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Abstract—Distributed control strategies have been attracted 

significant attention due to numerous advantages over traditional 
centralized control strategies. The development of deep rein- 
forcement learning method provides a novel approach to control 
grid without knowing the system’s parameters. The training 

and validating process with grid simulation as environment have 
been supported by several toolboxes. In this paper, a platform 

based on redis NoSQL database is proposed to the deploy the 
multi-agent system of deep reinforcement learning algorithms 
for control microgrid in a distributed manner. The accuracy 

of agent implementation under realistic condition with physical 
communication network can be evaluated with the proposed 
platform. The distributed control in islanded DC microgrid using 
Deep Deterministic Policy Gradient is introduced as an use case 

to show the operation of the platform. 

Index Terms—deep reinforcement learning, distributed control, 

microgrid, redis database, the multi-agent system 

I. INTRODUCTION 

With the increase of advanced control and computation 

intelligence as well as the high integration of distributed 

generation, distributed and autonomous power systems are 

emerging. Distributed control strategies are potential required 

feature for the next generation of power systems. Instead 

of gathering all involved information and processing it in a 

central way, the data for distributed processes is only local 

and adjacent for any unit. The distributed control systems 

can overcome limitations of traditional centralized control 

approach [1]. The multi-agent system (MAS) is the advanced 

technology that has been widely applied to realize the dis- 

tributed control algorithms in AC and DC microgrids (MGs) 

[2], [3]. The agent is an independent entity which has ability 

of calculating and transferring data in a peer-to-peer commu- 

nication network to achieve global objectives in distributed 

manner. The grid consists of electrical, communication and 

intelligence infrastructure that form a complex cyber-physical 

energy system. The distributed control system based on com- 

munication and sensor network is becoming a crucial topic 

to be investigated in modern cyber-physical design of MGs. 

Distributed strategies and MAS have attracted great attention 

recently to enhance the operation of MGs. Multiple objectives 

of accuracy power sharing, voltage/frequency restoration and 
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balanced state of charge for secondary control can be achieved 

by using distributed finite-time algorithms [4]. [5] deals with 

the distributed hierarchical control architecture of meshed 

multi-terminal de (MTDC) networks. The optimal power flow 

solved in distributed manner is presented in [6]-[8] by using 

Alternating Direction of Multipliers Method (ADMM) and 

Augmented Lagrangian Alternating Direction Inexact Newton 

(ALADIN). 

In the existing distributed methods, the control design de- 

pends largely on knowing parameters, e.g. loads information, 

line impedance, etc. which can increase significantly with the 

development of grids and the integration of the renewable 

energy resources. In order to overcome the issues, the rein- 

forcement learning (RL) [9] as well as deep reinforcement 

learning (DRL) has been applied in MG control to deal with 

unknown structure and parameter models. The RL agent can 

give precise decisions only based on a self learning process 

without a complex mathematical model. The rapid evolution 

with continuously improved performance makes RL a promis- 

ing method for robust control operation in MGs [10], [11]. In 

RL and DRL, the agent observes the system state, take control 

actions, observe the effects of these actions, and progressively 

learn an algorithm to maximize a predefined reward. [12], [13] 

provide DRL based method for distributed current sharing and 

voltage regulation in DC grid. RL approaches for frequency 

control of inverter-based AC MGs are presented in [14], 

[15]. In [16], the authors developed novel adaptive emergency 

control schemes using DRL for complex power systems. 

This work focuses on a platform used to implement the 

MAS in a realistic condition. Currently, the MAS of RL for 

distributed control in MGs is facing challenges due to the 

fact that training and validating processes on MG systems are 

difficult tasks. The MG environment is simulated on power 

system simulators, meanwhile, the RL agent is designed and 

programmed to interact with the environment for the obser- 

vation and training RL policy. Recently, there are toolboxes 

providing functions to support the training process that can 

be used in the electrical field, e.g. Reinforcement Toolbox, 

Microsoft Project Bonsai Toolbox in Matlab/Simulink. They 

improve the training performance by integrating the interface
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between RL agent and simulation models. Nonetheless, the 

deployment of MAS based distributed RL control is still 

not mentioned. The system states as inputs of agent are not 

only the local information but also the data from neighbors. 

Furthermore, in the validation process using existing toolkits, 

trained agents operate synchronously (in the same time step 

in the simulation) with other agents as well as with the 

simulation model, which does not accurately reflect the actual 

implementation of the system. Therefore, the accuracy of the 

agents after training can not be guaranteed under the real 

communication network. The MAS needs a platform to be 

validated under working environment. 

In this paper, we propose a platform for validating and im- 

plementing MAS of DRL to control MG in a distributed man- 

ner. In this platform, the agents are operated by considering the 

asynchronous operation of the agents, the interaction with the 

physical energy system, and the communication network for 

data exchange between the agents. The platform will allow the 

trained agents operate independently and run asynchronously 

with the simulation environment to online control the grid. The 

trained agents are therefore more ready for applications on real 

network grids. The platform is presented for the distributed 

secondary control in DC MG, but it is built in a system level 

and can be applied for any other MAS of RL algorithms. 

II. DEEP REINFORCEMENT LEARNING FOR DISTRIBUTED 

SECONDARY CONTROL IN DC MGS 

In this section, the DRL is firstly introduced in an overview. 

Then a case of islanded DG MG is presented by using DRL 

algorithm name Deep Deterministic Policy Gradient (DDPG). 

These trained agents in this use case will be deployed in the 

proposed platform described in the following section. 

A. Deep reinforcement learning 

In this section, we only present the general idea of DRL for 

controlling dynamic systems. The detail of RL concept can be 

found in [9]. RL is a goal-directed computational approach 

where a processor learns how to perform a task by interacting 

with a dynamic environment. This learning approach enables 

a processor to make decisions to maximize the cumulative 

reward for the task without being explicitly programmed to 

achieve predefined objectives. Figure 1 illustrates a general 

structure of a RL case. 

The goal of RL is to train agents to complete a task with 

an unknown environment. The agent gets observations and 

a reward from the environment and returns actions to the 

environment. The reward is used to evaluate action based on 

predefined criteria is with respect to completing the goal. 

The agent consists of two main components: a policy and 

a learning algorithm. 

e The policy is a function that gives decision of actions 

based on the observations from the environment. The 

parameters of the policy are adjustable. 

e Based on the actions, observations and reward, the learn- 

ing algorithm is used to iteratively update the policy 

parameters. The objective of the learning algorithm is 
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Fig. 1. A general structure of a RL case. 

to maximize the cumulative reward computed during the 

task. 

RL can be considered repeated trial-and-error interactions 

between agent and the environment without human involve- 

ment. Depending on the learning algorithm, an agent manages 

one or more parameterized functions for training the policy. 

There are two types of functions. 

e Critics (policy—based approach): a critic finds the ex- 

pected value of the long-term future reward from given 

observation and action. 

e Actors (value—based approach): an actor finds the action 

that maximizes the long-term future reward from a given 

observation 

DRL combines the perception function of deep learning 

and the decision-making ability of reinforcement learning. For 

deploying DRL, the policy is a actor represented by a deep 

neural network (NN) with inputs are state observations and 

outputs are action returned to the environment. 

B. DDPG Algorithm for Distributed Secondary Control in 

Islanded DC MGs 

The islanded DC MG consists of three distributed generators 

(DGs) supplying power for loads in the system. The droop 

based primary controllers are located locally at each DG to 

maintain the stability of the MG. The local primary control 

will react immediately in a decentralized way to balance power 

between suppliers and consumers when occurring disturbances 

in the grid. The MAS trained by DDPG algorithm will take the 

responsibility of the secondary control level in a distributed 

manner for accurate current sharing and voltage restoration. 

Figure 2 describes the studied DC MG. The communication 

topology is illustrated by the communication lines between 

agents in the figure. 

1) DDPG: The deep deterministic policy gradient (DDPG) 

algorithm is a model-free, online, off-policy reinforcement 

learning method [17]. A DDPG agent consists of an actor NN 

and a critic NN that computes an optimal policy to maximizes 

the long-term reward. 

The DRL agent is trained through three main steps: i) the 

actor and critic parameters are updated at each step of the 

training process, ii) the experiment results are then stored into
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Fig. 2. The studied DC MG with DRL agents. 

an experiment buffer, this buffer is extracted randomly by the 

agent to update the actor and critic NN, and iii) a stochastic 

noise is added into the policy to perturb the action. 

2) Agent design: The secondary control objectives for the 

DC MG operation are: 

Vi =v, =V3 =V* 
kh = kal = kgIs 

where V; and J; are the output voltage and current of 7th 

DG respectively, V* is the nominal voltage, k; is the droop 

coefficient of ith DG. 

The inner control loop of each DG receives the reference 

voltage V;e7 to determine pulse width modulation (PWM) as 

the input signal of the DG converter. The DDPG agents are 

designed to regulate reference voltage to compensate for the 

deviation of the voltages and output currents simultaneously. 

The inputs of an agent or the observation signals are local 

measurements and the data exchange with the neighbors. The 

reward function of each agent at training step ¢ is defined: 

(1) 

  

  

  

1 t 
= 2 

"1 ct|V* —Vy| 4 clkili — kele| ( ) 

1 
"2 = ap 2 3 (3) 
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The inputs of the designed DDPG agent 7 for the training 

process are {V;, 1, Vj, 1;} from local measurement and 
{V;, I;} from every neighbor agent j. The outputs will be 
compensation signals which are sent to the primary controllers. 

III. THE PLATFORM FOR DEPLOYING MAS OF DRL 

Figure 3 shows the proposed platform for deploying vali- 

dating the agents trained in the previous section. The platform 

can be extendable for a larger number of agents, different 
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grids and various RL algorithms. The platform consists of 

three parts: the grid simulation, the multi-agent system and 

the redis database as an interface. In order to approach to the 

practical implementation of distributed control systems, the 

platform fulfils the following requirements: 

e The DRL agents run in distinguish processes and operate 

asynchronously with each other. 

e The DRL agents runs asynchronously with the model 

simulation. 

e Each agent only observes local information measured 

from the outputs of the corresponding DG and the in- 

formation from neighbor DGs. 

e The local controller at each DG only receives the control 

signal from the corresponding agent. 

A. The redis database 

A redis database is used as for two purposes: i) the interface 

between agents and the MG simulation in Matlab/Simulink, 

and ii) the interface between agents. Redis! is an open-source 

in-memory data structure store, used as a database, cache and 

message broker. Redis is fast, easy to use, a NoSQL database 

and being supported in most of the program languages. The 

redis database can locate on either a local server or a remote 

server. 

There are two sets of variables in the redis database. The 

output set is for transferring measured data of the grid from 

the Simulink simulation to the agents. The input set is used 

to transfer control signals from the outputs of agents to the 

primary controllers in the simulation. The transferring process 

between the redis database and the simulation is implemented 

continuously. It can be seen that the variables in the output set 

are updated by the data from the simulation, and the variables 

in the input set are updated by the agent system. The setup of 

the proposed platform with the database allows the data can 

flow flexibly between entities in the system. 

B. The grid simulation 

The grid is modelled to run in Matlab/Simulink. The local 

controllers located at DGs, including inner control loop and 

primary control are also integrated into the model for the local 

and fast response. The grid with only local controllers can 

operate at stable state but not at nominal state. The DDPG 

agents, after a large number of training steps, will be used to 

bring the system to the desired state. We use user Datagram 

Protocol/Internet Protocol (UDP) to broadcast the measure- 

ment signal to outside the Simulink domain as well as collect 

control signals from other domains. This part of the platform 

can be considered as the simulation environment presented 

in Section II. An interface is also built for the exchanging 

information between Simulink and the redis database. 

C. The multi-agent system 

The DRL agent system is a cluster of agents, and each 

agent takes in charge of the controlled device in the grid. 

lhttps://redis.io
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Fig. 3. The platform for deploying MAS of DRL. 

The structure of a DRL agent is designed as illustrated in 

Figure 4. The agent is a C++ program having the ability to 

collect data, process calculation and send the result back to the 

system. In order to access data in the redis server, each agent 

is a redis client and connects to the server when starting. The 

agents can run in separated threads or in separated machines 

(computer, embedded system, microprocessor, etc.) within the 

same communication network connected to the redis server. 

  

send data 

  

    

  
from the output set 

of redis 
to the input set 

of redis 

Fig. 4. The RDL agent structure. 

In a DRL agent, the learning algorithm and the critic 

network are only used for the training process, while the policy 

will be the main part for the deploy process. Once the DRL 

agents are trained as presented in Section II, the policies of 

the agents or actor networks are separated and converted from 

Matlab code to C++ code. Each trained neural network is then 

integrated into an agent, as shown in Figure 3 and Figure 4 

for the deploying process. The core component of the agent is 

the actor network which handles the system state and gives a 

proper decision. The agent is set up to collect data only from 

local measurements and from neighbors which are stored in 

the output set of redis database. The combination of local data 

and neighbor data will be the observation of the environment 

as inputs for the actor network. The output of the network is 

978-1-6654-0823-3/22/$31.00 ©2022 IEEE 

sent to update the input set of the redis database for adjusting 

the voltage reference of the corresponding local controller. 

IV. EXPERIMENT RESULTS 

The proposed platform is used to verify the operation of 

the agent system, which is trained for the studied DC MG 

in Section II. In the test case, three battery systems supply 

energy to DC MG through DC/DC converter interfaces. The 

rated voltage of the system is 170VDC. There are three 

agents corresponding to three DG in the grid, and these three 

agents are run in three separated threads. The requirements 

when operating the grid: the grid voltage is maintained at the 

nominal value V* = 170V, and the output currents of the DGs 

are shared with a predefined ratio as I, : Ig: J3 =2:1:1. 

The sequence of starting the whole system in the platform 

is as follows. Initially, the redis server is launched with values 

of the input set, and the values of output set are zeros. Then 

the simulation of the DC MG with local controllers is run in 

Matlab/Simulink. Finally, the agents are started simultaneously 

in different threads to control the simulation system. 

The communication delays between agents are illustrated 

in Figure 5. The latencies are not constant but varied in a 

range with the median is lower than 0.05s. It can be seen 

that the process of exchanging message among agents reflect 

working condition of the agent system. The time required to 

process actor networks when they receive data from local 

measurements and data exchanges is shown in Figure 6. 

Although training is time consuming, agents can respond 

quickly to the system. 
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Fig. 5. The communication delay between agents.
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Fig. 6. The processing time for actor networks in agents. 

Figure 7 and Figure 8 show the voltage and the output 

currents of the system. During the initial moment without 

control signals from the agents, the system appears the voltage 

deviation and inaccurate current sharing. When the MAS 

inaugurates, it can be seen that the voltage returns to the 

nominal value and the output currents are shared at required 

ration. The MAS of DDPG algorithm is therefore proved 

convincingly due to it is validated in a more realistic way with 

the proposed platform. At 2.5s, the load power is increased by 

10%, the actor networks in agents adapt with the variation of 

the observation inputs. After transient responses, the voltage 

is maintained at 170V and the generated currents of DGs 

increase proportionally as the objectives of control system. 
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V. CONCLUSIONS 

This paper provided a platform for the deployment of the 

MAS, which implements DRL algorithms in a distributed way. 

The agents and the grid simulation in the platform operate 

in separated threads or machines that reflects the practical 

operation of the system. The data between components in the 

system is transferred asynchronously through a redis database 

which fast and flexible. The implementation of the MAS based 

978-1-6654-0823-3/22/$31.00 ©2022 IEEE 

DDPG algorithm on DC MG showed the operation of the 

proposed platform. 

In the future work, we will develop the platform on a real- 

time simulator for the grid simulation and a cluster micro- 

processor for the MAS. The emulation of the communication 

network will also be integrated into the platform. 
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