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Abstract—The E-Field Parallel Imaging Correlator (EPIC) is
an algorithm designed to perform imaging at several frequencies
using radio telescopes on much faster time scales O(N log N)
than their traditional counterparts O(N?). This paper describes
the new GPU Kkernel developed for a real-time EPIC-based
imaging pipeline. Unlike the slower global memory used by the
previous implementation, the kernel uses a new memory layout
to store all intermediate products of the imaging sequence in
on-chip memory to minimize time spent on memory transfers.
Aucxiliary data are stored in the shared memory for faster access.
The imaging data is stored with 16-bit precision in the thread
registers to reduce register pressure and simultaneously process
two images. Each thread block processes one frequency, providing
horizontal scalability. The optimized kernel processes 50000 all-
sky images per second per frequency in real time. It is being
deployed on the Long Wavelength Array in Sevilleta, New Mexico
(LWA-SV).

Index Terms—Radio telescope imaging, real-time, GPU accel-
eration, performance optimization

I. INTRODUCTION

The need for concurrent wider imaging fields, higher sen-
sitivity, and higher time resolution has expanded radio tele-
scope arrays from a few tens to hundreds of antennas with
dense layouts. Their correlators compute the integrated cross-
power correlation between all antenna pairs for imaging. This
computation scales as the square of the number of antennas,
~ N3. Advances in Graphics Processing Unit (GPU)-based
signal processing have allowed accelerating these intensive
calculations [1, for example]. While modern telescopes with
up to a few hundred antennas can be processed in correlators
using a small set of GPUs, the associated computational
complexity and costs of operation increase significantly with
thousands of antennas planned in upcoming telescopes like
the Square Kilometer Array (SKA) [2]. Hence, reducing the
number of computations while maintaining the same scientific
output is highly desirable.

For arrays with dense layouts, the direct imaging class of
algorithms can perform a spatial Fast Fourier Transform (FFT)
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on the antenna-measured electric fields without calculating
cross-correlations. These algorithms relax the number of com-
putations from ~ Nf1 to ~ N, log N, where N, is the number
of grid points in the FFT. Although direct imaging correlators
were tested on a few telescopes [3], [4], they required iden-
tical antennas and uniform layouts. Conversely, the Modular
Optimal Frequency Fourier (MOFF) [5] algorithm works with
heterogeneous antennas with arbitrary layouts. MOFF outputs
are identical to those produced with traditional correlators, and
the algorithm is the optimal solution for direct imaging. EPIC
is the first Python-based software implementation [6] of the
MOFF algorithm that was later implemented on a GPU using
CUDA [7]. Although the GPU version produced images of
the sky in real-time, the output bandwidth was limited, and
it imaged only a single polarization. This paper describes a
new kernel optimized for NVIDIA GPUs that produces dual-
polarized images with a much higher bandwidth. This kernel
is a part of the new all-sky imaging pipeline under deployment
at LWA-SV.

The rest of the paper is organized as follows. Section II
summarizes the EPIC algorithm and describes the imaging
requirements for LWA-SV. Section III describes the opti-
mized GPU implementation of EPIC and presents performance
benchmarks.

II. EPIC ALGORITHM

EPIC operates on data from a telescope’s F-Engine, which
digitizes and channelizes the electric field time series from
each antenna using a temporal Fourier transform. Following
that process, three spatial operations—gridding, inverse FFT,
and cross-multiply and accumulate—are performed sequen-
tially to transform the complex electric field spectra from the
antennas into a single sky image for each time step.

Gridding is performed at each time step to interpolate the
antenna data points (complex values) from arbitrary positions
in the aperture of the telescope onto a uniform grid to allow
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the use of FFT. Each data point is convolved with its antenna
beam pattern and sampled at regular grid points. Gridding is
generally an atomic operation, as multiple overlapping patterns
may add values to the same grid points. The gridded data
is inverse Fourier transformed and squared element-wise to
produce an image for each time step. We average these images
(typically hundreds) until we reach a specified signal-to-noise
ratio.

A. Imaging Considerations for LWA-SV

LWA-SV [8] observes the sky in the 3-88 MHz fre-
quency range with 256 dual-polarized antennas (X and Y), or
N = 512 effective interferometric elements. Polarization is a
property of incoming radiation that specifies the magnitude
and direction of the electric field oscillations. We can use
the polarized radio waves to understand the environments
of distant objects that are otherwise inaccessible to optical
telescopes. EPIC can use X and Y polarizations and output
images for all four instrumental cross-polarizations, namely,
XX*, YY*, XY*, YX*. The F-Engine at LWA-SV digitizes
and channelizes the electric field time series from each antenna
using 40 ps windows to yield a channel width of 25 kHz.
That means the imaging code must be able to process 25000
sky images per second for each channel and polarization. It
is desirable to oversample the telescope’s primary beam by at
least a factor of two at all frequencies and generate images that
cover the entire visible hemisphere. This oversampling needs
a minimum output image size of 128 sq. pixels with a spatial
resolution of 1°. The imager, therefore, requires a GPU with
a performance of at least a few GFLOPs for each channel and
polarization with this configuration.

The F-Engine at LWA-SV comprises six nodes, each provid-
ing channelized data with a bandwidth of 3.3 MHz (132 chan-
nels) or an effective bandwidth of 19.8 MHz distributed over
the entire frequency range. The channelized data is supplied
as 4+4-bit complex values, yielding a raw data rate of about
13.5 Gb/s per node or about 81 Gb/s in total. For a typical
accumulation time of 40 ms (1000 time steps) with an image
size of 128 sq. pixels, the output image data rate is about
10.4 Gb/s for 132 channels or 63.3 Gb/s for all channels.
Top-end GPUs available in 2023 can accommodate at least an
order of magnitude higher than these data rates and provide
performances over several TFLOPS, indicating a possibility
of imaging the entire bandwidth on a single GPU, although
memory access latency considerations (see sections below) for
gridding, FFT, and accumulation favor imaging with one GPU
per node in the F-Engine.

B. NVIDIA GPU Programming Overview

At a high level, NVIDIA GPUs are composed of streaming
multi-processors (SM), each consisting of multiple cores capa-
ble of running many threads in parallel. The Compute Unified
Device Architecture (CUDA) programming model provides a
platform to leverage massive parallelism built into these GPUs.
It provides a thread and memory hierarchy to simplify GPU
programming.
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A block comprises a group of threads up to a maximum of
1024, and a grid consists of a group of blocks where all threads
execute the same kernel. CUDA provides 3D-indexing support
for blocks and grids to distribute work among the threads
appropriately. GPUs also provide different types of memory
with different speeds. Registers are the fastest memory type
on a GPU, private to each thread, which kernel variables use
for computations. All threads in a block can also access a
slightly slower shared memory (L1 cache). This memory is
extremely limited and is less than 128 KiB in nearly all the
GPUs. CUDA also provides a global memory space that is
accessible by all threads and is much larger (typically a few
to hundreds of GBs) than register or shared memory. Global
memory is generally 100 times slower than shared memory.
Any memory required by threads above the available registers
is spilled into the local memory, a part of the global memory,
mapped through L1 and L2 caches.

GPU kernels are classified based on their performance
into two types: compute-bound and memory-bound. Compute-
bound kernels spend most of their run time doing compute
work using as many active threads as possible with minimal
memory accesses. Memory-bound kernels are further classified
into two types: latency-bound, where memory access latency
forms the main bottleneck, and bandwidth-bound, where the
finite memory transfer speed between device and global mem-
ory limits the performance. Optimized GPU kernels generally
minimize accesses to slow memory types and maximize the
compute work done per byte fetched from the global memory.
Put another way, one must make the kernel compute-bound or
compute and bandwidth bound for maximized performance.

C. Bottlenecks in the Previous GPU Implementation

The first version of EPIC imager deployed on LWA com-
prised three GPU kernels, executed sequentially, for gridding,
inverse FFT, and squaring and accumulating images. On an
NVIDIA RTX 2080 Ti GPU, the imager generates 64 sq.
pixel single polarization images with 90 channels in real-time,
which falls below the desired throughput described in section
II-A. While the highly optimized cuFFT library performs
FFT, profiling indicates gridding and accumulation kernels are
bandwidth-bound. It is mainly because each kernel operates on
the output from its previous kernel: the gridder writes the grid-
ded data for each timestep for all channels and polarizations
to global memory that is then Fourier transformed and written
back to the same memory by cuFFT. The transformed data
are then cross-multiplied, written to a different global memory
block, and finally averaged into a single image per channel per
polarization. These intermediate products require large global
memory allocations; profiling indicates that although these
kernels use efficient memory access patterns, they consume
about 30% of the total run time for global memory transfers,
leading to lower throughput.

III. OPTIMIZED EPIC CORRELATOR

The optimizations described in this paper aim to enable the
kernel to generate dual-polarized images in real time. The new
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code employs on-chip memory (registers and shared memory),
which is at least two orders of magnitude faster than global
memory, to store and process all intermediate products. Be-
cause kernel-allocated on-chip memory gets destroyed after the
kernel exits, the new code fuses all operations in the imaging
sequence into a single unified kernel. In what follows, we refer
to this unified kernel as the kernel unless otherwise stated.
Below, we describe the implementation for each operation in
the kernel, including an optimal on-chip memory layout to
facilitate data sharing between different operations.

A. On-chip Memory Layout

In this layout, the kernel stores intermediate products, which
are 2D arrays, in register (32-bit) arrays, uniformly spread
across all threads in a thread block. One 2D input array
stores gridded data for two polarizations that will be Fourier
transformed in place. Two 2D output arrays store compressed
sky image accumulations for all four cross-polarizations. Input
and output arrays have identical dimensions. Each element in
the input array comprises two complex numbers, one for each
polarization. Storing each value at 32-bit precision requires
four registers. A 128x128 array, therefore, would consume
65536 registers, the maximum number of on-chip registers
CUDA allows for a thread block on any GPU. In this case,
the compiler may partially or fully allocate memory for input
and output arrays in the much slower local memory to free
some registers for variables used in computations. This race for
registers between variables and storage arrays creates what is
commonly called the “register pressure”. It introduces memory
access latencies, leading to inefficient GPU compute power
usage. Reducing this register pressure drove the decision to
use half (16-bit) precision over 32-bits for input and output
arrays, which halves the required number of storage registers.

With half-precision, we store each input array element in
two 32-bit registers in an RR-II sequence. That means the real
and imaginary values of two polarizations for each element are
batched into the same registers. This sequence is required for
on-chip FFT calculations (see section III-C for details). We
launch the kernel using 2D thread blocks where we uniformly
distribute each row in the input array to registers in one row
of threads with a stride between elements.

Figure 1 depicts this layout for a thread block (128x8
threads) that generates a 128x128 sq. pixel image. Each thread
stores elements from its respective row in the input array with
a 16-element stride. For example, thread (0,0) stores elements
with indices 0, 16, 32, 48... from the first row in the input
array. The two output arrays are arranged similarly to store
four cross-polarization sky images. Each element in the first
array stores two half-precision numbers in a single register, one
each for XX* and YY™. Each element in the second array only
stores the real and imaginary parts of XY™ at half-precision
in a single register, and the remaining YX* polarization is
simply the complex conjugate of this value. That means we
effectively compress six values, one each for XX* and YY",
and two each for XY* and YX*, into four.
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Finally, this layout also leads to horizontal scalability be-
cause a single thread block can generate all image products
for one channel. Hence, we can image multiple channels in
parallel by launching multiple kernel thread blocks without
introducing additional latency. The scaling reaches a limit
when the GPU delays launching additional thread blocks due
to the unavailability of registers to perform computations.
Adding additional GPUs would allow imaging of an arbitrary
number of channels, each with the same computation time.

B. Gridding

The previous kernel used nearest neighbor gridding to
reduce global memory transfers. That means the data point
from each antenna was assigned to the nearest cell in the
aperture plane after scaling them with the appropriate antenna
phases. This gridding is equivalent to convolving the data
points with a pillbox or a constant function with the size of a
single cell and sampling it at cell centers.

EPIC prescribes using antenna beam patterns as convolution
kernels. The antenna kernel size depends on the frequency
and ranges from 3x3 to 5x5 cells on an aperture plane with
1° spatial resolution. These kernel sizes are 9 to 25 times
larger than a pillbox, indicating the pillbox kernel severely
undersamples the electric field spectra.

The new kernel grids the data in shared memory and
transfers it to the thread registers. Our tests (see section III-D)
indicate this method supports kernel sizes up to 7x7 to generate
128 sq. pixel images. The kernel allocates a 2D array in the
shared memory for use as scratch pad memory with the same
format as the input array described in section III-A. We only
allocate half the input array size to ensure the allocation is
below the shared memory typically available on GPUs. For
example, a 128x128 input array occupies 128 KiB, a shared
memory size available only on a few of NVIDIA’s GPUs
(typical shared memory is between 64-100 KiB). The kernel
grids data in the shared memory for the upper half of the
aperture plane and transfers it to respective thread registers.
It repeats the same procedure for the lower half, filling all
registers with the gridded data.

The gridding function divides all threads in the thread block
into groups of the number of cells covered by the gridding
kernel (e.g., 25 threads per group). Each thread group grids one
antenna at a time and atomically adds it to the array allocated
in the shared memory. The thread groups grid all antennas
covering the appropriate half of the aperture plane.

The gridding operation requires four inputs: antenna posi-
tions, phases (different for each polarization), kernel weights,
and the electric field spectra. Their memory access times
primarily determine the total run time of gridding. Antenna
positions and phases have smaller memory sizes than typical
shared memory sizes. For example, the 2D positions and
phases for 256 antennas only require 2 KiB and 4 KiB,
respectively. Hence, we copy the antenna positions and phases
into the shared memory of each thread block once per accumu-
lation. Because antenna positions remain fixed throughout the
observation, we pre-compute kernel weights for each antenna
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Fig. 1. On-chip memory layout for a kernel generating 128 sq. pixel images. The left image shows the logical layout of a 2D thread block with 128 rows
and 8 columns. One input array and two output arrays are distributed across thread registers (see section III-A for details). The right image shows the register
arrays allocated in thread (0,0). This thread stores elements from the first row of the input and output arrays with a stride of 16 elements between them. Each
element in the input array is a set of two half-precision complex numbers, one for each polarization, stored in two 32-bit registers with an RR-II layout. Each
output element is a set of two half-precision numbers stored in a 32-bit register. The first output array stores values for XX* and YY™, and the second one

stores the real and imaginary parts of XY™*.

and frequency. For a gridding kernel with a size of 5x5, the
weights for 256 antennas occupy a space of about 26 KiB per
channel, which we also copy to the shared memory. We can
store the weights in the global memory for GPUs with smaller
shared memory and map them through the L2 cache.

C. FFT and Accumulation

We use a specialized library called cuFFTDx, distributed
as a part of the NVIDIA MathDx package, to perform FFT
completely using on-chip memory. cuFFTDx uses the batched
half-precision register layout described in section III-A for
efficient calculations. It performs 1D FFT individually on each
row of threads or equivalently on each row of the input register
array and writes back the transformed values into the same
registers. It uses shared memory as a scratch pad memory for
all calculations. The required space depends on the FFT size
and is equal to 64 KiB for two 128x128 arrays.

The kernel obtains 2D FFT of the aperture plane by
performing row-wise and column-wise FFT on the input
array. Column-wise FFT is row-wise FFT performed on the
transposed input array. The kernel transposes the array by
exchanging the upper and lower triangles in three steps. Each
thread with registers in the upper triangle copies the upper
triangle values into the shared memory. The threads in the
lower triangle then swap values of the appropriate registers
with values of the upper triangle. Finally, the upper-triangle
threads copy back the lower-triangle values from the shared
memory. During the transpose, we also normalize all register
values with N2, where N is the total number of elements
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in the input array. Normalizing values prevents floating-point
overflow because we perform all calculations at half-precision.
After the Fourier transform, all threads cross-multiply values
in each register to generate images and add them to the output
array described in section III-A. Once the desired number of
images are accumulated, each thread collects the four output
values in every pixel into f1oat4 vectors and transfers them
to the global memory for further processing.

D. Performance Benchmarks

The kernel achieves the desired throughput of 128 sq. pixel
images with all four cross-polarizations per channel in real-
time. At LWA-SV, we generate sky images with a 40 ms
cadence. That means the kernel accumulates images for 1000
time steps to produce one sky image per channel or effectively
processing 50000 (25000 per polarization) images per second
on a single thread block. On an NVIDIA RTX 4090 GPU,
the kernel takes about 35 ms to process these 1000 images
spanning 40 ms with a 5x5 gridding kernel size (39 ms for a
7x7 gridding kernel). This processing time leaves more than
10% of the gulp duration to account for any GPU throttling
and other latencies the operating system introduces.

We profiled the kernel to quantify its GPU resource and
power utilization. The kernel spends more than 98% of the
time on computations and less than 2% on global memory
transfers, which is much smaller than ~30% spent by the
previous kernel. The kernel utilizes 87% of the GPU compute
resources and less than 30% of its memory bandwidth. It
also requires a global memory space of less than 600 MiB,
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which is about 100 times smaller than what would be needed
for the previous kernel to generate the same imaging output.
The GPU draws a power of 280 W in a steady state. Future
optimizations will aim to reduce the GPU power consumption
while maintaining the same throughput. This will also include
reducing the GPU voltages without affecting the GPU clock
speeds.

Although on-chip memory enables the kernel to operate in
real-time, it also limits the number of channels that can be
imaged on the RTX 4090 to slightly below the desired level.
Each thread block consumes all the registers available on an
SM, forcing the GPU to launch only one thread block per
SM. An RTX 4090 contains 128 SMs, allowing us to image
128 channels on a single GPU, four channels short of the
132 channels produced on each node in the F-engine. The
kernel will be deployed on 6 GPUs that deliver a combined
bandwidth of 19.2 MHz, which is only 0.6 MHz lower than the
expected 19.8 MHz bandwidth and has essentially no effect
on the planned science objectives of detecting radio transient
events.

IV. CONCLUSIONS

We implemented an optimized GPU kernel for an EPIC-
based real-time radio imager we deploy on LWA-SV. It can
simultaneously generate images for all four cross-polarizations
for one channel in a single thread block. The kernel generates
128 sq. pixel images with 1° spatial resolution and a band-
width of 3.2 MHz per GPU, which meets the desired output
for operation at LWA-SV. It does so with an optimal on-chip
memory layout that stores intermediate imaging products at
half-precision within thread registers. The kernel uses shared
memory as a scratch pad for calculations and stores all aux-
iliary data within it, eliminating the need for global memory
transfers during accumulation. On an RTX 4090, the kernel
processes 50000 images per second on a single thread block.
It has a global memory footprint 100 times smaller than the
previous implementation to produce an identical output. The
code is open source and available in github'.
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