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Snow albedo, a measure of the amount of solar radiation that is reflected at the snow

surface, plays a critical role in Earth’s climate and in regional hydrology because it is a

primary driver of snowmelt timing. Satellite multi-spectral remote sensing provides a

multi-decade record of land surface reflectance, from which snow albedo can be

retrieved. However, this observational record is challenging to assess because

discrete in situ observations are not well suited for validation of snow properties

at the spatial resolution of satellites (tens to hundreds of meters). For example, snow

grain size, a primary driver of snow albedo, can vary at the sub-meter scale driven by

changes in aspect, elevation, and vegetation. Here, we present a new uncrewed

aerial vehicle hyperspectral imaging (UAV-HSI) method for mapping snow surface

properties at high resolution (20 cm). A Resonon near-infrared HSI was flown on a

DJI Matrice 600 Pro over the meadow encompassing Swamp Angel Study Plot in

Senator Beck Basin, Colorado. Using a radiative transfer forward modeling approach,

effective snow grain size and albedo maps were produced from measured surface

reflectance. Coincident ground observations were used for validation; relative to

retrievals from a field spectrometer the mean grain size difference was 2 μm, with an

RMSE of 12 μm, and the mean broadband albedo was within 1% of that measured

near the center of the flight area. Even though the snow surface was visually

homogenous, the maps showed spatial variability and coherent patterns in the

freshly fallen snow. To demonstrate the potential for UAV-HSI to be used to

improve validation of satellite retrievals, the high-resolution maps were used to

assess grain size and albedo retrievals, and subpixel variability, across 17 Landsat

9 OLI pixels from a satellite overpass with similar conditions two days following the

flight. Although Landsat 9 did not capture the same range of values and spatial

variability as the UAV-HSI, on average the comparison showed good agreement, with

a mean grain size difference of 9 μm and the same broadband albedo (86%).
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Introduction

It is critical to quantify the timing and magnitude of seasonal snowmelt from the world’s

mountains. Seasonal snowmelt from mountain headwaters dominates downstream hydrology

and provides water to billions; controlling water availability, flood potential, agriculture,

hydroelectric generation, and water quality (Barnett et al., 2005; Mankin et al., 2015). The

energy for snowmelt in most mountain environments predominantly comes from net solar
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radiation, the biggest contributor of snowpack’s energy balance, which

is primarily controlled by snow albedo (Marks and Dozier, 1992;

DeWalle and Rango, 2008). Therefore, inaccuracy in the estimation of

snow albedo constitutes the major source of uncertainty in calculating

the energy balance of the snowpack. Additionally, limited knowledge

of snow albedo, and trends over space and time in the Arctic, forested

regions, and tundra directly propagates to uncertainty in the controls

that snow has on climate, ecology, and phenology.

Despite the importance of snow albedo, there are very few in situ

measurements of it, and those that do exist are rarely representative of

the surrounding terrain, especially in mountains. There are relatively

long satellite records of multispectral surface reflectance from

satellites, but retrieving snow albedo, which differs from land

surface albedo when the pixel is not fully snow-covered, is

complicated by topography and frequency of mixed pixels in

complex terrain. Currently, there is not a publicly distributed

global remotely sensed snow albedo product suitable for snow in

mountains, although estimates have been made for fractional snow-

covered products from the Moderate Resolution Imaging

Spectrometer (MODIS) for some regions (Bair et al., 2019). Given

the importance of snow albedo it is likely that retrievals will be

developed for finer scale multispectral satellites, like Landsat’s

Operational Land Imager (OLI), but the coarseness of satellite data,

spatially or temporally, relative to snow process scales means that

products are challenging to assess. Nevertheless, given the challenges

of in situ measurements’ representativeness and inaccessibility of the

terrain, satellite remote sensing is the only practical way to consistently

observe mountain snow and understand how it is changing over space

and time.

This motivates the development of methods that can fill the gap

between sparse non-representative point measurements and coarse

satellite observations that could be used for validation or downscaling

and to quantify patterns and spatiotemporal variability. Here, we

present a new uncrewed aerial vehicle hyperspectral imaging (UAV-

HSI) method for mapping effective snow grain size and albedo at high

resolution (20 cm) over Swamp Angel Study Plot in Senator Beck

Basin, San Juan Mountains, CO. To demonstrate the utility of UAV-

HSI snow property retrievals, the maps were resampled to the spatial

resolution of Landsat 9 OLI (30 m) and then used to assess the

multispectral grain size and albedo retrieval and subpixel

variability. Spectral imaging is becoming increasingly suitable for

UAV deployment as instruments decrease in size and increase in

data quality, but to date, no studies have used UAV-HSI to carry out

quantitative snow property retrievals or to assess coarser multispectral

satellite retrievals.

Background

Snow albedo

Snow albedo is defined as the ratio of incoming hemispherical

(direct and diffuse) solar radiation to that of reflected radiation at the

snow surface in all directions (bi-hemispherical). A significant body

of work has refined models and measurements of snow and ice

optical properties, and the spectrally varying controls on albedo are

well understood (Warren and Wiscombe, 1980; Wiscombe and

Warren, 1980; Warren, 1982; Grenfell and Warren, 1999; Warren

and Brandt, 2008; Gardner and Sharp, 2010). In the visible

wavelengths ice is transparent, and due to scattering between

grains, clean snow reflects up to 99% of incoming light. Decreases

in visible snow albedo occur when light-absorbing particles (LAPs)

are present at or near the surface, which increases the likelihood of

light absorption (Warren, 2019). In the near- and shortwave-

infrared ice is increasingly absorptive and snow grain size is the

primary driver of snow albedo. As snow grains grow, typically a

gradual process over time, the path length of ice increases, which

increases the likelihood of absorption. Steep temperature gradients

and melt-freeze cycles can cause rapid grain growth and therefore

accelerate albedo decline.

Comparison of multiple scattering radiative transfer models

and empirical measurements have shown that the spectral albedo of

clean snow (no LAPs) can be well-simulated by representing snow

as a collection of ‘equivalent spheres’, expressed as either as an

effective grain radius or as the specific surface area (Grenfell and

Warren, 1999; Painter and Dozier, 2004; Domine et al., 2006;

Picard et al., 2009). Hereafter, the term effective grain radius

will be simplified and referred to as grain size. The relationship

between grain size and albedo has led to the development of

different grain size retrieval methods from measured surface

reflectance, which offers a pathway to retrieve albedo from

optical remote sensing.

Although sometimes the terms are used interchangeably, it is

important to distinguish between albedo and reflectance measured

from a remote sensing instrument, such as a satellite- or airborne

imaging spectrometer. Generally, passive optical sensors measure a

hemispherical-conical reflectance factor (HCRF) meaning that it only

senses a portion of the light reflected back towards the instrument,

while albedo is a measure of reflected light integrated over all angles

(Schaepman-Strub et al., 2006). Because snow is preferentially forward

scattering, and instantaneous reflectance measurements do not

capture all of the relevant light interactions, modeling is required

to translate HCRF to albedo by accounting for viewing and solar

geometry (Painter et al., 2009).

FIGURE 1

Spectral reflectance factors for snow having an effective grain

radius of 100, 250, and 750 μm. An example of the scaled band area grain

size retrieval method is shown on the 100 μm spectra across the ice

absorption feature centered at 1030 nm. The spectral resolution of

the NIR-HSI (orange arrow), field spectrometer (gray arrow), and Landsat

9 OLI (between dashed lines) are indicated on the plot.
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Previous work

The band placement of current multispectral satellites is not ideal

for retrieving snow properties because there are limited bands in the

near infrared (NIR) and the resulting ‘step’ like spectra do not resolve

snow reflectance features (Landsat 9 OLI example in Figure 1). Still,

snow property retrieval algorithms have been developed. A NIR band

ratio has been used to calculate the normalized difference grain size

index (NDGSI) for MODIS (Painter et al., 2012). This approach

implicitly assumes pixels are fully snow-covered. For pixels that are

not fully snow-covered, spectral unmixing can be used to

simultaneously retrieve the snow-covered fraction and the grain

size within that fraction, which is the approach used by Snow

Property Inversion from Remote Sensing (SPIReS; Bair et al., 2020)

and MODIS Snow-Covered Area and Grain Size solution

(MODSCAG; Painter et al., 2009). A clean snow albedo product,

derived from the grain size, is also provided by MODSCAG. Because

making accurate in situmeasurements at the scale of satellite retrievals

(e.g., 500 m for MODIS) is challenging, ground validation assessment

of these products is scarce. For example, the reported uncertainty for

MODSCAG grain size is 64 μm, with a bias of 30 μm, based on only

12 manual measurements of observable grain size with a hand lens

(Painter et al., 2009), which is not representative of the “effective”

particle size that is being retrieved.

Snow products are most well developed for MODIS because of the

record length (>20 years), near daily temporal resolution, and

radiometric resolution make it the best available option for

mountain snow. At 30 m spatial resolution Landsat would seem

better suited for monitoring snow processes, but historically, the

radiometric resolution of Landsat sensors resulted in saturation

over snow (Rittger et al., 2021), and the temporal repeat was coarse

(16 days), limiting snow applications to seasonal assessment of snow

extent. In research applications Landsat data has been used to assess or

downscale the coarser scale MODIS retrievals, but only for limited

spatial and temporal subsets (Durand et al., 2008; Rittger et al., 2012).

Suitability for snow property retrievals changed with the launch of the

OLI on Landsat 8 in 2013, a modern push broom sensor with better

radiometric resolution and signal-to-noise ratio. The launch of

Landsat 9 OLI in 2021 further increased Landsat’s suitability for

snow because the orbit is offset from Landsat 8, cutting the

temporal repeat in half to 8 days. The current USGS snow product

available for Landsat is fractional snow extent (Level 3 product), but

there is not yet a snow grain size or snow albedo product.

Airborne imaging spectrometers, also referred to as hyperspectral

sensors due to their high number of continuous bands, have been used

to retrieve grain size by relating characteristics of spectrally resolved

ice absorption features to simulated values. This has been done using

the scaled band area method (Figure 1), which integrates under the

continuum line (red line, Figure 1) for the full ice absorption feature

(gray shaded area, Figure 1) centered at 1030 nm (Nolin and Dozier,

2000), spectral slope method calculated from the shoulder to the base

of the 1030 nm ice absorption feature (Skiles et al., 2018b), spectral

best fit (Seidel et al., 2016), or optimal estimation (Bohn et al., 2021).

Spectral snow albedo can then be modeled from grain size using the

per-pixel illumination and viewing angle, and further integrated to

broadband albedo through the convolution of spectral irradiance and

spectral albedo (Painter et al., 2013; Seidel et al., 2016; Skiles et al.,

2018b). These algorithms are more accurate than satellite retrievals

because they leverage the continuous spectral signature of snow in

each pixel, and the higher spatial resolution (2–20 m) reduces the

frequency of mixed pixels. The limitation of this approach is

infrequent collections due to cost and logistics associated with

crewed aircraft.

Increasingly, UAVs are being used for snow applications. Many

have focused on differential snow depth mapping using UAV based

photogrammetry or lidar (Harder et al., 2016; Miziński and

Niedzielski, 2017; Redpath et al., 2018; Harder et al., 2020; Jacobs

et al., 2021). There have been case studies, though, that have

demonstrated mapping of broadband albedo in snow-covered

environments. These studies have used paired pyranometers

mounted in upward- and downward-looking configurations

(Webster and Jonas, 2018; Sproles et al., 2020; Mullen et al., 2022)

or a single downward-looking pyranometer on the UAV and a

stationary upward-looking pyranometer within the flight area (Levy

et al., 2018). These measurements return a single spectrally integrated

value for incident and reflected radiation, from which broadband

albedo can be calculated. If care is taken to fly only over snow, this

would be an effective snow albedo (Mullen et al., 2022), otherwise,

snow cannot be separated from other land surface types with a

spectrally integrated measurement. Rather, the goal is to measure

mixed land surfaces to understand heterogeneity when snow is present

with other land surface types (Webster and Jonas, 2018). The

measurements are referred to as effective because the measured

ratio of outgoing to incoming solar radiation is relative to the

illumination and the upward- and downward-looking spatial

footprint at time of measurement, which is in flux during the UAV

flight due to the instruments 180° field of view.

At ground-based scales similar methods have been applied to map

snow grain size along vertical snow profiles at the laboratory and

snowpit scale from spectral reflectance measured with a near infrared

hyperspectral imager (NIR-HSI). These retrievals were based on the

same concept as airborne imaging spectroscopy, using per-pixel scaled

band area (Donahue et al., 2021), or best fit to simulated NIR

reflectance (Donahue et al., 2022). These retrievals established the

feasibility of mapping grain size from a relatively inexpensive and

compact NIR-HSI, as well as demonstrating an application for

interpreting radar remote sensing retrievals (Donahue and

Hammonds, 2022). This motivated the current study, which has

two primary goals; 1) validate quantitative retrievals of snow grain

size, and albedo, from UAV-HSI measured reflectance, and 2)

demonstrate the utility of these retrievals for assessing per-pixel

values of grain size and albedo, and sub-pixel variability, from

Landsat 9 OLI.

Methods

Study site

The UAV overflight took place on 31 May 2022, at Swamp Angel

Study Plot (SASP; 37.906914°N, −107.711,322°W; 3368 m), located

within Senator Beck Basin Study Area (Landry et al., 2014). Senator

Beck Basin (Figure 2A) is a small (~3 km2) study basin in the San Juan

Mountains of southwest Colorado, United States that has been

operating since water year 2004, and has been previously used as a

primary ground validation site for multiple airborne snow imaging

spectroscopy efforts (Painter et al., 2013; Seidel et al., 2016; Skiles et al.,

2018b). SASP, located in an open meadow (~18,000 m2) below tree
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line near the basin pour point, is an accessible well-instrumented study

plot within the basin boundary (Figure 2). The study plot contains an

instrumentation tower situated within a roped-off area (~200 m2) to

limit snow disturbance.

The tower measurements that were used in this study to put the

snow conditions and snow property retrievals in context were snow

height, air temperature, and snow albedo, which is calculated from

incoming and outgoing solar radiation. The data from Senator Beck is

posted at the end of the water year (September 30th), which was not

yet available for this study. Real time data was used instead, which was

provisional (MesoWest Site ID: CASWP). To fill in a data gap in the

provisional record for snow height, the quality assessed end of day

values were filled in using the nearby RedMountain Pass SNOTEL site

(Site 713).

In addition to the UAV-HSI data collection presented here, a

UAV lidar with RGB camera was flown over SASP on the same day.

This data is not described in detail, as it is not a part of the analysis

presented here, but the orthomosaic of the RGB imagery and the 1 m

snow surface DEM from the lidar are helpful to visualize conditions

at time flight (Figures 2B, C). The meadow gently slopes upward

from the southeast corner and is bounded by a hill on the northern

edge and the creek on the southern edge. On the day of flight, the

FIGURE 2

(A)Overviewmap of Senator Beck Basin, Colorado, United States (B) Swamp Angel Study Plot with RGB orthomosaic from day of flight. (C) The UAV-HSI

flight area with day of flight lidar derived snow surface digital elevation model (DEM).

FIGURE 3

Photographs of (A) UAV-HSI system and (B) reference tarp at the field location.
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snow surface slope across the majority of the meadow ranged

between 1 and 4°, with a mean snow surface elevation of 3,363 m

(2.75 m standard deviation).

Field collection

UAV near infrared hyperspectral imaging
In this study a Resonon Pika NIR-320 hyperspectral imager was

directly mounted to a DJI Matrice 600 Pro Hexacopter (M600) in a

nadir-looking configuration (Figure 3A). The NIR-320 is a line-scan

(i.e., push broom) imager with 168 continuous spectral bands,

measuring spectral radiance between 900–1700 nm at 4.9 nm

bandwidth and 14-bit radiometric resolution. The output data

product is a spectral data cube, which has two spatial dimensions

(x,y) and a spectral dimension (λ = 168), with each spatial pixel

containing the at-sensor spectral radiance signature. The imager

weighs 2.6 kg and is 11.0 × 29.6 × 8.9 cm in size. To track the

location and movement during flight, an inertial measurement unit

(IMU) and global navigation satellite system (GNSS) receiver was

mounted to the side of the imager, which was used to georectify the

imagery postflight.

The flight consisted of three flight lines with 20% overlap; the first

line started at 11:29:46 and the last line completed at 11:33:21 local

time, with a total flight time of approximately four minutes. At the

time of flight, which took place within two hours of solar noon (13:

15 local time), the solar zenith angle was 41° and the snow surface was

fully illuminated. There was high, light, cirrus clouds but they were not

obscuring the sun. The flight altitude was 20 m above ground level

(3388 m agl), producing imagery at 20 cm pixel-resolution. Areal

coverage was ~13,250 m2, which included the roped-off study plot

and most of the surrounding meadow (Figure 2). A reference tarp

made up of three spectrally flat reflectance gray panels (11%, 32%,

54%), which was used in post-processing, was placed in the flight area

prior to the flight (Figure 3B).

Field spectroscopy
For assessment and validation of the UAVmeasurements, discrete

point measurements of surface spectral reflectance factors were

collected in situ with an ASD® FieldSpec4 field spectrometer. The

FieldSpec 4, designed for fast and precise spectral measurements,

contiguously samples the spectral range 350–2500 nm, with

contiguous bands that are 3 nm (at 700 nm) to 10 nm (at 1400 and

2100 nm) at full width half maximum. The spectra are resampled and

splined to 1 nm resolution and the wavelength reproducibility and

accuracy is 0.1 and 0.5 nm, respectively. There were 20 total reflectance

measurements within the flight area, to limit snow disturbance the

measurements were collected over undisturbed snow adjacent to the

existing ski track used to access the study plot (Figure 3B).

Measurements took place just prior to the flight, between 11:

12 and 11:26 a.m. local time. The reflectance transects began with

a measurement of a Spectralon® white reference panel for calibration,

proceeded by snowHCRFmeasurements at regular intervals along the

transect in a nadir-looking configuration using a pistol grip and 8° field

of view narrowing fore optic. With each measurement collected ~1 m

above the snow surface, the measurement spot size was ~28 cm. Each

measurement location was recorded with an Emlid RS2 RTK GNSS

receiver, coupled with a stationary Emlid RS2 base station. During the

flight, the field spectrometer was also used to measure incoming

spectral solar irradiance (W m−2) using a level upward-looking

remote cosine receptor.

Data processing

An overview of the data collection and processing workflow is

shown in Figure 4. Each flight line was georectified using

Spectronon processing software, provided by Resonon, using the

location data and instrument parameters. The flight lines were then

mosaiced using ENVI® image processing and analysis software,

which uses the georeferencing information to align individual lines,

and interpolates across the overlapping regions using cubic

convolution. Due to location error, some identifiable features

(trees, tree shadows, and ski tracks) did not initially align

perfectly and the mosaic was corrected by manually shifting the

flight lines to align the features.

The remainder of the workflow was developed and carried out in

MATLAB®. First, the HCRF was calculated for each NIR-HSI pixel

radiance using the center panel (32%) of the gray reference tarp. To

reduce noise in the spectral reflectance curves a least-squares Savitzky-

Golay filter (Savitzky and Golay, 1964) was applied with a polynomial

degree of 5. Using a 35% reflectance threshold within the ice

absorption feature (1029 nm), pixels containing non-snow and

shadows were masked out of the NIR-HSI map, including trees

and the reference tarp.

Then, for each NIR-HSI pixel and field spectrometer point

measurement the scaled band area (Ab) was calculated for the ice

absorption feature centered at 1030 nm (Nolin and Dozier, 2000). The

scaled band area is the area between the measured reflectance (Rsnow,λ)

and continuum reflectance (Rcont,λ; shown as the red line in Figure 1),

scaled by Rcont,λ, integrated over the 27 bands between the two

shoulders centered at 962 and 1092 nm.

Ab � ∫
λ�1092 nm

λ�962 nm

Rcont,λ − Rsnow,λ

Rcont,λ

dλ (1)

The grain size was retrieved by relating the measured scaled band

area to theoretical scaled band areas from directional-hemispherical

reflectance factors (DHRF) simulated using the Snow, Ice, and Aerosol

Radiative Transfer Model (SNICAR-ADv3; Flanner et al. (2021)). A

scaled band area lookup table was generated for effective grain radii

ranging from 30 to 1500 μm at 1 μm increments and a direct solar

illumination corresponding to the sun geometry at the time of flight

(41° solar zenith angle). The comparison of the measured HCRF with

the simulated DHRF is a suitable approach because they are nearly

identical at nadir viewing angles (Dumont et al., 2010), which was the

case for the NIR-HSI and field spectrometer over the flat meadow.

To assess the UAV retrievals, the NIR-HSI reflectance signatures

and grain sizes were compared to those from the field spectrometer,

which was used as the reference measurement. There was some

uncertainty in the absolute and relative locations of the NIR-HSI

pixels, due to a combination of GNSS uncertainty and the manual

alignment of flight lines. Therefore, field spectrometer point

measurements that were located inside of the ski track were

manually moved (at most 10 cm) outside of the ski track because

all measurements were taken over undisturbed snow. To account for

this, and the larger spot size of the field spectrometer (28 cm) relative

to a UAV-HSI pixel (20 cm), the comparison included the NIR-HSI
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pixel containing the field spectrometer point location and the

surrounding nearest neighbor pixels (9 pixels total).

Following the initial comparison there was a consistent low bias in

the grain sizes, discussed in more detail in Vicarious Calibration

Section. To address this bias, one of the field spectrometer

reflectance measurements was used to carry out a vicarious

calibration (Richter et al., 2001; Secker et al., 2001; Milton et al.,

2009) on the NIR-HSI imagery. This calculates a per-band correction

factor, forcing the NIR-HSI spectral reflectance to match the field

spectrometer, and then applies that correction factor to every pixel in

the scene. In this instance, the 9-pixel average reflectance factor was

used to represent the NIR-HSI spectral reflectance. The vicarious

calibration point, measurement point #14 (Figure 5A), was selected

because 1) it was in the overlapping region between two flight lines, 2)

the nine neighboring pixels were well matched with low variability,

and 3) the reflectance signatures were similar in magnitude to the ASD

but had variation in the shape of the ice absorption feature. This

resulted in correcting the scaled band area, as opposed to reflectance

FIGURE 4

Overview of UAV-HSI and field spectrometer processing steps.

FIGURE 5

(A) NIR-HSI pre- and post-vicarious calibration using the field spectrometer point measurement #14. (B) Field spectrometer point #2 and the pre- and

post-vicariously calibrated NIR-HSI spectra at the same location.
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magnitude, which is shown in the example pre- and post-calibration

UAV-HSI pixels at field spectrometer point #2 (Figure 5B).

Finally, broadband snow albedo was mapped per-pixel using the

post-calibration grain sizes and illumination geometry. Spectral

bihemispherical snow albedo (α(r, λ)) was simulated using

SNICAR for retrieved grain sizes (r) in each pixel. Spectrally

weighted broadband albedo (α(r)) between 350 and 2500 nm was

calculated using the SNICAR simulated albedo in each pixel and the

spectral irradiance (E(λ)) measured in situ with the field spectrometer

by dividing the integral of the product of irradiance and albedo by the

integral of irradiance:

α r( ) �
∫ 2500 nm

λ�350 nm
E λ( )pα r, λ( )Δλ

∫ 2500 nm

λ�350 nm
E λ( )Δλ

(2)

We note that this approach is based solely on grain size and does

not account for albedo reduction due to surface darkening by LAPs,

and therefore would be considered a ‘clean’ snow albedo. For this case

study, this is a reasonable approach because the snowwas freshly fallen

and clean. If the snow were not clean, measurements of snow

reflectance in the visible wavelengths would be needed, in addition

to the NIR, to quantify the observed snow albedo.

Landsat 9 OLI

The Landsat 9 overpass occurred two days after the UAV-HSI

flight, on April 2nd at 11:50 a.m. Parts of the scene were obscured by

clouds, but SASP was cloud free. Although the overpass was not

coincident with the UAV flight, the comparison is suitable given that

conditions were similar for the Landsat 9 overpass, with fresh snow at

the surface and collection time <30 min after the UAV-HSI flight

(solar zenith angle 38°). The Landsat 9 Level-2 surface reflectance

scene (L2SP, Path: 035, Row: 034, Tier 1) was first subset to the

bounding box of the NIR-HSI flight. Then, pixels with less than 25%

NIR-HSI areal coverage were excluded, and 17 pixels remained that

overlapped with the NIR-HSI flight area. To retrieve grain size, the

NDGSI was calculated using band 5 (850–880 nm) and band 6

(1570–1650 nm):

NDGSI �
band5 − band6

band5 + band6

(3)

Grain size, which scales logarithmically with the index value (see

Figure 1 in Painter et al., 2012), was retrieved by matching the Landsat

NDGSI to theoretical NDGSI values based on SNICAR simulated

spectra for a range of grain sizes at 38° direct illumination. The

corresponding broadband albedo in each pixel was then calculated

using the retrieved grain size and illumination geometry as previously

described using Eq. 2. To compare the two datasets, the NIR-HSI grain

size and albedo were resampled from 20 cm to Landsat 9 resolution

(30 m). To quantify the sub-pixel variability within each 30 m pixel,

zonal statistics for grain size and albedo were calculated for each

Landsat pixel from the NIR-HSI imagery using the native 20 cm

resolution. The statistics used to characterize and interpret the

variability were percent coverage, standard deviation, and range

between the highest and lowest values.

Results

Field conditions and UAV flight parameters

The day of the flight (March 31st) was preceded by cloud cover

and precipitation; between March 28th and March 31st 25 cm of new

snow fell. The peak snow height of 174 cm at the instrumentation

tower occurred at 4 a.m. local time on the day of flight, after which

skies began to clear. At the time of flight snow height had settled to

171 cm (Figure 6). The air temperatures were near the freezing point;

the night prior to the flight the temperature reached a low of −10°C

and reached just above 1°C during the flight. A snow pit excavated near

the study plot showed that the top 10 cm of the snowpack was

FIGURE 6

Swamp Angel Study Plot air temperature and snow height between March 29 and April 2. The gap in snow height during the storm prior to March 31st

shows midnight values, as red stars, from a nearby SNOTEL site.
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unconsolidated new snow made up of small and decomposing

precipitation particles, on top of a new, but more consolidated,

snow layer. The temperature of the surface snow layer was 0°C, but

had fallen on snow which retained cold content, with the coldest

temperature of −1°C at 70 cm height. Winds were light, less than 1 m

s−1, typical in the protected meadow, and were coming from the east in

the morning, shifting to the south at 9 a.m. The prevailing wind

direction at SASP is southwest (Landry et al., 2014).

During flight, the UAV was relatively stable and consistent in

terms of pitch, roll, and yaw, which was recorded along each flight line

during imagery collection from the IMU (Figure 7). This is important

because the sensor was directly mounted to the UAV, as opposed to

being on gimbal. The mean roll angle, or movement side to side, was

0.6° and was higher during flight lines 1 and 3. The mean pitch angle,

or movement up or down, tended to be slightly ‘down’ (negative) for

flight lines 1 and 3, and slightly ‘up’ (positive) for flight line 2, with an

overall mean pitch of −1.4°. The yaw, or heading, was also consistent

per flight line. Overall, the flight parameters provide confidence that

the imager was generally nadir-looking during flight, with only minor

deviations due to the movement of the UAV.

Grain size retrieval

Pre-vicarious calibration
The UAV-HSI grain size value distributions were relatively small,

consistent with expectations for freshly fallen snow. Across the full

scene (Figure 8A), made up of 296,864 pixels, the mean grain size was

79 μm (Figure 8B). The range in grain sizes extended from 30 to

250 μm, and the distribution was slightly skewed toward smaller grain

sizes, with a standard deviation of 21 μm. The grain size map showed

spatial variability across the meadow, with distinct patterns across the

snow surface. Notably, the ski track used to access the study plot and

around the meadow, used to take field spectrometer measurements,

had distinctly larger grains due to ski compaction of the new snow.

Larger grains, and the widest variability in values, were found around

trees in the western portion of the meadow and in the upper northeast

corner. Undisturbed snow in the open meadow had the smallest

grains. Visually this area was the most consistent, but the grain

size map shows interesting and distinct patterns in the new snow

that likely relate to microtopography due to wind and settlement of the

new snow on the old snow surface.

For the initial retrieval, the NIR-HSI grain sizes were biased low

compared to the reference grain size retrieved from the field

spectrometer at the 20 discrete measurement locations, with an

RMSE of 24 μm. The field spectrometer measurements had a

higher mean value (98 μm) and the bias was consistent across the

scene; for nearly all points (1–20) the values were higher than the

interquartile range from the neighborhood of surrounding NIR-HSI

pixels (Figures 8C, D). As discussed in methods (Data Processing

Section), measurement point #14 was selected to vicariously calibrate

the UAV-HSI spectra (gray star in Figure 8A), and the reasons why a

calibration may be needed are discussed further in section 5.2.1.

Vicarious calibration
The vicarious calibration factors, determined from the comparison

at point #14, were applied to the whole scene. The magnitude of

reflectance at the longer wavelengths was adjusted down, closer to

what would be expected for snow, which is absorptive past 1500 nm

(Figure 5A). Overall, though, the result of the calibration was not a

distinct shift in NIR reflectance magnitude but rather adjustments to

the shape of the spectral curve, demonstrated for Point #2 in Figure 5B.

For example, the distinct ‘pull down’ feature at the shortest

wavelengths, not a feature of snow absorption but an artifact of the

sensor itself, was no longer present. Additionally, the absorption

feature was slightly deepened and broadened on the right side,

which resulted in an increase in the scaled band area, and

therefore, grain size.

The calibration did not change the grain size patterns (Figure 9A),

but rather the result was an overall increase in grain sizes across the

scene, improving the comparison to the reference field spectrometer

values. Following the calibration, the mean grain size was 100 μm, an

increase of 26 μm relative to the pre-calibration value. The overall

histogram (Figure 9B) maintained its shape, with a slight skew toward

the smaller grains and a small increase in the standard deviation from

21 to 23 μm. The update in grain sizes brought the values closer in line

FIGURE 7

Roll, pitch, and yaw of the UAV during the flight collected from the inertial measurement unit (IMU).
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with the reference values from the field spectrometer; the reference

values were brought closer to the interquartile range of the

neighboring pixels (Figure 9C), and the consistent low bias was no

longer present (Figure 9D). The post calibration comparison showed

values falling both above and below the 1:1 line with the RMSE

reduced to 12 μm. As would be expected, the calibration point itself fell

on the 1:1 line (red star in Figure 9D).

Albedo

The albedo retrieval from the vicariously calibrated grain sizes

(Figure 10A) showed high values, also consistent with what we could

expect from freshly fallen snow. The range of albedo was 83%–89%

with a mean albedo of 86% (Figure 10B). This is a close match to the

albedo measured at the instrumentation tower, which was 87% at

11 a.m. and 85% at 12 p.m. (data was reported at hourly intervals).

Using the incoming solar radiation at time of flight from the field

spectrometer, 633 W m−2, the corresponding mean reflected solar

radiation was 543 W m−2, with a range from 525 to 563 W m−2. The

complement of snow reflection is snow absorption, or net solar

radiation, the primary variable of interest for snow energy balance

modeling. The mean net solar radiation was 90 Wm−2, with a range of

70 and 108 W m−2.

Because the albedo retrieval is based on the grain size retrievals, the

overall patterns across the snow surface were similar between the two.

Albedo was lowest along the ski track and most variable around the

trees, with lower variability and higher albedo in the open portion of

the meadow. Although the range of values was relatively small, the

map demonstrates distinct coherent patterns in snow albedo that

appear to relate to vegetation and landscape features, or in the open,

follow the long fetch of the meadow. High resolution maps like this

demonstrate the high amount of variability that can be present in new

snow, even though it would appear visually homogenous due to the

high consistent reflectance in the visible wavelengths. This also shows

how a relatively small difference in snow albedo can result in a

relatively large differences in net solar radiation at small

(submeter) scales.

FIGURE 8

Pre-vicarious calibration UAV-HSI grain size retrievals compared to the in situ field spectrometer point measurements. (A) Effective grain size map

retrieved from UAV-HSI and the location of the field spectrometer points. (B) Histogram of the UAV-HSI effective grain sizes across the map in (A). (C) The

effective grain size for each field spectrometer point measurement (blue circles) compared against the box plot distribution of UAV-HSI grain sizes in the

9 neighboring pixels (D) One-to-one plot comparing the average (mean) grain size from 9 neighboring UAV-HSI pixels to that from the field

spectrometer.
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FIGURE 9

Vicariously calibrated UAV-HSI grain size retrievals compared to the in situ field spectrometer point measurements. (A) Effective grain size map retrieved

fromUAV-HSI and the location of the field spectrometer points. (B)Histogramof theUAV-HSI effective grain sizes across themap in (A). (C) The effective grain

size for each field spectrometer point measurement (blue circles) compared against the box plot distribution of UAV-HSI grain sizes in the 9 neighboring

pixels. (D) One-to-one plot comparing the average (mean) grain size from 9 neighboring pixels to that from the field spectrometer.

FIGURE 10

(A) Map of UAV-HSI derived broadband albedo across Swamp Angel Study Plot. (B) Histogram of broadband albedo in all pixels contained in the map

from (A).
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Landsat 9 OLI

The conditions on April 2nd, the day of the Landsat 9 overpass, were

similar to those on the day of the UAV-HSI overflight on March 31st

(Figure 6). Between collections, the air temperatures remained below

freezing overnight, a low of −7°C on the 31st and a low of -10°C on the 1st,

with highs around 5°C during the day. Skies were clear the afternoon of

the 31st, with cloud cover and snowfall on the 1st. Snow reached a peak

depth of 180 cm around 1 p.m. local time on the 1st. Skies began to clear

again on the 2nd, with snow settling to 170 cm at the time of the Landsat

9 overpass. The NDGSI grain sizes across the 17 Landsat 9 pixels were

relatively small and representative of new snow and compared well to the

resampled scaled band area UAV-HSI grain size values (Figures 11A, B).

The mean Landsat 9 grain size was 97 μm (2.7 μm standard

deviation) and the mean resampled UAV-HSI grain size was 106 μm

(8.4 μm standard deviation). This result indicates that NDGSI is a

suitable approach for mapping snow grain size from Landsat 9 for these

conditions; flat terrain, and primarily snow-covered pixels. However,

Landsat 9 showed overall less variability compared to resampled UAV-

HSI. The largest grain sizes and variability from UAV-HSI were on the

edges of the scene where pixels containing the masked trees and tree

shadows are seen in the full high resolution map (Figure 9A). These

pixels also had the largest difference (42 and 31 μm) relative to Landsat

(Figure 11C), but conversely, these pixels also had the least coverage

(<30%; Figure 12A). The differences are likely related, at least in part, to

the partial coverage by the UAV-HSI, but other factors may also play a

role, which is discussed further in Comparison to Landsat 9 Section.

Because grain size is the baseline retrieval from snow reflectance,

the Landsat 9 subpixel variability analysis for grain size is presented

FIGURE 11

Comparison of (A) resampled (downscaled) NIR-HSI grain size map

to (B) Landsat 9 OLI NDGSI map, with the difference map shown in (C).

FIGURE 12

Landsat 9 NDGSI zonal statistics based on high resolution UAV-HSI

effective grain size retrieval; (A) percentage of UAV-HSI pixel coverage in

each Landsat pixel, (B) standard deviation of effective grain size per

Landsat 9 pixel based on UAV-HSI, and (C) the range of effective

grain size per Landsat 9 pixel based on UAV-HSI.
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here in Figures 11, 12. Corresponding plots for snow albedo can be

found in Supplementary Figure S1. The albedo results were similar to

those from grain size, with a good comparison between Landsat 9 and

UAV-HSI. The mean values were 86.0% and 85.7%, respectively. On

April 2nd the incoming solar radiation at time of overpass was 659 W

m−2, calculating the net solar radiation from this value would result in

a difference of only 2 W m−2 between Landsat 9 and UAV-HSI. The

overall patterns were also similar to grain size, with the largest

difference in albedo values at the edges of the compared area.

Although the mean values compared well between Landsat 9 and

the UAV-HSI, the sub-pixel grain size and albedo distributions

showed relatively high variability (Figure 12 for grain size,

Supplementary Figure S1 for albedo). There were five Landsat

pixels with 100% coverage, encompassing ~22,500 UAV-HSI pixels.

The high coverage pixels were found in the center of UAV-HSI scene,

over the open fetch of the meadow where snow grain size was least

variable, and albedo was highest (Figure 12A). The standard deviation

in UAV-HSI grain size in the Landsat 9 pixel footprints were between

8 and 13 μm, and the range between minimum and maximum grain

size per pixel was between 60 μm and 160 μm (Figures 12B, C).

Corresponding, for albedo the standard deviations in these pixels

were between 0.4 and 0.5%, with total ranges of 3.0–6.2%.

The lowest coverage, between 25 and 30%, was in two edge pixels,

which still contained ~6,000 UAV-HSI pixels. These pixels were on the

west and northeast edge of the flight area, where higher variability in

grain size and albedo were present around the trees. These Landsat

9 pixels also had the most subpixel variability, with standard deviations

in grain size of 33 and 22 μm and grain size range of 197 and 152 μm.

Corresponding standard deviation values for albedo were 0.7–1.3%,

ranging from 5.3 to 8.3%. Relatively high standard deviations and ranges

were also seen for grain size and albedo across pixels with higher

coverage, indicating the variability was representative of the surface and

not solely a function of the lower coverage and pixel count.

Discussion

UAV data collection

Data collection with UAVs is increasingly accessible and flexible

relative to crewed aircraft, still, it is not without its challenges. The HSI

instrument used in this study required a relatively large and less portable

UAV, like theM600 Pro, with a high payload capacity. The combination

of thin air, due to the high elevation of the site, cold temperatures, and

the weight of the sensor greatly reduced typical flight times. This meant

that the M600 Pro had to be shuttled into the study site on a ski sled,

rather than flown from the road, and that the area covered was relatively

small with lower than desired overlap between flight lines. The flight

lines themselves also did not perfectly align due to GNSS location error,

despite the UAV and the sensor having differential (real time kinematic)

GNSS receivers. In this instance, it may have related to a degraded signal

due to the mountain environment or the temporary base station, but

uncertainty in location and therefore georectification may simply be a

reality of the smaller sensors and receivers necessary for UAV systems.

Additionally, data collection and data processing require a unique

set of skills, which limits the current accessibility of this method. With

a relatively large UAV and heavy payload, having an overall cost

exceeding $50KUSD, a pilot that is both skilled at flying and is familiar

with hyperspectral imaging is necessary. Acquiring quality data

requires the instrument to be focused at time of flight, suitable

integration time and framerate need to be selected, the illumination

conditions need to be consistent during flight, and the UAV needs to

be steady and stable. Also, a relatively large field team was required for

this study to set out the tarp, collect near-coincident field spectrometer

measurements and record the locations, measure incoming irradiance

during flight, and excavate a snowpit to record snow properties, which

required familiarity in field spectroscopy and snow observations.

Finally, data processing required expertise in analyzing spectral

data cubes and snow radiative transfer modeling.

Over time, these hurdles will lower. As hyperspectral imagers

become lighter, they will be able to fly on smaller UAV’s, which will

likely address the challenges with site access and flight time. As

uncertainties are constrained and better understood, the need for

coincident ground observations will be reduced. Using atmospheric

correction to convert at sensor radiance to reflectance could eliminate

the need for the in-scene reference tarp and allow for more flexibility in

variable lighting conditions or view angles across flight lines. Finally,

snow radiative transfer modeling is becoming more accessible with

online and open source code bases (Libois et al., 2013; Flanner et al.,

2021), that could integrate with processing workflows to support

automated or semi-automated processing of UAV-HSI datasets.

Retrieval sensitivity and uncertainty

Effective grain size
Inverting snow properties from remotely sensed data based upon

radiative transfer modeling has some uncertainty due to the method

used to fit measured and simulated spectra, environmental, and

topographic conditions. The scaled band area method, used here, has

a reported uncertainty of 50 μm using Airborne Visible/Infrared

Imaging Spectrometer (AVIRIS Classic) data (Nolin and Dozier,

2000), which has significantly lower spatial and spectral resolution,

and lower signal-to-noise ratio, as compared to the NIR-HSI or the field

spectrometer. In a controlled laboratory environment, Donahue et al.

(2021) found that grain sizes from the same NIR-HSI used in this study

had the same mean grain size value as that retrieved from coincident

field spectrometer measurements, validating the coarser spectral

resolution retrievals. Relative to stereology, however, grain sizes were

41 μm lower (23%), a similar result was also reported in Gergely et al.

(2013), indicating a low bias in ‘optical’ grain size relative to physical

grain size parameters like specific surface area.

Here, the difference in grain size relative to the reference field

spectrometer measurements, 2 μm mean difference and 12 μm RMSE,

indicates that the uncertainty in terms of the optical retrieval is lower

relative to classic AVIRIS retrievals, but higher than that found in the

laboratory. It is worth recognizing that this was 1) following the vicarious

calibration, and 2) that the reference measurements are not without

errors. The sensitivity of grain size retrieved from a field spectrometer,

due to variability in environmental and collection conditions during field

measurements, has been reported as 20 μm (Skiles and Painter, 2017).

There is also sensitivity in retrievals related to the radiative transfer

modeling, and care must be taken to represent conditions at the time of

measurement, for example solar geometry, as incorrect inputs will bias

retrievals (Fair et al., 2022). If the same radiative transfer simulations are

being used for the field spectrometer and UAV-HSI grain size retrievals,

the error in grain size due to incorrect model inputs would be present in

both, and therefore would be unknown. Additionally, scaled band area of
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the ice absorption feature centered at 1030 nm is not suitable for wet

snow; it is modeled based on ice particles only and cannot represent the

widening of the ice absorption feature caused by the presence liquid water

(Donahue et al., 2022).

For future work in more complex environments, there are

additional considerations for retrieving grain size, and albedo, that

relate to the influence of topography on at-sensor radiance. The scaled

band area method is said to be somewhat insensitive to the absolute

measured reflectance (Nolin and Dozier, 2000), although this is not

strictly accurate, as the conversion from measured at-sensor radiance

to surface reflectance can introduce uncertainty into the grain size

retrieval by altering the area of the absorption feature. Here, we used a

calibration tarp laid on the flat ground to convert from radiance to

reflectance. This would not be a suitable approach for sloping terrain,

hills, or mountain sides, which influences magnitude of at-sensor

radiance. In this case, an atmospheric correction, such as ATCOR4

(Richter and Schläpfer, 2002), would likely be the best approach

because it would correct illumination based upon the topography.

Relatedly, SNICAR would not be suitable choice for the radiative

transfer modeling because the sensor would no longer be in a nadir-

looking configuration above a slope (Richter, 1998). In this case, a

radiative transfer model that simulates angular intensities, such as the

discrete ordinates radiative transfer (DISORT) or asymptotic radiative

transfer (ART) models (Stamnes et al., 2000; Kokhanovsky and Zege,

2004), would be needed to simulate directional reflectance.

For this study, the NIR-HSI needed to be vicariously calibrated in

order to retrieve grain sizes that were comparable to the field

spectrometer, and albedo values comparable to the instrumented

tower. The need for vicarious calibration can be due to a

combination of sensor characteristics, noise, sensor misalignment or

movement, environmental conditions, and the method used to convert

from radiance to reflectance. Using higher certainty field measurements

coincident with overflight to correct and scale reflectance values is a

common practice for imaging spectroscopy at satellite and airborne

scales (Secker et al., 2001; Teillet et al., 2001; Brook and Dor, 2011; Skiles

et al., 2018b; Bruegge et al., 2021). Practically speaking, though, it is a

logistical challenge that takes time and requires high accuracy in situ

spectrometermeasurements. In the future it would be useful to carry out

additional UAV-HSI case studies, across a variety of environmental and

snow conditions, in order to better understand sources of uncertainty in

reflectance values, as well as uncertainty if uncalibrated reflectance

values were used in retrievals.

Finally, the case study presented here had a short flight time

(~4 min) during which the illumination conditions did not change. In

future applications during longer flights that cover more area, the sun

angle will change during flight and could result in reflectance gradients

between flight lines. Although not implemented here, finishing the

flight with a flight line that crosses all other lines may be useful for

equalizing any effects from changing illumination.

Albedo
Recall, the albedo product retrieved here, using the NIR-HSI, is the

‘clean’ snow albedo, and does not consider any impacts from LAPs.

This is why the baseline comparison between datasets focused

primarily on grain size. This was suitable for the snow conditions

in this case study, but if present, it would be critical to account for

LAPs because they lower albedo in the visible wavelengths, where solar

irradiance peaks and exerts a stronger weight on broadband albedo

(Skiles et al., 2018a). To account for snow darkening and reduction of

snow albedo by LAPs additional measurements of reflectance across

the visible wavelengths would be needed. Practically speaking, this

would have required an additional sensor co-aligned to the NIR

sensor, which would increase the overall weight of the payload.

This was outside the means and scope of this study.

Without accounting for LAPs, the method presented here for

retrieving albedo is directly linked to snow grain size. The

relationship is non-linear, though, with albedo change being more

sensitive to smaller grain sizes. For example, under the illumination

conditions and radiative transfer modeling present in this study, a 25 μm

span in grain sizes, from 99 to 124 μm, would result in the same retrieved

albedo value of 85% (rounded to nearest whole number). Whereas the

same albedo value of 75% would results from a span of 112 μm, from

668 to 780 μm. This means that for a clean snow, grain size, based

approach of estimating albedo, larger errors would be expected at higher

albedos and smaller grain sizes, like the conditions in this study, and

lower errors for older, aging snow, which would be expected later in the

spring season during melt conditions.

Comparison to Landsat 9

Part of the motivation for this case study was to show how UAV-

HSI could be used to assess coarser scale satellite retrievals. Underlying

this motivation is the understanding that 1) spatial data is best validated

spatially, and 2) discrete point measurements in heterogenous

environments are not representative of satellites observations with

spatial resolutions of tens to hundreds of meters (e.g. (Román et al.,

2013; Ryan et al., 2017)). Because snow variability is essentially fractal in

nature, increasing with increasing resolution, field spectrometer, or

instrumentation tower observations, are not well-suited for assessing

Landsat directly because the discrete measurements are not measuring

the same processes as those being resolved within the 30 m pixels. For

example, patterns influenced by wind or local scale snow compaction.

The assessment of retrievals presented in this study, therefore, was step-

wise with scale by design; first, the discrete field spectrometer

measurements (28 cm spot size) were used to assess the UAV-HSI

grain size (20 cm pixels), then, the UAV-HSI retrievals were re-sampled

to the same spatial scale as Landsat 9 for comparison.

Although our motivation is ultimately better monitoring of

mountain snow, this case study started simple, with retrievals over a

flat mountain meadow. This is an important baseline because if

retrievals are inaccurate in idealized conditions, they will be more so

in more complex terrain. Our approach to retrieving grain size, NDGSI,

was also relatively simple but as shown here, also accurate for flat, fully

snow-covered pixels. The largest differences between the UAV-HSI and

Landsat 9 were in pixels with 1) lower percent coverage, and 2) trees.

The partial coverage may not have been representative of what Landsat

was sampling within those 30 m pixels, but also, trees were masked out

of the reference UAV-HSI imagery. Vegetation is relatively reflective in

the NIR, and when mixed with snow, could positively bias NDGSI.

Using band ratios has a long legacy in the snow remote sensing

community (Riggs et al., 1994; Salomonson and Appel, 2004; Hall and

Riggs, 2010; Gascoin et al., 2020) and they are computationally simple,

which makes them appealing for global scale retrievals. A band ratio

approach is likely suitable for snow cover at high latitudes, where fully

snow-covered pixels could be expected at the 30 m scale, or even high

alpine snow, when accounting for topographic effects on illumination.

This is not the case for midlatitude mountains, though, where over
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90% of Landsat pixels can still be mixed (Selkowitz and Forster, 2016).

The next logical extension of this work would be assessing spectral

mixture analysis using UAV-HSI imagery over snowmixed with other

land cover types. Additionally, since snow is rarely clean,

incorporating visible bands in the albedo calculation to account for

snow darkening by LAPs would be prudent in an operational product.

Conclusion

The first goal in this case study was to demonstrate and validate

quantitative retrievals of snow surface properties, snow grain size and

albedo, from a compact HSI on a UAV platform. We were able to map

grain size and albedo at 20 cm resolution across three flight lines

covering the Swamp Angel Study Plot meadow. The grain size

retrievals were validated using 20 field spectrometer measurements

collected within the flight area, and the broadband albedo was

validated using the solar radiation sensors on the study plot

instrumentation tower. Relative to reference values the snow

properties were accurately mapped, with a mean grain size difference

of 2 μm and RMSE of 12 μm, and a mean broadband albedo within 1%

of broadband albedo measured near the center of flight area. However,

the good comparison to reference measurements required a vicarious

calibration, and additional flights will be needed to assess if similar

results would be achieved for different snow conditions, and in different

environments. An interesting outcome of the study was the relatively

high level of small scale (submeter) variability and spatially coherent

patterns of grain size and albedo present in the new snow.

The second goal of this paper was to demonstrate an

application for UAV-HSI snow property retrievals; using the

higher spatial and spectral resolution retrievals to assess

coarser grain size and albedo from satellite multispectral

imaging. There was a Landsat 9 overpass two days following

the UAV-HSI flight, allowing us to assess NDGSI grain size and

albedo retrieved from 17 Landsat 9 pixels that overlapped with

the UAV-HSI flight area. Ideally, the satellite overpass and UAV-

HSI overflight would have been on the same day, but the snow and

illumination conditions were similar between collection dates.

Although there was less variability in satellite-based grain size

values across the comparison area, the Landsat 9 values compared

well to the resampled UAV-HSI reference dataset, with a mean

grain size difference of 9 μm and the same mean albedo (86%).

The high-resolution UAV-HSI dataset was also used to quantify

subpixel variability, which was lowest in the open meadow and

highest around vegetation, which is useful for interpreting the

representativeness of the 30 m pixel values. In the

future, additional UAV-HSI flights could be used for

quality assessment of Landsat OLI snow retrievals, or even

downscaling.
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