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Abstract—The E-Field Parallel Imaging Correlator (EPIC) is
an algorithm designed to perform imaging at several frequencies
using radio telescopes on much faster time scales O(N logN)
than their traditional counterparts O(N2). This paper describes
the new GPU kernel developed for a real-time EPIC-based
imaging pipeline. Unlike the slower global memory used by the
previous implementation, the kernel uses a new memory layout
to store all intermediate products of the imaging sequence in
on-chip memory to minimize time spent on memory transfers.
Auxiliary data are stored in the shared memory for faster access.
The imaging data is stored with 16-bit precision in the thread
registers to reduce register pressure and simultaneously process
two images. Each thread block processes one frequency, providing
horizontal scalability. The optimized kernel processes 50000 all-
sky images per second per frequency in real time. It is being
deployed on the Long Wavelength Array in Sevilleta, New Mexico
(LWA-SV).

Index Terms—Radio telescope imaging, real-time, GPU accel-
eration, performance optimization

I. INTRODUCTION

The need for concurrent wider imaging fields, higher sen-

sitivity, and higher time resolution has expanded radio tele-

scope arrays from a few tens to hundreds of antennas with

dense layouts. Their correlators compute the integrated cross-

power correlation between all antenna pairs for imaging. This

computation scales as the square of the number of antennas,

∼ N2
A. Advances in Graphics Processing Unit (GPU)-based

signal processing have allowed accelerating these intensive

calculations [1, for example]. While modern telescopes with

up to a few hundred antennas can be processed in correlators

using a small set of GPUs, the associated computational

complexity and costs of operation increase significantly with

thousands of antennas planned in upcoming telescopes like

the Square Kilometer Array (SKA) [2]. Hence, reducing the

number of computations while maintaining the same scientific

output is highly desirable.

For arrays with dense layouts, the direct imaging class of

algorithms can perform a spatial Fast Fourier Transform (FFT)

on the antenna-measured electric fields without calculating

cross-correlations. These algorithms relax the number of com-

putations from ∼ N2
A to ∼ Ng logNg , where Ng is the number

of grid points in the FFT. Although direct imaging correlators

were tested on a few telescopes [3], [4], they required iden-

tical antennas and uniform layouts. Conversely, the Modular

Optimal Frequency Fourier (MOFF) [5] algorithm works with

heterogeneous antennas with arbitrary layouts. MOFF outputs

are identical to those produced with traditional correlators, and

the algorithm is the optimal solution for direct imaging. EPIC

is the first Python-based software implementation [6] of the

MOFF algorithm that was later implemented on a GPU using

CUDA [7]. Although the GPU version produced images of

the sky in real-time, the output bandwidth was limited, and

it imaged only a single polarization. This paper describes a

new kernel optimized for NVIDIA GPUs that produces dual-

polarized images with a much higher bandwidth. This kernel

is a part of the new all-sky imaging pipeline under deployment

at LWA-SV.

The rest of the paper is organized as follows. Section II

summarizes the EPIC algorithm and describes the imaging

requirements for LWA-SV. Section III describes the opti-

mized GPU implementation of EPIC and presents performance

benchmarks.

II. EPIC ALGORITHM

EPIC operates on data from a telescope’s F-Engine, which

digitizes and channelizes the electric field time series from

each antenna using a temporal Fourier transform. Following

that process, three spatial operations—gridding, inverse FFT,

and cross-multiply and accumulate—are performed sequen-

tially to transform the complex electric field spectra from the

antennas into a single sky image for each time step.

Gridding is performed at each time step to interpolate the

antenna data points (complex values) from arbitrary positions

in the aperture of the telescope onto a uniform grid to allow
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the use of FFT. Each data point is convolved with its antenna

beam pattern and sampled at regular grid points. Gridding is

generally an atomic operation, as multiple overlapping patterns

may add values to the same grid points. The gridded data

is inverse Fourier transformed and squared element-wise to

produce an image for each time step. We average these images

(typically hundreds) until we reach a specified signal-to-noise

ratio.

A. Imaging Considerations for LWA-SV

LWA-SV [8] observes the sky in the 3-88 MHz fre-

quency range with 256 dual-polarized antennas (X and Y), or

N = 512 effective interferometric elements. Polarization is a

property of incoming radiation that specifies the magnitude

and direction of the electric field oscillations. We can use

the polarized radio waves to understand the environments

of distant objects that are otherwise inaccessible to optical

telescopes. EPIC can use X and Y polarizations and output

images for all four instrumental cross-polarizations, namely,

XX∗, YY∗, XY∗, YX∗. The F-Engine at LWA-SV digitizes

and channelizes the electric field time series from each antenna

using 40 μs windows to yield a channel width of 25 kHz.

That means the imaging code must be able to process 25000

sky images per second for each channel and polarization. It

is desirable to oversample the telescope’s primary beam by at

least a factor of two at all frequencies and generate images that

cover the entire visible hemisphere. This oversampling needs

a minimum output image size of 128 sq. pixels with a spatial

resolution of 1◦. The imager, therefore, requires a GPU with

a performance of at least a few GFLOPs for each channel and

polarization with this configuration.

The F-Engine at LWA-SV comprises six nodes, each provid-

ing channelized data with a bandwidth of 3.3 MHz (132 chan-

nels) or an effective bandwidth of 19.8 MHz distributed over

the entire frequency range. The channelized data is supplied

as 4+4-bit complex values, yielding a raw data rate of about

13.5 Gb/s per node or about 81 Gb/s in total. For a typical

accumulation time of 40 ms (1000 time steps) with an image

size of 128 sq. pixels, the output image data rate is about

10.4 Gb/s for 132 channels or 63.3 Gb/s for all channels.

Top-end GPUs available in 2023 can accommodate at least an

order of magnitude higher than these data rates and provide

performances over several TFLOPS, indicating a possibility

of imaging the entire bandwidth on a single GPU, although

memory access latency considerations (see sections below) for

gridding, FFT, and accumulation favor imaging with one GPU

per node in the F-Engine.

B. NVIDIA GPU Programming Overview

At a high level, NVIDIA GPUs are composed of streaming

multi-processors (SM), each consisting of multiple cores capa-

ble of running many threads in parallel. The Compute Unified

Device Architecture (CUDA) programming model provides a

platform to leverage massive parallelism built into these GPUs.

It provides a thread and memory hierarchy to simplify GPU

programming.

A block comprises a group of threads up to a maximum of

1024, and a grid consists of a group of blocks where all threads

execute the same kernel. CUDA provides 3D-indexing support

for blocks and grids to distribute work among the threads

appropriately. GPUs also provide different types of memory

with different speeds. Registers are the fastest memory type

on a GPU, private to each thread, which kernel variables use

for computations. All threads in a block can also access a

slightly slower shared memory (L1 cache). This memory is

extremely limited and is less than 128 KiB in nearly all the

GPUs. CUDA also provides a global memory space that is

accessible by all threads and is much larger (typically a few

to hundreds of GBs) than register or shared memory. Global

memory is generally 100 times slower than shared memory.

Any memory required by threads above the available registers

is spilled into the local memory, a part of the global memory,

mapped through L1 and L2 caches.

GPU kernels are classified based on their performance

into two types: compute-bound and memory-bound. Compute-

bound kernels spend most of their run time doing compute

work using as many active threads as possible with minimal

memory accesses. Memory-bound kernels are further classified

into two types: latency-bound, where memory access latency

forms the main bottleneck, and bandwidth-bound, where the

finite memory transfer speed between device and global mem-

ory limits the performance. Optimized GPU kernels generally

minimize accesses to slow memory types and maximize the

compute work done per byte fetched from the global memory.

Put another way, one must make the kernel compute-bound or

compute and bandwidth bound for maximized performance.

C. Bottlenecks in the Previous GPU Implementation

The first version of EPIC imager deployed on LWA com-

prised three GPU kernels, executed sequentially, for gridding,

inverse FFT, and squaring and accumulating images. On an

NVIDIA RTX 2080 Ti GPU, the imager generates 64 sq.

pixel single polarization images with 90 channels in real-time,

which falls below the desired throughput described in section

II-A. While the highly optimized cuFFT library performs

FFT, profiling indicates gridding and accumulation kernels are

bandwidth-bound. It is mainly because each kernel operates on

the output from its previous kernel: the gridder writes the grid-

ded data for each timestep for all channels and polarizations

to global memory that is then Fourier transformed and written

back to the same memory by cuFFT. The transformed data

are then cross-multiplied, written to a different global memory

block, and finally averaged into a single image per channel per

polarization. These intermediate products require large global

memory allocations; profiling indicates that although these

kernels use efficient memory access patterns, they consume

about 30% of the total run time for global memory transfers,

leading to lower throughput.

III. OPTIMIZED EPIC CORRELATOR

The optimizations described in this paper aim to enable the

kernel to generate dual-polarized images in real time. The new
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code employs on-chip memory (registers and shared memory),

which is at least two orders of magnitude faster than global

memory, to store and process all intermediate products. Be-

cause kernel-allocated on-chip memory gets destroyed after the

kernel exits, the new code fuses all operations in the imaging

sequence into a single unified kernel. In what follows, we refer

to this unified kernel as the kernel unless otherwise stated.

Below, we describe the implementation for each operation in

the kernel, including an optimal on-chip memory layout to

facilitate data sharing between different operations.

A. On-chip Memory Layout

In this layout, the kernel stores intermediate products, which

are 2D arrays, in register (32-bit) arrays, uniformly spread

across all threads in a thread block. One 2D input array

stores gridded data for two polarizations that will be Fourier

transformed in place. Two 2D output arrays store compressed

sky image accumulations for all four cross-polarizations. Input

and output arrays have identical dimensions. Each element in

the input array comprises two complex numbers, one for each

polarization. Storing each value at 32-bit precision requires

four registers. A 128x128 array, therefore, would consume

65536 registers, the maximum number of on-chip registers

CUDA allows for a thread block on any GPU. In this case,

the compiler may partially or fully allocate memory for input

and output arrays in the much slower local memory to free

some registers for variables used in computations. This race for

registers between variables and storage arrays creates what is

commonly called the “register pressure”. It introduces memory

access latencies, leading to inefficient GPU compute power

usage. Reducing this register pressure drove the decision to

use half (16-bit) precision over 32-bits for input and output

arrays, which halves the required number of storage registers.

With half-precision, we store each input array element in

two 32-bit registers in an RR-II sequence. That means the real

and imaginary values of two polarizations for each element are

batched into the same registers. This sequence is required for

on-chip FFT calculations (see section III-C for details). We

launch the kernel using 2D thread blocks where we uniformly

distribute each row in the input array to registers in one row

of threads with a stride between elements.

Figure 1 depicts this layout for a thread block (128x8

threads) that generates a 128x128 sq. pixel image. Each thread

stores elements from its respective row in the input array with

a 16-element stride. For example, thread (0,0) stores elements

with indices 0, 16, 32, 48... from the first row in the input

array. The two output arrays are arranged similarly to store

four cross-polarization sky images. Each element in the first

array stores two half-precision numbers in a single register, one

each for XX∗ and YY∗. Each element in the second array only

stores the real and imaginary parts of XY∗ at half-precision

in a single register, and the remaining YX∗ polarization is

simply the complex conjugate of this value. That means we

effectively compress six values, one each for XX∗ and YY∗,

and two each for XY∗ and YX∗, into four.

Finally, this layout also leads to horizontal scalability be-

cause a single thread block can generate all image products

for one channel. Hence, we can image multiple channels in

parallel by launching multiple kernel thread blocks without

introducing additional latency. The scaling reaches a limit

when the GPU delays launching additional thread blocks due

to the unavailability of registers to perform computations.

Adding additional GPUs would allow imaging of an arbitrary

number of channels, each with the same computation time.

B. Gridding

The previous kernel used nearest neighbor gridding to

reduce global memory transfers. That means the data point

from each antenna was assigned to the nearest cell in the

aperture plane after scaling them with the appropriate antenna

phases. This gridding is equivalent to convolving the data

points with a pillbox or a constant function with the size of a

single cell and sampling it at cell centers.

EPIC prescribes using antenna beam patterns as convolution

kernels. The antenna kernel size depends on the frequency

and ranges from 3x3 to 5x5 cells on an aperture plane with

1◦ spatial resolution. These kernel sizes are 9 to 25 times

larger than a pillbox, indicating the pillbox kernel severely

undersamples the electric field spectra.

The new kernel grids the data in shared memory and

transfers it to the thread registers. Our tests (see section III-D)

indicate this method supports kernel sizes up to 7x7 to generate

128 sq. pixel images. The kernel allocates a 2D array in the

shared memory for use as scratch pad memory with the same

format as the input array described in section III-A. We only

allocate half the input array size to ensure the allocation is

below the shared memory typically available on GPUs. For

example, a 128x128 input array occupies 128 KiB, a shared

memory size available only on a few of NVIDIA’s GPUs

(typical shared memory is between 64-100 KiB). The kernel

grids data in the shared memory for the upper half of the

aperture plane and transfers it to respective thread registers.

It repeats the same procedure for the lower half, filling all

registers with the gridded data.

The gridding function divides all threads in the thread block

into groups of the number of cells covered by the gridding

kernel (e.g., 25 threads per group). Each thread group grids one

antenna at a time and atomically adds it to the array allocated

in the shared memory. The thread groups grid all antennas

covering the appropriate half of the aperture plane.

The gridding operation requires four inputs: antenna posi-

tions, phases (different for each polarization), kernel weights,

and the electric field spectra. Their memory access times

primarily determine the total run time of gridding. Antenna

positions and phases have smaller memory sizes than typical

shared memory sizes. For example, the 2D positions and

phases for 256 antennas only require 2 KiB and 4 KiB,

respectively. Hence, we copy the antenna positions and phases

into the shared memory of each thread block once per accumu-

lation. Because antenna positions remain fixed throughout the

observation, we pre-compute kernel weights for each antenna
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Fig. 1. On-chip memory layout for a kernel generating 128 sq. pixel images. The left image shows the logical layout of a 2D thread block with 128 rows
and 8 columns. One input array and two output arrays are distributed across thread registers (see section III-A for details). The right image shows the register
arrays allocated in thread (0,0). This thread stores elements from the first row of the input and output arrays with a stride of 16 elements between them. Each
element in the input array is a set of two half-precision complex numbers, one for each polarization, stored in two 32-bit registers with an RR-II layout. Each
output element is a set of two half-precision numbers stored in a 32-bit register. The first output array stores values for XX∗ and YY∗, and the second one
stores the real and imaginary parts of XY∗.

and frequency. For a gridding kernel with a size of 5x5, the

weights for 256 antennas occupy a space of about 26 KiB per

channel, which we also copy to the shared memory. We can

store the weights in the global memory for GPUs with smaller

shared memory and map them through the L2 cache.

C. FFT and Accumulation

We use a specialized library called cuFFTDx, distributed

as a part of the NVIDIA MathDx package, to perform FFT

completely using on-chip memory. cuFFTDx uses the batched

half-precision register layout described in section III-A for

efficient calculations. It performs 1D FFT individually on each

row of threads or equivalently on each row of the input register

array and writes back the transformed values into the same

registers. It uses shared memory as a scratch pad memory for

all calculations. The required space depends on the FFT size

and is equal to 64 KiB for two 128x128 arrays.

The kernel obtains 2D FFT of the aperture plane by

performing row-wise and column-wise FFT on the input

array. Column-wise FFT is row-wise FFT performed on the

transposed input array. The kernel transposes the array by

exchanging the upper and lower triangles in three steps. Each

thread with registers in the upper triangle copies the upper

triangle values into the shared memory. The threads in the

lower triangle then swap values of the appropriate registers

with values of the upper triangle. Finally, the upper-triangle

threads copy back the lower-triangle values from the shared

memory. During the transpose, we also normalize all register

values with N2, where N is the total number of elements

in the input array. Normalizing values prevents floating-point

overflow because we perform all calculations at half-precision.

After the Fourier transform, all threads cross-multiply values

in each register to generate images and add them to the output

array described in section III-A. Once the desired number of

images are accumulated, each thread collects the four output

values in every pixel into float4 vectors and transfers them

to the global memory for further processing.

D. Performance Benchmarks

The kernel achieves the desired throughput of 128 sq. pixel

images with all four cross-polarizations per channel in real-

time. At LWA-SV, we generate sky images with a 40 ms

cadence. That means the kernel accumulates images for 1000

time steps to produce one sky image per channel or effectively

processing 50000 (25000 per polarization) images per second

on a single thread block. On an NVIDIA RTX 4090 GPU,

the kernel takes about 35 ms to process these 1000 images

spanning 40 ms with a 5x5 gridding kernel size (39 ms for a

7x7 gridding kernel). This processing time leaves more than

10% of the gulp duration to account for any GPU throttling

and other latencies the operating system introduces.

We profiled the kernel to quantify its GPU resource and

power utilization. The kernel spends more than 98% of the

time on computations and less than 2% on global memory

transfers, which is much smaller than ∼30% spent by the

previous kernel. The kernel utilizes 87% of the GPU compute

resources and less than 30% of its memory bandwidth. It

also requires a global memory space of less than 600 MiB,
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which is about 100 times smaller than what would be needed

for the previous kernel to generate the same imaging output.

The GPU draws a power of 280 W in a steady state. Future

optimizations will aim to reduce the GPU power consumption

while maintaining the same throughput. This will also include

reducing the GPU voltages without affecting the GPU clock

speeds.

Although on-chip memory enables the kernel to operate in

real-time, it also limits the number of channels that can be

imaged on the RTX 4090 to slightly below the desired level.

Each thread block consumes all the registers available on an

SM, forcing the GPU to launch only one thread block per

SM. An RTX 4090 contains 128 SMs, allowing us to image

128 channels on a single GPU, four channels short of the

132 channels produced on each node in the F-engine. The

kernel will be deployed on 6 GPUs that deliver a combined

bandwidth of 19.2 MHz, which is only 0.6 MHz lower than the

expected 19.8 MHz bandwidth and has essentially no effect

on the planned science objectives of detecting radio transient

events.

IV. CONCLUSIONS

We implemented an optimized GPU kernel for an EPIC-

based real-time radio imager we deploy on LWA-SV. It can

simultaneously generate images for all four cross-polarizations

for one channel in a single thread block. The kernel generates

128 sq. pixel images with 1◦ spatial resolution and a band-

width of 3.2 MHz per GPU, which meets the desired output

for operation at LWA-SV. It does so with an optimal on-chip

memory layout that stores intermediate imaging products at

half-precision within thread registers. The kernel uses shared

memory as a scratch pad for calculations and stores all aux-

iliary data within it, eliminating the need for global memory

transfers during accumulation. On an RTX 4090, the kernel

processes 50000 images per second on a single thread block.

It has a global memory footprint 100 times smaller than the

previous implementation to produce an identical output. The

code is open source and available in github1.
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