+1
n,k—152 2

5 r), )
eéi)frp—%ﬂ (lansr-ak+1(u)h) 9§i+)rib2k+1(h) ¢Un,kf% (u) dudh

18 not zero.

(2) [General-4] Suppose that k <n - % Then the representation 07(:; s not generic.

In the integrals above, the unipotent groups embed in their covers by means of the trivial
section u + (u,1). The integrands are independent of the central subgroup as a function of
h, so integration over the adelic quotients of the symplectic groups makes sense. (In greater
detail, we integrate in h over the full 2r-fold cover of the indicated symplectic group and
in evaluating (") and 6 we first project h from the 2r-fold cover to the r-fold and 2-fold
covers, resp., as in [F-G3|, Section 3. But as the integrand is ultimately independent of pg, it
is more natural to regard it as simply a function on the group.). Also, the theta representation
@gi?ﬁ;kﬂ is defined in [F-G1], pg. 93; the dependence on the additive character is explained
in [F-G2], pg. 1926.

Though this work focusses on global genericity, one may also study genericity in the
context of the local generalized theta correspondence ([F-G3], Section 6). See for example
Baki¢ [Bak] for the classical theta correspondence. We remark that some of the methods
developed here could also be transported to the local situation.

We now describe the proofs in brief and also the structure of this paper. In Section 2 we
introduce the groups of concern, discuss the Fourier coefficients of the theta representation,
and provide a brief review of root exchange. We state Theorem 3 (proved in [F-G3]) that
gives information about these coefficients, and the Orbit Conjecture that is used in the
sequel. Section 3 describes the construction of the generalized theta lift of [F-G3]. Then
in Section 4 we introduce the family of Whittaker coefficients that are to be studied, and
compute them for f € ag,z. To do so, we unfold the classical theta function and then use
root exchange extensively’. We also use the vanishing of the Fourier coefficients for the theta
representation that are attached to certain unipotent orbits (Theorem 3, part 1). This allows
us to establish an inductive process that terminates in the integral L(j) given by (4.8) with
j =min(k -2, (r—-3)/2). We then analyze each case for this minimum.

In Section 5, the case that min(k — 2, (r - 3)/2) = k (i.e., k < (r+1)/2) is studied; note
that this case does not arise in the classical theta correspondence. Here we use further
root exchanges and the results of Ikeda mentioned above to arrive at the period (1.4). The
case that min(k - 2,(r - 3)/2) = (r - 3)/2 (i.e.,, k> (r +1)/2) is studied in Section 6. The
analysis here is roughly similar but uses additional Fourier expansions over certain unipotent
subgroups of symplectic groups. We conclude that in this case the Whittaker coefficient
Wi s(f) is nonzero if and only if the integral L£(j) given by (6.5) is nonzero when j =
min(n, k — (r +1)/2). This allows us to prove Proposition 3, part 1, using once again the

vanishing of the Fourier coefficients of the theta representation (Theorem 3, part 1), and
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Proposition 3, part 2 after using the non-vanishing that is the Orbit Conjecture. It also allows
us to establish Proposition 4, part 1, assuming the Descent Conjecture (whose discussion is
deferred to Section 7). The concluding Section 7 discusses the Descent Conjecture and the
relation of this conjecture to a strong multiplicity one statement, establishes Proposition 4,
part 2 and Corollary 1 under it, and explains how we can show part 2 without the Descent
Conjecture by imposing an additional condition on 7(") (Proposition 12).

We thank the referee for helpful comments.

2. NOTATION, FOURIER COEFFICIENTS OF THE THETA REPRESENTATION, ROOT
EXCHANGE

In this section we fix some notations, discuss the Fourier coefficients of the theta repre-
sentation, and provide a brief review of root exchange. Let Mat,.; be the algebraic group of
all matrices of size a x b and write simply Mat, for Mat,.,. For m > 1 let J,,, ¢ Mat,, be the

matrix
1

i =

Let Sps,, denote the symplectic group

B 0 Jn\ ([ 0 Jy
Sme_{QEGL2m|g(_Jm 0 g= _Jm 0

and for k > 2 let SO;, denote the split special orthogonal group
SOkZ {gEGLk | thkgz Jk}

Let Hgiy1 be the Heisenberg group in 2/ + 1 variables, realized as in [F-G3] as all elements
of the form (X,Y,z) where XY € Maty,, and z € Mat;. This group may be embedded
into Spyso as in [F-G3], p. 1537. We also define Mat? = {Z € Mat, : Z'J, = J,Z} and
Mat? = {Z e Mat, : Z'J, =-J,Z}.

Let e; ; denote the square matrix, whose size will be clear by context, with (7, 7)-th entry
1 and all other entries 0. When we work with Spy;, we let e;j = €;,j * €9—j+1,21-i+1 With the
sign chosen so that 61/&3' € Spg. When we work with SOy, we let egyj = €;j — €2k—j+1,2k—i+1 1OT
all choices of (i,j).

Let F' be a global field and A denote its ring of adeles. Let @g? denote the theta rep-
resentation on the group Hopy1(A) » Spé?)(A); this representation depends on a choice of a
nontrivial additive character of F\A. See [G-R-S2], Section 1, part 6, for the definition and
the action of the Weil representation. Fix r > 1 odd and suppose that F' contains a full group
of r-th roots of unity, u,, and fix an embedding € : u,, = C*. Let G denote one of the groups
Spy or SOq, and G (A) the r-fold metaplectic covering group of G(A). We work with

functions and representations that are genuine with respect to €. Let G)g) denote the theta
representation on Spg) (A). The functions in this space are obtained as residues of Eisenstein

series on Spgl")(A). For more details, see [F-G1] Section 2, where we give basic properties of
these representations. These are similar to the properties of theta representations on covers
of the general linear group, treated in [K-P].

To each unipotent orbit of the group Spy; one may associate a set of Fourier coefficients, as

described in [G]. Unipotent groups lift canonically to a central extension ([M-W], Appendix
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I), so one may also consider Fourier coefficients of functions defined on any cover of Spy.
Given an automorphic representation © we let O(7) denote the set of unipotent orbits O
that are maximal with respect to the property that there is a function f € 7 that has a
nonzero Fourier coefficient for . The unipotent orbits are indexed by partitions of 2/ such
that every odd part has even multiplicity (see [C-M]). In this paper we are mainly interested

in the set O(64).
The structure of the set (’)(@g)) is described in [F-G3], Section 4. Let r > 1 be an odd
integer, and write 2/ = ar + 8 where 0 < § <r. Let (’)C(@(T) ) denote the unipotent orbit

(reB) if v is even

(r)
0.(0,) = {(Ta—l(r_l)(ﬁ+]_)) if o is odd.

Conjecture 1 of [F-G3] (also made in [F-G1]) states that the set (’)(@g{)) is a singleton, and
is precisely the set {Oc(@g))}. That is, all Fourier coefficients of functions in @g) which
are attached to unipotent orbits that are greater than or not comparable to Oc(@g)) are
zero, and for some function in @g) there is a nonzero coefficient attached to this orbit. We

mention that the local analogue of this conjecture has been extended to other groups and
described conceptually by Gao and Tsai [G-T].

In [F-G3|, we establish the following result concerning the unipotent orbit of @(r).

Theorem 3. (1) For all positive integers , if O € O(@(r)) then O <O (@(r))
(2) Assume that | = 0,1,2,7—=3,r —2,r - 1. Let n denote a non-negative integer, and

assume that if [ =0, then n>1. Then O(@g:l)mr)) ={0. (@gzl)w))}. In particular, if

r=3orr=>5 then (’)(@(T)) {0.(© (T))} holds for all I.

Thus the vanishing properties of Fourier coefficients implied by [F-G3], Conjecture 1, are
known, but the non-vanishing properties are known in full only for r = 3,5. We do not need
this non-vanishing in general, but only in the case 2/ = r — 1, but there to give the optimal
results we need more. In that case, [F-G3|, Conjecture 1 asserts that 6( 7 1s generic, i.e. that
there is some function in the space of @@1 that has a nonvanishing Whittaker coefficient
with respect to some Whittaker character of Sp,_;. Such characters are given by

e&(“) = w(ulﬂ toeet u’rl—l,’r‘l + 5UT1,7‘1+1)

with 7 = (r-1)/2 and 6 € F*. We conjecture this nonvanishing for every class of Whittaker
characters modulo the action of the rational split torus.

Conjecture 1 (Orbit Conjecture). For each class in F*[(F*)2, there is a representative

0 € F* and a function 0 in @7(1)1 such that the Whittaker integral of 6 with respect to the
character es is nonzero.

We remark that by a result of Gao [Gao], for any choice of additive character, or equiva-
lently for any ¢ € F'*, the local Whittaker functional for each nonarchimedean local compo-
nent of @@1 exists and is unique up to scalars. We also mention that for even degree covers
an analogous statement is not expected to hold (after all, the process of induction in the

even cover case requires the Weil factor, which depends on a choice of additive character).
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Next we describe the groups at hand in more detail, following the same notation as in
[F-G3]. All parabolic subgroups we use are standard parabolic subgroups whose unipotent
radical consists of upper triangular unipotent matrices. Let P, ;. denote the parabolic sub-
group of Spa(ap+ey Wwhose Levi part is GL, x ... x GL, x Spa. where GL, appears b times. Let
Uap,c denotes the unipotent radical of P, .

We have the following matrices and subgroups of U, .. For 1 <i<b-1, let

(2.1) ul (X)) = I3 : X; € Mat,,.

a,b,c

Here a = a(i - 1), and 8 = 2(ab + ¢) — 2a(i + 1). Here and below, we use an asterisk to
indicate that the entries are determined by the condition that the matrix is symplectic (here
the entries of X} are determined by those of X;.) We denote the subgroup consisting of all

matrices u27b7C(X,-) with X; € Mat, by Ué,b,c‘ Let
[2a(b—1)
I, Y Z
(2.2) u, (Y, Z) = Lhe Y* .Y e Mat,yg., Z € Mat?,
I,
Loagp-1)

and let U, . be the subgroup U, of matrices of this form.
Each matrix u € U, may be factored uniquely as

U= 1t o (XU
with uf , (X;) € U, ., ' € Uyp and where v’ has entry zero at each location (p,j) with
a+l<p<a+a, a+a+1l<j<a+2a We refer to ufz,b,c(Xi) as the i-th coordinate of w.
Similarly, we define the u, .(Y,Z) coordinate of u. Every u € U, . has a factorization of the
form
b-1

(2.3) w=ul (Y, Z) [ July (Xi)u
=1

where u;y € U, has zeroes in the first b a x a blocks directly above the main diagonal and in
positions Y and Z in (2.2) (and thus is also zero in the corresponding last b blocks directly
above the main diagonal and in Y*), and the matrices X;,Y and Z are uniquely determined.
Using this factorization, we define a character ¢, , . of Uypc(A) trivial on Ugp(F') by

VU, () = P(tr(Xy + -+ Xp1)).

The group Uy, ,, has the structure of a generalized Heisenberg group. We make use of a
homomorphism lugy, : Uk ry . = Hakn+1 given as follows. First, on the center of Uék,n’ which
consists of all matrices (2.2) such that Y =0, let Ly, (uy,(0,2)) = (0,0,tr'(Z)). Here, for
7 = (Z;;) € Maty, we write

t1'(Z) =Z11+ Zag+ ...+ Zyy.
9



Since UJ, . modulo its center is isomorphic to Hyxns1 modulo its center, one may extend
lagn to U2/kn by taking any isomorphism between these two quotients. We postpone a more
precise description of which extension we choose until Section 4 where it is needed (see below
(4.6)). After defining lyx,, on Uy, we extend it trivially to Uz, n-

We conclude this section with a review of root exchange, following Ginzburg, Rallis and
Soudry ([G-R-S4], Section 7.1), as this technique will be used extensively below. Suppose
that H is a symplectic or split special orthogonal group, C' is a unipotent subgroup of H
defined over F', and X,Y are additional unipotent subgroups over F’ with the properties that
each normalizes C;, X nC < X, Y nC <Y, the quotients X¢:= X/X nC and Yo :=Y /Y nC
are abelian, and [X,Y] ¢ C. Suppose that ¢¢ is a nontrivial additive character of C'(A)
trivial on C'(F') such that X (A) and Y (A) preserve )¢ when acting via conjugation, 1¢ is
trivial on (X nC)(A) and (Y nC)(A), and such that the pairing X (A) x Yo (A) - C* given
by (z,y) = ¥c([z,y]) is multiplicative in each coordinate, non-degenerate, and identifies
Xc(F) (resp. Yo(F)) with the dual of Y (F)\Yo(A) (resp. X (F)\X¢(A)). Let B=CY and
D = CX and extend the character ¢¢ to characters 5 on B(A) (resp. ¥p on D(A)), so
Yp is trivial on Y (A) and ¢p is trivial on X (A). Let A=CXY. Let H((A) be an r-fold
cover as above. All unipotent groups split canonically over H(")(A) and we use the same
notations for their embedded images in H(")(A). Then Ginzburg, Rallis and Soudry show

Proposition 5 (Root Exchange). Let f be a smooth automorphic form on H)(A) that is
of uniform moderate growth.

(1) The following two integrals are equal:
Sy JY @Y= [ [ ) vo(u) dudy,
Yo (a) J[D]

(The convergence of the right hand side is discussed in [G-R-S4], Lemma 7.1.)
(2) The integral f[B] f(va)vp(v)dv vanishes for all a € A(A) if and only if the integral

Jipy f(ua) ¥p(u) du vanishes for all a € A(A).

3. THE GENERALIZED THETA LIFTING

In this section we review the basic integral construction introduced in [F-G3], Section 1.
We require two embeddings. First, as in the classic theta lift, let ¢1 : SOqp x Spa, = SPank
be the tensor product embedding. Second, for given r, let 15 : SOqi x Spap = SPansor(r-1) be
the embedding

(3.1) 1o(h, g) = diag(h, ... h,g,h*, ..., 1)

where each of the matrices h, h* is repeated r; times and h* is chosen so that the matrix is
in the symplectic group. We recall that r; = (r - 1)/2.

These maps may be extended to covering groups, but this requires some care. As ex-
plained in [F-G3], Section 2, by properly choosing cocycles that realize the covering groups,
composing with the projections from SO(T)(A) to SO9,(A) and from Sp(r)(A) to Span(A),
and using the splitting of Kudla [Kul] and Sweet [Sw], the map ¢; may be extended to a map
R SOéZ)(A) x Sp(T)(A) - S ﬁ)k(A) (we use the same notation for this extension). Also, the

map 1, may be extended to a map 1 : SOS)(A) x Spi) (A) — é;)ﬂk(r 1 (A).
10



(r) (2)¥
Let 0y, 4on¢-1) 2n+2k:('r 1y and 055" be a
vector in the space of the representation @ik)n with additive character 1. Let h € SO(T)(A)

and g€ S p(r)(A). Consider the Fourier coefficient

(3.2) [0 Qatnw)es (e )08y (2 (s )y, () it

[U2k,r1,n]

be a vector in the space of the representation ol

The idea is then to use this Fourier coefficient as an integral kernel.
Let 7(") denote a genuine irreducible cuspidal automorphic representation of Sp(r)(A)
and let p(") be a vector in the space of 7("). Let 07(17,1 denote the representation of SO (A)

generated by all functions f(h) given by the integrals
(3.3)

f e ()05 (Lugon ()1 (1, 9))‘92n+2k(r 1y (uz(h, 9))us,, (1) dudg

Sp2n (F)\SpS,) (4) [U2,ry n]

as (M) 9(2) ¥ and 6;;1%& 1) vary over their representation spaces. (A choice of these func-
tions is a “choice of data” below.) This defines a mapping from the set of irreducible cuspidal
genuine automorphic representations of Sp(T)(A) to the set of genuine representations of the
quotient SOq(F )\SO(T)( A). This is the map that we shall study in the sequel. We remark
that as a function of g = (g1,() € Sp(r)(A), with g; € Spa,(A), C € p,-, the integrand in (3.3)
is independent of (, so the integrand can also be pushed down to a function on the group
Span(A) and the integration taken over the adelic quotient [Spo,] of this group.
4. THE WHITTAKER COEFFICIENTS OF THE REPRESENTATION O'(T)
In this Section we compute the Whittaker coefficients of the representation J( ) Let Vo
denote the maximal unipotent subgroup of SOs. Let 6 € F*. For v = (v;;) € V%(A) define

(4.1) Yy 5(V) = (V12 +Vag + .o+ OUp_1 g + U1 k1) -

Then 1y, s is a Whittaker character of Vo (A) that is trivial on Va,(F"). Up to conjugation
by the rational split torus all generic characters of [Va] are of this form, and in view of this
action it suffices to consider § € F*/(F*)2. Our goal in this section is to study the integrals

(4.2) Wis(f) = f f(vh)Yy,, s(v) dv
[Var]

L : ()
for f(h) a function in the space of the representation pe

We start by fixing some notations. Given u € Uy, p, let

ri—1

(43) U= u;k,n(}/? Z) H uék,m,n(Xi)ul
=1

be its factorization as in equation (2.3). Write Y € Matogxo, as Y = where Y7,Y5 €

Yi
Y,
Matyyo,. Let Ug,” n denote the subgroup of Uy, , consisting of all matrices of the form

(4.3) such that Y5 = 0.
11



For every 0 < j <min(k-2,7r, - 1) we define a unipotent subgroup U; of Spa(nik(r-1)-jr) 88
follows. Let Py, r.n denote the standard parabolic subgroup of Spa(nik(r-1)-jr) Whose Levi
part is G’Lék_%_1 x GL;Z:éj x Spa,. Let U;,;jm ,, denote the standard unipotent radical of

ngkm,n. Similarly to (4.3), an element wu € U;,;{mn has a factorization
. ri-1
(44) u= uék_2j7n(y7 Z)uij,bj,cj,dj (X]) 111 u;i,bi,ci,di(Xi)ul
1=

i#]

with Y € Mat(Qk_Qj)xgm 7€ Matgk_Qj, Xj € Mat(gk_gj_l)x(gk_gj), Xl € Matgk_Qj_l if 1 <1< j - 1,
and X; € Maty,_o; if j +1 <4 <7 —1. Here for each i, 1 <i <7y -1, we denote

(4.5) ufz,b,c,d(Xi) = Iy

and the indices a;, b;, ¢;, d; are given as follows. If 1 <i<j—1, then a; = (2k-2j-1)(i - 1),
bi=c=2k-2j-1;if i =j then a; = (2k-2j - 1)(j - 1), b; = 2k - 2j — 1, ¢; = 2k — 25;
and if j+1 <4 <r;—1, then a; = (2k-25)(i—=1) -7, b; = ¢; = 2k = 2j. In all cases
di =2(n+k(r-1)—-jr) =2(a; + b; + ¢;). For Y € Mato_j)xon write Y = (?) where Y7,Y5 €
2
Mat (;—j)x2n- We define the group U; to be the subgroup of U;,;{rm consisting of all matrices
of the form (4.4) such that Y, = 0. Note that Uy = Uj) , .
Let 1y, denote the character of U;(A) defined as follows. Write u € U; as in equation
(4.4). Then

i=1
1#]

(4.6) Y, (u) = ¢(tro(Xj) (Z)+ Y tr(XZ-)).

Here if X;[a,b] denotes the (a,b) entry of X;, then
tI‘o(Xj) = Xj[l, 1] +Xj[2,2] + ... +X][2k} - 2] - ]_,2]{? - 2] - ].]

(we remind the reader that X is not a square matrix). The character 1y, is trivial on U;(F).

We start the computation of (4.2) by first unfolding the theta series Hii;’w. Choosing
Lign (uty, (Y, Z)) = (Y2, Y1,t1'(Z)), we deduce that the embedding ¢1 of (v, g) € Vay, x Spay, in
Spakn preserves this choice of polarization. Indeed, the group ¢1(Var x Spay,) is contained in
the maximal parabolic subgroup of Spsr, whose Levi part is G Lok,. Thus,

0 (L (e (Vo 2N (0,9)) = Y wp(lagn (e (Y2 Z))ea (v, 9))6(€)

¢eMat oy, (F)
=2 wpllan (U, (€ +Y, 2))u(v,9))6(0).
¢eMatjyon (F)

12



Here ¢’ = (2) Plugging this into integral (4.2), collapsing the summation over ¢ with the

corresponding integration over Usy ., n(F)\Uskry n(A), integral (4.2) is equal to

/ P(9) wp (lagn (u) (01 (v, 9)larn (i, (Y, 0)))$(0)

Matgxon (A) [Sp2n] [Var] [Ug,“l,n]

087 oy (20, )y (Y7, 0)) g, () s 5(v) dvdudg dY”.
0
Y, |

From the action of the Weil representation (see, for example, [G-R-S2]| Section 1, part
6), we have the identity wy (lagn(u)e1(v,g9))¢(0) = ¢(0). Since ¢ is an arbitrary Schwartz
function, we deduce that the integral (4.2) is zero for all choices of data if and only if the
integral

wn [ [ S (v )ty ()b a(v) dudodg

[Sp2n] [Var] [UQOk,rl,n]

Here, we write Y’ =

is zero for all choices of data.
For every 0 < j <min(k - 2,7 — 1), define the integral

@8) LG = [ [ [ O hrry (s (0,9)) Y, () v 5(0) duvdy.
[Sp2n] [Var-2;] [Uj]

Here for v = (“0 119) € Var—9;(A), g € Span(A), the matrix ¢3;(v,g) € SPo(nsk(r-1)-jr)(A) is
given by

(4.9) tsj(v,g) = diag(vo, ..., v0,v...,0,9,0", ..., 0", 05,...,05),

where on the right the matrix v appears r; — 7 times and the matrix vy appears j times.
Notice that since v is an upper unipotent matrix, so is vy; however, vy is not an orthogonal
matrix. Also, ¢30(v,g) is exactly the embedding introduced in (3.1): t30(v,g) = t2(v,g). In
(4.8), we first extend 3 ;(-,-) to covering groups in the usual way. That is, we observe that
Vaoj-2;(A) is unipotent, so canonically embeds in its cover by means of the trivial section,

and if g = (g1,() € Spg;l)(A), g1 € Span(A), ¢ € py, then we set t3;(v,9) = (13;(v,91),¢) €
Spgzsz(T_l)_jr)(A). Then as a function of g = (¢1,() € Spgl (A), the integrand in (4.8) is
independent of ( € p,., so the integrand descends to the group Spy,(A) (and is then integrated
over this group). Also, L(0) is equal to the integral (4.7).

We introduce additional notation. For any index a and composition (nq,...,n;) of a, let
Uy, .. n, be the unipotent radical of the standard parabolic subgroup of GL, with Levi part
GL,, x---xGL,,. Also we write L, for the full subgroup of upper triangular unipotent

matrices of GL, (so L, =U 1, but we use the less adorned notation).

Lemma 1. For each j with 0 < j <min(k -2, - 1), the integral L(j) is zero for all choices
of data if and only if integral L(j + 1) is zero for all choices of data.

Proof. The first step is to perform a certain root exchange. Fix j. We start by defining

unipotent groups M; and Q)1 of Spacnk(r-1)-jr). These will be the first groups on which we
13



carry out the root exchange process. We define M; to be the image of U o5-2j-3,1 inside
SPa(n+k(r-1)-jr) under the embedding u; — diag(uy,/,u}) where I is the identity matrix of
size 2(n+ (k—7)(r=3)—(j-1)). The group @ is defined to be the group of all matrices of
the form

0
(4.10) “(1),2k—2j—1,2k—2j—1,d1(X1)§ Xi=[d Oarzj-s , d' [ € Maty(2k-2j-3), € € Mat,
e f 0

where dy =2(n+k(r—1)-4(2k-2j - 1) — jr) and 0, denotes the zero square matrix of size
a. Notice that (), is a subgroup of U;.

We now carry out root exchange between the groups M; and ();. In the notation of
Proposition 5, we let B = U;, D denote the semi-direct product of M; and @;\U;, and
Y = @1. We conclude that integral (4.8) is equal to

I

Qu(A)  [Mi]  Qu(A)U;(F)N\U;(A)

0500 1oty (WL (0, 9)q1 )0 (W) vy, 5(v) dudmy dv dg dg,.

Here, the domains of integration of the variables v and ¢ are the same as for integral L(j) in
(4.8) above. Applying Proposition 5, we deduce that the integral L(j) is zero for all choices
of data if and only if the integral

J [

[Mi]  Qu(A)U;(F)\U;(A)
O ket ey (WML, (0, 9))0, (W) tbvsy L, 5(v) dudmi do dg

is zero for all choices of data.

For 2 <i <r; we define the subgroups M; of Spy(nik(r-1)-jr) as follows (these also depend
on j but we suppress this dependence). First, for 2 < i < j, the group M; is the image of
Uy 2k-2j-3,1 10 SPa(nak(r-1)-jr) under the embedding

w; —~ diag(la, wi, I, u;, 1), a=2k-2j-1)(i-1)

with 8 chosen so that the embedding is into Spa(n+k(r—1)-jr)- The group Mj,; is the image
of Uy 1,2k-2j-3,1 N SPa(n+k(r-1)-jr) Under the map

(4.11) uj1 — diag(la, Ui, I, ulyy, La), a=(2k-2j-1)7.
For 7 in the range j +2 <4 <7y -1, M; is the image of U ox—2j-21 under the map
w; > diag(Ly, ui, Ig,u), 1), a=2k-25)(i-1)-j.
Finally, the group M, is the image of the group U 2x-2;-1 under the embedding
Uy, = diag(Lo, vy, Ig, 0y, 1) a=2k-25)(r1-1)-7.

In each embedding above, 3 is chosen such that the resulting matrix is in Spogn+k(r-1)-jr)-
Next, for 2 <i <r; and j fixed, we define groups @);. For 2 <7<y, Q); is the group of all
matrices of the form w , . (X;) (see (4.5)), where X; is specified as follows. If 2 <i < j
14



then X runs over all matrices of the form X; that appear in equation (4.10). For i =j,j+1,
X, consists of matrices of the following forms:

0
0 d Ops;
Xj=la 023 ;o Xj1 = . %}2]_3
b c 0 0

g h s 0

where a',d', c, f, h € Maty,(o5—2j-3) and b, e, g,s € Mat;. For j+1<i <y,

0
Xi =la OQk_Qj_g CLt, C € Matlx(gk_2j_2), be Matl.
b c 0

Finally, we define the group @, to be all the matrices uy, ,;,(0,Z) (see (4.4)) where Z is
of the form

0
Z=]a 02]{,2]',2 a € Matlx(gk_gj_g), be Matl.
b a* 0

Let My be the group My = [1; M;. Perform a root exchange similar to the one above.
Using Proposition 5, we deduce that the integral L(j) is zero for all choices of data if and
only if the integral

/ [ e
[

Mol Qry(A)..Q2(A)Q1(A)U; (F)\U;(A)

050 oty (Ut (0, 9)) 00, (W) v,y 6 (v) dudimg dv dg
is zero for all choices of data. Here, the domains of integration of the variables v and g are
the same as for integral L(j) above.

Let ‘/;k—Qj be the unipotent radical of the standard parabolic of SOy;_o; with Levi part
GL; x SOgp_9j_2, and let z/Jvsz_Qj be the Whittaker character restricted to this subgroup:
¢V2,k—2j (’U’) = ¢(U1’2). Let L3 : SOQk_Qj_Q - SOQk_Qj be the embedding L3(U) = diag(l,v, ].)
Then every matrix v in Vo has a unique factorization v = v’13(v") with v’ € V3y_o; and
V" € Vop_gj_2. Since j < min{k-2,r; -1}, we have 2k—2j > 4. Hence we have the factorization
¢V2k—2j16(v) = wvg’k,gj(U,)¢V2k—2j—275(v")'

Define the group M = MoVy; ;. After changing variables, we obtain that L(j) is zero for
all choices of data if and only if the integral

(4.12) f [ f f ¢ (g)

ng,gjfg] [M] er (A)WQQ(A)QI (A)Uj (F)\UJ (A)
5 toty-amy (U1 50, )0, () (0 () dusdim o dg

is zero for all choices of data. Here if m e M;(A) ¢ M (A) is the image of u;,; under the map
(4.11) then ¥p(m) = Y (uji1[2k - 25 - 1,2k -25]), and the character 1) is extended trivially
from M;(A) to M(A).

15



The next step is to define certain monomial matrices wy € Spa(n+k(r-1)-j») Whose non-zero
entries are +1. These matrices are of the form

' wn Wa
(4.13) w) = I, , w; € Maty(,_1)-jr for 1 <i < 4.
Ws Wy

Since these matrices are symplectic, it is enough to specify the non-zero entries in the matrix
(w1 wg). Let aw=2n+ k(r — 1) — jr. The nonzero entries of the first r rows of this matrix
are as follows. The matrix has entry 1 at position (¢,(i —1)(2k-2j-1)+1) for 1 <i <
J; at position (i,(2k —2j - 1)j+ (2k-2j)(i—-j—-1)+1) for j+1 < i < ry; at position
(ri+i,a+(1-1)(2k-25)+1) for 1 <i <7y —j; at position (r—j,a+ (r;1—j-1)(2k-2j5) +2);
and at position (r—j+i,a+(r1-7)(2k-27)+(1-1)(2k-2j-1)+1) for 1 <i < j. The next
k(r—1)—=(j+1)r rows of the matrix (w; ws) are zero in positions in w,. As for the matrix
wy, let w? denote the matrix obtained from w; by omitting the first r rows. Then

w? 0
wy = ( 0 wg,] Wl eMatGaysGenee,  wWae € Matiy (e Ge);

with 8 =2k —2j -3 and 7 = 2k - 2j — 2. The matrix w? , is given by

0 I 0 0 05 ...
005 00 Ig 0 0 0 ...

(4.14) w) =0 05 000, 0 0 Iy 0 ... ,
005 000 0 005 0 ... 0 Ig0

where this block matrix has j + 1 rows each of height 3, the unadorned 0 is the zero matrix
in Matgy;, and the identity matrix /g appears in the i-th row of the block matrix above in
the (3i - 1)-th column, 1< < j+ 1. The matrix wj, is given by

00 L 000, ..
000, 002Z 0 00, .

wl,=|0 00, 000, 0 0L 0
000,000 000, 0 ... 0TI 0

This block matrix has r; —j — 1 rows each of height v, each unadorned 0 is the zero matrix in
Mat, 1, and for 1 <4 <7y —j -1, the identity matrix I, appears in the i-th row in the 3i-th
column. .

We remark that though w} is defined here for j in the range 1 < j < (r - 3)/2, the same

description makes sense for j = (r — 3)/2. We will make use of wér_g)/ ? in Section 6 below.

Since the function ')

S(n+k(r—1)—jr) is invariant under LSYQDQ(M,C(T&)7].71)(F)7 we have

O3y (135 (0,9)) = 080 1y (wumts s (v,9) () ).
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After conjugation, we deduce that the integral (4.12) is zero for all choices of data if and
only if the integral

A B C\/[I.
(4.15) / W(r)(g)eéz;Jrk(r_l)_jr) I, B*||D L ut3 j11(v, 9)
A*J\E D* I,

(A, (W) vy, 05 (0)Y (D) d(..)

is zero for all choices of data. Here a = 2(n+k(r—1)—(j+1)r), and the domains of integration
and characters in this integral are given as follows.

First, the variables v and g are integrated as in (4.12). The variable u is integrated over
[Ujs1]. The embedding of these groups in Spa(n+k(r-1)-jr) is given by

U/L3,j+1 (U7 g) - diag([T7 U’[’3,j(v7 g)7 IT‘)

This means that we can view these groups as subgroups of Spy(n+i(r-1)-(j+1)r) embedded in
SPo(n+k(r-1)-jry Dy the map h — diag([,,h, ;) (we do not introduce notation). Also, let L,
denote the upper triangular maximal unipotent subgroup of GL,. Then the variable A is
integrated over [L,]. The character J is the Whittaker character of the group L,., given for
A=(Aij) €L, by ¥(A) = (Ao + Aoz +-+ Ay ).

To give the domain of integration of the variable C', for a positive integer b, let T}, denote the
group of all upper triangular matrices in Mat,. Let Tj denote the subgroup of 7}, consisting
of all upper triangular matrices with zero entries on the diagonal. Let T, ,30 =TponN Matg. Let

C(r) denote the subgroup of Mat? consisting of all matrices

¢ Gy G
C= Cy C; s C € CTj, Cs e Matjx(r_gj), 03 € Mat?, Cye T£_2j70.
Cr
The variable C in integral (4.15) is integrated over [C(r)].
To give the integration domain of the variable F, let T;, oo be the group consisting of all
matrices in 7; o such that the all entries of the diagonal immediately above the main diagonal
are zero. Let E(r) be the group of all matrices in Mat® of the form

Ey Ey, Ej
E = E, E:l, Ey € Tji100, B2 € Mat(ji1yx(r—2j-2), B3 € Mat),1, By € TC 5 5.
EY

Then F is integrated over [ E(r)].

Let B(r,a) denote the subgroup of Mat,, consisting of all matrices B = (B, g) such that
B, = 0 for the following pairs of integers (a, ). First, if 1 < o < j+2, then 1 < <
(a-1)(2k-25-3). When j+3<a<(r-1)/2wehave 1< < (a-1)(2k-27-2)-(j+1).
When a = (r+1)/2 we have 1< f<n+a/2. For 1+ (r+1)/2<a<r-j-2wehave 1 <<
(2a-r-1)(k-j-1)+n+a/2. When a = r—j—1,7—j we have 1 < g < (r-2a-3)(k—j—-1)+n+a/2,
and finally, for r—j+1<a<rwehave 1 <8< (r-3-2j)(k—-j-1)+(a+j-r)(2k-2j-3).
Then, the variable B in integral (4.15) is integrated over [B(r,a)].

Finally, to define the integration domain of the variable D, let D(a,r) denote the subgroup
of Mat,, defined as follows. Given B € B(r,a), let B’ denote the matrix obtained from B

by omitting the last row. Then a matrix D € Mat,, is in D(a,r) if all entries of its first
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column are zeros, and for all B € B(r,a) we have D’B’ = 0. Then D in integral (4.15) is
integrated over [D(a,r)]. (In (4.15) there is also a character on the group D(a,r); however,
since it will not be needed below, we will not specify it.)

The situation here is very similar to the integral studied in [G-R-S3] Lemma 2.4, equation
(2.4). As in that reference we now perform a root exchange in integral (4.15), exchanging
the non-trivial columns in the matrices D and E with corresponding rows in the matrices B
and C'. We give some details.

Let I be the identity matrix of size 2(n + k(r — 1) — jr), and consider the two unipotent

2k-2j-3

/ / 3k-2j-3; , , .
groups {I+¥55 ™" mie] ;5 +Mok-2j-2€4 1 3} and {T+T50 7 L€+ lok2j-2€5 4,1 - Notice

that the first group is a subgroup of the group of matrices of the form

I
D 1,
E D* I,
Then the conditions of Proposition 5 are satisfied. We perform a root exchange between
these two groups. Proceeding in this way, and using the vanishing of the Fourier coefficients

: DeD(a,r),EeE(r).

of the representation @ga (1)) given in Theorem 3, part 1, we deduce that the integral
(4.15) is equal to

A B C I,
(4.16) f DO o1y I, B*|uws;n(v,9)|D 1,
A E D* I,

¢(A)¢Uj+1 (u)¢V2k—2j—275(v)¢,(D) d()

where now the variable D is integrated over D(a,r)(A), and E is integrated over E(r)(A).
Also, the variable B is now integrated over [Mat,.,], and C is integrated over [Mat?]. All
other variables in (4.16) are integrated as in integral (4.15). We remark that the conjugation
of uts j+1(v, g) across the matrix involving D and E is possible since the corresponding groups
normalize the group generated by the symplectic matrices involving these two variables.

Applying Proposition 5, we deduce that integral (4.15) is zero for all choices of data if and
only if the integral

A B C
(4.17) [ (DO -1y L B uts 1 (v, 9) | DA, (W) vy, s(v) d(...)

is zero for all choices of data. Here B is integrated over [Mat,,], and C' is integrated over
[Mat"]. Notice that the group generated by all matrices

I. B C
I, B[, B € Mat,,, C' € Mat?
I,

is the unipotent radical of the maximal parabolic subgroup of Spa(n+x(r-1)-j) Whose Levi part
is GL, x Sp,. Hence, we can apply Proposition 1 in [F-G1]. Since the theta representation

of the group GL,(«T)(A) is generic, it follows that integral (4.17) is zero for all choices of data
if and only if the integral

(418) f SD(T) (g)eézzl+k(r—l)—(j+l)r) (UL3,J'+1(U7 g))ij+1 (u)wv2k—2j—2,5(v) du dv dg
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is zero for all choices of data. Here all variables are integrated as in integral (4.17). Since
integral (4.18) is equal to L(j + 1) the Lemma follows. O

As mentioned before Lemma 1, the integral L(0) is equal to (4.7), which is zero for
all choices of data if and only if the integral (4.2) is zero for all choices of data. Thus
it follows from Lemma 1 that (4.2) is zero for all choices of data if and only if the integral
L(min(k-2,7m-1)) is zero for all choices of data. We analyze the two cases for this minimum
separately.

5. THE CASE k< (r+1)/2

Before stating the result we will prove in this Section, we fix some notation. Recall that the
unipotent groups UQII;],rl,n were defined for 0 < j < min(k - 2,7 — 1) = k — 2 above (following
(4.3)). For the computations we will carry out now, we need to extend the definition to
7 =k -1 and introduce a suitable character of this group.

If k< (r+1)/2, then we define U;kkr 1n to be the unipotent radical of the standard parabolic

subgroup of Spa(n+r—k) Whose Levi part is GLE™! x C?Lgl_k+1 x Spa,. (Note that 1 —k+1>0.)
This unipotent group has the same factorization as in (4.4), and once again we define Uy_;
to be the subgroup of UQkkr . consisting of all matrices of the form (4.4) such that Y = 0.
For u € Uy_1, the factorization (4.4) is given by

ri—1

(5.1) u= U’2n(YZ)uk 2,121 (K- 1)1_[“1 1114, (X5) H uzl k- 122d(Xi)“1

with Y = (YO1 ), Y, € Mat,,. Here each d; is defined so that the matrix is in Spy(n+r—r). The

matrix X _; has size 1 x 2, and we write X;_; = (xl xg). Define a character of the group
U1 as follows. Given u € Uy_; with the factorization (5.1), set

(5.2) Yy, 5(u) = @/J(é’lxl +xo +t1'(2) + 7"12—:1 tr(Xi)).

o
Here ¢ (tr'(Z)) is defined as in (4.6), and ¢ € F™* (see (4.2)).

When k = (r+1)/2, we define U;kk; 1n to be the unipotent radical of the standard parabolic

subgroup of Spy(n+k-1) whose Levi part is GLY! x Spy,. The corresponding factorization is
now

(53) Y Z) H U,l 1, n(Xz)ul
where X; and Z are scalars. The subgroup ngkr 1n consists of all matrices u as in (5.3) such
that Y = 0; this is also Uy_;. We define the character Yok-1 ) by
2k,rq,mn,
(54) Uok 1 (U) 1/1(5 1Z) (X1+X2+"'+Xk_2).
2k,r1,m,

In this section we prove the following Lemma.
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Lemma 2. Suppose that k < (r+1)/2. Then the integral (4.2) is zero for all choices of data
if and only if the integral

(5.5) [ Wy s (L) (w)dudg
[Sp2n] [Ug,;'f;;m]

1s zero for all choices of data.

Proof. Since k < (r+1)/2, we have k-2 <7y — 1. Thus it follows from Lemma 1 that the
integral (4.2) is zero for all choices of data if and only if the integral L(k —2) is zero for all
choices of data. Substituting j = k — 2, we may write L(k —2) as

66 [ [ [ FO@O 0y (ara(0, ) Yy (0) v 5(v) dudvdy.

[Sp2n] [Va] [Ug,;’f;in]

The proof is now similar to the proof of Lemma 1. First, for 1 < ¢ < ry define the groups M;
and @); as in the proof of Lemma 1, with j = £ —-2. As in that Lemma define M = V] ]; M;.
Thus M consists of all matrices

(57) diag(ml,mg, ey M2, M1, . .. ,mrl,lzn,m:l, .. )

where the matrix m; (for 1 <7 <) is of the form

1 a b
m; = I, c a,c' € Matix(q-2); b€ Mati
1

with =3 for 1 <i<k-2, a=4for k-1<17<r;. Performing similar root exchanges, we
deduce that the integral (5.6) is zero for all choices of data if and only if the integral

(5.8) _[ /N v (9)
[

SPQn] [M] er (A)Ql(A)Ug]’j;in(F)\UO,k—Q (A)

2k,r1,n
05 iy (umts i 2(1, 9) Wyge=2 (W)are(m)dudmdg

is zero for all choices of data. The character 1)/ is non-trivial only on the variable my_; in
(5.7), and if

1 a b

L ¢ GLi(A)

ME-1 = 1

— 0 QU O

then ars(m) = ars(my-1) = (d + de).

The next step is to define a Weyl element wf=2 as in (4.13). In this case the w; are matrices
in Mats,_1, and it is enough to specify the matrix (w1 wg). We first describe the first r rows
of this matrix. This matrix has the value 1 at the locations (i,3(i —1)+1) for 1 <i<k-2;
(i,4i-k-1) for k—=1<i<ry; (i,2n-k+4i-1) form+1<i<r—k+1; (r-k+2,2n+4r-5k+5);
and at (i,2n+r-2k+3i—1) for r—k+3 <i <r. All other entries in these rows are 0. For the
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next r — k rows of the matrix (w1 wg) the entries in wy are all 0. As for wy, let w{ denote
the matrix obtained from w; by omitting the first » rows. Then we choose

0
w 0
w? = ( 671 wgz) , wi | € Mab(e_1yxa(e-1)s W99 € Mab(_oks1)x(2r—ak+3)-

For 1 <i< k-1, the matrix w{, has the value 1 at the (i,3i) locations and 0 otherwise. If
k < (r+1)/2, the matrix w3, is given by

00L 000 ..
000O0O0IL 000

wd=]00 0 000 0 0 I 0
000000 000 0 ... 0L 0

This block matrix has vy — k + 1 rows, and the identity matrix I, at the ¢-th row is in the

3i-th column. Each zero represents the zero matrix in Matgy; or Mataxs. When k = (r+1)/2,

then wf = (w(i1 0) where the zero represents the zero matrix in Mat(j_1)x1.

()
92(n+27“—k)

element w§2. In a similar way to arriving at (4.15), we deduce that the integral (5.8) is zero
for all choices of data if and only if the integral

We use the left invariance property of the function to conjugate by the Weyl

A B C\[I
69 [ GO || T B L fwsiso)
A*J\E D~* I,

(Ao (s (B (D) d(...)

is zero for all choices of data. Here a = 2(n +r - k). The variable ¢ is integrated as in (5.8),

and the variable u is integrated over [Ug,;kr_lln]. The character 1,0.-1 is defined by
»a 2k,r1,n,0

(e + t07(2) + 27 (X)) i k< (r+1))2

wUO”“* (u) = ithe1
2k,rq1,n,0 ¢(X1+X2+"'+Xk—2) 1f]€= (T+1)/2

Here the notation is as in (5.2) and (5.4). The variable A and the character ¥/(A) are as in
(4.15), and the variables B,C, D and FE are defined in a similar way to integral (4.15). If
B = (Ba,ﬁ) € Matrxa(A) then ’1/1175(3) = w((SBrfk+l,2n+2T73k+2)- IftD= (Da,ﬁ) € Mataxr(A) then
Y'(D) = Y(Dapsor—sk+1r—k+2) When k < (r+1)/2 and ¢'(D) = Y(Dy-1 y-k+2) when k = (r+1)/2.

At this point the argument deviates from the prior case, more precisely in handling column
r—k+2 of D, as the character ¢ 5(B) is not trivial on row 7 —k + 1 of B. We proceed as
follows. Define the matrix x1(0) = Io(psor—k) + 5‘1e§n+3r73k+2&k+2 in Spa(nsar—k) (F). By auto-

morphicity, we have 63, (h) =65, (21(5)h) for all he Sp) . (A). Conjugating
21



the matrix x1(d) to the right and changing variables, integral (5.9) is equal to

A B C\/[I
510) [ o@D || T B[P L a9 )
A*J\E D* I,

H( Ay (D)),

Notice that here the character ¢, s(B) has been omitted (it has been cancelled out), and
also ¥ or1  has been replaced by 9,0.1 . Both of these changes are the result of the

2k,r1,n,0 2k,rq,n,0
change of variables required to move the matrix x1(6) to the right.
We may now perform root exchanges similar to those carried out in analyzing (4.15). As
in that case, we proceed by the columns of the matrices D and E starting from the first
non-zero column and then in increasing order. Using the smallness of the representation

(r) i.e. Theorem 3, part 1, we deduce that the integral (5.10) is zero for all choices

2(n+2r-k)’
of data if and only if the integral
A B C _
/ ()05 001 I, ﬁ* uts o (1,9) | (AN (u)d(..)
is zero for all choices of data. Here, B is integrated over the quotient [Mat,,], and C is
integrated over [Mat?]. Now arguing as above (after (4.17)), the Lemma follows. O

Now we present a criterion for the vanishing of all Whittaker coefficients Wj, s(f). This
criterion depends on the Descent Conjecture, which was described briefly in the Introduction.
To avoid disrupting the continuity of the proofs, we do not give additional details about it
now, but defer its formulation and discussion to Section 7, Conjecture 2 below. For the
criterion, we require the unipotent group Ui, —g+1,» and its character ¢y, ., ., defined
in Section 2. Also, we now write /,, for the projection from the group U ,,_g+1,, onto the
Heisenberg group Hs,41. The criterion is this.

Proposition 6. Suppose that the Descent Conjecture holds. Suppose that k < (r +1)/2.
Then the Whittaker coefficients Wy s(f) are zero for all choices of data f if and only if the
integral

Gy [ [ e (La(w)

[szn] [Ul,rl—k'+1,n]

r+1
3 -k

I
2r) 0
6§n+)r1—b2k+1 u g wUl,Trkﬂ,n (u) dudyg

I

r+l1
5k
15 zero for all choices of data.

Equivalently, the Whittaker coefficient (4.2) is not zero for some choice of data if and only
if the integral (1.4) that appears in Proposition 4 is not zero for some choice of data.

Proof. By Lemma 2, it suffices to prove that the integral (5.5) is zero for all choices of data

if and only if the integral (5.11) is zero for all choices of data.
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Suppose first that k < (r+1)/2. Let a = 2(n+r —k) and let x(0) denote the unipotent

element z(J) = I, — Z:i{k 07 oi kiois1 € SDo(nsr—k)(F). By automorphicity, the function
9(7")

2(n+r-k)
changing variables in Ug,;lf;l%n, it follows that (5.5) is zero for all choices of data if and only
if the integral

(h) is left-invariant under this element. Moving this matrix from left to right and

(5.12) / f 90(’")(9)9;(2“%;@)(“L&k—l(l’g))@%ggtl J(U)dudg
[Sp2n] [Ugléljgll,n] 1T,

is zero for all choices of data. Here the character ¢’ ,,, is defined, using the factorization

2k,r1,n,0
(5.1), by

ri—1

7,0;]0,,6,1 (u) = 7,0(372 +t15(2) + Z tr(XZ-))
2k,r1,n,0 =1
1#+k—1

21

where for Z = ?) e Mat), we define tr5(Z) = 2, + 6 1zs.
1

<3
Let w € Spo(ner_iy be given by w = diag(li_1,wr, Ion, wy, Ix-1) where wy € Mat,_op1 (F) is

1,2
a 1 at the positions (7,2i) and w;  has a 1 at the positions (i,2i-1) for each i, 1 <i <7 —-k+1,
and all other entries of the matrix w; are 0.

Conjugating in (5.12) by w, we deduce that this integral is zero for all choices of data if
and only if the integral

given as follows. Write w; = (Zl’l where w ; € Mat(ﬁ,kﬂ)x(r,gkﬂ)(F). The matrix w; ; has

A B C\(L, I, Iy
(5.13) f EOIP AN, L, B°||D 1 “ g
A D 1, I, I

VA, i (W (BYYs(C) d(...)

is zero for all choices of data. Here a = 2n +r — 2k + 1. The domain of integration and
characters here are described as follows. The variable u is integrated over [Uy,,_k+1.n], and
g is integrated over [Spa,]. The variable A is integrated over [L,, |, where we recall that L,
is the maximal upper unipotent subgroup of GL,,. The character J(A) is the Whittaker
character, defined following (4.15). Let B(ry,a) denote the subgroup of Mat,, », of matrices
B = (B,p) such that B,g=0forall k-1<a<r-land 1<f<a-k+2, and for a =1m
and 1< 3<2n+r; —k+1. Then the variable B is integrated over [B(r1,a)]. The character
Y'(B) is given by ¢'(B) = ¥(By, 2n+r-k+2). The variable C' is integrated over [Matgl], and
the character 95 is given by 15(C) = ¢(671C,, 1). Finally, let D(a,r;) denote the subgroup
0 D
0 O
D) g=0forall1<a<r —k+1and f<a. Then D is integrated over [D(a,r)].
23
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Next, we perform a root exchange that is similar to the one performed before (4.16). This
implies that the integral (5.13) is zero for all choices of data if and only if the integral

A B C\(I, Iy
(5.14) f D0 I, B* u p
A I, Iy

VAo, (WY (BYYs(C) d(...)

is zero for all choices of data. Here the variable B is integrated over [B(ry,a)] where B(r1,a)
is the subgroup of Mat,,, consisting of all matrices B = (B, ) such that B,, 3 = 0 for all
1<p<2n+r —k+1. All other variables are integrated as in (5.13).

Write B(ry,a) = By(r1,a) By(r1,a) where By (r1,a) consists of all matrices in B(ry,a) with
bottom row zero, and By (r1,a) consists of all matrices (Bag) € B(r1,a) such that B, =0
for all & with 1 < <ry -1, and for « = r; and all § with 1 < 5 <2n+7r; —k+ 1. Recall
that the group Uy, n-k+r,+1 Was defined in Section 2 and each element u € Uy, y—g+r,+1 has
a factorization (2.3). Let Uﬂrl,n—k 41 denote the subgroup of Ui sy nksry+1 consisting of u

such that in the factorization (2.3), Y = 0. It is not hard to check that this is the subgroup
of Spa(n+r-ky consisting of all matrices

A B C N
I, B*|, AeL,, BeDB(r,a), CeMat).
A*

(5.15) v

Thus integral (5.14) is equal to

Irl B Ir Ir—k:
(5.16) f Ao ol 1 B u g
[Tl [rl IT—]C

P08 (U)¢U1,y-1_k+1,n (w)y¥'(B)dvdBdudg.

1,71 ,n—k+r{+1

] and

. . O
Here v is integrated over [Ul’rl,nfk U

wU?fl n—k+r1+1(v) - {Z}/(A)wé(c)
on matrices v given by (5.15). The variable B is integrated over [ By(r1,a)] and the character
Y" is the restriction of the character of B(rq,a) to the subgroup Bs(ri,a). The variables u
and g are integrated as before.
We observe that the set of all matrices of the form

[7‘1 B [7"1 [r—k
I, B* U g
]7"1 Irl Ir—k

with B € Eg(?“l, a),u € Uy r—k+1.m, 9 € Spay is a subgroup of H,.1 x Sp,, and the integration in

(5.16) over the adelic quotient [Uﬁm’mk +r,41] 18 @ Fourier coefficient which corresponds to the

unipotent orbit ((r —1)1¢). Thus we may apply Ikeda’s work on Fourier-Jacobi coefficients
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[I1]. This implies that the space of functions

I

r+1
=g
5 2
(5'17) (B,u,g) - eéi);:{}_%ﬁ_l l2n+r—2k+1(B)u g
Ioa
2
5 [%JC
2
f eén)i:«/)—%n Lansr-are1 (V") g
[Ul,rlmﬁr'rlfk] I%_k
]r—k
9?(%%“—]4) v'u g I wUl,v-l,nw-l-k (U,) dv'
r—k
is a dense subspace of the space of functions
(5.18)
Irl B [7“1 Ir—k
(B,U,g) - [ GSEZLH"—IC) v [a B~ U g wU?,é " 1(’0) dv
[ ]’ ]— B ;T +r1+
1 r1 r—k

where v is integrated as in (5.16). It follows from Conjecture 2 that, as a function of ug, the
integral in (5.17) is equal to a function of the form

Irin

2
(2r)°
O ir_ape1 | U 9
Ira
2

k

-k

4
with Héi?f%ﬂ in the space attached to the corresponding theta representation.

We deduce that the integral (5.16) is zero for all choices of data if and only if the integral

Iria
7 o2 2
(5.19) f f P(9) Oz o | g T (1)
[Sp2n] [Ut,ry—ks1,n] I%_k
Ir1
(2).4° 2 " ,
/ 027”27-_2](;4_1 l2n+r—2k+1(B)U g )’(/) (B) dB du dg
[Ba(r1,0)] Tya1

is zero for all choices of data.

To complete the proof of the Proposition we need to compute the inner integration in
(5.19). We do this by unfolding the theta series. Recall that the action of the Weil repre-
sentation is normalized as in [G-R-S2], Section 1, part 6. From the definition of B,(ry,a)
we deduce that

l2n+r—2k+1 (B) = (02n+r1—k+1> Br1,2n+r1—k+2> Br1,2n+7“1—k+37 ceey Br1,2n+r—2k+2> 0)
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With this notation, ¥/(B) = ¥(By, 2n+r,-k+2)- Unfolding the theta series, the inner integration
in integral (5.19) is equal to

]r+1
L
2
(5.20) [ S wy | loneraar (B)u g $()v'(B)dB
geFn+ri—k+1 ]il_k
2
Ira,
= Z Wys | U g ¢(0r1—k757£)
Lelm Iﬁ

2

where we have used the action of the Weil representation to derive this last equality. However,
for an appropriate Schwartz function, the right hand side of equation (5.20) is equal to

Qg?’wé(lgn(u)g). This completes the proof of the Proposition for the case when k < (r+1)/2.

When k = (r +1)/2, the proof is simpler. Starting with integral (5.5), from the definition
of the character (5.4) we see that no conjugation by a Weyl element is needed. The first step
is to use the result of [I1] as described in (5.17) and (5.18). Notice that in this case B = 0.
Thus we obtain (5.11) as claimed. O

6. THE CASE k> (r+1)/2

We study this case using a similar approach to the case k < (r +1)/2. First, for 0 < j <
min(n, k—(r+1)/2) we define a family of integrals denoted by £(j). Then we prove that £(5)
is zero for all choices of data if and only if £(j+1) is zero for all choices of data. However, this
case requires a new ingredient, namely the Fourier expansion along a unipotent subgroup of
a symplectic group, and makes use of the cuspidality of 7 in an essential way.

We start by fixing some notation. Fix an integer j in the range 1 < j < min(n, k—(r+1)/2).
Recall that the group U, ; and its character ¢y, , were defined in Section 1. We let I3, o;
denote the homomorphism from U, ; onto Ha,-2;:1, the Heisenberg group of 2n —2j + 1
variables, given on u = (u,3) € U, ; by

(U’“+1 Ui it2ye ooy Uion—04, Ui _2,+1) fOI'j<TL
61 l o (u) = 753 » 7] 9 y Wj2n-25, Wj2n-2j
(6.1) 2n-2j (1) {Un,n+1 for j =n.

We identify Ha,-g;41 with an upper subgroup of Spa,_2j+2 as in [G-R-54], p. 8.

Recall that Lgj_,_9j.2 denotes the maximal unipotent subgroup of G Laj_,_2j+2 and Vag_r_9j41
denotes the maximal unipotent subgroup of SOgj_r_g;.1. Let Vj op_r—2;+2 be the subgroup of
Loy_r_2j+2 generated by all matrices of the form

1 a
(6.2) Vo = ( v) ) a € Mabyx(or-—r-2j41),V € Vag—r-2j41.

Let vy 4, .0, be the character of [Vgor—r-oj12] Which arises from the trivial extension of
the Whittaker character of Vor , 9j:1(A), i.e. vy, 05(V0) = Yy, o,06(v). Also, let
W03y, 4y D€ the character of the group [Vo,2k-r—2j] defined as follows. Write vy as in (6.2)
with 7 + 1 in place of j. Then we set

(63) ’l/}(l),VQk,T,Qj,(s(,UO) = w(a1:1)¢v2k—r—2j—176(v)'
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Finally, we define a unipotent subgroup of a symplectic group, denoted Uy ;, and a char-
acter Yy, of the adelic quotient of this group, as follows. Consider the unipotent group
Uaspe where a = 2k —r-2j+2,b =71y and ¢ = n—-j+1. For u € Uyyp,., we have the
factorization (2.3). Let R denote the subgroup of Mat o, r—2j:2)x2(n-j+1) Of all matrices
Y = (Ya,3) € Mat(ag—r_2j12)x2(n—j+1) such that Y, 5 = 0 for all (2k-r-25j+5)/2 < o < 2k—r—25+2
and 1 < 3<2n-2j+1, and such that Y, ; =0 for all 2 < a < (2k-r-2j+3)/2. We define
Up; to be the subgroup of U, such that if u is factored as in (2.3), then Y € R. Also, for
Y e R(A) let Yp(Y) = (Y11 + Yoror-ojs22n-2j42) and for Z = (Zaz) € Maty,_,_o;,5(A), let
Vo(Z) = V(Zay + -+ + Z(ok-r-2j+3)/2,(2k-r—2j+1)j2)- Then we let 1y, . be the character of [Up;]
given by

(6.4) Yoy, () = P(tr( Xy + -+ X0 ))or(Y)0(2).

We now introduce the integrals £(j) for each j, 0 < j < min(n,k - (r + 1)/2). First,
L(0) is defined to be the integral L(ry — 1) = L((r - 3)/2); see equation (4.8). Next, for
1<j<min(n,k-(r+1)/2), let a; =2(n-j)+(2k—r-2j+2)(r-1)+2, and for vy € Vj 25-r_2j+2
and h € Spg(n_j+1), let

ta.j(vo, h) = diag(vo, ..., vo, h,v5 ..., v5) € Spq,.

Here, vy appears r; times. The map ¢4 ; is identical to ¢y except for the size of the groups
(which, in each variable, depends on j) and that vy is not necessarily orthogonal. Since
Vo is upper unipotent, it is split in the covering group by the trivial section, and the
map (4 ; extends to a one-to-one homomorphism (which we continue to denote ¢4 ;) from

Vo.ok-r—2j+2(A) x Sp(r) . (A) to Sp(r)(A). Then we define

2(n—j+1)
j
(6.5) L(j) = f f f fso(” u
[Sp2n-2j] [Un,j] [Vo,2k-r—2j+2] [Uo,;] Ij
1
Qz(z:) Ugly,; U07l2n—2j(u) g .

¢U0,j (uo)wvo 2k—r-254+25 6(U0)wUn g (u) dug dvg du dg‘

In (6.5), the integrand is a function of g = (g1,() € Sp2 )(A) but, as earlier in this paper,
the integrand is independent of ( € u,.. Thus we write the integral over the group and need
not keep additional track of the cover.

The analysis of these integrals is by induction, and is given by the following key Lemma.

Lemma 3. For 0 <j<min(n,k - (r+1)/2), the integral L(j) is zero for all choices of data
if and only if the integral L(j + 1) is zero for all choices of data.

Proof. We start by establishing the Lemma for j = 0. That is, we prove that £(0) is zero
for all choices of data if and only if £(1) is zero for all choices of data. By definition,
L(0) = L((r - 3)/2). Using the value j = (r—3)/2 in (4.8), we have

6o) o) - [ f f () 05 (s (v, 9)) oy, (1) W (v) dud d.
SPZH(A) [VQk r+3 Uro
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Here ag =2n+2k(r—1) —=r(r-3), ro =71 — 1, and for v € Vay_,,3 and g € Spy, we recall that
Lsr (v, g) = diag(vo, . .., vo, v, g,v*, 05 ..., v5) where each vy is repeated ry times (see (4.9)).

The first part of the computation here is similar to the first part of the proof of Lemma 1.
For a=1,2, let M, denote the unipotent subgroup of Loj_,,1,o consisting of all matrices of
the form

1 a
, a € Matyy(ok—rta)-
( [2k—7“+a) Lx(2k-r+a)

As in the proof of Lemma 1, let M be the subgroup of Sp,, of matrices of the form
m= diag(mla M,y Myy [2717 m; PR mga m{)

with m; € My for 1 <i<(r-3)/2 and m,, € My. Also, let Q;, 1 <i <y, denote the following
subgroups of Sp,,. For 1 <i < (r-5)/2, Q; is the subgroup of all matrices of the form

0

,  a€Matiop_ri1)x
a 0%_”1) (2k—r+1)x1

i _
U (2k—r+2)(i-1),2k-r+2,2k-r+2,a; (Xi), Xi= (

with a; = ag — 2(2k —r +2)(i + 1) (see (4.4)); for i = (r — 3)/2, the group @Q; is generated by
0

. a€Mabiop_rio)x
a 02kr+2) (2k-r+2)x1

ué2k—r+2)(r—5)/2,2k—r+2,2k—r+3,a,- (X)), X = (

with a; = ag— (2k =7 +2)(r -3) =2(2k —r + 3); and for ¢ = (r — 1)/2, @Q; is the subgroup of
matrices of the form

0
u,2k;—7-+37n(07 Z)a Z = Z’ 02k;—r+1 ) be Matl) ac€ Mat(QkfrJrl)xl-
a* 0

Performing root exchange between these two groups, we obtain that £(0) is zero for all
choices of data if and only if an integral similar to (4.12) is zero for all choices of data with
j = (r-3)/2. We write this integral after conjugating by a certain Weyl element. The Weyl
clements w, were defined above in equation (4.13) for j in the range 1 < j < (r — 3)/2. As

mentioned there, that description still determines the matrix uniquely if j = (r - 3)/2. We
use the Weyl element w(()r—3)/ % now.

Performing the above root exchange, and then conjugating by wéw’)/ ? we deduce that
integral (6.6) is zero for all choices of data if and only if the integral

67) [ PO FAY (W) s, s(00)0' (D)

A B C\(IL B(w) I, I,
o) I, B I, B*w)||D I, Ly 1 (v, g) d(...)
A I, E D* I I,

is zero for all choices of data. In (6.7), the variables A, B,C, D and E are integrated over
the same domain as in (4.15) with j = (r - 3)/2. We describe them explicitly. First A is
integrated over [L,]. The character ¢)(A) is the Whittaker character. Let B(r,ag) denote

the subgroup of Mat, . (4,-2,) Which consists of all matrices B = B, g such that B; (;_1)x-r) =0
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for all 1 <@ <7y and B; i-1)2k-r)+2n = 0 for all 71 + 1 <7 < r. The variable B is integrated
over [B(r,a0)]. Let C(r) denote the subgroup of Mat? consisting of all matrices

C= Cl Oz s Cl € Matr r1+15 Cg € Mato s Cg € Mato 41
03 Cl 1,71 1 T1

such that C3 = 0, and such that, writing C; = (C4[a, 5]), one has C1 [, f] =0forall 1 <a <r
and /3 < . The variable C' is integrated over [C'(r)]. The matrices D and E are integrated
over [D(r,ag)] and [E(r)], respectively, defined following (4.15). The character ¢/(D) is
given by ¢'(D) = (D,p) where a =1+ (2k —r)(r - 3)/2 and 8 = (r + 3)/2. The variable u
is integrated over [U], where U is the subgroup of Usg—y sy s C SPon+(2k-r)(r-1) consisting of
all matrices (2.3) such that Y € Mat(ox_y)x2, has bottom (2k -7 —1)/2 rows all zeroes. The
character vy is given by

(6.8) Yo (u) = ¢ (r(Xy + -+ X0, 1)) $o(2)
(using the factorization (2.3) of u with a = 2k—r, b =7y, ¢ =n). The variable v, is integrated
over [Vook—r|; the character Vo.v,,_.s Was defined in (6.3). The g variable is integrated over

Finally, we describe the matrix B(vg) € Mat,y(qy-2:). The first n + ag/2 columns of B(vy)

are all zero. Write B = (O Bl) where By € Mat,(q/2-n-2). Then the first (r +1)/2 rows
of By are zero. Write By = (B(l),l) where By ; € Mat(,_1)/2x(apj2-n-2r)- Recall that in (6.6),
v = (Vo) is a matrix in Vog_,,3. For such a matrix, write

(6.9) a(vo) = (V2,2k-r+2, U3, 2k—r42; - - - » Valmrs1,2k—r+2) € Matix(on—r)-
Then
a(vp) 0 0 ... 0
0 0 ... 0
By = : a(ij) Do :
0 0 0 .. a(w)

To simplify the notation and for later use as well, for 0 < j < min(n,k - (r + 1)/2), given a
matrix B(vo) € Mat,q,,, (A), we write

I,,« B(Uo)
(6.10) pi(B(w)) = Lo B*[(vo) € S5pa; (A).

We now proceed in the same way as we did in analyzing (4.15) above. That is, we perform
root exchange between variables in the D and E matrices and suitable upper triangular
matrices. The process for the first r; rows is similar to the one performed for (4.15). Similarly,
we exchange the last ag/2+n entries of the (r+1)/2-th row. However, in the case at hand it
is not possible to perform root exchange for the entries in positions ((r +1)/2,a¢/2 - n + )

of the left-most matrix in the argument of (96(12) in the integral (6.7), for 1 <« < 2n.

We conclude that the integral £(0) is zero for all choices of data if and only if an integral,
denoted I, is zero for all choices of data. The integral I has the same form as integral
(6.7) but with a different domain of integration. For I, the variable B is integrated over
[Bi(r,a0)], where By(r,a0) is defined as follows. If B = (Ba,) € B1(r,a9), then B(,11)/25 =0
for all 1 < 8 < 2n+ (2k —r)ry, and the bottom r; rows of B satisfy the same vanishing

conditions as for B(r,ag). The variable C' is now integrated over [C}] where C}(r) is the
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subgroup of Matg such that C, 3 =0 for all r; <a <r and 1 < 8 < 7. The variable D is
integrated over [ D1(r,ag)] where D1 (r,aq) is the subgroup of D(r,ag) of all matrices whose
first 1 + 1 columns are zeros, and similarly we define the group E;(r).

Let Sy denote the subgroup of Sp,, consisting of all matrices of the form

2n
Iao + Z; aie;1+1,a0/2—n+z’ + ﬁe?"lJrLa()*h'

Its center, denoted by Z(Sp), is the group generated by all the above matrices such that
a; =0 for all 4. Tt is a subgroup of Ci(r). This means that we may expand integral I along
So(F)Z(S0)(A)\So(A). The group Spa,(F') acts on this expansion with two orbits.

First, we consider the contribution from the trivial orbit. In this case, we can further
perform a root exchange similar to the analysis of integral (4.15) above. Arguing asin (4.16)—
(4.18), the vanishing of this contribution is equivalent to the vanishing of the integral

(6.11) [ 0@ (s (00, ) ()4, () i dy,

with the domain of integration as in (6.7). The proof that integral (6.11) is zero for all

choices of data is similar to the computations we performed above. It will be convenient to

postpone the proof and give the details later. We do so after Proposition 9 below.
Assuming this vanishing, we conclude that the integral I is equal to the integral

(6.12) / [ @D F AN (W), 500} (DY (B)
Un,1(F)Sp2n—2(F)\Sp2n(A)
A B (C 1, I,
01(17(;) [a1 B* pO(B(UO)) D Ial u['4,1(U07g) d()
A* E D* I, I,

Here, all variables except the g and B variables, are integrated as in the integral I. The
B variable is integrated over [ By(r,ag)], where By(r,ag) = By (7, a0)(Z(S0)\So). The group
By(r,ap) may be identified with all B = (B, 3) € Mat, 4, such that B, 4153 =0 for all 1 <
B < (2k —r)ry. All other rows are the same as for matrices in By (7, ag). Also, the character
1/11(3) = w(BT1+1,(2k:—r)r1+1)~

Write

Un,l(F)SPanQ(F)\SPZH(A) Un,l(A)SPanQ(A)\SIDn(A) Un,l(F)Sp2n72(F)\Un,1(A)SPQn—Q(A)

Arguing as in [G-S], Section 7, we deduce that the integral (6.12) is zero for all choices of
data if and only if the integral

1
613) [ [ [e0lul ¢ ||H0@ @) (D)e(B)
[Span-2] [Un.] 1
A B C I, I,
QC(LE) I., B*|po(B(v))| D I, utg 1(vo, lon-2(u1)g) d(...)
A E D* I, I,

is zero for all choices of data.
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Let 2(1) = Loy — €], /.- Then 65" (h) = 6 (x(1)h). Using this in integral (6.13) and
then conjugating x(1) to the right, we obtain the integral

61 [ [ [O|u PV (W)Y 5(00)0'(D)

Sp2n2 Unl 1
A B C I, I,
9<’“>( L., B*|po(Bwo))|D I, wuly_, (Y (v9),0)
A* FE D+ Ir Ir

L471(’Uo7 l2n_2(u1)g)x(1)) d()

We highlight the changes in the characters. First ¢ (B) is cancelled. Second, the character
Yy is defined as follows. Given the decomposition of u € Ugj_py, n(A) as in (2.3), we have
Yy (u) = Yy (u)(Yi1). Also, we note that the matrix uj,_,. (Y (vo),0) has the property that
Y (vo) € Matog—,2,(A) has all entries zero except the last column; this last column is equal
to Jog_ra(vp)t. (The vector a(vy) is given in (6.9).)

At this point we carry out a root exchange between variables in D and E with suitable
upper triangular matrices. This is similar to the steps in the proof of Lemma 1 that go from
(4.15) to (4.16). We then argue as in that proof, from (4.16) to (4.18). We conclude that in
the case at hand, the integral (6.14) is zero for all choices of data if and only if the integral

615 [ ] [0 u| o |]ob @t sw)

[Sp2n-2] 1

05 (uy, (Y (00),0)e41(v0, lan-2(u1)g)) d(...)

is zero for all choices of data. (All other domains of integration here are the same as in
(6.14).)

We perform one final root exchange, as follows. Let R; denote the subgroup of Vj o,
consisting of all matrices of the form

1 a 0
Tok—r-1))2 0 , a € Mat(2k-r-1)/2-
Tok—r-1))2

Let Ry denote the subgroup of U consisting of all elements of the form
U’IQk—r,n(Yv 0), Y =arepn + oesr + 0+ Qop-r-1)/2€(2k-r-1)/2,1

where e, g is the (2k - r) x 2n matrix whose (a, ) entry is 1 and with all other entries 0.

Using v(;, we perform a root exchange between R; and Ry. From this we deduce that the
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integral (6.15) is zero for all choices of data if and only if the integral

L 1
616 [ [ [0 a| g || ), (.0))

Ra(M)U(F\U(A) [R] 1
o) (utty,_, , (Y0,0)e41(v0, lon-2(u1)g)) d(...)

is zero for all choices of data. Here R = Mat(ap—r_1)/2x1 is the group of all matrices of the
form

uék,r’n(yo, 0) = Q1€(2k—r+3)/2,2n T Q2€(2k—r+5)/2,2n t = T Q2k—r€2k—r 2n;,
and Yr(uy,_,,(Y0,0)) =¥ (az-). (Notice that in (6.16), the character ¢g,, 5 of (6.15) is
replaced by ¥ v,, . s.) The domains of integration of the variables vy and g are the same as
in (6.15).

The group generated by R;\U and R is isomorphic to Up; (defined before integral (6.5)
above). Also, under this identification the product of the characters v;, and ¢y is equal to
the character 1, ,. Thus integral (6.16) is equal to integral £(1). This completes the proof
that £(0) is zero for all choices of data if and only if £(1) is zero for all choices of data.

Next we prove that for 1 < j < min(n,k - (r + 1)/2), L(j) is zero for all choices of data
if and only if £(j + 1) is zero for all choices of data. Many steps are similar to the proof
for j = 0 above. Starting with £(j), we again define the group M and the groups @;, and
perform a root exchange between them. We then define a Weyl element wq(j) € Spa,(F).
Its definition is slightly different for j > 0, so we give it here. We let

wq wWa

Wo (]) = I2(n—j) ) Wy, Wa, W3, W4 € Matr1(2k—r—2j+2)+l-
w3 Wy

The matrix wq(j) is symplectic, so it suffices to specify (w1 wg). The first r rows of this
matrix have entry 1 at positions (7, (i—1)(2k-r-2j+2)+1) for 1 <i <r;+1, and at positions
(ry+d,(r+i-1)(2k-r-2j+2)+1) for 2<i<ry. For the next ri(2k-r—-2j+2)+1-r
rows, all entries in w, are zero, while for wy, these rows form the matrix w?’l in (4.14) with
B=2k—r-2j.

Introducing wy(j) and conjugating, we conclude that £(j) is zero for all choices of data
if and only if the integral

— [ (L ~
JEOal [, v, (0(D)

J

A B C I I
9&:)( Iaj+1 B* pj(B(UO)) D ‘[(lj+1 U0L4,j+1(UO’ 1)
A* E D+ I, 1,

wo(j)l/4’j(]., lgn_gj(u)g)) d()

is zero for all choices of data. The variables A, B,C,D and E, and their characters are

integrated over the same regions as in (6.7). The variable vg is integrated over the quotient
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[Vo,2k-r—2;]; its character U0,Vay,s;.0 18 defined similarly to (6.3). The variable uy is integrated
over [U], where U is the subgroup of Us_y—2jr n-j €S Pa,., consisting of uy with factorization
(2.3) such that Y € Mat(o_r_2j)x(2n-2;) has bottom (2k-r-2j-1)/2 rows all zero. Notice that
ug € Spy,,,- The character ¢y is given by the same formula as (6.8), using the factorization
(2.3) of up with a =2k —r—-2j, b=ry, c=n-j. Finally, u and g are integrated as in (6.5).
We again proceed as we did in analyzing (4.15) above (also see following (6.10)). We carry
out a root exchange between root groups appearing in the D, E variables and suitable upper
triangular matrices. Then let .S; be the subgroup of Sp,; of matrices of the form

2n-2j
Iao + Z; a/i€;’1+1,a0/2—n—j+i + Be?“ﬁl,ao—?"l'

The center of S;, Z(S;), is the group generated by the matrices above such that «; = 0 for
all 7. Then Z(S;) is a subgroup of Ci(r), the same group as defined above in treating £(0).
Hence we may expand the integral along S;(F)Z(S;)(A)\S;(A). The group Spa,—2;(F)
acts on this expansion with two orbits. First we consider the contribution from the con-
stant term. The group S; is isomorphic to the Heisenberg group Ha,-2j41. Also, we have
wo(7)(1,lan-2;(u))a;wo(j)' € ;. Changing variables in S;, we obtain the constant term

of () along the unipotent radical of the maximal parabolic subgroup of Sps, whose Levi
part is GL; x Spa,_2j. From the cuspidality of ¢("), it follows that the contribution from the
constant term along S; is zero.

We are left with the contribution of the non-trivial orbit. Arguing as in the case j =
0 (beginning with (6.12)) we obtain the integral £(j + 1). This concludes the proof of
Lemma 3. 0

We conclude from Lemma 3 that for k > (r + 1)/2, the Whittaker coefficient (4.2) is zero
for all choices of data if and only if the integral £(min(n, k- (r+1)/2)) is zero for all choices
of data. We analyze the two possibilities for this minimum separately.

Proposition 7. Suppose that k> n+ (r+3)/2. Then the Whittaker coefficient (4.2) is zero
for all choices of data.

Proof. The integral £(min(n,k - (r+1)/2)) = L(n) is equal to
[ O ot (00, o))t (00) 50, () ),
]

[Un,n

Here the variables uy and vy are integrated as in (6.5) with j = n. By definition (see
(6.1)), if w = (u;;) € Unn, then lo(u) = wpne1 € Hy; in the above expression we embed
this degenerate Heisenberg group in the group Sp, as the matrix (1 ot ) Thus we have
tan(1,lo(w)) = Lo, + Upni1€a,/2,a,/2+1- Expand the above integral along the one parameter
subgroup S, of Sp,, defined by S, = {I,, + a4, /2,4,/2+1}- Then the contribution from each
nontrivial orbit is zero. Indeed, each such contribution may be expressed as an integral of
a Fourier coefficient of 9((12) which corresponds to the unipotent orbit ((r + 1)1%—"-1). By
Theorem 3, part 1, this Fourier coefficient is zero. As for the constant term along S,,, after
a suitable change of variables, we obtain as inner integration the constant term of ¢(") along
the unipotent radical of the parabolic subgroup of Sp,, whose Levi part is GL,. By the

cuspidality of ("), this constant term is zero. Thus £(n) is zero for all choices of data. [
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Next we examine the case n > k—(r+1)/2. From our work above, the Whittaker coefficient
(4.2) is zero for all choices of data if and only if the integral L(k—(r+1)/2) is zero for all choices
of data. In this case, 2n—2j =2n-2k+r+1, 2k—r-2j+2 =3, and ap_(r41)2 = 2(n -k + 2r).
Thus

Iy (ri1))2
6.17) L(k-(r+1)/2)= | @ |u g VU, sy ()
Ty (r1))2

QQZL_MQT) (UOL4,k—(r+1)/2 (UO, lon-ok+r+1 (u)g) )IDUO,,C,(M)/Q,é(Uo)%,va (Uo) dug du dvg dg,

where g is integrated over [Spoy-ok+r+1],  is integrated over [U, j—(r+1)/2], to is integrated
over [Up p—(r+1y/2], and vy is integrated over [Vj 3] with

1 1 T2
‘/073 =4V = 1 0
1

The characters in (6.17) are given by g v, (vo) = ¥ (x2) (see (4.2)) and
¢U0,k—(r+1)/276(u) = (tr( Xy + -+ X)) ¥R (Y)ho(Z)

with Y s(Y) = ¥(Yi1 +0Y59,0k1r+3) (compare (6.4)).
We now establish the following lemma.

Lemma 4. The integral L(k — (r +1)/2) vanishes for all choices of data if and only if the
integral (6.24) given below vanishes for all choices of data.

Proof. To simplify the notation, let a = 2(n — k + 2r). As in the previous cases, we start
with a root exchange. For 1 <i<r; -1, let M; denote the subgroup of Sp, consisting of all
matrices I, + aegi_z?ﬂ._l + /Beéi—2,3i' Let M = VosM; ... M, ;. Let ¢ denote the character
of M defined by vpr(m) = Yar(la + Bes,, 53,) =¥(B). For 1<i<r -1, let Q; denote the
subgroup of Uy j_(r+1)/2 generated by all matrices

i 0
Us(i-1)3,3,0-6(i+1) (Xi) X; = (b 02) ,  beMatoy.

Then (6.17) is zero for all choices of data if and only if the integral

Ti—(r1))2 "
(6-18) [SO(T) u g ta (uOmL4,k—(r+1)/2(lal2n—2k+r+1(u)g))
T (ri1))2

on,k-(ru)/z (u0)¢M76(m)¢Un,k—(r+l)/2 (u) dug dudm dg

is zero for all choices of data, where M is integrated over [M] and wug is integrated over

Q1(A) ... Qr 1 (A)Un k(1) ;2 (F)\Un -1y 2(A).
Let z(1) = I, + ¢35, 5, .1 Let wy denote the Weyl element of Sp,

wo = diag(w, op—ok+r+1, W™)
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where w is the Weyl element of G Ls,, .1 specified as follows. The first 7 + 1 rows of w have
the entry 1 at position (7,2:+1) and 0 elsewhere. The next 2r; rows are given by the matrix

00 0 0 - I
We have 65 (h) = 65 (wox(1)R). Conjugating woez(1) to the right, integral (6.18) is equal
to

| (T2 _
6.19) [ 20| g AV (o), 110 () 5(B)
Te—(re1y)2
A B C Ir1+1 Ir1+1
6" I, B|| D Iu g wo (1) ta k- (r41)/2(1; lan-2ksre1(1)g)
A* D [7“1+1 [r1+1

d(...).

Here a’ = 2n-2k+3r-1 and A is integrated over [L, ,1]. The character J(A) is the Whittaker
character. The matrix B is integrated over [B(ry + 1,a’)], where B(ry + 1,a’) is the group
of matrices (Ba) € Mat(,,41)xes sSuch that By a2 =0 for all 1 <o <7y, and B, 41,3 =0 for
all 1 < B <2(n-k+r). The character 1s(B) is given by

¢6(B) = w(Br1+l,2(n—k+r)+l + 5Br1+1,2(n—k+r)+2)-

The variable C is integrated over [C(r; +1)], where C(r1 +1) consists of all C' € Mat] ,; such
that C, .11 = 0. The variable D is integrated over [D(a’,r; +1)] where D(a’,7 + 1) is the
subgroup of Matgy(,,+1) defined in a similar way to the group that appears following (4.15).
Finally, the variable ug is integrated over [Ugrm_kw1 .1], where the group Ugrhn_k eri41 C SPar
was defined after (4.3). Its character ¥y (ug) is defined similarly to equation (4.6). The
variables u and ¢ are integrated as before.

Carrying out a root exchange between the group D(a/,r; + 1) and a suitable group of
upper triangular matrices involving roots in the first r; rows, we deduce that (6.19) is zero

for all choices of data if and only if the integral

Y G PGS _
6200 [0 fu g AV (W), 02 (0)05(B)
Ty (ri1))2
A B C\(L .
6" I, B* Ug wox (1) ta - (r+1y/2 (1, lon-2kere1(w)g) | d(...)
A* Ir1+1

is zero for all choices of data. Here C' is integrated over [Matg1 1] and B is integrated over
[Bi(ry +1,a’)], where B;(r1 +1,a’) is the subgroup of Mat,, 1)x.s of all matrices B such

that B,,115=0 for all 1 <3 <2(n—-k+r). All other variables are integrated as before.
35



Let y(0) = I, + Xi1; 6€y; 1 o;- Let wy denote the Weyl element of Sp, given by

[r1+1
Wi,1 wWq,2
wy = Ion—okars1
Wa,1 Wa, 2
Ir1+1

Here, w, g € Mat,_; for all o, 8 € {1,2}. To define w; we need only specify the matrices w; ;
and w; . We do so as follows. The matrix wy; has the entry 1 at position (r; +,2i) for
1 <4 <ry and all other entries zero. The matrix w2 has the entry 1 at position (7,2i+ 1)
for 1 <i<ry and all other entries zero.

Introducing wyy(d) and conjugating, integral (6.20) is equal to

Ti—(ra1y)2 _
621) [0 fu g AV (00) 00, 1y ()2 (D)
Ti—(re1)2
A B C\(I I,
QC(LT) I,» B* D I Ug w1y(5)w0$(1)b4,k—(r+1)/2(17l2n—2k+r+1(u)9)
2 \E D I I,

d(...)

Here, a” = a - 2r = 2(n - k + 7). The variable A is now integrated over [L,], and $(A) is
the Whittaker character of L,.. The variable B is integrated over a subgroup of Mat, ...
Similarly, for the variables C, D and E. We omit the precise descriptions. The variable
ug is integrated over [UY, .. ] For ug = (uole, B]) € UY, . 1ips1(A) € Spar(A), the

character ¢y s is given for k <n+ (r+1)/2 by
(6.22) Yus(uo) =P(up[L,2] + - +up[r1 — 1,71 ] + dup[r1, 2n - 2k + 3(r + 1) /2]).

We now carry out a root exchange between the root subgroups appearing in D, E and
suitable upper triangular matrices. We deduce that integral (6.21) is zero for all choices of
data if and only if the integral

T (ra1))2 _
(623) 90(71) u g ¢(A)¢U,5(U0)wUn,k,(M)/z(u)
Ty (ri1))2
A B C\/[I,
6y Lo ﬁ w w1y (O)wor (1) tag—(r1y2(1, lon-aiirs1(u)g) | d(...)

is zero for all choices of data. In (6.23), B is integrated over [Mat, .4~ ], and C'is integrated
over [Mat?]. Observe that the integration over the B and C variables give rise to the
constant term along the unipotent radical of the parabolic subgroup of Sp, whose Levi part
is GL, x Spgn.

Next, we conjugate w;y(0)woz (1) across tak—(r+1)/2(1, lon-2k+r+1(1)g). Note that the ma-
trix tap-(r+1)2(1, 9) commutes with wiy(6)wox(1l). Also, when conjugating the element

L4,k—(7"+1)/2((17 l2n—2k+r+1(u)) by wly(é)ng(l), we obtain u/L4,k—(r+1)/2((17 l2n—2k+r+1(u)) where
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u’ is an element in the unipotent radical that we are integrating over in (6.23). We conclude
that the integral (6.23) is zero for all choices of data if and only if the integral

Ti—(ra1))2

(6.24) f 20 | u g

[7"1—1
Qézi_kw) (0 Lag-ry (1, lon-2ksri1(1)g) Yus(10) VU, oy (@) duo dudg

]7’1—1
is zero for all choices of data. Here, all variables are integrated as in (6.23). In particular,
the domain of integration of the variable g is the quotient [U? ]. Note that the

1,r1,n—k+r1+1
Fourier coefficient of 95;7)1_,6 ) given by this integration is attached to the unipotent orbit
((r—1)12n=2k++1) " Also, this is the same Fourier coefficient as in integral (5.16). (There we

denoted the integration variable by v, but the integration domain and the character are the
same.) This concludes the proof of Lemma 4. O

Ti—(ri1))2

We now obtain consequences from the expression (6.24). Suppose first that 2n—-2k+r+1 = 0;
that is k = n+(r+1)/2. In this case there is no ¢ integration and lo,_og1r+1 (1) = lo(®) = Up i1
The character ¢y, , (u), given by (1.1) with m = n, is independent of uy, ,,.1, but after making
the variable change uo[n,n + 1] = ug[n,n + 1] — 4, 41, we obtain the generic (Whittaker)
character attached to Sps, given by

77ZJI/Vh,—5(u) = 1/} (ul,Q toort Up—1n — 5un,n+1) .

Let WW _s(g) denote the value of the Whittaker coefficient of E with respect to Yy, 5.
Thus integral (6.24) is thus equal to

Woms (&) [ 08 ey (u0)is o) du,

0
[U1,7‘1,n—k+rl+l]

The complex conjugate of ¥y s is in the same class as ¥wys modulo the conjugation
action of the rational torus. Also, since k =n + (r +1)/2, the character ¢y s is a Whittaker
character of Spy(,_i+ry. We arrive at the following statement.

Proposition 8. Suppose that k =n+ (r+1)/2 and r > 1. Fiz a nontrivial additive character
Y of F\A. Then the Whittaker coefficient Wi s(f) is not zero for some choice of data if and

only if
(1) @fﬂi)l has a nonzero Whittaker coefficient with respect to the Whittaker character ¢y s
of Sp,_1 and
(2) (") is generic with respect to the Whittaker character Ywns of Spon.

In this statement, condition (1) does not depend on the automorphic representation 7(").

Thus if there exists a § such that the Whittaker coefficient of any function in @7(1)1 with
respect to Yy, is zero, then Wy 5(f) = 0 always. As explained in Section 2, we do not expect
this. Moreover, by Theorem 3 above, condition (1) is known to be satisfied for some § when
r=3,5.

Next, suppose that 2n — 2k +r+ 1> 0. Since we are in the case k > (r + 1)/2, this implies

that (r+3)/2 <k <n+(r-1)/2. In this case, as noted above, the integration over the
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quotient [UY, .. ;] is attached to the unipotent orbit ((r - 1)12=2k*+1). We may use
the result of [Il] and Conjecture 2 and then argue as in the treatment of equations (5.17)
and (5.18). We obtain the following result (we suppress the details, as they are similar to

the treatment there).

Proposition 9. Suppose that (r+3)/2 <k <n+ (r-1)/2 and that the Descent Congecture
(Congecture 2) holds. Then the Whittaker coefficient (4.2) is not zero for some choice of
data if and only if the integral (1.5) is not zero for some choice of data.

To conclude this Section, we now return to the point we deferred above, and prove that
the integral (6.11) is zero for all choices of data. To do this we will define a family of integrals
K(j), where 0 < j <min(r; -1, (2k-7r-3)/2). Recall that k> (r+1)/2. Hence, 2k-r-3 >0,
and the set of such j is non-empty. We will prove that for 0 < j <min(r; - 1, (2k -7 -3)/2),
the integral K (j) is zero for all choices of data if and only if the integral K (j+1) is zero for
all choices of data. The idea is similar to the proof of Lemma 1.

First, we define K(0) to be the integral (6.11). To define the integrals K (j) for j > 1, we
introduce unipotent groups U, Let b; =2n+ (2k—7r)(r—-1) - 2jr (so b; = a; - 2r). Let

J denote the parabolic subgroup of Sp,, whose Levi part is GL ™ . xGL?

k-r,ri,mn’

2k-r,ri,n 2k-r-2j 2kr2j1
Span. Let U22,;J rr.m denote the unipotent radical of Q% e Lhe matrices in U2k "y AVE
a factorization that is similar to (4.4). We define the subgroup Uy'; ; of U22,’f rrn DY IMpoOSing

the same condition Y5 = 0 used to specify the subgroup U; of U. 1’] Moreover, let wU" be

2k,r1,n"
the character of the quotient [U} J] given as in (4.6) with respect to the factorization here.

Recall that the group Vai-g;_,—1 is the upper triangular maximal unipotent subgroup of
SOsp-2j—r—1. Embedding Voy_oj_,—1 in Vay, by v+~ diag(I,,+1,v, I;,41), we define the charac-
ter ¥y, ., .5 to be the restriction of ¢y, 5 (see equation (4.1)) to the embedded image
of the group Voi_2j-r-1. We consider the semidirect product of the groups Vai_9;»—1 and
Mat 1, (2k-2j-r—1) realized as the set of matrices v(a) = (* ) € Log-oj—, With v € Vop_o;_,_1, and
a € Matyy(ok-2j-r-1). If 2k=2j—7 # 3, define a character on Vap_g;_r_1 (A)x Maty(2p-2j-r-1)(A)
by

w{/zk_gj_,._l,é(v(a)) = ¢(a1,1)¢v2k—2j—r—la5(v)'
If 2k—-2j-7r = 3, then Voi_9;_,_1 consists of only the identity matrix, and in that case we define
1/1{/%_2]__7”_175(v(a)) =1)(0ar,1+ai,2). We define an embedding ¢s j : Vag—oj—r—1xMabyx(2k-2j-r-1) =
Spy,; by the formula

t5,(v(a)) = diag(v(a),...,v(a),v,...,v, I, v", ..., 0", v(a)*...,v(a)"),
where v appears j times and v(a) appears r1—j times. (Since 1 < j < min(r, -1, (2k-r-3)/2),
all indices appearing in (5 ; are positive integers.)
For 1< j <min(r - 1,(2k —r - 3)/2) define
- ]Cj
KG) = [e0@00 lusitw@)| g ||vur s, s(0(@) dudo(a)dg
I,
J
Here, u is integrated over [UQ’fj], v(a) is integrated over [‘/Qk_gj_,,,_l x Mat(or-2j-r-1y], 9 is
integrated over [Spa,], and the integer ¢; = (2k —r)r; -

We now prove that for 0 < j < min(r - 1,(2k - r - 3)/2) the integral K(j) is zero

for all choices of data if and only if integral K (j +1) is zero for all choices of data. If
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Jj < (2k-r-3)/2 it follows that 2k —r — 25 > 5. We start with a root exchange that is
similar to the one performed just prior to equation (6.18). Let M; denote the subgroup of
Lok—9j-r consisting of all matrices of the form (! ¢) where a € Matyy(25-2j-r-1). (Thus we may
identify the group Vag—gj_p—1 x Maty(2k-2r-2j-1) With Var_o;_,_1-M;.) Let M be the subgroup of
Spy, consisting of all matrices of the form diag(my,...,m,,, L, My s ,m7) where each
m; €My and ¢ =2(n+2k—-2j-r—1). Define the subgroups @Q; of Ujjfor1<i<r-j-1
similarly to the definition of (); above (6.18). Each such @Q; is isomorphic to Mat og-2;-r-1)x1-
Performing this root exchange, we deduce that K(j) is zero for all choices of data if and
only if the integral

L.

(6.25) [ ()05 | umus ;(w(O) [ g Yoy (W) vy s,y 5(0)tu(m) dudm dv dg
I,

vanishes for all choices of data. Here, m is integrated over [M], and the character ty is
defined as follows. Let m = diag(mi,...,mp—j, L, my i, ...,m7) € M(A). Then ¢y(m) =
Y(my,—;[1,2]). The variable u is integrated over Q1(A)...Qr, —j-1(A)US;(F)\Uy;(A). The
variable v is integrated over [Vaj_s;_r—1], and the character UVap_n;_r_1,6 18 the restriction of
the Whittaker character (4.1). The variable g is integrated as before.

Now we repeat the same steps as in the proof of Lemma 1. First, we define a Weyl element
w(’)j of Spy, as in (4.13). However, in the case at hand we need to interchange j and 7, - j, to
interchange 8 and 7, and to replace 2k by 2k —r. After conjugating by this Weyl element,
we obtain

(6.26)
A B C\(L I L,
[ b B|D b iz o1 (0(a)) g
A J\E D 1, I, L,

F(Aybuy (W, s(0(a))d(..)

(this is similar to (4.15)). Here u is integrated over [Uy;,,], the variable v(a) is integrated
over [Vop_oj_r—3 x Mati(ak-2j-r—3)] and g is integrated over [Spa,]. The variables A, B,C, D
and F are integrated over the groups that are defined in a way similar to (4.15).

After performing further root exchanges, we deduce that (6.26) is zero for all choices of
data if and only if the integral

o A B C\/[I I,
621) [ oO@O || D B|| wssae(@) g
A* I, I

D A)uy,, (W, s(0(a))d(.)

is zero for all choices of data. Here B is integrated over [Mat,s,.,], and C' over [Mat;].
The integration over B and C' gives the constant term along the unipotent radical of the
parabolic group whose Levi part is GL, x Spy,,,. (See the discussion following (4.17).) We
deduce that the integral (6.27) is zero for all choices of data if and only if K (j +1) is zero
for all choices of data. This completes the proof that K(j) is zero for all choices of data if

and only if K (j+ 1) is zero for all choices of data.
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We deduce that the integral (6.11) is zero for all choices of data if and only if the integral
K (min(ry — 1, (2k =7 —3)/2)) is zero for all choices of data. We now consider each case for
the minimum. Suppose first that (2k —r—-3)/2<r; — 1. Then

IQrfk
(6.28) K((2k-7r-3)/2)= [ gp<r>(g)9§§;+w_k> uts (2k-r-3y2(v(a)) g
]ér—k

VUL s (WP, 5(v(@)) dudo(a) dg.

In this integral u is integrated over [Uéf(szg)ﬂ]. We recall that the group U2'f(2k473)/2
subgroup of the unipotent radical of the parabolic subgroup of Sps,4r_or Whose Levi part
is GL5F+1 x GLg%_T_?’)/2 x Spa,. The group V5 in (6.28) is the identity group while a ranges
over 1 x 2 matrices, and the character ¢y, ;(v(a)) = ¥(dar1 + a12). Defining the group M
and the groups @);, and then performing root exchange as immediately before integral (6.25),

we obtain as inner integration the Fourier coefficient of 95’("7)1 k) which corresponds to the

unipotent orbit ((r+1)(2k -7 -1)12(n+2r-2k)) " By Theorem 3, part 1, this Fourier coefficient
is zero. Thus, integral K ((2k —r - 3)/2), and hence integral (6.11), are both zero for all
choices of data.

Suppose instead that (2k —r-3)/2>r; — 1. Then we must analyze

1S a

Cri-1

K(Tl - ]_) = f @(T)(g)eé:l)_l UL57711_1(U((I)) g
1

Cri-1

bug, (W, (v(a)) dudv(a)dg

where b,, 1 = 2n+ (2k —7)(r = 1) = r(r - 3). Here u is integrated over Uy, , a subgroup
of the unipotent radical of the parabolic subgroup of Spy, , whose Levi part is G Laj-2,+3 X
GL;I(;EHI) X Span. We do not need to do any root exchange at the first step. Defining a
suitable Weyl element, we deduce that the integral K (r; — 1) is equal to an integral similar
to integral (6.7). In other words, we obtain a matrix similar to B(vg). However, in this
case, after a suitable change of variables, we obtain as inner integration an integral of the
type [ ¢(x)dzr, with z integrated over F\A. This integral is zero. We omit the details. We
deduce that the integral K (r; — 1) is zero for all choices of data. This completes the proof
that integral (6.11) is zero for all choices of data.

7. THE CASE k<n - % AND THE DESCENT CONJECTURE.

In this section we study the case k <n - % By the results of Section 4, the integral (4.2)
is zero for all choices of data if and only if the integral (5.16) is zero for all choices of data.
Our goal is to prove the vanishing of this integral when k£ < n - % We explain how this
follows from a Descent Conjecture; that is, we formulate and establish Proposition 4, part 2.
We also indicate how one may establish slightly weaker results without this.

The proofs of Proposition 3, part 2 and Proposition 4, part 1, relied on studying the
integral (5.17) (see (5.16) to (5.20) above). This is a descent integral in the sense of [G-R-S4]

and of [F-G1], Section 3. With the notation as in (5.17), consider the representation p of
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Spéi:)r_%ﬂ(&) whose underlying vector space is generated by the functions

6 A T 4 4 A
@0 fm= [ O (e s ()OS ()Y (V)

[Ul,'f‘l,n‘f”l‘l*k]
Note that since r is odd, each function f is a genuine function on the 2r-fold cover, and
each f is invariant under Spoy,4r—ok+1(F"). This construction was analyzed in [F-G1], and we
established the following result there ([F-G1], Proposition 4.1).

Proposition 10. Suppose r is an odd integer such that the Conjecture 1 (the Orbit Conjec-
ture) holds. Then the representation p is a subrepresentation of the Hilbert space

2r 2r
L2(Sp;n+)7“—2k+1 (F)\Spgngr—2k+l (A))
and it has nonzero projection to the residual spectrum.

We make the stronger Descent Conjecture:

Conjecture 2 (The Descent Conjecture). The representation p is in the residual spectrum,

(2r)

and each irreducible summand of p is the representation Oy o ;.

In [F-G1], Conjecture 4.2, we conjectured that p is in fact ezactly the theta representation

@gi?rf% .1- The slightly weaker statement of Conjecture 2 suffices for our applications. We

also remark that the local version of Conjecture 2 is true. This is given precisely in Lemma 5
below. As a consequence the Descent Conjecture would follow from a strong multiplicity one

theorem for Spgf;)r_%ﬂ (A).

We recall that the theta representation @éi?r_%ﬂ on Spgi?r_%H(A) is obtained from the
residue of the Eisenstein series Eéi:%ﬂf% .1 (-, s) that is associated with the induced representa-

2r
dSp;nJr)r72k+l (&) @(T)
P(A) GLn+7‘17k+1

whose Levi part is G L, —g+1 and @gz .., 1s the theta representation of GLS?”_,CH(A).
n+ry—k+

tion In 0%. Here P is the maximal parabolic subgroup of Spas r—2k+1

See [F-G1], pg. 94. Using this, Conjecture 2 allows us to establish the following result.
Proposition 11. Assume Conjecture 2 holds. Then Proposition 4, part 2 is true.

Proof. Under this hypothesis, the argument is similar to the linear case r =1 (see (1.2) and
(1.3)). That is, we replace the theta function by an Eisenstein series and unfold in order to
obtain zero. Indeed, it follows from Conjecture 2 that the integral (4.2) is zero for all choices
of data if and only if the integrals (1.4) and (1.5) are zero for all choices of data. Suppose
2<k< %1 Consider the integral

(7.2) f / ¢ (g)
(Sp2n] [Un+%1—k,%—k]

[r+1
7k

2), 5 2r
eén)d) (l(u)g)E§n+)r—2k+1 u g S wUngLk
1

r+l g (u) du dg

]

r+l
3 -k

We can unfold this integral, and the unfolding process is exactly as in the linear group

case. See [G-R-S2|. Doing so, and using the cuspidality of ¢("), we deduce that integral
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(7.2) unfolds to an integral which has as inner integration the Whittaker coefficient of the
representation @gz ...~ However, if r <n+7r -k +1, then by [K-P], Theorem 1.3.5 and
n+rq—k+

I1.2.1, this representation is not generic. A similar argument applies to integral (1.5). The
Proposition follows. l

We have the following Corollary.

Corollary 1. Suppose that the Orbit and Descent Conjectures are satisfied. A generic rep-
resentation appears in the tower of theta lifts of m("), i.e., the representation JT(LT;, s generic
for some k, some §, and some choice of data, if and only if () is generic.

(r) .1 18 generic by Theorem 2, part 2. Conversely, suppose

N+

Proof. If #() is generic, then o

that 01(:,1 is generic for some k in the Whittaker range. The case k = n + % is treated in

Theorem 2. For the remaining cases, the existence of a nonzero Whittaker coefficient implies

the nonvanishing of integral (1.4) or (1.5). Similarly to the proof of Proposition 11, we may

S
replace the theta representation Héi:)ﬁ% .1 by an Eisenstein series E(?7) (-, s), and the integral

is necessarily nonzero for Re(s) large. Unfolding this integral as in [G-R-S2] one obtains a
Whittaker integral of ©(") as inner integral. The result follows. 0J

To conclude, we observe that one may obtain somewhat weaker results towards Proposi-
tion 4, part 2 without Conjecture 2.

Proposition 12. Suppose that ©(") is an irreducible cuspidal representation of Spg:l)(A)
with the property that it has at least one unramified constituent which is in general position.
Suppose that k <n-— % Then the representation aglz

part 2 holds for m().

15 not generic. That is, Proposition 4,

We sketch the proof. First, suppose that the Whittaker coefficient Wy, 5(f) is nonzero for
some choice of data and some § € F*. The arguments above show that the integral (4.2) is
nonzero if and only if integrals similar to (1.4) and (1.5) are nonzero, where in those integrals

the functions §37% , are known only to be functions of the form f(m) as in (7.1), that

2n+r—2k+
is, functions obtained by the descent process that uses the theta representation @g& k)
(2r)

to construct automorphic functions on Spy, ) ,..;(A). The nonvanishing of this integral
allows us to conclude that a local Hom space is nonzero. Indeed, choose vectors such that
the integral is nonzero, and choose a finite place v such that all data are unramified. Since
the local groups at v act on the representations, we obtain a nonzero trilinear form.
Suppose that 2 < k < ™2 so that we consider (1.4); the case corresponding to (1.5) is

2
treated in a similar way. Let © now denote the local theta representations with the groups

2),¢°

n+r—2k+1 via the

and covers notated as in the global case. Let Uy, nar,-k(F,) act on @g
embedding lo,r—ok+1 Of this group in Hopyr_okso(F),). Let

(r) _
JUl,rl,nJrrl—k(Fu) (@2(n+r—k)) - V/W

be the S p(%) (F,)-module that arises from the local descent, that is, the twisted Jacquet

2n+r—2k+1
5
module. Here V' is the vector space generated by vectors of the form v; ® v9, v1 € @éi)ff_%ﬂ,
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V9 € @(T)

S(ntr—k)’ and W is the subspace

2), 8
{(U ' Ul) ® (U/ : UQ) - ¢U1,r1,n+r1—k(u)vl ® U2 | Ul € ®§n)+1ff2k+1’ 1)2 € G)gzil‘l-’r‘—k)’ u € U11r11n+7‘1_k(FV)}‘

Then JUl,rl,nJrrrk(FV)(6521)1+r—k)) is an Spa, (F,)-module via the embedding
h diag([%l—kv h, IT;—l—k)
of Span(F,) in Spapsr_oks1(F,). Under the assumption of nonvanishing of the integral (1.4),

we conclude that the Hom space

C)

n+

(r) 2)¥° (r)
Homsp2n(Fu)XUn_,_'rJQril_k’%l_k(Fu)(ﬂ-V ® @271 ® JUl,rl,'rHrlfk(FV)(@2(n+r—k))wU %l—k,%—k’

. 2,0 .
is nonzero, where the group U, , 1, r_(F,) acts on O via ly,.
2 72

We now use information about the local descent of ©%) namely that the local version

2(n+r-k)’
of Conjecture 2 is true. This is given the following lemma.

Lemma 5. Suppose that all data are unramified. Then

(r) ~ 02r)
JOL ) ek (F) (@2(n+r—k)) % Oy irokin-
Though this is not formally stated in [F-G1], it follows from the local versions of the
arguments in Section 4 there. Let v be an unramified place and let O, be the ring of
integers of F,. The computation there is equivalent to showing that the Jacquet module

at v is nonzero and its exponent matches that of @gi?r_% .- Recall that the local theta
(r) (2r)

representation © (resp. O,/ ,..,) is generated by a nonzero Ki-fixed vector with

2(n+r—k)
K1 = Sponir-1)(Oy) a compact open subgroup of Spggwr_k)(Fy) (resp. a nonzero Ko-fixed
vector with Ks 2 Spo,ir_oks1(0,) a compact open subgroup of Spgi?r_%H(F,,)). Since the

image of the K;i-fixed vector in the Jacquet module is Ks-fixed and the exponents match,
the Lemma follows.

It is sufficient to show that the representations in questions do not support such a local
trilinear form. This may be established the same way as the analysis of the integral (7.2)
above, but ported to local fields. For example, instead of unfolding we use Frobenius reci-
procity, and instead of a Fourier expansion we use the Geometrical Lemma of [B-Z], p. 448.
See [F-G3], Section 6, for an example of such an argument. The contribution from the terms
involving the constant terms will vanish by the assumption of general position. The result
follows.
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