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Abstract

We present the first long-read de-novo assembly and annotation of the luna moth (Actias
luna) and provide the full characterization of heavy chain fibroin (h-fibroin), a long and highly
repetitive gene (>20 Kbp) essential in silk fiber production. There are more than 160,000 deseribed
species of moths and butterflies (Lepidoptera), but only within the last five years have we begun
to recover high-quality annotated whole genomes across the order which capture A-fibroin. Using
PacBio HiFi reads, we produce the first high-quality long-read reference genome for this species.
The assembled genome has a length of 532 Mbp, a contig N50 of 16.8 Mbp, an L50 of 14 contigs,
and 99.4% completeness (BUSCO). Our annotation using. Bombyx mori protein and A.luna
RNAseq evidence captured a total of 20,866 genes at 98.9% completeness with 10,267

functionally annotated proteins and a full-length A-fibroin annotation of 2,679 amino acid residues.

Significance

Silk has served an important .role culturally, medically, and economically for centuries of
human history. Yet, available research on the underlying genetic variation for silk production are
largely incomplete in Lepidoptera due to challenges in assembling repeat-rich regions, which are
often associated with silk. We provide the first highly contiguous long-read reference genome and
full annotation of the repetitive silk gene (/-fibroin) for A.luna, a wild silk moth with important
ecological and cultural implications. We show that long-read sequencing can be an invaluable tool

for capturing historically challenging repetitive domains, such as fibroins.

Keywords: fibroin, genome, Lepidoptera, moth, PacBio, silk
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Introduction

Silk is one of the oldest textiles manufactured by humans, with estimates of production in
China starting around 3000 BC (Ball 2009). In Confucius’ telling of the origin story of silk, a
keenly observant empress, Leizu, accidentally discovers the unwinding fibers of a wild silk.moth
(Bombyx mandrina) cocoon that dropped into her tea from a mulberry. The silk of many moths is
comprised of long, repetitive, fibroin filaments bound together by sericin-polymers into threads
that create a barrier to desiccation and predation for the metamorphosing moth. Thus, Leizu’s
discovery in her tea was important, as the processing of cocoons with hot water to unwind the
long, continuous threads was a key step in the innovation of weaving silk as a textile (Babu 2018).
While the human use of silks dates to approximately 3,000 BCE, silks are far more ancient. Silk
proteins are produced by members of all three terrestrial arthropod subphyla (Chelicerata,
Hexapoda, and Myriapoda; Sehnal and. Craig -2009), with uses ranging from protection,
transportation, water repellency, and prey capture by organisms both aquatic and terrestrial (Craig
1997; Collin et al. 2010; Sutherland et al. 2010). Due in part to their use in textile production
(Supplemental Material 02), Lepidoptera (moths and butterflies) are one of the more commonly
recognized silk producers, but surprisingly little is known about the mechanisms and variation in
silk production.in this group. Characterizations of lepidopteran silks are based almost exclusively
on the.domestic silkworm (Bombyx mori), for which a highly resolved genome (Mita et al. 2004)
and transgenic tools are available (reviewed in Ma et al. 2018; 2024). Lepidoptera consists of over
160,000 described species (van Nieukerken et al. 2011), but almost nothing is known about the
genetic variation underlying non-model “wild silks” due to gaps in genome quality and availability.

Silk genes such as heavy chain fibroin (h-fibroin) are long, repeat-rich genes averaging 20

kilobase pairs (Kbp) in length (Sezutsu and Yukuhiro 2000; Kawahara et al. 2021). The order and
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number of repetitive motifs determine protein structural qualities (Sehnal and Sutherland 2008),
simultaneously make it challenging to fully capture gene sequences using short-read technology.
This is mainly due to average fragment lengths of 150 - 300 bp, which cannot span the length of
the entire repetitive domain. High quality long-read genomes make it possible to recover
challenging full-length genes, making comparative genomic, functional: genomic, and
phylogenomic studies of silk feasible (Triant et al. 2017; Ellis et al. 2021). Importantly, long-read
sequencing can better resolve problematic repeat-rich regions of the genome, providing insights
into studying silk gene structural evolution, as was recently reported for spiders, Lepidoptera, and
caddisflies (order Trichoptera) (Heckenhauer et al. 2023; Frandsen et al. 2023). Studies such as
these serve as an important first step in linking variation in protein sequence with mechanical
properties of silk.

A.luna is a large charismatic silk moth-native to the eastern United States and is
distinguished by its bright green pigmentation and tail-like hindwings (Triant and Pirro 2023). It
serves as a dominant food source for pollinators such as bats and birds, and feeds on a wide variety
of trees including sweetgum, oak; willow, and hickory (Lindroth 1989). Silk moths are known to
produce qualitatively different silks throughout larval development, in addition to cocoon silk
(Chen et al. 2012), making it an ideal candidate for assessing the roles of genetic variation and
phenotypic plasticity in silk production. This species has one published genome available to date
(Triant and Pirro 2023; NCBI accession GCA 010014465.3) however, this genome was produced

with short read DNA, and does not accurately resolve primary and haplotype assembled silk genes.
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Figure 1. (A) Three of the five life stages of A./una including larva (Credit: Dean Morley, some
rights reserved (CC BY-ND), pupa encased in a cocoon (Credit: Dean Morley, some rights reserved
(CC_BY-ND), and adult (Credit: Patrick, some rights reserved (CC BY)). (B) Snail plot generated
in blobtools2 representing general genome statistics, and assembly completeness with BUSCO.
(C) Annotation for A-fibroin in A. luna produced from this study, with both haplotypes. Each bar
represents a corresponding repetitive motif (see Supplemental Material 8) with variation in the

number of repetitive motifs present, and motif identity. Blue ribbons highlight alignment of
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identical amino acid repeats, with genetic variation arising in unaligned motifs. Figure is oriented

starting with the N-terminal, stretched to the C-terminal.

New high-quality genomic resources are necessary to understanding how functional genes
can give rise to diverse silk phenotypes, and to be able to study these genes in a comparative
approach. Here, we present the first comprehensive long read de-novo genome assembly and
annotation of A. luna using PacBio HiFi sequencing, with protein and RN Aseq evidence to fully

annotate the genome and characterize the entirety of the /-fibroin gene.

Results and Discussion

Genome Assembly and QC

From our HiFi DNA library, we recovered 5.3 million polymerase reads containing 2.7
million HiFi reads, with a raw-read N50 of 184 Kbp and an average raw-read length of
approximately 90 Kbp. The mean HiFi read length, however, was 7.6 Kbp. Genome size
estimations and heterozygosity were predicted using kmer count (KMC) (Kokot et al. 2017;
RRID:SCR_001245).and GenomeScope 2.0 (Ranallo-Benavidez et al. 2020) and the predicted
genome length'was approximately 420 Mbp, with 1.2% heterozygosity (Supplementary Material
03) and 40x coverage.

Whole genome assembly yielded a primary assembly length of approximately 532 Mbp,
with quality statistics of N50 = 16.8 Mbp, L50 = 14 contigs, and 99.4% completeness based on
the universal, single-copy ortholog gene set for Endopterygota (BUSCO with
Endopterygota odb10 database; Manni et al. 2021; RRID:SCR_015008; Table 1). The shortest
contig length in the assembly was 6.1 Kbp, the median contig length was 78.3 Kbp, the mean

contig length was 3.4 Mbp, and the longest contig length was 21.4 Mbp. Following non-target
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filtering with BlobTools (Laetsch and Blaxter 2017; RRID:SCR_017618), N=11 contigs were
predicted to encode primarily Microsporidia (fungal) proteins, and Streptophyta (plant) proteins
(Supplemental Material 04). The presence of microsporidian pathogens has been observed in
other wild silk moths, especially in the sericulture industry (Subrahmanyam 2019). Thus, these
putative non-target sequences are worth assessing further in the future but is beyond the scope of
this study. Non-target sequences were removed after assembly, and the resulting cleaned primary

assembly was used for all downstream analyses.

Genome Annotation

For the structural annotation, we employed BRAKERS using two forms of evidence:
protein sequences from the closely related Bombyx mori(Supplemental Material 06) and
RNAseq from 16 individuals of varying.tissue types and developmental stages of A4./una, totaling
38 independent tissues sequenced (Supplemental Material 07). Each individual represented a
particular life stage (egg, 15-4™ instar, pre-pupal, pupal, or adult), and represented one of three
tissue types, including head, thorax, abdomen or whole body (e.g., luna 01 head contained head
tissue from a 4 instar caterpillar). This annotation recovered a total of 20,866 genes with 98.9%
BUSCO completeness (Single-copy:98.1%,Duplicated:0.8%). 17,537 proteins had significant
blast hits in the NCBI non-redundant protein database. Of these, blast2go assigned functional
annotations to 10,133 proteins, and mapped GO terms to 11,840 proteins. The two major
biological processes identified in the 4. luna genome were cellular and metabolic processes,
where binding and catalytic activity were the largest subcategories for molecular function

(Supplemental Material 05). When annotating cellular components, most genes were assigned to
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cell structure and function, including to membrane, intracellular anatomical structure, and
organelle function.

The annotated h-fibroin protein sequence was 2,679 amino acids in length in the primary
sequence. The gene is structured by a short initial exon (641bp) followed by an intron (749bp),
and a terminal exon with the entire repetitive region (7,997bp). As reported previously in other
species (Frandsen et al. 2023) there was a substantial amount of allelic variation in h-fibroin,
with the alternate copy spanning 2,597 amino acids. The A-fibroin allele for the primary
haplotype included a total of 73 internal repetitive motifs broken up by poly-alanine chains
(AAA)3, and 2 conserved termini regions, while the alternate haplotype included 71 repetitive
motifs, and 2 conserved termini regions. The majority of allelic differences stem from insertions
and deletions (indels) of repetitive amino acid motifs; such as the long alanine chains and
glycine-rich repeats (Figure 1), known to:be responsible for the physical properties of silk fibers
(Yonemura & Sehnal, 2006).

Prior to 2019, only seven full-length /-fibroin gene sequences were available across
Lepidoptera (Kono et al-;,2019). Of these sequences, /-fibroin was available for two Antherea
species, and a single Samia species, which all share similarity in protein length (~2,500 amino
acid residues), gene architecture and repetitive motif composition to that of 4./una (Family:
Saturniidae). Other annotated fibroins from more distantly related lepidopterans such as Bombyx
mori (Family: Bombycidae) and Plodia interpunctella (Family: Pyralidae) are much longer
(5,263 amino acid residues and 4,714 amino acid residues, respectively; Zhou et al. 2001,
Kawahara et al. 2022) with distinct repetitive motifs compared to saturniid species. A. luna and
A. yamamai have similar silk gene architecture, with long alanine chains and a double cystine

complex in the conserved N terminal, which have been identified by previous studies to being
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homologous across several different families of lepidopterans (Yonemura et al. 2009). However,
Saturniidae are unique in their lack of a conserved cystine residue at the tail end of the h-fibroin
protein. Importantly, the conserved cystines and other amino acid residues are indicators of
which regions of these molecules (h-fibroin, I-fibroin and P25) are involved with their

interactions (Yonemura & Sehnal 2006).

Materials and Methods

Sample Preparation, DNA/RNA Extraction, and Sequencing

All specimens used in this study were reared in the lab from eggs collected from gravid
adult females wild-caught in Gainesville, Florida. All samples-were flash frozen in liquid
nitrogen and stored in -80°C until extraction. High molecular weight DN A was isolated from a
single, fifth-instar caterpillar by the University of Florida’s Interdisciplinary Center for
Biotechnology Research (ICBR) (RRID:SCR_019152) using the Qiagen DNeasy Blood and
Tissue kit following manufacturer protocol. RN A was isolated using a TRIzol-chloroform
extraction protocol (Rio“et al. 2010) from whole eggs and first instar caterpillars, and separately
from the head, thoracic and abdominal tissue of larval instars 4 and 5, pre-pupa, pupa, and adults
of both sexes.

High molecular weight DN A was sheared to 15 Kbp using mechanical shearing
(Covaris). HiFi SMRT bell libraries were prepared following manufacturer protocol for PacBio
HiFi (P/N 101-763-800) with a few modifications (Supplemental Material 01). DNA
preparations were cleaned using the MoBio PowerClean DNA Cleanup Kit, were cleaned and

concentrated using the ZYMO Research RNA Clean and Concentrator kit. DN A preparations
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were evaluated for quality on the Agilent TapeStation. Libraries were sequenced on two PacBio
Sequel Ile 30-hour SMRT cells at UF ICBR’s Next Generation Sequencing Core.

All RNAseq samples (N=38) were pooled and prepared for sequencing using the TruSeq
RNA Library Prep Kit v2, and sequenced on an Illumina HiSeq3000 at 2x100 cycles, and with

one lane per barcoded and pooled samples (with a total of 8 lanes).

Quality Assessment and Whole Genome Assembly

Raw reads were assessed using the FastQC quality assessment tool (Andrews 2010) for
general sequence quality statistics including Phred score, GC.content, over-representation, and
sequence length distribution. We estimated genome characteristics such as size, heterozygosity
and repetitiveness using k-mer counter (KMC) v.3.2.1 (Kokot et al. 2017; RRID:SCR_001245)
and GenomeScope 2.0 (Ranallo-Benavidez et al. 2020; RRID:SCR_017014) with a default k-
mer length set to 21, and the ploidyset to 2.

We assembled the genome using the assembler hifiasm v0.13-r307 (RRID:SCR _021069)
with standard duplicate‘purging enabled (option —1 2). The resulting primary contig assembly
(*.p_ctg.gfa) was‘used for all downstream analyses. We measured genome contiguity using the
assembly _stats.py script (Trizna 2020) and genome completeness using BUSCO v.5.2.2 (Manni
et al. 2021; RRID:SCR_015008) with the obd10 reference for Endopterygota.

We identified non-target DNA and potential contaminants using BlobTools v1.0 (Laetsch
and Blaxter 2017; RRID:SCR_017618), which indexes the assembly using samtools (Danecek et
al. 2021; RRID:SCR_002105), and maps HiF1i reads back to the indexed assembly with
minimap2 (Li2018; RRID:SCR_018550). Non-target DNA plots were visualized using

BlobPlot, where megablast (Morgulis et al. 2008) searches from BLASTN v 2.10.1

10
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(RRID:SCR_001598) were used to assign taxonomic ID to each contig with an e-value cutoff of
le-25. Putative non-target sequences, based on non-Arthropoda assignment and clear deviations
of GC content and mean sequence depth, were checked against prior BUSCO results. All
putative non-target sequences were confirmed to be absent from prior BUSCO results before
manually removing them from the assembly, to ensure that genome completeness' would remain

the same after purging non-target hits.

Structural Annotation and Gene Predictions

To identify repeat elements in the genome, we used RepeatModeler2 (Flynn et al. 2020;
RRID:SCR_015027) and masked repetitive elements using-RepeatMasker (Smit and Hubley
2013; RRID:SCR 012954). To be the most inclusive due to-uncertainty of true repeat elements,
we only use soft masking for the structural annetation moving forward.

For gene modeling, we use GeneMark-ETP mode in the BRAKER3 annotation pipeline
(Bruna et al. 2021; Hoff et al. 2016; Hoff et al. 2021; Stanke et al. 2006; Stanke et al. 2008;
Buchfink et al. 2015; Li et-al. 2009; Barnett et al. 2011; Kovaka et al. 2019; Pertea and Pertea
2020; Quinlan 2014; RRID:SCR _018964) to predict the protein coding genes from the soft-
masked genome. For the focus of this study, a subset of the Illumina RN Aseq reads were used
for whole-genome structural annotation. We combined all reads originating from the same
individual (including multiple tissue types) and used the concatenated sequences as a
representative for each life stage (i.e., luna 01 head, luna 01 thorax, and luna 01 abdomen
were combined into one luna 01 instar4 to represent RNAseq from that developmental stage).
We mapped reads to the genome using default parameters in hisat2 (Kim et al. 2019;
RRID:SCR _015530), and the resulting mapped reads were used to jointly perform GeneMark

training and prediction with hints from all available protein sequences of the closely related

11
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Bombyx mori on NCBI (accessed January 16, 2023; Supplemental Material 06) using ProtHint
(Bruna et al. 2020; RRID:SCR_021167). The two resulting gene models (Braker and Augustus)
were evaluated using BUSCO v.4.1.4 (Manni et al. 2021) with the Endopterygota odb10 core
ortholog sets. We selected the model predicted by Augustus (augustus.hints) to represent the gene
model of this assembly based on the higher quality BUSCO results, with more complete single
copy recovery and less duplication.

To assign function to the genes identified with BRAKER3, we used BLASTP (Sayers et
al. 2022) to search the predicted proteins against the NCBI non-redundant protein database with
an e-value cutoff of 1e-4 for the top hits up to ten hits. In.addition, we used BLAST2GO (Sayers
et al. 2022) to assign gene ontology terms and functional annotations to the predicted proteins.

For functional annotation of the A-fibroin silk gene, we used the primary and haplotype
assemblies from the hifiasm output fromethe previous assembly methods. N- and C- termini for
h-fibroin are fairly conserved across Lepidoptera, thus we used tBLASTn with termini sequences
from Antherea mylitta, a species from the same family (Hwang et al. 2001), to search the primary
and alternate haplotype 4. luna assemblies. We then extracted the target sequences and flanking
regions were extracted from the primary and haplotype assemblies and annotated the region in

Augustus v.3.3.2:

Table 1a. A comparison of genome statistics for the genome produced in this study, to the

existing wild silk moth genome assemblies (Family: Saturniidae) available on NCBI.

Table 1b. Comparison of genome completeness between the only other existing A./una genome

assembly available to date.

12
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Assembly Size N50 Number of Genome
type (Mb) (Mb) L350 contigs coverage Ref
Actias . h
ina* contig 532 16.8 14 155 40x Authors
fl‘éﬁ’l‘i chromosome 452.5  33.1 8 1489 100x GCZ‘;;(S) 124 13
ISa‘ZZ;’ZéZ chromosome  581.8  20.2 13 959 toox 90
52’30‘; "4 | chromosome  489.9 177 13 71 sox WIS
A’;Z’rf:y“f“ scaffold 787 0338 4256 103,035 100x G%gag 115 88
AZZZZS scaffold  559.1 0.002 63,632 529,540 140x G(ﬁg(s)gom
Antheract | scaffold 6984 53 2894 37,190 reeox OGP
5;52"’; O scaffold 4599 2.4 62 418 50x Ggig?f >
Note: *genomes produced with long-read sequencing platforms e.g. PacBio or Oxford Nanopore
c](;)IlflSp(l:e(t)e Single Duplicated '~ Fragmented  Missing Ref
o Copy(h) (%) (%) (%)
Actias 99.4 99.0 0.4 0.2 0.4 Authors
AZZZZS 71.4 639 7.5 15.4 132 GCA _010014465.3

Note: *genomes produced with long-read sequencing platforms e.g. PacBio or Oxford Nanopore

Supplementary Material
See supplemental materials document, and the DOI for genome assembly materials

(10.6084/m9.figshare.25483282; https:/figshare.com/s/e0381962bda32f013804) genome

structural annotation materials (10.6084/m9.figshare.25483330;

https:/figshare.com/s/9793ed051033ea39f6b1) and genome functional annotation

(10.6084/m9.figshare.25483372; https:/figshare.com/s/b45bdd01f1d071d3ac7e).
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