THE GENERALIZED DOUBLING METHOD: (k,¢) MODELS
YUANQING CAI, SOLOMON FRIEDBERG, DMITRY GOUREVITCH, AND EYAL KAPLAN

ABSTRACT. One of the key ingredients in the recent construction of the generalized doubling
method is a new class of models, called (k,c) models, for local components of generalized
Speh representations. We construct a family of (k,c) representations, in a purely local set-
ting, and discuss their realizations using inductive formulas. Our main result is a uniqueness
theorem which is essential for the proof that the generalized doubling integral is Eulerian.

INTRODUCTION

A model is a fundamental concept in representation theory and integral representations.
Typically, a model for a representation arises from an equivariant functional, which allows
one to realize the representation in a space of complex-valued functions with some natural
geometric properties. The useful cases are when the functional is unique up to scaling, and
the class of representations affording the model is broad. One important example is the
Whittaker model, which has had a profound impact on the study of representations with a
vast number of applications, perhaps most notably Shahidi’s theory of local coefficients.

Let F' be a local field of characteristic 0. In this short note we discuss a new class of
models, (k,c) models, for representations of GLj. = GLk.(F'), which first appeared in the
construction of the generalized doubling integral ([CFGK19]) in the context of generalized
Speh representations. Our main result: Theorem 4, is that the local generalized Speh rep-
resentation (defined in [Jac84]) of GLyg. corresponding to a unitary generic representation
7 of GLj admits a unique (k,c) model. Our result is in fact stronger: We construct a
map p. from irreducible generic representations 7 of GLj to (k,c) representations p.(7).
This general context is essential for the analysis of the local generalized doubling integrals
([CFGK19, GK]) when data are ramified or archimedean. We also discuss two realizations
of the (k,c) functional, which are also important for the study of such integrals.

The main application of Theorem 4 concerns the generalized doubling integrals. This
theorem completes the proof that the global integral of [CFGK19] is Eulerian. See Corol-
lary 5. In loc. cit. uniqueness was only proved when data are unramified, thus producing
an “almost Eulerian” integral, i.e., only separating out the unramified places (cf. [CFGK19,
(3.1)]). The existence of an Euler product is important for the development of the local
theory, and Theorem 4 also plays a key role there, in the functional equation (see [GK]).
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1. PRELIMINARIES

Let F' be a local field of characteristic 0. Identify linear algebraic F-groups with their F’
points, i.e., GL; = GL;(F). Fix the Borel subgroup Bgr, = Tar, X Nar, of upper triangular
invertible matrices in GL;, where Ty, is the diagonal torus. For a d parts composition
B =(B1,...,04) of I, P3 = Mpgx Vs denotes the corresponding standard parabolic subgroup,
where Vg < Ngr,. The unipotent subgroup opposite to Vj is denoted V; and dp, is the
modulus character of Ps. For an integer ¢ > 0, fc¢ = (fic, ..., [ac) is a composition of lc.
Let wg be the permutation matrix consisting of blocks of identity matrices Ig,, ..., Is,, with
Is, € GLg, on its anti-diagonal, beginning with Iz, on the top right, then Iz,, etc. E.g.,
Wap) = (Ib fa ) We use 75 to denote a representation of Mg, where 75 = ®L,7; (7; is then a
representation of GLg,). Let Mat,y, and Mat, denote the spaces of axb or axa matrices. For
g € Mat,, tg is the transpose of g. The trace map is denoted tr. For z,y € GL;, *y = xyz~!
and if Y < GLy, *Y = {*y:yeY}.

All representations in this work are by definition complex and smooth. A generic repre-
sentation of GL; will be admissible, by definition. Over archimedean fields, by an admissible
representation we mean admissible Fréchet of moderate growth. We use the smooth and
normalized induction functor.

Let U < R < GL; be closed subgroups such that U is a unipotent subgroup, and fix a
character ¢ of U. For a representation ¢ of R on a space V, the Jacquet module Jy () is
the quotient of V by the subspace spanned by {7(u){ -1 (u)€: £ €V, ue U} over p-adic fields,
and by the closure of this subspace for archimedean fields. Then Ji;,(7) is a representation
of R and we normalize the action as in [BZ77, 1.8].

When the field is p-adic, an entire (resp., meromorphic) function f((i,...,(n) : Cm - C
will always be an element of C[¢™, ... ¢%m], (resp., C(¢~%,...,q7m)).

2. REPRESENTATIONS OF TYPE (k,¢)

2.1. Definition. Let k,c > 1 be integers. A partition o = (ay,...,a;) of kc such that a; >0
for all 7 identifies a subgroup V(o) < Ngr,, as follows. Consider the multi-set of integers
Ay ={a;-2j+1:1<i<1,1<j<a;} and let p, be the ke-tuple obtained by arranging
A, in decreasing order. For any x € F*, put zPs = diag(ap-(), ... aps(k)) e T, . The
one-parameter subgroup {zPs : x € F*} acts on the Lie algebra of Ngp, by conjugation,
and V(o) is the subgroup generated by the weight subspaces of weight at least 2. (This
is not the subgroup Vs defined for compositions). Let G, < GLj. denote the centralizer of
{aPe :x e F*}, it acts on the set of characters of V(o). Under this action there is a unique
open orbit O over C, let 9, € O. A character ¢’ of V(o) is called generic if its stabilizer G,
in G, is of the same type as G, 4, over C. For further details see [Gin06], [CM93, § 5] and
[Car93]. Let V(0)gen denote the set of generic characters of V(). If o’ is another partition
of ke, write o’ 2 o if ¢’ is greater than or non-comparable with ¢ under the natural partial
ordering.

For o = (k¢), V(o) = V) and M.xy acts transitively on V(0)gen. We fix ¢ € V(0)gen by
taking a nontrivial additive character ¢» of F' and extending it to a character of Vi by

k-1
(2.1) () =P tr(viina)), v =(vijhcijer,  Vij € Mate.
i=1

Then G, = GL., the diagonal embedding of GL, in M cry.
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Definition 1. An admissible representation p of GLy. is of type (k,c) (briefly, p is (k,c)),
if Homy (o) (p,7") =0 for all o % (k¢) and ¢ € V(0 )gen, and dim Homv(ck)(p,w) =1.

We say that an admissible representation p of GLy. is m-weakly (k,c), if it satisfies the
vanishing condition of Definition 1 and m = dim Homv(ck)(p,@b) satisfies 1 < m < co. Also

note that p is (1,¢) if and only if it is a character of GL,.
A (k,c) functional on p (with respect to ) is a nonzero element of Homv(ck)(p, ). I pis

of type (k,c), the space of such functionals is one dimensional. The resulting model (which
is unique by definition) is called a (k,c) model, and denoted Wy (p). If X is a fixed (k,c¢)
functional, W, (p) is the space of functions g = A(p(g)§) where g € GLj,. and £ is a vector in
the space of p. Then W, (p) is a quotient of p, and when p is irreducible Wy, (p) = p.

The following is an heredity-type result for (k,c) representations.

Proposition 2. For 1 <1 < d, let p; be a (k;,c) representation. If F is archimedean we
further assume ki = ... =kg =1 and for each i, p; = 7; o det for a quasi-character 7; of F*
and det defined on GL.. Then p = Ind%i’“(@lepi) is of type (k,c), where 5 = (ki,...,kq)

and k=ky+...+kq (if F is archimedean, k =d and = (1%)). In the non-archimedean case
if each p; is mi-weakly (k;,c), p is [1¢mi-weakly (k,c).

Proof. We need to prove Homy (s (p,v") = 0 for any partition " » (k¢) and character v €
V(ﬁ’)gen, and dim Homv(ck)(p,@b) = 1. We consider m;-weakly representations at the end of
the proof.

We will use the theory of detivatives of Bernstein and Zelevinsky [BZ76, BZ77] over p-adic
fields, its partial extension to archimedean fields by Aizenbud et. al. [AGS15a, AGS15b],
and the relation between derivatives and degenerate Whittaker models developed (over both
fields) by Gomez et. al. [GGS17]. Let P be the subgroup of matrices g € GL; with the last
row (0,...,0,1) (B < Pq-1,1)) and let v, be the character of V{;_1 1y given by wl(("l-l 11’)) =
¥(v;-1). Then we have the functor ®- from (smooth) representations of P, to representations
of Py given by (o) = Jy,_, ;s (0). For 0 <r <1, the r-th derivative of a representation
o of GL; is defined over p-adic fields by o = Jy,,_, , ((®7)"*(elp)), and over archimedean
fields by o) = ((27)"'(¢|p,))|cL,_, (more precisely this is the pre-derivative, we use the term
derivative for uniformity). Also o(®) = p. The highest derivative of ¢ is the representation
0() such that (™) £ 0 and (") =0 for all r > ry.

According to the definition of (k;,¢) representations and [GGS17, Theorems E, F] (which

also apply over p-adic fields), the highest derivative of p; is pgk"). Then the highest derivative

of pis p®) and p(k) = Indg;’z(_cl’)” (®L, pgki)), where over archimedean fields pgki) = pgl) = 7;0det

and det is the determinant of GL. ;. In the p-adic case this follows from [BZ77, Lemma 4.5];
in the archimedean case this follows from [AGS15a, Corollary 2.4.4] and [AGS15b, Theo-
rem B (see also [GGS17, § 4.4]). Now the highest derivative of p(*) is again its k-th derivative
and we can repeat this process c times to obtain a one dimensional vector space. We conclude
from [GGS17, Theorems E, F] that p admits a unique (k,c) model.

If Xz (k°), we can assume \; > k then p(+1) =0, by [BZ77, Lemma 4.5] and [AGS15b,
Theorem BJ. By [GGS17, Theorems E, F|, this proves the required vanishing properties.

The only difference regarding m;-weakly representations, is that after taking the highest
derivative of p for ¢ times, we obtain a []; m; dimensional space. Then again by [GGS17,
Theorems E, F], dim Homv(ck)(p,w) = [1; m;. O
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Remark 3. The result for p-adic fields is stronger, because we have a general “Leibniz rule”
for derivatives ([BZ77, Lemma 4.5] ).

2.2. The representation p.(7). Let 7 be an irreducible generic representation of GLj, (for
k =1, this means 7 is a quasi-character of F*). It is of type (k,1), by the uniqueness of
Whittaker models and because (k) is the maximal unipotent orbit for GL;. For any ¢, we
construct a (k,c) representation p.(7) as follows. First assume 7 is unitary. For ¢ € C¢,
consider the intertwining operator

M (¢, wrey) = Ind G (@] det

. GLye
A Si7) - Indj *(®%,| det

Cemitl
P 7).

: . GLy,
Given a section ¢ of Ind P(k]z) (®%,|det

is defined for Re(() in a suitable cone by the absolutely convergent integral

MG wge)E(Gg) = [ € wghyvg) do

Vike)

Gi7) which is a holomorphic function of ¢, M ({, w(key)&

then by meromorphic continuation to C¢. Let p.(7) be the image of this operator at

¢=((c=1)/2,(c=3)/2,....(1-)/[2).
Since 7 is unitary, this image is well defined and irreducible by Jacquet [Jac84, Proposi-
tion 2.2] (see also [MW89, § 1.11]) and p.(7) is the unique irreducible quotient of

GLje 1/(2k
(2.2) Indj*((78...® T)5Pﬁ§0)>)
and the unique irreducible subrepresentation of
. ~1/(2k
(2.3) Idge((r®... ©7)55 ).

Now assume 7 is an arbitrary irreducible generic representation of GLj. Then 7 =
Ind%;“’“(®§:1|det %r;) where 7; are tempered and a; > ... > ag (by Langlands’ classification

and [Vog78, Zel80, JS83]). Define
(2.4) pe(T) = Indg;kc(®§l:1| det

aiPC(Ti))'

Clearly p.(|det|*7) = |det [*0p.(T) for any sy € C.

Note that when 7 is unitary, the definition as the image of an intertwining operator agrees
with the definition (2.4). Indeed in this case by Tadi¢ [Tad86] and Vogan [Vog86] we have
T Indg;k(®§l:'1|det "it!), where 7/ are square-integrable and 1/2 > ry > ... > rg > -1/2.
Then by [MWS89, § I.11] we can permute the blocks in p.(7) corresponding to different
representations 7/ hence

(2.5) pe(T) 2 Ind§;i6(®§;1| det

o)),

In particular, e.g.,
GLgt4s

YN C A / /
(o)) = IndP(;;;c,%c) (pe(71) @ pe(72)),

(2.6) pc(IndP(Biy%)

where the L.h.s. (left-hand side) is defined as the image of the intertwining operator. Hence

if a; > ... > ay are the d < d’ distinct numbers among ry,...,rgy, 7; is the tempered represen-
tation parabolically induced from ®icjcar:r;=a,7j and 3 = (ay, ..., aq),

pe(T) 2 Indg;’“(®§l:1|det “pe(15)),
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which agrees with (2.4). Moreover, (2.6) implies that (2.4) also holds when a; > ... > ay.
For example, if 7 is irreducible unramified tempered, 7 = Indgéi (®F,7) for unramified
k

unitary characters 7; of F*. By definition p.(7) is the unique irreducible unramified quotient
<ﬁ(22)butmzmﬂN&%§11u,p47):hﬁgﬁg®gﬂ;o¢x)
We extend the definition to certain unramified principal series, which are not necessarily

irreducible. Assume 7 = Indgéik (®% | |*7;) (k>1) where 7; are as above (e.g., unitary) but

ai >...>ay (7 is not a general unramified principal series because of the order). In this case
7 still admits a unique Whittaker functional. We define p.(7) = Ind%}i;(@ﬁﬂ |2 7; o det),

which is a (k, ¢) representation by Proposition 2. Transitivity of induction and the example
in the last paragraph imply that this definition coincides with (2.4), when 7 is irreducible
(in which case the order of a; does not matter).

Theorem 4. Let T be an irreducible generic representation of GLy. Then p.(7) is (k,c).

Proof. First assume F' is non-archimedean. We start by proving the result for square-
integrable representations 7. By Zelevinsky [Zel80], 7 can be described as the unique ir-
reducible subrepresentation of

(2.7) Imgz«m®m®mﬁ%?%

where 7y is an irreducible unitary supercuspidal representation of GL,. Then by Tadi¢
([Tad87, § 6.1]) the highest Bernstein—Zelevinsky derivative of p.(7) is its k-th derivative
and equals |det ["'/2p._1(7) (see also [Zel80, Tad86] and [LM14, Theorem 14]). Repeatedly
taking highest derivatives, we see that p.(7) is supported on (k¢). The uniqueness of the
functional follows as in the proof of Proposition 2. The proof for an arbitrary (irreducible
generic) 7 now follows from (2.4) and Proposition 2.

Now consider an archimedean F', and an irreducible generic 7. For a smooth representation
¥ of GL; let V(¥) denote its annihilator variety and W F(¥) be its wave-front set (see
e.g., [GS13] for these notions). According to the results of Vogan [Vog91] and Schmid and
Vilonen [SV00], V(¥) is the Zariski closure of WF(¥) (see [GGS17, § 3.3.1]). Applying
this to ¥ = p.(7), by [GS13, Corollary 2.1.8] and [SS90, Theorem 3] (see [GS13, § 4.2]),
(k1 + ...+ kq)¢ = (k¢) is the maximal orbit in WF(p.(7)). Note that this result holds
although p.(7) may be reducible (associated cycles are additive, see e.g., [Vog91, p. 323]).
Therefore Homy,,, (pc(7),%") = 0 for all 5" greater than or not comparable with (k¢) and
generic character 1’ of Vg, and also [GGS17, Theorem E] implies that p.(7) admits a (&, c)
functional. It remains to show dim Homy,,, (p.(7),?’) < 1.

To this end, by [BSS90, SS90] (see also [GS13, Corollary 4.2.5]), each p.(7;) with ;> 1 is

a quotient of Indg:j;(pc(xl) ® p.(x2)) for suitable quasi-characters x1, y2 of F'*, hence p.(7)

itself is also a quotient of a degenerate principal series Ind%}i;(@’? 1Pe(xi)). The latter is

1=

(k,c) by Proposition 2, thus dim Homy, ,, (p.(7),¢’) < 1. We deduce that p.(7) is (k,c). O

Corollary 5. The global generalized doubling integrals of [CFGK19, GK] are Eulerian, for
decomposable data.

Proof. The proof follows from Theorem 4 and the results of [CFGK19, GK]. In order to
provide some details, we switch, in this proof alone, to a global setting. Let F' be a global
number field with a ring of adeles A and fix a nontrivial additive character ¢ of F\A.
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Let 7 be an irreducible cuspidal automorphic representation of GL;(A), and denote the
generalized Speh representation of GLg.(A) corresponding to 7 by p.(7) ([Jac84]). A global
(k,c) functional on p.(7) is given by A(§) = fv(ck)(F)\v(ck)(A)g(v)qp—l(v) dv, where £ is an
automorphic form in the space of p.(7) and ¢ is defined by (2.1). By Theorem 4 this
functional is Eulerian: One can choose for each place v of F' a local (k,c) functional A, on
pe(7,), such that for any decomposable vector £ = ®,&,, A(§) =TT, A\ (&)-

The generalized doubling integral was defined in [CFGK19, GK] for several reductive
groups (. Since the details of the construction are similar, we take G = SO.. Define
H = SOg.. Fix a Siegel parabolic subgroup P < H and a maximal compact subgroup
K < H. Let E(h;s, f) be the Eisenstein series attached to a standard K-finite section f

of Indg((ﬁ))ﬂdet |*12p.(7)), s € C. One can choose a unipotent subgroup U < H and a
generic character ¢y of U(F)\U(A), such that the Fourier coefficient EV¥v of the series
along (U, ) is an automorphic form on G(A) x G(A).

Let 7 be an irreducible cuspidal automorphic representation of G(A), and let p; and @

be two cusp forms in the space of m. The global integral is defined by

Z(s,01,02, f) = f ©1(91) “2(92) BV ((91,92); 5, f) dgr dga,
G(F)xG(FNG(A)xG(A)

where g ~ ‘g is an involution of G(A) and (g1, ¢g2) is the embedding of G x G in H. By [GK,
§ 3.2 and (3.8)] (see also [CFGK19, Theorem 1]), for Re(s) > 0 we have

28)  Zsone = [ [ (eunle)e)ho fsduo(L 9)) vu(u) duo dg.
G(A) Uo(A)

Here Uy < U, (, ) is the standard inner product and ¢ € G(F'). Consider decomposable vectors

f=®,f!, ¢1 and py. Then (by Theorem 4) Ao f =T], f, where for each v, f, = A, o f/ belongs
to the space of Indg((g:))ﬂ det [*-12W,, (po(72,))), and (@1, 7(g)p2) = [1, w,(g,) where w, is a
matrix coefficient of 7Y. The local integral Z(s,w,, f,) is of the form (2.8) but with local
data and we integrate over G(F,) and Uy(F, ). We obtain Z(s,¢1,v2, f) =1, Z(s,w., [,,),

as claimed. O

For an admissible representation o of GLy, let 0*(g) = o(Ji'g~*J;) where J; = wyy. If o is
irreducible, o* @ pV.

Claim 6. If 7 is tempered, p.(7)" = p(7V). In general if T is irreducible, p.(7)* = p.(TV).

Proof. The first assertion follows because p.(7) is a quotient of (2.2), hence both p.(7)¥ and
pe(TV) are irreducible subrepresentations of Indga’zj((fv ®...® TV)5;(1£§)2]€)), but there is a
unique such. The general case follows from the definition, the tempered case and the fact
.y GL * _ GL *
that for any composition 3 of [, (Indpﬁl(@)f:lgi)) = IndP(Bld VVVVV 51)(‘8’?:19617“1)' O
While (2.4) may be reducible, it is still of finite length and admits a central character. We
mention that since the Jacquet functor is exact over non-archimedean fields, and the general-
ized Whittaker functor of [GGS17] is exact over archimedean fields ([GGS17, Corollary GJ),
p.(7) admits a unique irreducible subquotient which is a (k,c) representation.
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3. REALIZATIONS OF (k,c) FUNCTIONALS

3.1. Explicit (k,c) functionals from compositions of k. Let 7 be an irreducible generic
representation of GLj, where k > 1. If 7 is not supercuspidal, it is a quotient of Indg;’c (75)

for a nontrivial composition § of k and an irreducible generic representation 74 (e.g., one can
take 75 to be supercuspidal). A standard technique for realizing the Whittaker model of 7 is
to write down the Jacquet integral on the induced representation (this integral stabilizes in
the p-adic case). Since IndgﬁL’“ (73) also affords a unique Whittaker model, the functional on
the induced representation factors through 7. One may also twist the inducing data 73 using
auxiliary complex parameters, to obtain an absolutely convergent integral which admits an
analytic continuation in these parameters. See e.g., [Sha78, JPSS83, Sou93, Sou00].

We generalize this idea to some extent, for (k,c) functionals.

Lemma 7. If 7 = Ind%;“’c (15) with 75 = ®L,7i, 7; = |det

704, Q1 2 ... > aq and each T, s
square-integrable, or T is the essentially square-integrable quotient of Ind%;“’c (13) and 13 is
irreducible supercuspidal (this includes the case B = (1%), i.e., 75 is a character of Tgy, , over

any local field), then p.(T) is a quotient of Indg;ckc(&-pc(n)).

Proof. In the first case, this is true by (2.4) and (2.6). For the essentially square-integrable
case, over an archimedean field the result follows from [GS13, Corollary 4.2.5] (see the proof
of Theorem 4), and if F is p-adic from [Tad86, Theorem 7.1]. O

Take  as in the lemma. If F' is archimedean assume [ = (1¥), i.e., p.(7) is a quotient of
a degenerate principal series, which is always possible (see the proof of Theorem 4). Denote
B=B1,--.,084), B'=(Ba,---,01) and consider the following Jacquet integral

(3.) | etwswys @) v,

Vare

where ¢ lies in the space of Indg;f“c(®f=1Ww(pc(7‘,-))) and regarded as a complex-valued func-

tion, and ¢ is the restriction of (2.1) to V.. The integral (3.1) is formally a (k, ¢) functional
on the full induced space. Twist the inducing data and induce from ®,|det|%p.(7;), for
fixed ¢ = (C1y...,Cq) € C* with Re((; — G+1) > 0 for all ¢ <d. (Note that Wy (|det|%p.(7;)) =
| det [“ Wy (pe(73)))-

Both IndgﬁLc’“c (®L,pe(7;)) and Ind%f“(@iﬁ det
sition 2. The condition on ¢ implies that the integral is absolutely convergent for all £ (see
e.g., [Sou00, Lemma 2.1]). If we let ¢ vary and ¢ is analytic in ¢, the integral admits analytic
continuation, which over archimedean fields is continuous in the data £. Over p-adic fields
this follows from Bernstein’s continuation principle (the corollary in [Ban98, § 1]), since we
have uniqueness and the integral can be made constant. Over archimedean fields this follows
from Wallach [Wal88, Wal06] (F.+) is “very nice” and we induce from a degenerate principal
series). For any ¢y € C? one can choose data such that the continuation of (3.1) is nonzero
at ¢ = (p. Taking (y = 0 we obtain a (k,c) functional, which is unique (up to scaling). Hence
this functional factors through p.(7) and provides a realization of Wy (p.(7)).

Gp.(7;)) are (k,c) representations, by Propo-

3.2. Explicit (k,c) functionals from compositions of c. Let 7 be an irreducible generic
representation of GLj, and assume an unramified twist of 7 is unitary. In this section we
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construct (k,c) functionals on p.(7) using compositions of ¢. Fix 0 <[ < ¢. Since now both
pi(7) and p._;(7) embed in the corresponding spaces (2.3), p.(7) is a subrepresentation of

(3.2) g (Wolpu(7) @ Wolper ()31 ).

Both (k,1) and (k,c—1) models exist by Theorem 4. We may regard vectors in the space
of (3.2) as complex-valued functions. We construct a (k,c) functional on (3.2), and prove it
does not vanish on any of its subrepresentations, in particular on p.(7).

Ul '1)2
Let v € V{ory and set v;; = (U”U”) where vl € Mat; and v4 € Mat, ;. For t e {1,...,4},
0,7 i,]

let V¥ < Vi.ry be the subgroup obtained by deleting the blocks U ;foralli<jand i #t, and
V =V3. Also define
g o I
000 0 I
K =Klc] = I 0 € GLj..

0 Icfl
0 0 0 [I.y

Example 8. Forc=2 (thenl=1) and k =3,

Consider the functional on the space of (3.2),
(3.3) = f £(kv) dv
v

This is formally a (k,c) functional. Indeed, the conjugation v = *v of v € V| takes the
blocks v} ; onto the subgroup V() embedded in the top left Kl x kl block of Mk (c-1y)- Then
these blocks transform by the (k,1) functional realizing Wy (pi(7)); v7; is taken to Vig k(e-1y)
and & is left-invariant on this group; and after the conjugation, the blocks v4] form the
subgroup V{(._;ysy embedded in the bottom right k(c —1) x k(c - 1) block, and transform by
the (k,c—1) functional reahzmg Wy (pe-i(7)). Thus Vi transforms under (2.1). Also note
that this conjugation takes v}; to V (in particular V' is abelian).

(ki k(1))
ForveV,y="veVy, . ) is such that its bottom left &l x k(c—-1) block takes the form

9”%,2 ”%,k
(34) 5 ) 'U?,j EMat(cfl)xl'

Vk—1,k
0 o e 0

Let yij € Vi rien)
let X < Vg k(e-1y) be the subgroup of matrices  whose top right kl x k(c—1) block is

0.0 - 0
551,2 3
( | ) ) xy ;€ Matyc(e-py.-

3 3
02y, 2y

be obtained from y be zeroing out all the blocks in (3.4) except v7 ;. Also

Define x; ; similarly to y; ;. Let X, ; and Y; ; be the respective subgroups of elements. Then

(35) g(yz yxm) (tr(vw i,j )g(yu)
We show that (3.3) can be used to realize Wy, (p.(7)).
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Lemma 9. For 0<[<c¢, realize p.(T) as a subrepresentation of (3.2). The integral (3.3) is
absolutely convergent, and is a (nonzero) (k,c) functional on p.(T).

Proof. The proof technique is called “root elimination”, see e.g., [Sou93, Proposition 6.1],
[Sou93, § 7.2] and [Jac09, § 6.1] (also the proof of [LR05, Lemma 8]). We argue by eliminating
each y; ; separately, handling the diagonals left to right, bottom to top: starting with y;_1 x,
next Yg-24-1, ..., up to Y12, then yy_ok, yr-3%-1, etc., with y; ; handled last. Let W be a
subrepresentation of (3.2). For ¢ in the space of WW and a Schwartz function ¢ on Maty (.
(over p-adic fields, Schwartz functions are in particular compactly supported), define

Ea(0)= [ Elori)olal,)dass
§59) = [ &lgna)Bd,) dy

2]
Here a is the Fourier transform of ¢ with respect to ¥ otr. By smoothness over p-adic fields,
or by the Dixmier-Malliavin Theorem [DMT78] over archimedean fields, any & is a linear
combination of functions §; ;, and also of functions ¢; ;. Using (3.5), the definition of the
Fourier transform and the fact that V' is abelian we obtain, for (i,75) = (k- 1,k),

f_ _fz’,j(yi,j%o)dyi,j =& ("),

where v° € V does not contain the block of v . We re-denote § =¢; ;, then proceed similarly
with (¢,7) = (k—2,k-1). This shows that the integrand is a Schwartz function on *V, thus
the integral (3.3) is absolutely convergent. At the same time, the integral does not Vanlsh on
W because in this process we can obtain £(/j.). Over archimedean fields the same argument
also implies that (3.3) is continuous (see [Sou95, § 5, Lemma 2, p. 199]).

Over p-adic fields we provide a second argument for the nonvanishing part. Choose &, in
the space of W with &y(Iy.) # 0. Define for a (large) compact subgroup X < X, the function

&(9) = [ elgn)de,

which clearly also belongs to the space of W. We show that for a sufficiently large X,
[ & (Fv)dv = €(I.). Put y ="v. We prove & (y) = 0, unless y belongs to a small compact
v

neighborhood of the identity, and then & (y) = £({x.). We argue by eliminating each y; ;
separately, in the order stated above. Assume we have zeroed out all blocks on the diagonals
to the left of y; ;, and below y;; on its diagonal. Let B denote the set of indices (i’,5’) of
the remaining y; ;» and B° = B - (4,7). Denote &;; = X n X, ; and assume that if (i, j') ¢ B,
Xy o is trivial. Write X' = X° x &} ;. For (i,5") € B°, ¥"i'w; j = uw; j, where u € Vigey x Vi(c_pyr)
and the (k,l) and (k,c—1) characters (2.1) are trivial on u. Therefore by (3.5),

&i(y) - f Eyayde [ w(e(lal)) do,.

Xi,j

The second integral vanishes unless v? ;; 1s sufficiently small, then this integral becomes a

nonzero measure constant. Moreover, 1f & ; is sufficiently large with respect to £ and X
for all (¢',7") € B°, then for any x € X°, ¥z = xz where z belongs to a small neighborhood
of the identity in GLkC, on which ¢ is invariant on the right. Therefore we may remove y; ;
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from y in the first integral. Re-denote X = X°. Repeating this process, the last step is for
Y1, With an integral over X g, and we remain with &(/j.). O

In contrast with the realization described in the previous section, here we regard p.(7)
as a subrepresentation, therefore nonvanishing on p.(7) is not a consequence of uniqueness.
In fact, the proof above implies (k,c) functionals on the space of (3.2) are not necessarily
unique. On the other hand (3.3) is already absolutely convergent (we do not need twists).

3.3. Certain unramified principal series. One may consider integral (3.1) (now with any

d > 2) also when 7 = Indgé’i (®F ,7:) is an unramified principal series (possibly reducible),
k

written with a weakly decreasing order of exponents (see before Theorem 4). Then p.(7) =
Ind%}i?(@ﬁln odet). The integral admits analytic continuation in the twisting parameters

1y -+, Cr, which is nonzero for all choices of (;. Hence it defines a (k, ¢) functional on p.(7).
In this setting we can prove a decomposition result similar to Lemma 9 but using (3.1). The
results of this section are essentially an elaborative reformulation of [CFGK19, Lemma 22].

Put ¢ = (¢1,...,C) € Ck. Denote the representation Ind%’;j(@fzﬁ |Si7;0det) by p.(7¢), with

a minor abuse of notation (because we do not consider only ¢ € R¥ and ¢; > ... > (;). Let
V (¢, 7,¢) be the space of p.(7¢). A section £ on V(7,c¢) is a function £ : C* x GLg. - C such
that for all € C¥, £(¢,-) € V((,7,¢), and we call it entire if { = £((,g) € C[g*%, ..., ¢*%],
for all g € GLg.. A meromorphic section is a function £ on C* x GLy,. such that ¢({)&((,g) is
an entire section, for some holomorphic and not identically zero ¢ : C* — C. The normalized
unramified section £° is the section which is the normalized unramified vector for all .

Let 0 <1 <c. We use the notation x, v;j, vj;, t € {1,...,4}, V! and V = V? from the

(diag(w(lk)vw((c,l)k))“) V2.

previous section. Denote Z = Define an intertwining operator by the

meromorphic continuation of the integral

m(¢ 0§ 9) = [ 6k zg) dz,

where £ is a meromorphic section of V(7,¢). When ¢ is entire, this integral is absolutely
convergent for Re(() in a cone of the form Re({;) > ... > Re({;), which depends only on
the inducing characters.

Lemma 10. Assume 1~ q*7;(w)7;" (@) is nonzero for alli < j and Re(s) > 1. Then for
all ¢ with Re(¢1) > ... > Re((r), m((,k)EY(C,-) is well defined, nonzero and belongs to the
space of

GLy, -1/(2k
(3.6) Indi™  (p1(70) ® et (7)) 20 ).

Proof. The trivial representation of GL. is an unramified subrepresentation of Indggi (5;2/5 ),
hence p.(7¢) is an unramified subrepresentation of

Ind%i;(@fﬂ Ind$ e (| 936,77 ) = Ind$2 (k| [Sm0,7%).

BgL,

Ber, Bar, Bay,

Looking at , we see that the image of m((, k) on the space of this representation is contained
in

GLge ~(c- i o-1/2 L o-1/2
Indggee (|det |2 ( L] 7o, ) @ [det| (8] ["Tidg) )

i 5712 ~1/(2k)
TZ(;BGLC_I ))5P(kl,k(c—l)) )

GLjg(c-1)
BGLk(c—l)

G677 ) @ Ind

k
Bar, (®is

(37) =mdS% ((Ind§h (sk|

Plrt,i(e-1)) Bary,
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This representation contains (3.6) as an unramified subrepresentation. We show m(¢, )£°(¢,-)
satisfies the required properties for the prescribed (. We may decompose m((, ) into rank-1
intertwining operators on spaces of the form

Indgé’iz (| |20 g | |Cj_(c_21’+l)/27'j), i<7, I'<i-1.

According to the Gindikin—-Karpelevich formula ([Cas80, Theorem 3.1}), each intertwining

operator takes the normalized unramified vector in this space to a constant multiple of the
normalized unramified vector in its image, and this constant is given by

1- q71*<i+Cj*l+l'Ti(w)ijl (w)
1- q—Ci+cj—l+l'Ti(w)Tj—1(w) :
Since Re(-¢; + ¢;) < 0 and - + I’ < -1, if the quotient has a zero or pole, then 1 —

q*7i(@)7; (@) = 0 for Re(s) > 1, contradicting our assumption. Therefore m(¢,#)§°(C, )

is well defined and nonzero, and because it is unramified, it also belongs to (3.6). O

Integral (3.1) is also absolutely convergent for Re(¢) in a cone Re((;) > ... > Re((),
which depends only on the inducing characters. The proof is that of the known result for
similar intertwining integrals.

Lemma 11. In the domain of absolute convergence of (3.1) and in general by meromorphic
continuation, for any meromorphic section & on V(1,¢),

[ € @) do = [ m(¢ ) mv)do.
Vieky v

Here m((, k)& belongs to the space obtained from (3.7) by applying the (k,1) and (k,c—1)
functionals (3.1) on the respective factors of P k(c-1))-

Proof. Using matrix multiplication we see that wxy = £~ diag(wry, w(e—pyry)s. The char-
acter 1 is trivial on V2. Thus in its domain of absolute convergence integral (3.1) equals

[ [ [ (6 dingCuogyon, wieay s mo)e (o) (o) doy doy do.
\v4 V4 Vl

The integrals dvidv, constitute the applications of (k,[) and (k,c—1) functionals, e.g., ®V} =

diag(Viey, Ire—y) (see after (3.3)). Now combine this with the proof of Lemma 10. O

Combining this result for £ with Lemma 10, we obtain a result analogous to Lemma 9.

3.4. Equivariance property under GL-. Let g — ¢* be the diagonal embedding of GL,
in GLg.. Since dim Homv(ck)(pc(T),w) =1, a (k,c) functional on p.(7) translates under the

action of GL2 by a character. The following proposition explicates this character.

Lemma 12. Let A be a (k,c) functional on p.(T7) and & be a vector in the space of p.(T).
For any g € GLe, AMpe(7)(9%)¢) = 7(det(g)Lr)A(E)-

Proof. The claim clearly holds for ¢ = 1, since then ¢g® belongs to the center of GLj.
Let ¢ > 1. We prove separately that A(p.(7)(t*)&) = 7(det(¢))A(&) for all ¢ € Ty, and
Ape(7)(g2)E) = A(&) for all g € SL.. Since all (k,c) functionals are proportional, we may
prove each equivariance property using a particular choice of functional.

First take t = diag(tq,...,%.). Assume 7 is irreducible essentially tempered. Consider the
(k,c) functional (3.3) with [ =1 < ¢. Conjugate V by t2, then #(t*) = diag(t,I;,t'*) with
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t' = diag(ty,...,t.) and /" € GLj(c-1)- The change to the measure of V' is 51;(152;@2_/1()2)16)(515) and

the result now follows using induction. The case of irreducible generic 7 is reduced to the
essentially tempered case using (3.1) and note that dp, (t*) =1 for any composition 3 of
k. If T is a reducible unramified principal series we again compute using (3.1).

It remains to consider g € SL.. By definition the Jacquet module of p.(7) with respect to
Viery and (2.1) is one dimensional (whether 7 is irreducible or unramified principal series),

hence SLZ acts trivially on the Jacquet module, and the result follows. O

The above property is useful for the study of integrals involving (%, c¢) models. For exam-
ple, let m; and w9 be irreducible admissible representations of GL., 71 and 7 be irreducible
generic representations of GLg, and s € C. Let V(s,7 x 73) be the space of the repre-
sentation Indg(ii’“;c)ﬂdet *Wy(pe(m1)) ® |det |[*Wy(pe(72))). Denote U = V-1 9,41y and
fix a character @ﬁU of U whose stabilizer in M -1 . x-1y is isomorphic to GL.x GL.. Let
D =U x (GL.xGL.). The study of the generalized doubling integral in this setup involves
the space Homp(V (s, 71 x 73), %y ® m ® me) (see [CFGK19, GK]). Lemma 12 can be used
to determine the requirements on the central chatecters of m; and 7;, in order to ensure this
space is nontrivial. This lemma is also important for the determination of the equivariance
properties of the doubling integral for representations of SOs.,; x GL; with respect to vary-
ing the character v of F'. In that case, if ¢ is replaced by vy, where ¢,(z) = 1 (bx), be F*,
Lemma 12 is applied with g = diag(I..,b7!,1,.).

Acknowledgments. We are grateful to the referees for their interest in this work and
helpful remarks, which led to improvements in the presentation, and specifically to a slightly
more generalized result in Proposition 2.
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