

1 **Title:** *De-novo* long-read genome assembly and annotation of the luna moth (*Actias luna*) fully
2 resolves repeat-rich silk genes

3
4 **Authors and Affiliations:**

5 *Author for Correspondence: Amanda Markee ¹McGuire Center for Lepidoptera and
6 Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville FL, 32611,
7 USA. amanda.markee@ufl.edu

8
9 R. Keating Godfrey ²Department of Biological Sciences, Florida International University, Miami
10 FL, 33199, USA. rkeating@fiu.edu

11
12 Paul B. Frandsen ⁴Department of Plant and Wildlife Sciences, Brigham Young University, Provo
13 UT, 84602, USA. paul_frandsen@byu.edu

14
15 Yi-Ming Weng ¹McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural
16 History, University of Florida, Gainesville FL, 32611, USA. yimingweng@ufl.edu

17
18 Deborah A. Triant ³Department of Biochemistry & Molecular Genetics, University of Virginia,
19 Charlottesville VA 22908. dtriant@virginia.edu

20
21 Akito Y. Kawahara ¹McGuire Center for Lepidoptera and Biodiversity, Florida Museum of
22 Natural History, University of Florida, Gainesville FL, 32611, USA. kawahara@flmnh.ufl.edu

© The Author(s) 2024. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (<https://creativecommons.org/licenses/by-nc/4.0/>), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.

1 **Abstract**

2 We present the first long-read *de-novo* assembly and annotation of the luna moth (*Actias*
3 *luna*) and provide the full characterization of *heavy chain fibroin (h-fibroin)*, a long and highly
4 repetitive gene (>20 Kbp) essential in silk fiber production. There are more than 160,000 described
5 species of moths and butterflies (Lepidoptera), but only within the last five years have we begun
6 to recover high-quality annotated whole genomes across the order which capture *h-fibroin*. Using
7 PacBio HiFi reads, we produce the first high-quality long-read reference genome for this species.
8 The assembled genome has a length of 532 Mbp, a contig N50 of 16.8 Mbp, an L50 of 14 contigs,
9 and 99.4% completeness (BUSCO). Our annotation using *Bombyx mori* protein and *A.luna*
10 RNAseq evidence captured a total of 20,866 genes at 98.9% completeness with 10,267
11 functionally annotated proteins and a full-length *h-fibroin* annotation of 2,679 amino acid residues.
12

13 **Significance**

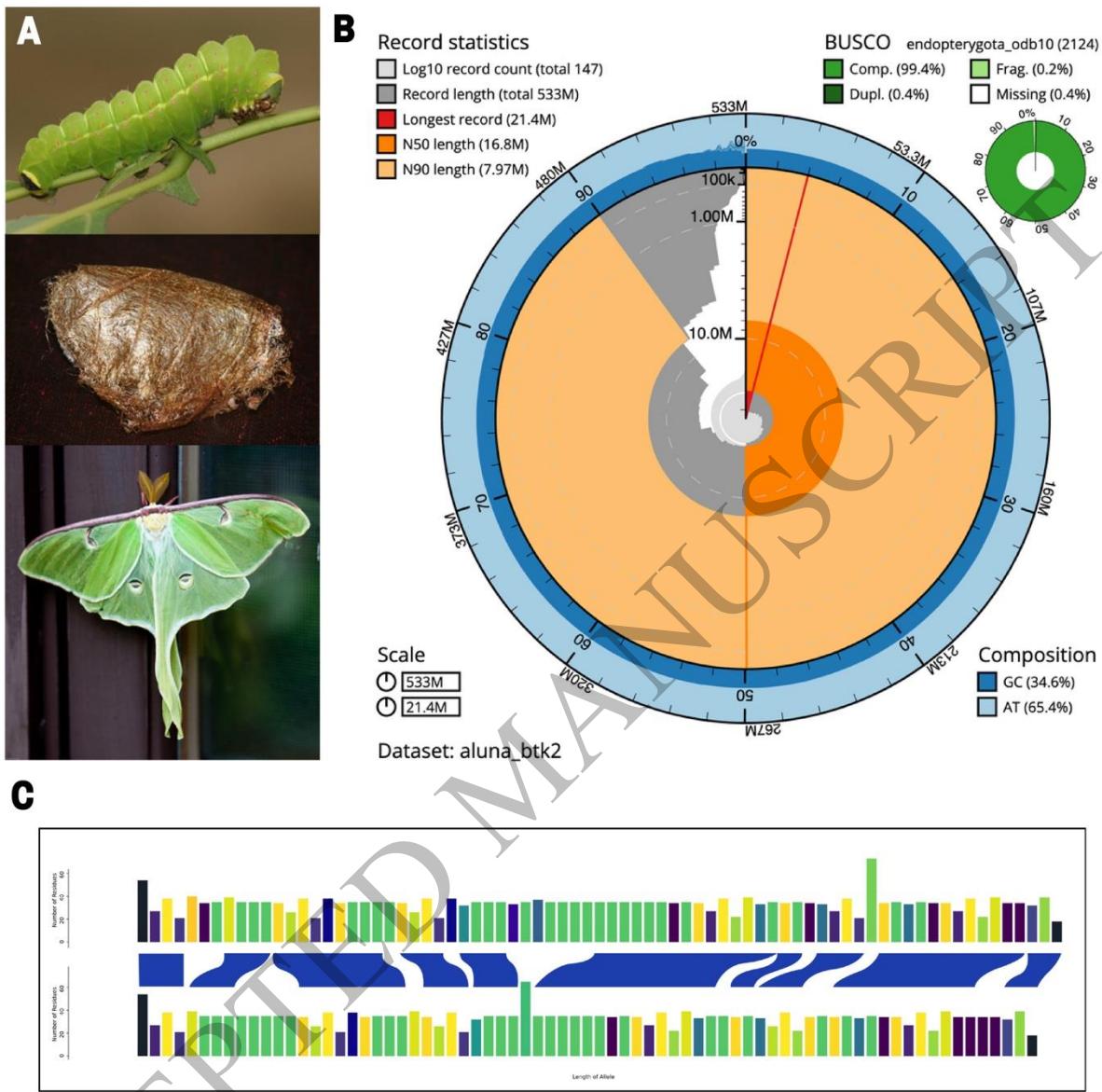
14 Silk has served an important role culturally, medically, and economically for centuries of
15 human history. Yet, available research on the underlying genetic variation for silk production are
16 largely incomplete in Lepidoptera due to challenges in assembling repeat-rich regions, which are
17 often associated with silk. We provide the first highly contiguous long-read reference genome and
18 full annotation of the repetitive silk gene (*h-fibroin*) for *A.luna*, a wild silk moth with important
19 ecological and cultural implications. We show that long-read sequencing can be an invaluable tool
20 for capturing historically challenging repetitive domains, such as *fibroins*.

21

22 **Keywords:** fibroin, genome, Lepidoptera, moth, PacBio, silk

23

1 **Introduction**


2 Silk is one of the oldest textiles manufactured by humans, with estimates of production in
3 China starting around 3000 BC (Ball 2009). In Confucius' telling of the origin story of silk, a
4 keenly observant empress, Leizu, accidentally discovers the unwinding fibers of a wild silk moth
5 (*Bombyx mandrina*) cocoon that dropped into her tea from a mulberry. The silk of many moths is
6 comprised of long, repetitive, fibroin filaments bound together by sericin polymers into threads
7 that create a barrier to desiccation and predation for the metamorphosing moth. Thus, Leizu's
8 discovery in her tea was important, as the processing of cocoons with hot water to unwind the
9 long, continuous threads was a key step in the innovation of weaving silk as a textile (Babu 2018).
10 While the human use of silks dates to approximately 3,000 BCE, silks are far more ancient. Silk
11 proteins are produced by members of all three terrestrial arthropod subphyla (Chelicerata,
12 Hexapoda, and Myriapoda; Sehnal and Craig 2009), with uses ranging from protection,
13 transportation, water repellency, and prey capture by organisms both aquatic and terrestrial (Craig
14 1997; Collin et al. 2010; Sutherland et al. 2010). Due in part to their use in textile production
15 (Supplemental Material 02), Lepidoptera (moths and butterflies) are one of the more commonly
16 recognized silk producers, but surprisingly little is known about the mechanisms and variation in
17 silk production in this group. Characterizations of lepidopteran silks are based almost exclusively
18 on the domestic silkworm (*Bombyx mori*), for which a highly resolved genome (Mita et al. 2004)
19 and transgenic tools are available (reviewed in Ma et al. 2018; 2024). Lepidoptera consists of over
20 160,000 described species (van Nieuwerken et al. 2011), but almost nothing is known about the
21 genetic variation underlying non-model "wild silks" due to gaps in genome quality and availability.

22 Silk genes such as *heavy chain fibroin* (*h-fibroin*) are long, repeat-rich genes averaging 20
23 kilobase pairs (Kbp) in length (Sezutsu and Yukuhiro 2000; Kawahara et al. 2021). The order and

1 number of repetitive motifs determine protein structural qualities (Sehnal and Sutherland 2008),
2 simultaneously make it challenging to fully capture gene sequences using short-read technology.
3 This is mainly due to average fragment lengths of 150 - 300 bp, which cannot span the length of
4 the entire repetitive domain. High quality long-read genomes make it possible to recover
5 challenging full-length genes, making comparative genomic, functional genomic, and
6 phylogenomic studies of silk feasible (Triant et al. 2017; Ellis et al. 2021). Importantly, long-read
7 sequencing can better resolve problematic repeat-rich regions of the genome, providing insights
8 into studying silk gene structural evolution, as was recently reported for spiders, Lepidoptera, and
9 caddisflies (order Trichoptera) (Heckenhauer et al. 2023; Frandsen et al. 2023). Studies such as
10 these serve as an important first step in linking variation in protein sequence with mechanical
11 properties of silk.

12 *A. luna* is a large charismatic silk moth native to the eastern United States and is
13 distinguished by its bright green pigmentation and tail-like hindwings (Triant and Pirro 2023). It
14 serves as a dominant food source for pollinators such as bats and birds, and feeds on a wide variety
15 of trees including sweetgum, oak, willow, and hickory (Lindroth 1989). Silk moths are known to
16 produce qualitatively different silks throughout larval development, in addition to cocoon silk
17 (Chen et al. 2012), making it an ideal candidate for assessing the roles of genetic variation and
18 phenotypic plasticity in silk production. This species has one published genome available to date
19 (Triant and Pirro 2023; NCBI accession GCA_010014465.3) however, this genome was produced
20 with short read DNA, and does not accurately resolve primary and haplotype assembled silk genes.

21

1

2 Figure 1. (A) Three of the five life stages of *A. luna* including larva (Credit: [Dean Morley](#), some
3 rights reserved ([CC BY-ND](#))), pupa encased in a cocoon (Credit: [Dean Morley](#), some rights reserved
4 ([CC BY-ND](#))), and adult (Credit: [Patrick](#), some rights reserved ([CC BY](#))). (B) Snail plot generated
5 in blobtools2 representing general genome statistics, and assembly completeness with BUSCO.
6 (C) Annotation for *h-fibroin* in *A. luna* produced from this study, with both haplotypes. Each bar
7 represents a corresponding repetitive motif (see Supplemental Material 8) with variation in the
8 number of repetitive motifs present, and motif identity. Blue ribbons highlight alignment of

1 identical amino acid repeats, with genetic variation arising in unaligned motifs. Figure is oriented
2 starting with the N-terminal, stretched to the C-terminal.

3
4 New high-quality genomic resources are necessary to understanding how functional genes
5 can give rise to diverse silk phenotypes, and to be able to study these genes in a comparative
6 approach. Here, we present the first comprehensive long read *de-novo* genome assembly and
7 annotation of *A. luna* using PacBio HiFi sequencing, with protein and RNAseq evidence to fully
8 annotate the genome and characterize the entirety of the *h-fibroin* gene.

9
10 **Results and Discussion**

11 **Genome Assembly and QC**

12 From our HiFi DNA library, we recovered 5.3 million polymerase reads containing 2.7
13 million HiFi reads, with a raw-read N50 of 184 Kbp and an average raw-read length of
14 approximately 90 Kbp. The mean HiFi read length, however, was 7.6 Kbp. Genome size
15 estimations and heterozygosity were predicted using kmer count (KMC) (Kokot et al. 2017;
16 RRID:SCR_001245) and GenomeScope 2.0 (Ranallo-Benavidez et al. 2020) and the predicted
17 genome length was approximately 420 Mbp, with 1.2% heterozygosity (Supplementary Material
18 03) and 40x coverage.

19 Whole genome assembly yielded a primary assembly length of approximately 532 Mbp,
20 with quality statistics of N50 = 16.8 Mbp, L50 = 14 contigs, and 99.4% completeness based on
21 the universal, single-copy ortholog gene set for Endopterygota (BUSCO with
22 Endopterygota_odb10 database; Manni et al. 2021; RRID:SCR_015008; Table 1). The shortest
23 contig length in the assembly was 6.1 Kbp, the median contig length was 78.3 Kbp, the mean
24 contig length was 3.4 Mbp, and the longest contig length was 21.4 Mbp. Following non-target

1 filtering with BlobTools (Laetsch and Blaxter 2017; RRID:SCR_017618), N=11 contigs were
2 predicted to encode primarily Microsporidia (fungal) proteins, and Streptophyta (plant) proteins
3 (Supplemental Material 04). The presence of microsporidian pathogens has been observed in
4 other wild silk moths, especially in the sericulture industry (Subrahmanyam 2019). Thus, these
5 putative non-target sequences are worth assessing further in the future but is beyond the scope of
6 this study. Non-target sequences were removed after assembly, and the resulting cleaned primary
7 assembly was used for all downstream analyses.

8

9 **Genome Annotation**

10 For the structural annotation, we employed BRAKER3 using two forms of evidence:
11 protein sequences from the closely related *Bombyx mori* (Supplemental Material 06) and
12 RNAseq from 16 individuals of varying tissue types and developmental stages of *A. luna*, totaling
13 38 independent tissues sequenced (Supplemental Material 07). Each individual represented a
14 particular life stage (egg, 1st-4th instar, pre-pupal, pupal, or adult), and represented one of three
15 tissue types, including head, thorax, abdomen or whole body (e.g., luna_01_head contained head
16 tissue from a 4th instar caterpillar). This annotation recovered a total of 20,866 genes with 98.9%
17 BUSCO completeness (Single-copy:98.1%,Duplicated:0.8%). 17,537 proteins had significant
18 blast hits in the NCBI non-redundant protein database. Of these, blast2go assigned functional
19 annotations to 10,133 proteins, and mapped GO terms to 11,840 proteins. The two major
20 biological processes identified in the *A. luna* genome were cellular and metabolic processes,
21 where binding and catalytic activity were the largest subcategories for molecular function
22 (Supplemental Material 05). When annotating cellular components, most genes were assigned to

1 cell structure and function, including to membrane, intracellular anatomical structure, and
2 organelle function.

3 The annotated h-fibroin protein sequence was 2,679 amino acids in length in the primary
4 sequence. The gene is structured by a short initial exon (641bp) followed by an intron (749bp),
5 and a terminal exon with the entire repetitive region (7,997bp). As reported previously in other
6 species (Frandsen et al. 2023) there was a substantial amount of allelic variation in h-fibroin,
7 with the alternate copy spanning 2,597 amino acids. The *h-fibroin* allele for the primary
8 haplotype included a total of 73 internal repetitive motifs broken up by poly-alanine chains
9 (AAA)₃, and 2 conserved termini regions, while the alternate haplotype included 71 repetitive
10 motifs, and 2 conserved termini regions. The majority of allelic differences stem from insertions
11 and deletions (indels) of repetitive amino acid motifs, such as the long alanine chains and
12 glycine-rich repeats (Figure 1), known to be responsible for the physical properties of silk fibers
13 (Yonemura & Sehnal, 2006).

14 Prior to 2019, only seven full-length *h-fibroin* gene sequences were available across
15 Lepidoptera (Kono et al., 2019). Of these sequences, *h-fibroin* was available for two *Antherea*
16 species, and a single *Samia* species, which all share similarity in protein length (~2,500 amino
17 acid residues), gene architecture and repetitive motif composition to that of *A. luna* (Family:
18 *Saturniidae*). Other annotated *fibroins* from more distantly related lepidopterans such as *Bombyx*
19 *mori* (Family: *Bombycidae*) and *Plodia interpunctella* (Family: *Pyralidae*) are much longer
20 (5,263 amino acid residues and 4,714 amino acid residues, respectively; Zhou et al. 2001,
21 Kawahara et al. 2022) with distinct repetitive motifs compared to saturniid species. *A. luna* and
22 *A. yamamai* have similar silk gene architecture, with long alanine chains and a double cystine
23 complex in the conserved N terminal, which have been identified by previous studies to being

1 homologous across several different families of lepidopterans (Yonemura et al. 2009). However,
2 Saturniidae are unique in their lack of a conserved cystine residue at the tail end of the h-fibroin
3 protein. Importantly, the conserved cystines and other amino acid residues are indicators of
4 which regions of these molecules (h-fibroin, l-fibroin and P25) are involved with their
5 interactions (Yonemura & Sehnal 2006).

6

7 **Materials and Methods**

8 **Sample Preparation, DNA/RNA Extraction, and Sequencing**

9 All specimens used in this study were reared in the lab from eggs collected from gravid
10 adult females wild-caught in Gainesville, Florida. All samples were flash frozen in liquid
11 nitrogen and stored in -80°C until extraction. High molecular weight DNA was isolated from a
12 single, fifth-instar caterpillar by the University of Florida's Interdisciplinary Center for
13 Biotechnology Research (ICBR) (RRID:SCR_019152) using the Qiagen DNeasy Blood and
14 Tissue kit following manufacturer protocol. RNA was isolated using a TRIzol-chloroform
15 extraction protocol (Rio et al. 2010) from whole eggs and first instar caterpillars, and separately
16 from the head, thoracic and abdominal tissue of larval instars 4 and 5, pre-pupa, pupa, and adults
17 of both sexes.

18 High molecular weight DNA was sheared to 15 Kbp using mechanical shearing
19 (Covaris). HiFi SMRT bell libraries were prepared following manufacturer protocol for PacBio
20 HiFi (P/N 101-763-800) with a few modifications (Supplemental Material 01). DNA
21 preparations were cleaned using the MoBio PowerClean DNA Cleanup Kit, were cleaned and
22 concentrated using the ZYMO Research RNA Clean and Concentrator kit. DNA preparations

1 were evaluated for quality on the Agilent TapeStation. Libraries were sequenced on two PacBio
2 Sequel IIe 30-hour SMRT cells at UF ICBR's Next Generation Sequencing Core.

3 All RNAseq samples (N=38) were pooled and prepared for sequencing using the TruSeq
4 RNA Library Prep Kit v2, and sequenced on an Illumina HiSeq3000 at 2x100 cycles, and with
5 one lane per barcoded and pooled samples (with a total of 8 lanes).

6

7 **Quality Assessment and Whole Genome Assembly**

8 Raw reads were assessed using the FastQC quality assessment tool (Andrews 2010) for
9 general sequence quality statistics including Phred score, GC content, over-representation, and
10 sequence length distribution. We estimated genome characteristics such as size, heterozygosity
11 and repetitiveness using k-mer counter (KMC) v.3.2.1 (Kokot et al. 2017; RRID:SCR_001245)
12 and GenomeScope 2.0 (Ranallo-Benavidez et al. 2020; RRID:SCR_017014) with a default k-
13 mer length set to 21, and the ploidy set to 2.

14 We assembled the genome using the assembler hifiasm v0.13-r307 (RRID:SCR_021069)
15 with standard duplicate purging enabled (option -l 2). The resulting primary contig assembly
16 (*.p_ctg.gfa) was used for all downstream analyses. We measured genome contiguity using the
17 assembly_stats.py script (Trizna 2020) and genome completeness using BUSCO v.5.2.2 (Manni
18 et al. 2021; RRID:SCR_015008) with the obd10 reference for Endopterygota.

19 We identified non-target DNA and potential contaminants using BlobTools v1.0 (Laetsch
20 and Blaxter 2017; RRID:SCR_017618), which indexes the assembly using samtools (Danecek et
21 al. 2021; RRID:SCR_002105), and maps HiFi reads back to the indexed assembly with
22 minimap2 (Li 2018; RRID:SCR_018550). Non-target DNA plots were visualized using
23 BlobPlot, where megablast (Morgulis et al. 2008) searches from BLASTN v 2.10.1

1 (RRID:SCR_001598) were used to assign taxonomic ID to each contig with an e-value cutoff of
2 1e-25. Putative non-target sequences, based on non-Arthropoda assignment and clear deviations
3 of GC content and mean sequence depth, were checked against prior BUSCO results. All
4 putative non-target sequences were confirmed to be absent from prior BUSCO results before
5 manually removing them from the assembly, to ensure that genome completeness would remain
6 the same after purging non-target hits.

7

8 **Structural Annotation and Gene Predictions**

9 To identify repeat elements in the genome, we used RepeatModeler2 (Flynn et al. 2020;
10 RRID:SCR_015027) and masked repetitive elements using RepeatMasker (Smit and Hubley
11 2013; RRID:SCR_012954). To be the most inclusive due to uncertainty of true repeat elements,
12 we only use soft masking for the structural annotation moving forward.

13 For gene modeling, we use GeneMark-ETP mode in the BRAKER3 annotation pipeline
14 (Bruna et al. 2021; Hoff et al. 2016; Hoff et al. 2021; Stanke et al. 2006; Stanke et al. 2008;
15 Buchfink et al. 2015; Li et al. 2009; Barnett et al. 2011; Kovaka et al. 2019; Pertea and Pertea
16 2020; Quinlan 2014; RRID:SCR_018964) to predict the protein coding genes from the soft-
17 masked genome. For the focus of this study, a subset of the Illumina RNAseq reads were used
18 for whole-genome structural annotation. We combined all reads originating from the same
19 individual (including multiple tissue types) and used the concatenated sequences as a
20 representative for each life stage (i.e., luna_01_head, luna_01_thorax, and luna_01_abdomen
21 were combined into one luna_01_instar4 to represent RNAseq from that developmental stage).
22 We mapped reads to the genome using default parameters in hisat2 (Kim et al. 2019;
23 RRID:SCR_015530), and the resulting mapped reads were used to jointly perform GeneMark
24 training and prediction with hints from all available protein sequences of the closely related

1 *Bombyx mori* on NCBI (accessed January 16, 2023; Supplemental Material 06) using ProHint
2 (Bruna et al. 2020; RRID:SCR_021167). The two resulting gene models (Braker and Augustus)
3 were evaluated using BUSCO v.4.1.4 (Manni et al. 2021) with the Endopterygota odb10 core
4 ortholog sets. We selected the model predicted by Augustus (augustus.hints) to represent the gene
5 model of this assembly based on the higher quality BUSCO results, with more complete single
6 copy recovery and less duplication.

7 To assign function to the genes identified with BRAKER3, we used BLASTP (Sayers et
8 al. 2022) to search the predicted proteins against the NCBI non-redundant protein database with
9 an e-value cutoff of 1e-4 for the top hits up to ten hits. In addition, we used BLAST2GO (Sayers
10 et al. 2022) to assign gene ontology terms and functional annotations to the predicted proteins.

11 For functional annotation of the *h-fibroin* silk gene, we used the primary and haplotype
12 assemblies from the hifiasm output from the previous assembly methods. N- and C- termini for
13 *h-fibroin* are fairly conserved across Lepidoptera, thus we used tBLASTN with termini sequences
14 from *Antherea mylitta*, a species from the same family (Hwang et al. 2001), to search the primary
15 and alternate haplotype *A. luna* assemblies. We then extracted the target sequences and flanking
16 regions were extracted from the primary and haplotype assemblies and annotated the region in
17 Augustus v.3.3.2.

18
19 Table 1a. A comparison of genome statistics for the genome produced in this study, to the
20 existing wild silk moth genome assemblies (Family: Saturniidae) available on NCBI.

21
22 Table 1b. Comparison of genome completeness between the only other existing *A. luna* genome
23 assembly available to date.

	Assembly type	Size (Mb)	N50 (Mb)	L50	Number of contigs	Genome coverage	Ref
<i>Actias luna</i> *	contig	532	16.8	14	155	40x	Authors
<i>Samia ricini</i> *	chromosome	452.5	33.1	8	1489	100x	GCA_014132275.2
<i>Saturnia japonica</i>	chromosome	581.8	20.2	13	959	100x	GCA_033032175.1
<i>Saturnia pavonia</i> *	chromosome	489.9	17.7	13	71	50x	GCA_947532125.1
<i>Antheraea pernyi</i>	scaffold	787	0.338	4256	103,035	100x	GCA_015888305.1
<i>Actias luna</i>	scaffold	559.1	0.002	63,632	529,540	140x	GCA_010014465.3
<i>Antheraea mylitta</i> *	scaffold	698.4	5.3	2894	37,190	166.6x	GCA_014332785.1
<i>Saturnia pavonia</i> *	scaffold	459.9	2.4	62	418	50x	GCA_947532135.1

Note: *genomes produced with long-read sequencing platforms e.g. PacBio or Oxford Nanopore

1

	BUSCO complete (%)	Single Copy (%)	Duplicated (%)	Fragmented (%)	Missing (%)	Ref
<i>Actias luna</i> *	99.4	99.0	0.4	0.2	0.4	Authors
<i>Actias luna</i>	71.4	63.9	7.5	15.4	13.2	GCA_010014465.3

Note: *genomes produced with long-read sequencing platforms e.g. PacBio or Oxford Nanopore

2

3

4 Supplementary Material

5 See supplemental materials document, and the DOI for genome assembly materials

6 (10.6084/m9.figshare.25483282; <https://figshare.com/s/e0381962bda32f013804>) genome

7 structural annotation materials (10.6084/m9.figshare.25483330;

8 <https://figshare.com/s/9793ed051033ea39f6b1>) and genome functional annotation

9 (10.6084/m9.figshare.25483372; <https://figshare.com/s/b45bdd01f1d071d3ac7e>).

10

11

1 **Acknowledgements**

2 This material is based upon work supported by the National Science Foundation Graduate
3 Research Fellowship under NSF Award No. 1938103. This research was additionally supported
4 by the McGuire Center for Lepidoptera and Biodiversity (MGCL), the Florida Museum of
5 Natural History (FLMNH), The University of Florida Research Opportunity Fund (UF-ROF),
6 University of Florida's School of Natural Resources and Environment (SNRE), and the National
7 Science Foundation grants NSF MCB-2217159 (AYK) and NSF MCB-2217155 (PBF). Any
8 opinion, findings, and conclusions or recommendations expressed in this material are those of
9 the authors(s) and do not necessarily reflect the views of the National Science Foundation. We
10 thank Ashlyn Powell for her help generating allelic diversity elements in our figure, and we
11 thank JT Tubera for his help with figure editing.

12

13 **Data Availability**

14 PacBio HiFi reads and raw RNAseq reads, and the draft genome assembly are publicly
15 available on NCBI under the following BioProject number: PRJNA1072661. The final assembly,
16 BRAKER3 annotation output, heavy-fibroin protein sequence, *Bombyx mori* protein evidence,
17 and all bioinformatic scripts used in this study are all available on FigShare (DOI
18 10.6084/m9.figshare.25483375)

19

20 **Literature Cited**

21 Andrews, S. (2010.). *FastQC: A Quality Control tool for High Throughput Sequence Data*.
22 Retrieved December 18, 2023, from <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>

1 Babu, K. M. (2019). *Silk: Processing, properties and applications* (Second edition). The Textile
2 Institute : Woodhead Publishing, an imprint of Elsevier.

3 Ball, P. (2009). Rethinking silk's origins. *Nature*. <https://doi.org/10.1038/457945a>

4 Barnett, D. W., Garrison, E. K., Quinlan, A. R., Strömberg, M. P., & Marth, G. T. (2011).

5 BamTools: A C++ API and toolkit for analyzing and managing BAM files. *Bioinformatics*
6 (*Oxford, England*), 27(12), 1691–1692. <https://doi.org/10.1093/bioinformatics/btr174>

7 Brúna, T., Hoff, K. J., Lomsadze, A., Stanke, M., & Borodovsky, M. (2021). BRAKER2:
8 Automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported by a
9 protein database. *NAR Genomics and Bioinformatics*, 3(1), lqaa108.

10 <https://doi.org/10.1093/nargab/lqaa108>

11 Brúna, T., Lomsadze, A., & Borodovsky, M. (2020). GeneMark-EP+: Eukaryotic gene prediction
12 with self-training in the space of genes and proteins. *NAR Genomics and Bioinformatics*, 2(2),
13 lqaa026. <https://doi.org/10.1093/nargab/lqaa026>

14 Buchfink, B., Xie, C., & Huson, D. H. (2015). Fast and sensitive protein alignment using
15 DIAMOND. *Nature Methods*, 12(1), 59–60. <https://doi.org/10.1038/nmeth.3176>

16 Chen, F., Porter, D., & Vollrath, F. (2012). Morphology and structure of silkworm cocoons.
17 *Materials Science and Engineering: C*, 32(4), 772–778.

18 <https://doi.org/10.1016/j.msec.2012.01.023>

19 Cheng, H., Concepcion, G. T., Feng, X., Zhang, H., & Li, H. (2021). Haplotype-resolved de novo
20 assembly using phased assembly graphs with hifiasm. *Nature Methods*, 18(2), 170–175.

21 <https://doi.org/10.1038/s41592-020-01056-5>

1 Collin, M. A., Mita, K., Sehnal, F., & Hayashi, C. Y. (2010). Molecular Evolution of
2 Lepidopteran Silk Proteins: Insights from the Ghost Moth, *Hepialus californicus*. *Journal of*
3 *Molecular Evolution*, 70(5), 519–529. <https://doi.org/10.1007/s00239-010-9349-8>

4 Craig, C. L. (1997). Evolution of Arthropod Silks. *Annual Review of Entomology*, 42(1), 231–
5 267. <https://doi.org/10.1146/annurev.ento.42.1.231>

6 Danecek, P. et al. (2021). Twelve years of SAMtools and BCFtools. *GigaScience*, 10(2), giab008.
7 <https://doi.org/10.1093/gigascience/giab008>

8 Ellis, E. A., Storer, C. G., & Kawahara, A. Y. (2021). *De novo* genome assemblies of butterflies.
9 *GigaScience*, 10(6), giab041. <https://doi.org/10.1093/gigascience/giab041>

10 Flynn, J. M. et al. (2020). RepeatModeler2 for automated genomic discovery of transposable
11 element families. *Proceedings of the National Academy of Sciences of the United States of
12 America*, 117(17), 9451–9457. <https://doi.org/10.1073/pnas.1921046117>

13 Gabriel, L., Hoff, K. J., Brůna, T., Borodovsky, M., & Stanke, M. (2021). TSEBRA: Transcript
14 selector for BRAKER. *BMC Bioinformatics*, 22(1), 566. [https://doi.org/10.1186/s12859-021-04482-0](https://doi.org/10.1186/s12859-021-
15 04482-0)

16 Gotoh, O. (2008). Direct mapping and alignment of protein sequences onto genomic sequence.
17 *Bioinformatics*, 24(21), 2438–2444. <https://doi.org/10.1093/bioinformatics/btn460>

18 Gupta K, A., Mita, K., Arunkumar, K. P., & Nagaraju, J. (2015). Molecular architecture of silk
19 fibroin of Indian golden silkworm, *Antheraea assama*. *Scientific Reports*, 5(1), 12706.
20 <https://doi.org/10.1038/srep12706>

21 Heckenhauer, J. et al. (2023). Characterization of the primary structure of the major silk gene, *h-*
22 *fibroin*, across caddisfly (Trichoptera) suborders. *iScience*, 26(8), 107253.
23 <https://doi.org/10.1016/j.isci.2023.107253>

1 Hoff, K. J., Lange, S., Lomsadze, A., Borodovsky, M., & Stanke, M. (2016). BRAKER1:
2 Unsupervised RNA-Seq-Based Genome Annotation with GeneMark-ET and AUGUSTUS.
3 *Bioinformatics (Oxford, England)*, 32(5), 767–769.
4 <https://doi.org/10.1093/bioinformatics/btv661>

5 Hoff, K. J., Lomsadze, A., Borodovsky, M., & Stanke, M. (2019). Whole-Genome Annotation
6 with BRAKER. In M. Kollmar (Ed.), *Gene Prediction* (Vol. 1962, pp. 65–95). Springer New
7 York. https://doi.org/10.1007/978-1-4939-9173-0_5

8 Hwang, J.-S., et al. (2001). Cloning of the fibroin gene from the oak silkworm, *Antheraea*
9 *yamamai* and its complete sequence. *Biotechnology Letters*, 23(16), 1321–1326.
10 <https://doi.org/10.1023/A:1010542011150>

11 Kawahara, A. Y., et al. (2022). Long-read HiFi sequencing correctly assembles repetitive *heavy*
12 *fibroin* silk genes in new moth and caddisfly genomes. *Gigabyte*, 2022, 1–14.
13 <https://doi.org/10.46471/gigabyte.64>

14 Kim, D., Paggi, J. M., Park, C., Bennett, C., & Salzberg, S. L. (2019). Graph-based genome
15 alignment and genotyping with HISAT2 and HISAT-genotype. *Nature Biotechnology*, 37(8),
16 907–915. <https://doi.org/10.1038/s41587-019-0201-4>

17 Kokot, M., Długosz, M., & Deorowicz, S. (2017). KMC 3: Counting and manipulating k-mer
18 statistics. *Bioinformatics*, 33(17), 2759–2761. <https://doi.org/10.1093/bioinformatics/btx304>

19 Kono, N., et al. (2019). The bagworm genome reveals a unique fibroin gene that provides high
20 tensile strength. *Communications Biology*, 2(1), 148. <https://doi.org/10.1038/s42003-019-0412-8>

21 Kovaka, S. et al. (2019). Transcriptome assembly from long-read RNA-seq alignments with
22 StringTie2. *Genome Biology*, 20(1), 278. <https://doi.org/10.1186/s13059-019-1910-1>

1 Laetsch, D. R., & Blaxter, M. L. (2017). BlobTools: Interrogation of genome assemblies.

2 *F1000Research*, 6, 1287. <https://doi.org/10.12688/f1000research.12232.1>

3 Lee, J et al. (2021). The genome sequence of *Samia ricini*, a new model species of lepidopteran

4 insect. *Molecular Ecology Resources*, 21(1), 327–339. <https://doi.org/10.1111/1755-0998.13259>

5 Li, H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. *Bioinformatics*, 34(18),

6 3094–3100. <https://doi.org/10.1093/bioinformatics/bty191>

7 Li, H., et al. (2009). The Sequence Alignment/Map format and SAMtools. *Bioinformatics*,

8 25(16), 2078–2079. <https://doi.org/10.1093/bioinformatics/btp352>

9 Lindroth, R. L. (1989). Chemical ecology of the luna moth: Effects of host plant on

10 detoxification enzyme activity. *Journal of Chemical Ecology*, 15(7), 2019–2029.

11 <https://doi.org/10.1007/BF01207434>

12 Ma, S. et al. (2024). High-throughput and genome-scale targeted mutagenesis using CRISPR in a

13 nonmodel multicellular organism, *Bombyx mori*. *Genome Research*.

14 <https://doi.org/10.1101/gr.278297.123>

15 Ma, S.-Y., Smagghe, G., & Xia, Q.-Y. (2019). Genome editing in *Bombyx mori*: New

16 opportunities for silkworm functional genomics and the sericulture industry. *Insect Science*,

17 26(6), 964–972. <https://doi.org/10.1111/1744-7917.12609>

18 Manni, M., Berkeley, M. R., Seppey, M., Simão, F. A., & Zdobnov, E. M. (2021). BUSCO

19 Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic

20 Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. *Molecular Biology and*

21 *Evolution*, 38(10), 4647–4654. <https://doi.org/10.1093/molbev/msab199>

22 Mita, K. (2004). The Genome Sequence of Silkworm, *Bombyx mori*. *DNA Research*, 11(1), 27–

23 35. <https://doi.org/10.1093/dnare/11.1.27>

1 Morgulis, A. et al. (2008). Database indexing for production MegaBLAST searches.

2 *Bioinformatics*, 24(16), 1757–1764. <https://doi.org/10.1093/bioinformatics/btn322>

3 Peigler, R. S. (1993). Wild Silks of the World. *American Entomologist*, 39(3), 151–162.

4 <https://doi.org/10.1093/ae/39.3.151>

5 Pertea, G., & Pertea, M. (2020). GFF Utilities: GffRead and GffCompare. *F1000Research*, 9,

6 ISCB Comm J-304. <https://doi.org/10.12688/f1000research.23297.2>

7 Quinlan, A. R. (2014). BEDTools: The Swiss-Army Tool for Genome Feature Analysis. *Current*

8 *Protocols in Bioinformatics*, 47, 11.12.1-34. <https://doi.org/10.1002/0471250953.bi1112s47>

9 Ranallo-Benavidez, T. R., Jaron, K. S., & Schatz, M. C. (2020). GenomeScope 2.0 and

10 Smudgeplot for reference-free profiling of polyploid genomes. *Nature Communications*, 11(1),

11 1432. <https://doi.org/10.1038/s41467-020-14998-3>

12 Reddy, N., & Yang, Y. (2012). Investigation of the Structure and Properties of Silk Fibers

13 Produced by *Actias luna*. *Journal of Polymers and the Environment*, 20(3), 659–664.

14 <https://doi.org/10.1007/s10924-012-0482-x>

15 Rio, D. C., Ares, M., Hannon, G. J., & Nilsen, T. W. (2010). Purification of RNA Using TRIzol

16 (TRI Reagent). *Cold Spring Harbor Protocols*, 2010(6), pdb.prot5439.

17 <https://doi.org/10.1101/pdb.prot5439>

18 Sehnal, F., & Craig, C. (2009). Chapter 235—Silk Production. In V. H. Resh & R. T. Cardé

19 (Eds.), *Encyclopedia of Insects (Second Edition)* (pp. 921–924). Academic Press.

20 <https://doi.org/10.1016/B978-0-12-374144-8.00244-7>

21 Sehnal, F., & Sutherland, T. (2008). Silks produced by insect labial glands. *Prion*, 2(4), 145–153.

22 <https://doi.org/10.4161/pri.2.4.7489>

1 Sezutsu, H., & Yukuhiro, K. (2000). Dynamic Rearrangement Within the *Antherea pernyi* Silk
2 Fibroin Gene Is Associated with Four Types of Repetitive Units. *Journal of Molecular Evolution*,
3 51(4), 329–338. <https://doi.org/10.1007/s002390010095>

4 Smit, A. F., & Hubley, R. (n.d.). *RepeatMasker Open-4.0*. Retrieved December 18, 2023, from
5 <https://www.repeatmasker.org/>

6 Stanke, M., Diekhans, M., Baertsch, R., & Haussler, D. (2008). Using native and syntenically
7 mapped cDNA alignments to improve de novo gene finding. *Bioinformatics*, 24(5), 637–644.
8 <https://doi.org/10.1093/bioinformatics/btn013>

9 Stanke, M. et al. (2006). AUGUSTUS: Ab initio prediction of alternative transcripts. *Nucleic
10 Acids Research*, 34(Web Server), W435–W439. <https://doi.org/10.1093/nar/gkl200>

11 Subrahmanyam, G. et al. (2019). Isolation and Molecular Identification of Microsporidian
12 Pathogen Causing Nosemosis in Muga Silkworm, *Antherea assamensis* Helfer (Lepidoptera:
13 Saturniidae). *Indian Journal of Microbiology*, 59(4), 525–529. [https://doi.org/10.1007/s12088-019-00822-0](https://doi.org/10.1007/s12088-
14 019-00822-0)

15 Sutherland, T. D., Young, J. H., Weisman, S., Hayashi, C. Y., & Merritt, D. J. (2010). Insect Silk:
16 One Name, Many Materials. *Annual Review of Entomology*, 55(1), 171–188.
17 <https://doi.org/10.1146/annurev-ento-112408-085401>

18 Triant, D. A., Cinel, S. D., & Kawahara, A. Y. (2018). Lepidoptera genomes: Current knowledge,
19 gaps and future directions. *Current Opinion in Insect Science*, 25, 99–105.
20 <https://doi.org/10.1016/j.cois.2017.12.004>

21 Triant, D. A., & Pirro, S. (2023). The Complete Genome Sequence of *Actias luna* (Saturniidae,
22 Lepidoptera), the luna moth. *Biodiversity Genomes*, 2023. <https://doi.org/10.56179/001c.75356>

1 Trizna, M. (2020). *Assembly_stats 0.1.4* (0.1.4) [Computer software]. Zenodo.

2 <https://doi.org/10.5281/ZENODO.3968775>

3 Tuskes, P. M., Tuttle, J. P., & Collins, M. M. (1996). *The wild silk moths of North America: A natural history of the Saturniidae of the United States and Canada*. Comstock Pub. Associates.

4

5 Van Nieukerken, E. J. et al. (2011). Order Lepidoptera Linnaeus, 1758. In: Zhang, Z.-Q. (Ed.)

6 Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness.

7 *Zootaxa*, 3148(1). <https://doi.org/10.11646/zootaxa.3148.1.41>

8 Yonemura, N., Mita, K., Tamura, T., & Sehnal, F. (2009). Conservation of Silk Genes in

9 Trichoptera and Lepidoptera. *Journal of Molecular Evolution*, 68(6), 641–653.

10 <https://doi.org/10.1007/s00239-009-9234-5>

11 Yonemura, N., & Sehnal, F. (2006). The design of silk fiber composition in moths has been

12 conserved for more than 150 million years. *Journal of Molecular Evolution*, 63(1), 42–53.

13 <https://doi.org/10.1007/s00239-005-0119-y>

14 Zhou, C. et al. (2001). Silk fibroin: Structural implications of a remarkable amino acid sequence.

15 *Proteins: Structure, Function, and Bioinformatics*, 44(2), 119–122.

16 <https://doi.org/10.1002/prot.1078>

17

18