
978-1-6654-0823-3/22/$31.00 ©2022 IEEE

A Platform for Deploying Multi-agent Deep

Reinforcement Learning in Microgrid Distributed

Control

Tung-Lam Nguyen*, Yu Wang', Quoc-Bao Duong!, Quoc-Tuan Tran’, Ha Thi Nguyen, Osama A. Mohammed*
*Florida International University, USA

tImperial College London, UK

tAIP PRIMECA Dauphine Savoie, Univ. Grenoble Alpes, France

§8Univ. Grenoble Alpes, INES, CEA, LITEN, France
University of Connecticut, USA

Abstract—Distributed control strategies have been attracted

significant attention due to numerous advantages over traditional
centralized control strategies. The development of deep rein-
forcement learning method provides a novel approach to control
grid without knowing the system’s parameters. The training

and validating process with grid simulation as environment have
been supported by several toolboxes. In this paper, a platform

based on redis NoSQL database is proposed to the deploy the
multi-agent system of deep reinforcement learning algorithms
for control microgrid in a distributed manner. The accuracy

of agent implementation under realistic condition with physical
communication network can be evaluated with the proposed
platform. The distributed control in islanded DC microgrid using
Deep Deterministic Policy Gradient is introduced as an use case

to show the operation of the platform.

Index Terms—deep reinforcement learning, distributed control,

microgrid, redis database, the multi-agent system

I. INTRODUCTION

With the increase of advanced control and computation

intelligence as well as the high integration of distributed

generation, distributed and autonomous power systems are

emerging. Distributed control strategies are potential required

feature for the next generation of power systems. Instead

of gathering all involved information and processing it in a

central way, the data for distributed processes is only local

and adjacent for any unit. The distributed control systems

can overcome limitations of traditional centralized control

approach [1]. The multi-agent system (MAS) is the advanced

technology that has been widely applied to realize the dis-

tributed control algorithms in AC and DC microgrids (MGs)

[2], [3]. The agent is an independent entity which has ability

of calculating and transferring data in a peer-to-peer commu-

nication network to achieve global objectives in distributed

manner. The grid consists of electrical, communication and

intelligence infrastructure that form a complex cyber-physical

energy system. The distributed control system based on com-

munication and sensor network is becoming a crucial topic

to be investigated in modern cyber-physical design of MGs.

Distributed strategies and MAS have attracted great attention

recently to enhance the operation of MGs. Multiple objectives

of accuracy power sharing, voltage/frequency restoration and

978-1-6654-0823-3/22/$31.00 ©2022 IEEE

balanced state of charge for secondary control can be achieved

by using distributed finite-time algorithms [4]. [5] deals with

the distributed hierarchical control architecture of meshed

multi-terminal de (MTDC) networks. The optimal power flow

solved in distributed manner is presented in [6]-[8] by using

Alternating Direction of Multipliers Method (ADMM) and

Augmented Lagrangian Alternating Direction Inexact Newton

(ALADIN).

In the existing distributed methods, the control design de-

pends largely on knowing parameters, e.g. loads information,

line impedance, etc. which can increase significantly with the

development of grids and the integration of the renewable

energy resources. In order to overcome the issues, the rein-

forcement learning (RL) [9] as well as deep reinforcement

learning (DRL) has been applied in MG control to deal with

unknown structure and parameter models. The RL agent can

give precise decisions only based on a self learning process

without a complex mathematical model. The rapid evolution

with continuously improved performance makes RL a promis-

ing method for robust control operation in MGs [10], [11]. In

RL and DRL, the agent observes the system state, take control

actions, observe the effects of these actions, and progressively

learn an algorithm to maximize a predefined reward. [12], [13]

provide DRL based method for distributed current sharing and

voltage regulation in DC grid. RL approaches for frequency

control of inverter-based AC MGs are presented in [14],

[15]. In [16], the authors developed novel adaptive emergency

control schemes using DRL for complex power systems.

This work focuses on a platform used to implement the

MAS in a realistic condition. Currently, the MAS of RL for

distributed control in MGs is facing challenges due to the

fact that training and validating processes on MG systems are

difficult tasks. The MG environment is simulated on power

system simulators, meanwhile, the RL agent is designed and

programmed to interact with the environment for the obser-

vation and training RL policy. Recently, there are toolboxes

providing functions to support the training process that can

be used in the electrical field, e.g. Reinforcement Toolbox,

Microsoft Project Bonsai Toolbox in Matlab/Simulink. They

improve the training performance by integrating the interface

20
22

 IE
EE

 P
ow

er
 &

 E
ne

rg
y

So
ci

et
y

Ge
ne

ra
l M

ee
tin

g
(P

ES
GM

) |
 9

78
-1

-6
65

4-
08

23
-3

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

PE
SG

M
48

71
9.

20
22

.9
91

71
36

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on July 10,2024 at 16:45:53 UTC from IEEE Xplore. Restrictions apply.

978-1-6654-0823-3/22/$31.00 ©2022 IEEE

between RL agent and simulation models. Nonetheless, the

deployment of MAS based distributed RL control is still

not mentioned. The system states as inputs of agent are not

only the local information but also the data from neighbors.

Furthermore, in the validation process using existing toolkits,

trained agents operate synchronously (in the same time step

in the simulation) with other agents as well as with the

simulation model, which does not accurately reflect the actual

implementation of the system. Therefore, the accuracy of the

agents after training can not be guaranteed under the real

communication network. The MAS needs a platform to be

validated under working environment.

In this paper, we propose a platform for validating and im-

plementing MAS of DRL to control MG in a distributed man-

ner. In this platform, the agents are operated by considering the

asynchronous operation of the agents, the interaction with the

physical energy system, and the communication network for

data exchange between the agents. The platform will allow the

trained agents operate independently and run asynchronously

with the simulation environment to online control the grid. The

trained agents are therefore more ready for applications on real

network grids. The platform is presented for the distributed

secondary control in DC MG, but it is built in a system level

and can be applied for any other MAS of RL algorithms.

II. DEEP REINFORCEMENT LEARNING FOR DISTRIBUTED

SECONDARY CONTROL IN DC MGS

In this section, the DRL is firstly introduced in an overview.

Then a case of islanded DG MG is presented by using DRL

algorithm name Deep Deterministic Policy Gradient (DDPG).

These trained agents in this use case will be deployed in the

proposed platform described in the following section.

A. Deep reinforcement learning

In this section, we only present the general idea of DRL for

controlling dynamic systems. The detail of RL concept can be

found in [9]. RL is a goal-directed computational approach

where a processor learns how to perform a task by interacting

with a dynamic environment. This learning approach enables

a processor to make decisions to maximize the cumulative

reward for the task without being explicitly programmed to

achieve predefined objectives. Figure 1 illustrates a general

structure of a RL case.

The goal of RL is to train agents to complete a task with

an unknown environment. The agent gets observations and

a reward from the environment and returns actions to the

environment. The reward is used to evaluate action based on

predefined criteria is with respect to completing the goal.

The agent consists of two main components: a policy and

a learning algorithm.

e The policy is a function that gives decision of actions

based on the observations from the environment. The

parameters of the policy are adjustable.

e Based on the actions, observations and reward, the learn-

ing algorithm is used to iteratively update the policy

parameters. The objective of the learning algorithm is

978-1-6654-0823-3/22/$31.00 ©2022 IEEE

agent

observation action

.
policy
update

reinforcement
learning
algorithm

A

reward environment |-¢

Fig. 1. A general structure of a RL case.

to maximize the cumulative reward computed during the

task.

RL can be considered repeated trial-and-error interactions

between agent and the environment without human involve-

ment. Depending on the learning algorithm, an agent manages

one or more parameterized functions for training the policy.

There are two types of functions.

e Critics (policy—based approach): a critic finds the ex-

pected value of the long-term future reward from given

observation and action.

e Actors (value—based approach): an actor finds the action

that maximizes the long-term future reward from a given

observation

DRL combines the perception function of deep learning

and the decision-making ability of reinforcement learning. For

deploying DRL, the policy is a actor represented by a deep

neural network (NN) with inputs are state observations and

outputs are action returned to the environment.

B. DDPG Algorithm for Distributed Secondary Control in

Islanded DC MGs

The islanded DC MG consists of three distributed generators

(DGs) supplying power for loads in the system. The droop

based primary controllers are located locally at each DG to

maintain the stability of the MG. The local primary control

will react immediately in a decentralized way to balance power

between suppliers and consumers when occurring disturbances

in the grid. The MAS trained by DDPG algorithm will take the

responsibility of the secondary control level in a distributed

manner for accurate current sharing and voltage restoration.

Figure 2 describes the studied DC MG. The communication

topology is illustrated by the communication lines between

agents in the figure.

1) DDPG: The deep deterministic policy gradient (DDPG)

algorithm is a model-free, online, off-policy reinforcement

learning method [17]. A DDPG agent consists of an actor NN

and a critic NN that computes an optimal policy to maximizes

the long-term reward.

The DRL agent is trained through three main steps: i) the

actor and critic parameters are updated at each step of the

training process, ii) the experiment results are then stored into

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on July 10,2024 at 16:45:53 UTC from IEEE Xplore. Restrictions apply.

978-1-6654-0823-3/22/$31.00 ©2022 IEEE

droop base
primary control 1

load

load

Fig. 2. The studied DC MG with DRL agents.

an experiment buffer, this buffer is extracted randomly by the

agent to update the actor and critic NN, and iii) a stochastic

noise is added into the policy to perturb the action.

2) Agent design: The secondary control objectives for the

DC MG operation are:

Vi =v, =V3 =V*
kh = kal = kgIs

where V; and J; are the output voltage and current of 7th

DG respectively, V* is the nominal voltage, k; is the droop

coefficient of ith DG.

The inner control loop of each DG receives the reference

voltage V;e7 to determine pulse width modulation (PWM) as

the input signal of the DG converter. The DDPG agents are

designed to regulate reference voltage to compensate for the

deviation of the voltages and output currents simultaneously.

The inputs of an agent or the observation signals are local

measurements and the data exchange with the neighbors. The

reward function of each agent at training step ¢ is defined:

(1)

1 t
= 2

"1 ct|V* —Vy| 4 clkili — kele| ()

1
"2 = ap 2 3 (3)

c3|V _ V2| + cS kolo _— kyth| + c3|kolg _ k3I3|

1 t - 4
"3 GV* — Val + Blksls — kala] ®

The inputs of the designed DDPG agent 7 for the training

process are {V;, 1, Vj, 1;} from local measurement and
{V;, I;} from every neighbor agent j. The outputs will be
compensation signals which are sent to the primary controllers.

III. THE PLATFORM FOR DEPLOYING MAS OF DRL

Figure 3 shows the proposed platform for deploying vali-

dating the agents trained in the previous section. The platform

can be extendable for a larger number of agents, different

978-1-6654-0823-3/22/$31.00 ©2022 IEEE

grids and various RL algorithms. The platform consists of

three parts: the grid simulation, the multi-agent system and

the redis database as an interface. In order to approach to the

practical implementation of distributed control systems, the

platform fulfils the following requirements:

e The DRL agents run in distinguish processes and operate

asynchronously with each other.

e The DRL agents runs asynchronously with the model

simulation.

e Each agent only observes local information measured

from the outputs of the corresponding DG and the in-

formation from neighbor DGs.

e The local controller at each DG only receives the control

signal from the corresponding agent.

A. The redis database

A redis database is used as for two purposes: i) the interface

between agents and the MG simulation in Matlab/Simulink,

and ii) the interface between agents. Redis! is an open-source

in-memory data structure store, used as a database, cache and

message broker. Redis is fast, easy to use, a NoSQL database

and being supported in most of the program languages. The

redis database can locate on either a local server or a remote

server.

There are two sets of variables in the redis database. The

output set is for transferring measured data of the grid from

the Simulink simulation to the agents. The input set is used

to transfer control signals from the outputs of agents to the

primary controllers in the simulation. The transferring process

between the redis database and the simulation is implemented

continuously. It can be seen that the variables in the output set

are updated by the data from the simulation, and the variables

in the input set are updated by the agent system. The setup of

the proposed platform with the database allows the data can

flow flexibly between entities in the system.

B. The grid simulation

The grid is modelled to run in Matlab/Simulink. The local

controllers located at DGs, including inner control loop and

primary control are also integrated into the model for the local

and fast response. The grid with only local controllers can

operate at stable state but not at nominal state. The DDPG

agents, after a large number of training steps, will be used to

bring the system to the desired state. We use user Datagram

Protocol/Internet Protocol (UDP) to broadcast the measure-

ment signal to outside the Simulink domain as well as collect

control signals from other domains. This part of the platform

can be considered as the simulation environment presented

in Section II. An interface is also built for the exchanging

information between Simulink and the redis database.

C. The multi-agent system

The DRL agent system is a cluster of agents, and each

agent takes in charge of the controlled device in the grid.

lhttps://redis.io

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on July 10,2024 at 16:45:53 UTC from IEEE Xplore. Restrictions apply.

978-1-6654-0823-3/22/$31.00 ©2022 IEEE

thread/computer 1
RDL agent 1

thread/computer 2
RDL agent 2

thread/computer 3
RDL agent 3

ZB output
~ : iput v

$$ s—_. > s_~-—

redis meas Gl meas G2 meas G3 control G1 control G2 control G3

database

A Gl G2 G3

Simulink DC grid

load

Fig. 3. The platform for deploying MAS of DRL.

The structure of a DRL agent is designed as illustrated in

Figure 4. The agent is a C++ program having the ability to

collect data, process calculation and send the result back to the

system. In order to access data in the redis server, each agent

is a redis client and connects to the server when starting. The

agents can run in separated threads or in separated machines

(computer, embedded system, microprocessor, etc.) within the

same communication network connected to the redis server.

send data

from the output set

of redis
to the input set

of redis

Fig. 4. The RDL agent structure.

In a DRL agent, the learning algorithm and the critic

network are only used for the training process, while the policy

will be the main part for the deploy process. Once the DRL

agents are trained as presented in Section II, the policies of

the agents or actor networks are separated and converted from

Matlab code to C++ code. Each trained neural network is then

integrated into an agent, as shown in Figure 3 and Figure 4

for the deploying process. The core component of the agent is

the actor network which handles the system state and gives a

proper decision. The agent is set up to collect data only from

local measurements and from neighbors which are stored in

the output set of redis database. The combination of local data

and neighbor data will be the observation of the environment

as inputs for the actor network. The output of the network is

978-1-6654-0823-3/22/$31.00 ©2022 IEEE

sent to update the input set of the redis database for adjusting

the voltage reference of the corresponding local controller.

IV. EXPERIMENT RESULTS

The proposed platform is used to verify the operation of

the agent system, which is trained for the studied DC MG

in Section II. In the test case, three battery systems supply

energy to DC MG through DC/DC converter interfaces. The

rated voltage of the system is 170VDC. There are three

agents corresponding to three DG in the grid, and these three

agents are run in three separated threads. The requirements

when operating the grid: the grid voltage is maintained at the

nominal value V* = 170V, and the output currents of the DGs

are shared with a predefined ratio as I, : Ig: J3 =2:1:1.

The sequence of starting the whole system in the platform

is as follows. Initially, the redis server is launched with values

of the input set, and the values of output set are zeros. Then

the simulation of the DC MG with local controllers is run in

Matlab/Simulink. Finally, the agents are started simultaneously

in different threads to control the simulation system.

The communication delays between agents are illustrated

in Figure 5. The latencies are not constant but varied in a

range with the median is lower than 0.05s. It can be seen

that the process of exchanging message among agents reflect

working condition of the agent system. The time required to

process actor networks when they receive data from local

measurements and data exchanges is shown in Figure 6.

Although training is time consuming, agents can respond

quickly to the system.

0.12 £

O14 |

= 11.08 1
= !
5 0.06

0.04

be

agent l-agent 2

0.02

agent 2-agent 3

Fig. 5. The communication delay between agents.

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on July 10,2024 at 16:45:53 UTC from IEEE Xplore. Restrictions apply.

agent 1 agent 2 agent 3
0

0.005

0.01

0.015

0.02

0.025

T
im

e
[s

]

0 1 2 3 4

time [s]

160

165

170

175

180

v
o

lt
ag

e
[V

]

start MAS

load change

0 1 2 3 4

time [s]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

c
u
rr

e
n
t

[A
]

I1

I2

I3

start MAS load change

978-1-6654-0823-3/22/$31.00 ©2022 IEEE

0.025

0.02 +
i i +

0.015 a i
I
|

0.01

0.005

Ti
me

[s]

Fig. 6. The processing time for actor networks in agents.

Figure 7 and Figure 8 show the voltage and the output

currents of the system. During the initial moment without

control signals from the agents, the system appears the voltage

deviation and inaccurate current sharing. When the MAS

inaugurates, it can be seen that the voltage returns to the

nominal value and the output currents are shared at required

ration. The MAS of DDPG algorithm is therefore proved

convincingly due to it is validated in a more realistic way with

the proposed platform. At 2.5s, the load power is increased by

10%, the actor networks in agents adapt with the variation of

the observation inputs. After transient responses, the voltage

is maintained at 170V and the generated currents of DGs

increase proportionally as the objectives of control system.

175 load change

165 start MAS

0 1 2 3 4

time [s]

vo
lt

ag
e

[V
]

3 S

Fig. 7. The voltage of the grid.

“ start MAS load change

cu
rr

en
t

[A
]

time [s]

Fig. 8. The output currents.

V. CONCLUSIONS

This paper provided a platform for the deployment of the

MAS, which implements DRL algorithms in a distributed way.

The agents and the grid simulation in the platform operate

in separated threads or machines that reflects the practical

operation of the system. The data between components in the

system is transferred asynchronously through a redis database

which fast and flexible. The implementation of the MAS based

978-1-6654-0823-3/22/$31.00 ©2022 IEEE

DDPG algorithm on DC MG showed the operation of the

proposed platform.

In the future work, we will develop the platform on a real-

time simulator for the grid simulation and a cluster micro-

processor for the MAS. The emulation of the communication

network will also be integrated into the platform.

REFERENCES

[1] M. Yazdanian and A. Mehrizi-Sani, “Distributed control techniques in

microgrids,” IEEE Transactions on Smart Grid, 2014.

[2] T. L. Nguyen, E. Guillo-Sansano, M. H. Syed, V. H. Nguyen, S. M.

Blair, L. Reguera, Q. T. Tran, R. Caire, G. M. Burt, C. Gavriluta, and

N. A. Luu, “Multi-agent system with plug and play feature for distributed

secondary control in microgrid—controller and power hardware-in-the-

loop implementation,” Energies, vol. 11, no. 12, pp. 1-21, 2018.

[3] Y. Wang, T. L. Nguyen, M. H. Syed, Y. Xu, E. Guillo-sansano, V.-h.

Nguyen, G. Burt, Q.-T. Tran, S. Member, and R. Caire, “A Distributed

Control Scheme of Microgrids in Energy Internet and Its Multi-Site

Implementation,” IEEE Transactions on Industrial Informatics, vol.

3203, no. c, pp. 1-10, 2020.

[4] Y. Wang, T. L. Neuyen, Y. Xu, and D. Shi, “Distributed

control of heterogeneous energy storage systems in islanded

microgrids: Finite-time approach and cyber-physical implementation,”

International Journal of Electrical Power and Energy Systems,

vol. 119, no. May 2019, p. 105898, 2020. [Online]. Available:

https://doi.org/10.1016/j.ijepes.2020. 105898

[5] C. Gavriluta, R. Caire, A. Gomez-Exposito, and N. Hadjsaid, “A

Distributed Approach for OPF-Based Secondary Control of MTDC
Systems,” JEEE Transactions on Smart Grid, 2018.

[6] Y. Zhang, M. Hong, E. Dall’Anese, S. V. Dhople, and Z. Xu, “Dis-

tributed controllers seeking AC optimal power flow solutions using

ADMM.,” IEEE Transactions on Smart Grid, vol. 9, no. 5, pp. 4525-

4537, 2018.
[7] T. Faulwasser, A. Engelmann, T. Miihlpfordt, and V. Hagenmeyer, “Opti-

mal power flow: An introduction to predictive, distributed and stochastic

control challenges,” At-Automatisierungstechnik, vol. 66, no. 7, pp. 573—

589, 2018.
[8] M. Aragiiés-pefialba, T. Lam, R. Caire, A. Sumper, 8. Galceran-

arellano, Q.-T. Tran, I. Tecnolégica, E. Eléctrica, and U. P. D.

Catalunya, “Electrical Power and Energy Systems General form

of consensus optimization for distributed OPF in HVAC-VSC-

HVDC systems,” Electrical Power and Energy Systems, vol.

121, no. October 2019, p. 106049, 2020. [Online]. Available:

https://doi.org/10.1016/j.ijepes.2020. 106049
[9] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,

2017.
M. Glavic, “(Deep) Reinforcement learning for electric power system

control and related problems: A short review and perspectives,” 2019.

Z. Zhang, D. Zhang, and R. C. Qiu, “Deep reinforcement learning for

power system applications: An overview,’ CSEE Journal of Power and

Energy Systems, vol. 6, no. 1, pp. 213-225, 2020.

Z. Liu, Y. Luo, R. Zhuo, and X. Jin, “Distributed reinforcement learning

to coordinate current sharing and voltage restoration for islanded DC

microgrid,” Journal of Modern Power Systems and Clean Energy, 2018.

X. K. Liu, H. Jiang, Y. W. Wang, and H. He, “A Distributed Iterative

Learning Framework for DC Microgrids: Current Sharing and Voltage

Regulation,” IEEE Transactions on Emerging Topics in Computational

Intelligence, 2020.
M. Adibi and J. V. D. Woude, “A Reinforcement Learning Ap-
proach for Frequency Control of Inverted-Based Microgrids,” in JFAC-

PapersOnLine, 2019.

Z. Yan and Y. Xu, “Data-driven load frequency control for stochastic

power systems: A deep reinforcement learning method with continuous

action search,” [EEE Transactions on Power Systems, vol. 34, no. 2, pp.

1653-1656, 2019.
Q. Huang, R. Huang, W. Hao, J. Tan, R. Fan, and Z. Huang, “Adaptive

power system emergency control using deep reinforcement learning,”

IEEE Transactions on Smart Grid, vol. 11, no. 2, pp. 1171-1182, 2020.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,

D. Silver, and D. Wierstra, “Continuous control with deep reinforcement

learning,” in 4th International Conference on Learning Representations,

ICLR 2016 - Conference Track Proceedings, 2016.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Authorized licensed use limited to: FLORIDA INTERNATIONAL UNIVERSITY. Downloaded on July 10,2024 at 16:45:53 UTC from IEEE Xplore. Restrictions apply.

