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Abstract—Distributed control strategies have been attracted
significant attention due to numerous advantages over traditional
centralized control strategies. The development of deep rein-
forcement learning method provides a novel approach to control
grid without knowing the system’s parameters. The training
and validating process with grid simulation as environment have
been supported by several toolboxes. In this paper, a platform
based on redis NoSQL database is proposed to the deploy the
multi-agent system of deep reinforcement learning algorithms
for control microgrid in a distributed manner. The accuracy
of agent implementation under realistic condition with physical
communication network can be evaluated with the proposed
platform. The distributed control in islanded DC microgrid using
Deep Deterministic Policy Gradient is introduced as an use case
to show the operation of the platform.

Index Terms—deep reinforcement learning, distributed control,
microgrid, redis database, the multi-agent system

I. INTRODUCTION

With the increase of advanced control and computation
intelligence as well as the high integration of distributed
generation, distributed and autonomous power systems are
emerging. Distributed control strategies are potential required
feature for the next generation of power systems. Instead
of gathering all involved information and processing it in a
central way, the data for distributed processes is only local
and adjacent for any unit. The distributed control systems
can overcome limitations of traditional centralized control
approach [1]. The multi-agent system (MAS) is the advanced
technology that has been widely applied to realize the dis-
tributed control algorithms in AC and DC microgrids (MGs)
[2], [3]. The agent is an independent entity which has ability
of calculating and transferring data in a peer-to-peer commu-
nication network to achieve global objectives in distributed
manner. The grid consists of electrical, communication and
intelligence infrastructure that form a complex cyber-physical
energy system. The distributed control system based on com-
munication and sensor network is becoming a crucial topic
to be investigated in modern cyber-physical design of MGs.
Distributed strategies and MAS have attracted great attention
recently to enhance the operation of MGs. Multiple objectives
of accuracy power sharing, voltage/frequency restoration and
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balanced state of charge for secondary control can be achieved
by using distributed finite-time algorithms [4]. [5] deals with
the distributed hierarchical control architecture of meshed
multi-terminal dc (MTDC) networks. The optimal power flow
solved in distributed manner is presented in [6]-[8] by using
Alternating Direction of Multipliers Method (ADMM) and
Augmented Lagrangian Alternating Direction Inexact Newton
(ALADIN).

In the existing distributed methods, the control design de-
pends largely on knowing parameters, e.g. loads information,
line impedance, etc. which can increase significantly with the
development of grids and the integration of the renewable
energy resources. In order to overcome the issues, the rein-
forcement learning (RL) [9] as well as deep reinforcement
learning (DRL) has been applied in MG control to deal with
unknown structure and parameter models. The RL agent can
give precise decisions only based on a self learning process
without a complex mathematical model. The rapid evolution
with continuously improved performance makes RL a promis-
ing method for robust control operation in MGs [10], [11]. In
RL and DRL, the agent observes the system state, take control
actions, observe the effects of these actions, and progressively
learn an algorithm to maximize a predefined reward. [12], [13]
provide DRL based method for distributed current sharing and
voltage regulation in DC grid. RL approaches for frequency
control of inverter-based AC MGs are presented in [14],
[15]. In [16], the authors developed novel adaptive emergency
control schemes using DRL for complex power systems.

This work focuses on a platform used to implement the
MAS in a realistic condition. Currently, the MAS of RL for
distributed control in MGs is facing challenges due to the
fact that training and validating processes on MG systems are
difficult tasks. The MG environment is simulated on power
system simulators, meanwhile, the RL agent is designed and
programmed to interact with the environment for the obser-
vation and training RL policy. Recently, there are toolboxes
providing functions to support the training process that can
be used in the electrical field, e.g. Reinforcement Toolbox,
Microsoft Project Bonsai Toolbox in Matlab/Simulink. They
improve the training performance by integrating the interface
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between RL agent and simulation models. Nonetheless, the
deployment of MAS based distributed RL control is still
not mentioned. The system states as inputs of agent are not
only the local information but also the data from neighbors.
Furthermore, in the validation process using existing toolkits,
trained agents operate synchronously (in the same time step
in the simulation) with other agents as well as with the
simulation model, which does not accurately reflect the actual
implementation of the system. Therefore, the accuracy of the
agents after training can not be guaranteed under the real
communication network. The MAS needs a platform to be
validated under working environment.

In this paper, we propose a platform for validating and im-
plementing MAS of DRL to control MG in a distributed man-
ner. In this platform, the agents are operated by considering the
asynchronous operation of the agents, the interaction with the
physical energy system, and the communication network for
data exchange between the agents. The platform will allow the
trained agents operate independently and run asynchronously
with the simulation environment to online control the grid. The
trained agents are therefore more ready for applications on real
network grids. The platform is presented for the distributed
secondary control in DC MG, but it is built in a system level
and can be applied for any other MAS of RL algorithms.

II. DEEP REINFORCEMENT LEARNING FOR DISTRIBUTED
SECONDARY CONTROL IN DC MGsS

In this section, the DRL is firstly introduced in an overview.
Then a case of islanded DG MG is presented by using DRL
algorithm name Deep Deterministic Policy Gradient (DDPG).
These trained agents in this use case will be deployed in the
proposed platform described in the following section.

A. Deep reinforcement learning

In this section, we only present the general idea of DRL for
controlling dynamic systems. The detail of RL concept can be
found in [9]. RL is a goal-directed computational approach
where a processor learns how to perform a task by interacting
with a dynamic environment. This learning approach enables
a processor to make decisions to maximize the cumulative
reward for the task without being explicitly programmed to
achieve predefined objectives. Figure 1 illustrates a general
structure of a RL case.

The goal of RL is to train agents to complete a task with
an unknown environment. The agent gets observations and
a reward from the environment and returns actions to the
environment. The reward is used to evaluate action based on
predefined criteria is with respect to completing the goal.

The agent consists of two main components: a policy and
a learning algorithm.

o The policy is a function that gives decision of actions
based on the observations from the environment. The
parameters of the policy are adjustable.

o Based on the actions, observations and reward, the learn-
ing algorithm is used to iteratively update the policy
parameters. The objective of the learning algorithm is
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Fig. 1. A general structure of a RL case.

to maximize the cumulative reward computed during the
task.

RL can be considered repeated trial-and-error interactions
between agent and the environment without human involve-
ment. Depending on the learning algorithm, an agent manages
one or more parameterized functions for training the policy.
There are two types of functions.

e Critics (policy—based approach): a critic finds the ex-
pected value of the long-term future reward from given
observation and action.

o Actors (value—based approach): an actor finds the action
that maximizes the long-term future reward from a given
observation

DRL combines the perception function of deep learning
and the decision-making ability of reinforcement learning. For
deploying DRL, the policy is a actor represented by a deep
neural network (NN) with inputs are state observations and
outputs are action returned to the environment.

B. DDPG Algorithm for Distributed Secondary Control in
Islanded DC MGs

The islanded DC MG consists of three distributed generators
(DGs) supplying power for loads in the system. The droop
based primary controllers are located locally at each DG to
maintain the stability of the MG. The local primary control
will react immediately in a decentralized way to balance power
between suppliers and consumers when occurring disturbances
in the grid. The MAS trained by DDPG algorithm will take the
responsibility of the secondary control level in a distributed
manner for accurate current sharing and voltage restoration.
Figure 2 describes the studied DC MG. The communication
topology is illustrated by the communication lines between
agents in the figure.

1) DDPG: The deep deterministic policy gradient (DDPG)
algorithm is a model-free, online, off-policy reinforcement
learning method [17]. A DDPG agent consists of an actor NN
and a critic NN that computes an optimal policy to maximizes
the long-term reward.

The DRL agent is trained through three main steps: i) the
actor and critic parameters are updated at each step of the
training process, ii) the experiment results are then stored into
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Fig. 2. The studied DC MG with DRL agents.

an experiment buffer, this buffer is extracted randomly by the
agent to update the actor and critic NN, and iii) a stochastic
noise is added into the policy to perturb the action.

2) Agent design: The secondary control objectives for the
DC MG operation are:

Vi=Vo=V3=V*

ey
k?lll = k‘g]g = k‘3I3

where V; and [; are the output voltage and current of ith
DG respectively, V* is the nominal voltage, k; is the droop
coefficient of ith DG.

The inner control loop of each DG receives the reference
voltage V..; to determine pulse width modulation (PWM) as
the input signal of the DG converter. The DDPG agents are
designed to regulate reference voltage to compensate for the
deviation of the voltages and output currents simultaneously.
The inputs of an agent or the observation signals are local
measurements and the data exchange with the neighbors. The
reward function of each agent at training step ¢ is defined:

1
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The inputs of the designed DDPG agent ¢ for the training
process are {V;, I;, V;, I;} from local measurement and
{Vj, I;} from every neighbor agent j. The outputs will be
compensation signals which are sent to the primary controllers.

III. THE PLATFORM FOR DEPLOYING MAS OF DRL

Figure 3 shows the proposed platform for deploying vali-
dating the agents trained in the previous section. The platform
can be extendable for a larger number of agents, different
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grids and various RL algorithms. The platform consists of
three parts: the grid simulation, the multi-agent system and
the redis database as an interface. In order to approach to the
practical implementation of distributed control systems, the
platform fulfils the following requirements:

o The DRL agents run in distinguish processes and operate
asynchronously with each other.

o The DRL agents runs asynchronously with the model
simulation.

o Each agent only observes local information measured
from the outputs of the corresponding DG and the in-
formation from neighbor DGs.

o The local controller at each DG only receives the control
signal from the corresponding agent.

A. The redis database

A redis database is used as for two purposes: i) the interface
between agents and the MG simulation in Matlab/Simulink,
and ii) the interface between agents. Redis' is an open-source
in-memory data structure store, used as a database, cache and
message broker. Redis is fast, easy to use, a NoSQL database
and being supported in most of the program languages. The
redis database can locate on either a local server or a remote
server.

There are two sets of variables in the redis database. The
output set is for transferring measured data of the grid from
the Simulink simulation to the agents. The input set is used
to transfer control signals from the outputs of agents to the
primary controllers in the simulation. The transferring process
between the redis database and the simulation is implemented
continuously. It can be seen that the variables in the output set
are updated by the data from the simulation, and the variables
in the input set are updated by the agent system. The setup of
the proposed platform with the database allows the data can
flow flexibly between entities in the system.

B. The grid simulation

The grid is modelled to run in Matlab/Simulink. The local
controllers located at DGs, including inner control loop and
primary control are also integrated into the model for the local
and fast response. The grid with only local controllers can
operate at stable state but not at nominal state. The DDPG
agents, after a large number of training steps, will be used to
bring the system to the desired state. We use user Datagram
Protocol/Internet Protocol (UDP) to broadcast the measure-
ment signal to outside the Simulink domain as well as collect
control signals from other domains. This part of the platform
can be considered as the simulation environment presented
in Section II. An interface is also built for the exchanging
information between Simulink and the redis database.

C. The multi-agent system

The DRL agent system is a cluster of agents, and each
agent takes in charge of the controlled device in the grid.

Uhttps://redis.io
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Fig. 3. The platform for deploying MAS of DRL.

The structure of a DRL agent is designed as illustrated in
Figure 4. The agent is a C++ program having the ability to
collect data, process calculation and send the result back to the
system. In order to access data in the redis server, each agent
is a redis client and connects to the server when starting. The
agents can run in separated threads or in separated machines
(computer, embedded system, microprocessor, etc.) within the
same communication network connected to the redis server.

collect. E%

DRL agent

observation
action

actor network

from the output set to the input set
redis of redis

Fig. 4. The RDL agent structure.

In a DRL agent, the learning algorithm and the critic
network are only used for the training process, while the policy
will be the main part for the deploy process. Once the DRL
agents are trained as presented in Section II, the policies of
the agents or actor networks are separated and converted from
Matlab code to C++ code. Each trained neural network is then
integrated into an agent, as shown in Figure 3 and Figure 4
for the deploying process. The core component of the agent is
the actor network which handles the system state and gives a
proper decision. The agent is set up to collect data only from
local measurements and from neighbors which are stored in
the output set of redis database. The combination of local data
and neighbor data will be the observation of the environment
as inputs for the actor network. The output of the network is
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sent to update the input set of the redis database for adjusting
the voltage reference of the corresponding local controller.

IV. EXPERIMENT RESULTS

The proposed platform is used to verify the operation of
the agent system, which is trained for the studied DC MG
in Section II. In the test case, three battery systems supply
energy to DC MG through DC/DC converter interfaces. The
rated voltage of the system is 170VDC. There are three
agents corresponding to three DG in the grid, and these three
agents are run in three separated threads. The requirements
when operating the grid: the grid voltage is maintained at the
nominal value V* = 170V, and the output currents of the DGs
are shared with a predefined ratio as [1 : [o: [3 =2:1:1.

The sequence of starting the whole system in the platform
is as follows. Initially, the redis server is launched with values
of the input set, and the values of output set are zeros. Then
the simulation of the DC MG with local controllers is run in
Matlab/Simulink. Finally, the agents are started simultaneously
in different threads to control the simulation system.

The communication delays between agents are illustrated
in Figure 5. The latencies are not constant but varied in a
range with the median is lower than 0.05s. It can be seen
that the process of exchanging message among agents reflect
working condition of the agent system. The time required to
process actor networks when they receive data from local
measurements and data exchanges is shown in Figure 6.
Although training is time consuming, agents can respond
quickly to the system.

0.12 T
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g |
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n.n4
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agent L-agent 2

002

agent -agent 3

Fig. 5. The communication delay between agents.
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Fig. 6. The processing time for actor networks in agents.

Figure 7 and Figure 8 show the voltage and the output
currents of the system. During the initial moment without
control signals from the agents, the system appears the voltage
deviation and inaccurate current sharing. When the MAS
inaugurates, it can be seen that the voltage returns to the
nominal value and the output currents are shared at required
ration. The MAS of DDPG algorithm is therefore proved
convincingly due to it is validated in a more realistic way with
the proposed platform. At 2.5s, the load power is increased by
10%, the actor networks in agents adapt with the variation of
the observation inputs. After transient responses, the voltage
is maintained at 170V and the generated currents of DGs
increase proportionally as the objectives of control system.

175 load change

165 [J start MAS

160
0

voltage [V]
E

1 2 3 4
time [s]

Fig. 7. The voltage of the grid.
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Fig. 8. The output currents.

V. CONCLUSIONS

This paper provided a platform for the deployment of the
MAS, which implements DRL algorithms in a distributed way.
The agents and the grid simulation in the platform operate
in separated threads or machines that reflects the practical
operation of the system. The data between components in the
system is transferred asynchronously through a redis database
which fast and flexible. The implementation of the MAS based
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DDPG algorithm on DC MG showed the operation of the
proposed platform.

In the future work, we will develop the platform on a real-
time simulator for the grid simulation and a cluster micro-
processor for the MAS. The emulation of the communication
network will also be integrated into the platform.
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