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The Onset of Recrystallization in Polar Firn

Ayobami Ogunmolasuyi! ), Andrii Murdza' ©/, and Ian Baker!

IThayer School of Engineering, Dartmouth College, Hanover, NH, USA

Abstract Constraining the onset of dynamic recrystallization (DRX) and its effects on the mechanical
properties of firn is crucial for firn densification modeling. To that end, samples from a depth of 13 m in

a Summit, Greenland (72°35'N, 38°25'W) firn core were subjected to creep tests at —14°C and 0.21 MPa
compressive stress to strains of 7%, 12%, 18%, and 29%. Microstructural analyses using thin-section imaging
and microcomputed x-ray tomography (micro-CT) revealed smaller grain sizes, reduced specific surface area
and connectivity, and increased density in relation to reduced porosity as the strain increases. These results
show that DRX occurs in firn under creep, with strain-induced boundary migration (SIBM) and nucleation and
growth starting at ~7%. DRX leads to elongated grains, reduced grain size, and the development of a preferred
crystallographic orientation, indicating that DRX occurs by both SIBM and nucleation and growth.

Plain Language Summary Firn is multi-year snow that undergoes densification due to the load from
the snow overburden and from sintering. Understanding firn densification is important for interpreting ice core
records, predicting ice sheet mass balance and elevation changes, and studying climate change effects. Previous
densification models focused on accumulation rate and temperature, overlooking the role of recrystallization.
To address this gap, compression tests were performed on Greenland firn samples from a depth of 13 m. The
deformation resulted in reduced median grain size, preferred crystallographic orientation, and increased density.
Our findings indicate that dynamic recrystallization starts when the firn is subjected to a strain of about 7%
through boundary migration of old grains, around which new stress-free grains also start to form.

1. Introduction

Firn is defined as snow that has undergone partial compaction with a density that ranges between that of snow
and ice. Firn densification refers to the transformation of snow into glacial ice. A comprehensive understanding
of the firn densification process is critical to understanding various processes on glaciers and ice sheets. Ice
cores, for instance, contain bubbles that capture the atmospheric composition at the time of bubble formation
that can be used to reconstruct past climates (Alley, 2000; Raynaud et al., 1993; Sowers & Bender, 1995), with
firn densification controlling the bubble formation process. Moreover, surface meltwater can percolate into the
pore spaces in firn, forming firn aquifers which essentially slow or prevent runoff (Forster et al., 2013; Harper
et al., 2012). Thus, understanding firn aquifer development will improve estimates of how much surface melt-
water will eventually flow into the sea, leading to sea level rise. Additionally, variations in the firn densification
rate pose a significant uncertainty in satellite estimates of ice sheet elevation and mass balance changes (Helsen
et al., 2008), and information about the firn air content is essential for deriving the mass balance of an ice sheet
(Horlings et al., 2021; Oraschewski & Grinsted, 2022).

Firn densification occurs in three stages characterized by the dominant densification mechanism. The first stage
is dominated by grain boundary sliding, vapor transport, and surface diffusion until a density of 550 kgm™3
(Alley, 1987; Gow, 1975; Maeno & Ebinuma, 1983). In the second stage, pore spaces shrink, limiting vapor
diffusion, and leading to sintering processes and recrystallization as the main mechanisms until a density of
830 kgm~3 is achieved (Gow, 1975; Maeno & Ebinuma, 1983). The third stage, starting at the firn-ice transition,
is dominated by bubble shrinkage and compression until the density of ice is reached (917 kgm~3).

A comprehensive understanding of large-scale implications of firn densification processes requires models
to include coupling to the physics, which can be informed by experimental studies. In addition to predicting
density, these models help researchers understand how temperature and precipitation changes affect the densifi-
cation rate of ice. Numerous empirical firn models have been developed and most of them (Barnola et al., 1991;
Herron & Langway, 1980) predict density evolution using only accumulation rate and temperature, and assume
steady-state processes. However, firn densification is governed by microstructural evolution (Arnaud et al., 2000)
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and some models have been developed with microstructural considerations that is, grain-scale physical processes
(Alley, 1987; Arnaud et al., 2000), while a third set of models describing firn densification using experimental
analysis of rheology have also been developed (Meyer et al., 2020). These models disagree in space and time,
and thorough investigations into the microstructural evolution of firn are necessary to improve them (Stevens
et al., 2020). Consequently, ongoing efforts aim to develop a physics-based model for firn compaction under
various conditions. Microstructural evolution directly affects the mechanical properties and rheology of ice with
several mechanisms being involved in the microstructural evolution of ice sheets. Normal grain growth (NGG)
increases grain size, primarily through boundary migration to reduce grain boundary energy per unit volume.
During the plastic deformation of polycrystalline ice, the grains that are favorably oriented in the direction of the
applied load deform by basal slip, that is, slip on the planes perpendicular to the c-axis. The load is then distrib-
uted to the grains with less favorable orientations, leading to the development of high stresses within those grains
and causing a pronounced inhomogeneity in stress distribution (Duval et al., 1983; Humphreys & Hatherly, 2004).
As a consequence of this stress inhomogeneity, the texture that is, size, shape, and arrangement of grains and
fabric are altered during deformation, in a process known as dynamic recrystallization (DRX). DRX balances
grain growth, maintaining a stable grain size in mid-depths, and occurs through different mechanisms. Bending
stresses cause dislocation concentrations, resulting in polygonization or rotation recrystallization, which leads to
negligible change in fabric (De La Chapelle et al., 1998; Duval & Castelnau, 1995). Migration recrystallization
or strain-induced boundary migration (SIBM) occurs when low-dislocation-density grains bulge into neighboring
high-dislocation-density grains, largely preserving the grain size and fabric (De La Chapelle et al., 1998; Duval
et al., 1983). The bulging can lead to serrations in the grain boundaries that can serve as nucleation sites for new
grains (Sakai et al., 2014). Nucleation and growth of new grains occurs when the dislocation density reaches a
critical level, leading to oriented fabrics. The texture and fabric of ice evolve in response to the deformation rate,
stress, and temperature, thereby preserving a history of the ice flow (Alley, 1988; Azuma & Higashi, 1985; Wilen
et al., 2003). The constrained onset of DRX in firn may be of significance to adjusting model parameters for grain
size evolution for the different stages of densification. Also, to our knowledge, no firn model has taken fabric that
is, distribution of c-axis orientation of grains into consideration. Considering the effects of crystal orientation
on firn may be crucial in improving the performance of firn models. An understanding of DRX processes in firn
is critical to a comprehensive understanding of firn densification and the development of a widely acceptable,
accurate firn densification law.

Understanding DRX in different materials is important for various reasons. In metals, it is essential in the automo-
tive or aviation industries, where, for instance, it is used for grain refinement to make stronger and tougher metals
and alloys (Wang et al., 2021; Zhang et al., 2022). In naturally deformed rocks, the relationship between the mean
recrystallized grain size and flow stresses is used to constrain paleo-stresses (Stipp & Tullis, 2003; Twiss, 1977).
In glaciers, DRX alters the microstructure of ice, which can strongly influence its mechanical properties such as
strength, toughness, and ductility (Cole, 2001; Schulson, 1999). For instance, Ranganathan et al. (2021), via a
model, demonstrated that large grain sizes in shear margins raise creep rate and ice fracture vulnerability.

Microstructural evolution of polar firn has previously been studied using microcomputed x-ray tomography (Burr
et al., 2018; Freitag et al., 2004; Li & Baker, 2021; Lomonaco et al., 2011) and both optical microscopy and
scanning electron microscopy (Kipfstuhl et al., 2009; Li & Baker, 2021). In previous studies, the role of DRX
on densification and vice versa has been explored. Alley (1980), Alley et al. (1982), Gow (1969), Kipfstuhl
et al., 2009, and Li and Baker (2021) observed DRX in polar firn, but none of the previous studies, to our knowl-
edge, have been able to constrain its onset. In some recent studies, DRX in ice has been assumed to begin in the
secondary creep regime (Chauve et al., 2015; Wilson et al., 2014). This is in contrast to some studies, where the
onset of migration recrystallization has been observed to coincide with the onset of tertiary creep (De La Chapelle
et al., 1998; Jacka, 1988) and a peak in the stress-strain curve (Duval et al., 1983), and other studies where DRX
was observed to begin during primary creep, at 40%—-95% of the strain required for strain rate minimum (Cross &
Skemer, 2019). Montagnat et al. (2015) found that the activation of DRX mechanisms in ice results in the widely
observed transition to tertiary creep at only 1% strain. However, firn has received comparatively less attention in
this context.

This work presents a detailed analysis of the microstructural evolution and onset of recrystallization in samples
of firn from 13 m depth at Summit, Greenland. We subjected the samples to a constant stress of 0.21 MPa and
analyzed the microstructure and crystallographic orientations at different strains.
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2. Materials and Methods
2.1. Firn Samples

The samples tested were extracted from an ~80 mm diameter, 80 m long firn core at Summit, Greenland (72°35'N,
38°25'W), with an average annual temperature of —31°C (Alley & Woods, 1996) and an average annual accumu-
lation rate of 0.23 m.w.e a~!. Drilled in June 2017, the core was cold shipped to the US Army Corps of Engineers
Cold Region Research Engineering Laboratory (CRREL), Hanover, NH, where it was stored at —30°C. Four
cylindrical samples, 22 + 0.5 mm in diameter and 50 + 0.5 mm in height, were cut from a section at a depth of
13 m, with their long axis cut parallel to the core axis using a hole saw and a band saw.

2.2. Creep Jigs

The samples were crept to strains of 7%, 12%, 18%, and 29% using custom-built creep jigs placed in a chest cooler
(to avoid sublimation) in a cold room at —14 + 0.5°C. The system, described by Li and Baker (2021), includes
an aluminum base plate and three polished aluminum guard rails with linear bearings holding an upper loading
plate (Figure S1 in Supporting Information S1). Displacement was measured using a calibrated Linear Volt-
age Displacement Transducer (LVDT) Omega LD-320 with 0.025% resolution and +0.15% linearity error. The
displacement was logged every 10 s with a Grant SQ2010 datalogger. Each sample was placed in the center of
the plates, and a constant load corresponding to an engineering stress of 0.21 MPa—the same order of magnitude
used by (Chauve, et al., 2015), was achieved by placing 8.16 kg of weights on the upper loading plate of the creep
jig. After creep, all the samples remained cylindrical with no sign of localized deformation. Sample images are
provided in Figure S2 in Supporting Information S1.

2.3. Thin Section Imaging

Two thin sections from the samples were imaged before and after creep. 2 mm thick sections were cut from the
bulk specimens using a band saw and frozen to a glass plate. The thickness of the section was then reduced further
to ~0.5 mm using a microtome. The thin section was then placed between a pair of cross-polarizing sheets on a
light table, and optical micrographs were captured using a digital camera. All thin-section images can be viewed
in Figures S3-S7 in Supporting Information S1.

2.4. Grain Area and Shape

Thin section images were analyzed using ImageJ (Schneider et al., 2012). The scale is set for each image,
followed by drawing freeform lines around individual grains and measuring their area. The measured areas are
then exported to a CSV file for further analysis. Visual depiction of the grain labeling and measurement process
is provided in Figures S9 and S10 in Supporting Information S1. “Circularity” in Imagel is used as a measure of
grain sphericity for this work and is defined as follows:

Where A is the area and P is the perimeter of the grain. A value of 1 indicates a perfect circle. As the value
approaches 0, it indicates an increasingly elongated grain. It is worth noting that circularity estimates may not be
valid for very small grains, as it does not capture the full detail of their shapes.

To provide a quantitative analysis of the evolution of grain nucleation, a recrystallized grain fraction parameter
has been defined as the ratio of the number of nucleated grains to the total number of grains:

Number of nucleated grains

Total number of grains

For simplicity, we have defined the number of nucleated grains as the number of grains with an area significantly
smaller (<10%) than the average undeformed grain area.

2.5. Ice Fabrics

The fabrics (distribution of c-axis orientations) were obtained using a Rigsby (universal) stage, following the
standard procedures described by Langway (1958). The stage is mounted between two cross-polaroids and has
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four axes of rotation. Three of these axes are used to determine the orientation of the sample: the Al axis for
azimuth control and the other two axes (A2 and A4) for horizontal inclination. The fourth axis (A5) serves as a
check and an axis of rotation for the whole stage.

These fabrics are subsequently plotted on a Schmidt plot, employing an equal area projection to map the c-axis
orientation of each crystal onto the hemisphere of a circle.

2.6. X-Ray Microcomputed Tomography

2D and 3D reconstructions of the samples were obtained and characterized using a Bruker Skyscan 1172 housed
in a —14°C cold room. The samples were scanned at an accelerating voltage of 40 KV and a current of 250 pA
with an image pixel size of 17 pm. The samples were rotated 180° in the x-y plane between the X-ray source and
a camera at 0.7° increments, producing 257 projection images.

The binary map images obtained from SkyScan software were then converted into grayscale images using the
NRecon software. Next, using the CT-Analyzer (CTAn) software, the binary images were post-processed using
techniques including filtering using anisotropic diffusion and despeckling. Quantitative 2D and 3D parameters
were then measured.

Some microstructural parameters of interest include density, specific surface area (SSA), and the connectivity
index (CI).

The specific surface area (SSA) is the surface-to-volume ratio of the firn sample, calculated using the hexahedral
marching cubes method (Wang & Baker, 2013). For this study, we have defined SSA as the total surface area of
the air-ice interface per kg of ice.

The connectivity index is the ratio of the volume of the largest pore (V, ) to the total volume of pores:

argest_pore

I/largcsliporc

I/pures

Cl=

This metric has previously been used by Martin et al. (2000) in characterizing cavity coalescence during the
superplastic deformation of an aluminum alloy, Babin et al. (2006) in depicting void coalescence in bread, and
Burr et al. (2018) in quantifying pore morphology in polar firn.

The connectivity index is close to 1 when the pore network is almost fully interconnected and close to 0 when
all pores are closed. A notable advantage of using the connectivity index to quantify pore morphology over other
methods is its robustness to the volume of the sample and image resolution.

The density of the samples was calculated as described by Wang and Baker (2013), using the percent object
volume, which is the ratio of volume occupied by ice (Obj. V), to the total volume of firn including voids (TV).
The density is calculated as follows:

Ob;.V

Pifim) = Wp(ice)

Where p,;., is the theoretical density of pure ice (917 kgm3).

ice}

3. Results and Observations

Four compression tests were conducted under a constant stress of 0.21 MPa at —14°C. The tests were terminated
at strains of 7%, 12%, 18%, and 29% respectively. To analyze the microstructural evolution of the firn over time,
we used four separate samples with similar initial characteristics. Figure 1a shows the strain-versus-time curve,
and Figure 1b shows the strain rate-versus-strain curve for the samples at their respective strains. Figure 1b shows
a clear transition from decelerating (transient) creep to secondary creep at strains ranging from 7% to 14%.

Figure 1b shows the strain rate-versus-strain plot for all specimens. An average minimum strain rate of 1077 s~ is
reached at strains ranging from 7% to 14% across all the samples. The slight differences in strain rates and points
of minimum strain rate observed in Figure 1b are thought to be a result of slight differences in initial microstruc-
tures and sample dimensions, as well as variations in the equalization of the load train.
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Figure 1. Curves of (a) strain versus time, (b) strain rate versus strain of the 13 m firn sample crept to 29% under an
applied engineering stress of 0.21 MPa. “m” indicates the point of minimum strain rate, beyond which the strain rate slightly
increases, indicating the onset of secondary creep.

3.1. Grain Shape and Size

Polarized light images of thin sections of all specimens are shown in Figure 2a. All test samples initially had
equiaxed grains with an average grain size of ~1 mm?. A transition from equiaxed to elongated grains, visually
observed in Figure 2a as well as in the sharp decrease in sphericity (Figure 3f), is observed at 7%, followed by
grain shape stabilization which is related to the nucleation of finer grains at about 12%.

The median grain area decreases significantly at 7% strain, and stabilizes after 12% strain, as shown in Figure 3e.
The evolution of grain area distribution as a function of strain is presented in Figure 2c. The distribution trends
from normal in the undeformed sample to bimodal in the strained samples. Figure 3d illustrates the trend in the
recrystallized grain fraction parameter The data demonstrates a rising rate of recrystallization with increasing
strain.

3.2. Crystal Orientation

C-axis orientations were obtained at strains of 0%, 7%, 12%, 18%, and 29% using the Universal stage. Figure 2b
shows stereographic projections for the c-axis orientations of grains in each specimen.

In Figure 2b, the Schmidt nets indicate an initial random distribution of c-axis orientations at low strains, with
a few grains indicating horizontal c-axes at 0%. Around 7% strain, just before reaching the minimum strain rate,
while the fabric remains random, a slow clustering process begins with the disappearance of horizontally oriented
grains.

At 12% strain, the clustering process continues as more c-axis orientations converge toward the center of the
Schmidt net, indicating a developing fabric. This trend strengthens at 18% strain. Finally, at 29% strain, a clus-
ter of vertical c-axis orientations appears, centered around the plot's origin, corresponding to the compression
direction.

3.3. Micro-CT Reconstructions

Figure 2d presents 2D cross-sections of all samples, where the ice appears white and the pores are black. This 2D
reconstruction visually captures the coarsening of the firn samples as is evident in the rounding of pores and the
reduction in porosity as the strain increases.

In Figures 3a and 3b, the trends in density and SSA are depicted as strain increases. The density increases by
30% between the undeformed sample and the sample deformed to 29% strain. The SSA decreases as the density
increases, consistent with the densification of polar firn.
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Figure 2. (a) Polarized light images (i) indicates the equiaxed grains, (ii) indicates the elongated grains, and (iii) indicates the
nuclei of recrystallized grains(b) C-axis pole figures from individual grains represented on a Schmidt net. Each point on the
Schmidt net corresponds to the orientation of one individual crystal. A crystal with a vertical c-axis has a point at the center
of the plot, while a crystal with a horizontal c-axis has a point at the edge of the plot. (c) Logarithmic distributions of grain
area (mm?) (d) Micro-CT 2D reconstructions of horizontal thin sections (white indicates ice, black indicates air) of 13 m firn
samples as compression strain increases from 0% at the top to 29% at the bottom.
In Figure 3c, the change in Cl is depicted as strain increases. CI decreases by ~8% from the undeformed sample to
the sample deformed to 29% strain, with the most significant decrease occurring between 18% strain (600 Kgm~3)
and 29% strain (710 Kgm™).
4. Discussion
The second stage of densification, occurring at densities between 550 Kgm =3 and 830 Kgm™3, is controlled by
deformation and recrystallization. SIBM can occur when the strain energy difference between adjacent grains is
enough to nucleate a bulge in the grain boundary (Duval et al., 1983). Unlike rotation recrystallization and nucle-
ation and growth, SIBM does not involve the formation of new crystals, instead, it leads to the migration of grain
boundaries (Reed-Hill & Abbaschian, 2008). In our tested samples, DRX is observed during the transition from
primary creep to secondary creep with SIBM starting at 7% strain, and nucleation of a few new grains commenc-
ing before 12% strain. This process continues up to ~29% strain, resulting in substantial recrystallization and an
85% reduction in median grain area.
As the sample is deformed to 29% strain, the median grain area exhibits a decreasing rate of reduction, indicating
substantial recrystallization. Part of the annealing process in ice involves normal grain growth. Carpenter and
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Figure 3. Trends in microstructural parameters: (a) density, (b) specific surface area (SSA), (c) Connectivity index (d)
Recrystallized grain fraction (¢) Median grain area (MGA), and (f) sphericity for samples strained to 0%, 7%, 12%, 18%, and 29%.
Elam (1920) and Altherthum (1922) established the distinguishing factor between recrystallization and grain
growth, stating that the driving force for recrystallization is provided by stored energy and that for grain growth is
provided by grain boundary energy (Humphreys & Hatherly, 2004). If deformation is continued to larger strains,
itis still unclear whether there is a transition or a balance between recrystallization and normal grain growth. This
phenomenon is worthy of further study.
The evolution of grain size distribution with strain (Figure 2c) shows a transition from a normal distribution in the
unstrained sample to a bimodal distribution in the rest of the samples. The grain area evolution is also described
by the recrystallized grain fraction which increases from ~6% to ~40% as the strain increases from 7% to 29%.
These observations indicate an increase in the volume fraction of recrystallized material as the strain increases.
The grains start becoming elongated with serrated boundaries at ~7% (Figure 2a). This change in grain shape
is associated with a decrease in sphericity which has been linked to reduced porosity and permeability in rocks
(Payton et al., 2022; Safari et al., 2021). Also, Figure 3 shows that as the grain size decreases, the density
increases. Smaller grains have a larger surface area per unit volume than larger grains, resulting in greater inter-
actions between grains.
In addition to density and grain size evolution, other structural parameters such as SSA and CI contribute further
to understanding the microstructural evolution (Figure 3). Consistent with the densification of polar firn, SSA
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and CI decrease with increasing density. While CI remains close to 1, it notably declines between 18% and 29%
strain (between 600 Kgm~3 and 710 Kgm3). This is consistent with the findings of Burr et al. (2018) who found
that pores in polar firn remain well interconnected with a CI value close to 1, up to the pore close-off density of
~830 Kgm~3 beyond which CI significantly drops to ~0. While these parameters are evidence of microstructural
evolution, no significant change in their values points to the onset of recrystallization.

In Figure 2b, the fabrics of the grains indicate random orientations up to around ~7% strain, when a slow clustering
process is observed. At this point, no horizontal grain orientations are observed, and there is a slight convergence
toward the compression axis, which becomes more pronounced with increasing strain. This fabric development
aligns with the findings of Azuma and Higashi (1985), who determined that the compression of a sample with a
random fabric results in clustering around the compression axis. Preferred crystal orientation records deforma-
tional history (Alley, 1988), and results in increased plastic anisotropy in glacier ice, affecting its flow in glaciers
and ice sheets. Furthermore, fabric and texture contrasts across different climate change events are believed to
cause significant variations in the rheology of ice in different ice cores (Azuma et al., 2000; Durand et al., 2007;
Paterson, 1991; Saruya et al., 2022; Thorsteinnson et al., 1997). For instance, Paterson (1991) found that the
strong, near-vertical single maximum fabric in ice-age ice, keeps the grain size small and leads to a strain rate 2.5
times faster than that in Holocene ice under the same stress and temperature. Therefore, the fabric development
observed in this study may impact subsequent grain size evolution and, consequently, the flow rate of firn.

Many firn models either neglect grain size evolution or focus on grain growth mechanisms (Arthern et al., 2010;
Kingslake et al., 2022). However, these models that consider grain growth have failed to demonstrate signifi-
cant improvement in their performance (Stevens et al., 2020). Our findings, supported by other studies (Durand
et al., 2008; Kipfstuhl et al., 2009) indicate that while some grains grow, SIBM and the nucleation of finer grains
also occur in firn. This highlights the need for incorporating additional grain size evolution theories, such as
DRX in addition to normal grain growth (NGG) during firn densification, underscoring the important role DRX
mechanisms will play in the development of a physics-based firn model.

5. Conclusion

We have subjected firn from a depth of 13 m to deformation by compressive creep to various strains, rang-
ing from 7% to 29%. We examined the resulting microstructures using a combination of micro-CT and optical
microscopy techniques. We have demonstrated that DRX occurs in low-density firn, with the onset in the present
case occurring around 7% strain, coinciding with the onset of secondary creep. The recrystallization leads to
elongated grains with serrated boundaries, a reduction in median grain size, and a change in the fabric, indicating
that recrystallization occurs by SIBM, and nucleation and growth. These findings underscore the importance of
considering DRX mechanisms (SIBM, nucleation, and growth) to comprehensively understand and model firn
densification.

Of further interest is the effect of temperature on the recrystallization mechanisms present during firn densifi-
cation. Higher temperatures at high strain can lead to faster grain boundary migration rates, which may result
in the domination of SIBM during DRX (De La Chapelle et al., 1998; Thorsteinnson et al., 1997). At relatively
lower strains, higher temperatures provide more thermal energy, facilitating nucleation and subsequent growth
(Humphreys & Hatherly, 2004). Consequently, higher temperatures might trigger an earlier onset of DRX. There-
fore, the effects of temperature on DRX mechanisms in firn are worthy of further study.

Data Availability Statement

The mechanical and microstructural data supporting the conclusions in this study are available at Ogunmolasuyi
et al. (2023).
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