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Abstract
Convergent cross-mapping (CCM) has attracted increased attention recently due to its capability to detect causality in nonseparable 
systems under deterministic settings, which may not be covered by the traditional Granger causality. From an information-theoretic 
perspective, causality is often characterized as the directed information (DI) "owing from one side to the other. As information is 
essentially nondeterministic, a natural question is: does CCM measure DI "ow? Here, we !rst causalize CCM so that it aligns with the 
presumption in causality analysis—the future values of one process cannot in"uence the past of the other, and then establish and 
validate the approximate equivalence of causalized CCM (cCCM) and DI under Gaussian variables through both theoretical 
derivations and fMRI-based brain network causality analysis. Our simulation result indicates that, in general, cCCM tends to be more 
robust than DI in causality detection. The underlying argument is that DI relies heavily on probability estimation, which is sensitive 
to data size as well as digitization procedures; cCCM, on the other hand, gets around this problem through geometric cross-mapping 
between the manifolds involved. Overall, our analysis demonstrates that cross-mapping provides an alternative way to evaluate DI 
and is potentially an effective technique for identifying both linear and nonlinear causal coupling in brain neural networks and other 
settings, either random or deterministic, or both.

Signi!cance Statement

Causality analysis aims to !nd the relationship between causes and effects and is a central topic in science, economy, climate, and 
many other !elds. Causality can be characterized using the directed information (DI) "owing from one side to the other. However, 
relying on probability estimation, DI may be very sensitive to data size and the quantization procedures used. Convergent cross- 
mapping (CCM), on the other hand, gets around this problem through geometric cross-mapping between the systems and random 
variables involved. In this paper, by establishing the approximate equivalence between causalized CCM and DI, we showed that cau-
salized CCM provides an effective model-free approach to measure causal coupling in deterministic, random, or hybrid settings and 
can bene!t a broad spectrum of applications that require quantitative causality detection.
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Introduction
Causality analysis aims to !nd the relationship between causes 
and effects and has been a central topic in science, economy, cli-
mate, and many other !elds (1–7). The !rst practical causality 
analysis framework is Granger causality (GC), which was pro-
posed by Granger in 1969 (8). GC is a statistical approach that relies 
on a multistep linear prediction model, where the basic idea is to 
determine whether the values of one time series are useful in pre-
dicting the future values of the other. As a well-known technique, 

the validity and computational simplicity of GC have been widely 
recognized (9–12), and its nonlinear extensions have also been 
studied in the literature (13–16). It has been observed by Granger 
himself (8), as well as others (17), that GC requires separability be-
tween the variables under consideration and may be problematic 
in detecting causation in deterministic settings.

As an effort to address this problem, in 2012, Sugihara et al. (17) 
proposed to use the convergent cross-mapping (CCM) approach 
and demonstrated that CCM could serve as an effective tool in 
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addressing nonseparable systems and identifying weakly coupled 
variables under deterministic settings, which may not be covered 
by GC. Since then, CCM has attracted considerable attention from 
the research community in many different !elds (18–25).

Rooted in dynamic systems theory, the fundamental assump-
tion of CCM is that the dynamics in the world are not completely 
random but governed by some underlying deterministic rules. In 
dynamic systems theory, an attractor is a set of states toward 
which a system tends to evolve from a wide variety of starting con-
ditions (26). In !nite-dimensional systems, each evolving variable 
could be represented as a d-dimensional vector. The attractor is 
then a region in the d-dimensional space and is generally repre-
sented as a manifold. CCM relies on Takens’ embedding theorem 
(27), which says that in general, the attractor manifold of a 
dynamical system can be “reconstructed” from a single observa-
tion variable of the system, say X, in the sense that the 

reconstructed attractor (called a shadow manifold) Mx is diffeo-
morphic to the true manifold, M. Based on Takens’ theorem, if 
two variables X and Y are causally linked, then they share the 
same attractor manifold M, and their corresponding shadow 
manifolds Mx and My will also be diffeomorphic. Consequently, 
nearby time points on manifold Mx will be mapped to nearby 
points on My. That is, the time indices of nearby points in Mx 

can be used to identify the nearby points in My. Therefore, the cur-
rent state of variable Y can be predicted based on X and vice versa. 
If we denote the predicted version of Y as Ŷ, the CCM causation 
from X to Y is de!ned as the Pearson correlation between Y and 
Ŷ. The CCM algorithm is summarized in Box 1, and the concept 
of cross-mapping is illustrated through !gures in Section 1 of 
Supplementary material.

In literature, model-free methods like CCM, which rely on the 
embedding theorem and allow the reconstruction of the system 

Box 1. CCM and causalized CCM.
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space from scalar observations, are collectively referred to as 
state-space reconstruction approaches (28–34). They generally 
use nearest neighbor search and cross-mapping in the shadow 
manifolds to predict or reconstruct the state of variables, but 
the prediction methods and the measures used to characterize 
unidirectional causal coupling may vary in different approaches 
(17, 29, 33). A notable feature of Sugihara's approach (17) is that 
when X and Y are dynamically coupled, the prediction of X based 
on Y (and vice versa) will converge to the true value itself as the 
data length increases and was therefore named CCM. For this 
reason, CCM turns out to be a popular and representative tech-
nique among the state-space reconstruction methods. Along 
the same line, Porta et al. (29, 30) developed a multivariate 
K-nearest-neighbor (KNN) search-based predictability approach 
for causality detection in systems with multiple dynamically 
coupled time series by taking the impact of conditioning variables 
into consideration. As will be seen in Results section, this ap-
proach provides a possible way to extend bivariate CCM (17) to 
multivariate conditional CCM.

Note that since the late 1960s, several causality analysis 
frameworks have been proposed from different perspectives. In 
addition to GC and CCM, other representative frameworks include 
Directed Information (DI, 1990) (35) and Transfer Entropy (TE, 
2000) (36), which were both developed based on information the-
ory, and dynamic causal modeling (DCM, 2003) (37), which is 
rooted in the classical control theory and the neural mass model.

To this end, some natural and fundamental questions are: (i) 
Would CCM still be effective in random settings? (ii) Does CCM 
measure DI "ow which is essentially nondeterministic? (iii) As a 
relatively recent newcomer to the family, what is the relationship 
of CCM with existing causality detection frameworks?

To answer these questions, we need to take a closer look at ex-
isting causality detection tools. DI was proposed by Massey in 1990 
(35) when studying discrete memoryless communication chan-
nels with feedback, and it is the !rst causality detection tool based 
on information theory. DI measures the directed information 
"owing from one sequence to the other. As an information- 
theoretic framework, a major advantage of DI is that it is a univer-
sal method that does not rely on any model assumptions of the 
signals and is not limited by linearity or separability (38, 39).

TE is another information-theoretic causation measurement. 
It was introduced by Schreiber in 2000 (36) and measures 
the decrease of entropy in one signal Y after another signal X has 
been observed. Like GC, TE measures how much additional infor-
mation the past values of X contain about the future observations 
of Y, given that we already knew the past values of Y. It can be re-
garded as a direct generalization of GC based on information 
theory.

Let Xi and Yi represent the i-th sample of X and Y, respectively, 
generally taken at the same time instants. The major difference 
between DI and TE is that—TE only considers the impact of the 
past values of X (i.e. all samples Xk with k < i) on Yi, just as in 
GC, while DI not only counts the impact of the past values of X, 
but also takes the instantaneous information exchange between 
Xi and Yi into consideration (40). When there is no (signi!cant) in-
stantaneous information exchange between Xi and Yi, as in the 
case when the information transmission from X to Y takes nonzero 
time, then DI and the cumulative variant of TE are essentially 
equivalent on the calculation of DI !ow from one variable to the 
other. Moreover, Barnett et al. (41) proved that GC and TE are 
equivalent under the auto-regression model and Gaussian 
variables. This implies that, as model-free causality measures, 
both DI and TE are conditionally equivalent to GC under the 

auto-regression model and Gaussian variables. In literature, all 
the three frameworks have been applied for causality detection 
in neuroscience (5, 42, 43).

The DCM framework was proposed by Friston et al. in 2003 (37). It 
relies on the neural mass model and takes a similar format as the 
dynamic state-space model in the classical control theory. DCM pro-
vides a "exible framework to characterize the connectivity or coup-
ling between brain regions and how the coupling is in"uenced by 
external inputs and the environment. Relying on the expectation 
maximization (EM) algorithm, DCM has been implemented on 
both fMRI and electroencephalogram data (44–47). In practical ap-
plications, due to the computational complexity, DCM is usually 
used as a con!rmatory approach. That is, the users need to put for-
ward different connectivity models and then compare them based 
on their likelihood evaluated under DCM, the process is known as 
Bayesian modeling (45). In (48), we explored the relationship 
between DI and DCM based on fMRI data and showed that: discre-
tized DCM and DI are equivalent in characterizing the causal relation-
ship between two brain regions under Gaussian variables when the 
external input is approximately a constant (i.e. when the external 
input changes much slower than the neuronal activity).

Based on the discussions above, we can see that as a universal 
causality measure, DI serves as the pivot that links GC, TE, and 
DCM together through the conditional equivalence between 
them. From the information theory perspective, DI demonstrates 
that causality can be quanti!ed using the directed information 
"ow from one time series to the other. Therefore, if CCM can be 
linked with DI, it is then connected with the whole causality ana-
lysis family and obtains its physical meaning in terms of directed 
information transmission.

Before doing that, one prestep needs to be taken. Recall that in 
its original de!nition, causality aims to determine whether the 
current and past values of one time series are useful in predicting 
the future values of the other in addition to its own past values. In 
the existing CCM algorithm (Box 1), however, the whole time series 
corresponding to X, and both the past and future values of Y are all 
exploited to estimate the current value of Y. That is, the causality 
de!ned in CCM is inconsistent with the original, widely accepted 
de!nition of causality, and changes are therefore needed to !ll 
in the gap.

In this paper, !rst, we causalize the CCM algorithm so that only 
the current and previous values of variable X and the past values 
of variable Y are used to predict the current value of Y, and vice 
versa. The cCCM aligns with the traditional de!nition of causality, 
in the sense that the future values of one process cannot in"uence 
the past of the other.

Second, we demonstrate the approximate equivalence of CCM 
and cCCM through various simulation examples, including 
Gaussian random processes, sinusoidal waveforms, autoregres-
sive processes, stochastic processes with a dominant frequency 
component embedded in noise, deterministic chaotic maps, and 
systems with memory. In all these examples, cCCM and CCM 
are highly consistent in causality detection and show similar con-
vergence speeds in cross-mapping. Also, both cCCM and CCM can 
detect the increase in coupling strength and show consistent sen-
sitivity to the changes in coupling strength. We also explore the 
connections and differences between CCM causation and 
Pearson correlation. The simulation result indicates that high cor-
relation might lead to high bidirectional causation, but low correl-
ation may correspond to either high or low causation, and either 
unidirectional or bidirectional.

Third, based on Takens’ theorem (27) and Gel’fand's theorem 
on the conditional equivalence between Pearson correlation and 
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mutual information (MI) (49), as well as the Shannon–McMillan– 
Breiman theorem (50), we show that—under the assumption 
that the future of one process cannot in"uence the past or current 
of the other, cCCM and DI are approximately equivalent under 
Gaussian variables. An approximate mathematical relationship 
between cCCM and DI is derived, and the theoretical result is dem-
onstrated using experimental fMRI data. Relying on information 
theory, this result reveals how cCCM measures the directed infor-
mation "ow from one time series to the other and links cCCM with 
other members of the causality detection family.

We also compare the performance of DI and cCCM through 
simulation examples where the time series may not (both) be 
Gaussian random variables. It was observed that in general, 
cCCM tends to be more robust or sensitive than DI in causality de-
tection. This is largely because DI relies heavily on probability es-
timation, which is sensitive to data size as well as the digitization 
or quantization process used in the implementation algorithm. 
cCCM, on the other hand, gets around this problem through geo-
metric cross-mapping of the corresponding neighborhoods be-
tween the manifolds involved. As exhaustive KNN search is 
required at the prediction of every sample of the target time series, 
the disadvantage of cCCM, therefore, is its high computational 
complexity, which is O(n2) in the sequence length n, while the 
computational complexity of DI is only O(n). Moreover, we also in-
vestigate the noise tolerance of cCCM and show that—in the pres-
ence of noise, the cCCM causation may decrease, but would be 
very close to the noise-free case when the signal-to-noise ratio 
(SNR) is reasonably high (≥15 dB).

Finally, we demonstrate the capability of cCCM in detecting 
unidirectional causality through task-driven fMRI data. It is 
shown that unidirectional causality among the regions of interest 
(ROIs) can be detected by cCCM, and the result is consistent with 
that of CCM and DI and is also consistent across the majority of 
subjects. We also conduct multivariate conditional CCM and 
cCCM for all the ROI pairs. Our results indicate that due to rich di-
versity in the brain network, multivariate conditional CCM and 
cCCM with respect to (i.e. conditioning on) all the rest of ROI re-
gions generally result in very small causality ratios and cannot 
be used for causality detection. However, conditional cCCM and 
CCM with respect to individual regions can detect unidirectional 
causality and demonstrate the impact of interdependence be-
tween the ROI regions on the causality ratio.

Overall, our analysis demonstrates that CCM provides an in-
novative and reliable way to evaluate unidirectional and bidirec-
tional causation between causally coupled variables, and is 
potentially an effective technique for identifying both linear and 
nonlinear causal coupling in brain neural networks and other set-
tings, either random or deterministic, or both.

Results
Causalized CCM
In the existing CCM algorithm (Box 1), the whole time series corre-
sponding to X, and both the past and future values of Y are all ex-
ploited to estimate the current value Y(t). That is, for two time 
series of length n, for each 1 ≤ t ≤ n, Y(t) is predicted based on 
all X(ti)s where 1 ≤ ti ≤ n, and all Y(ti)'s where 1 ≤ ti ≤ n and 
ti ≠ t.

Recall that causality aims to determine whether the current 
and past values of one time series are useful in predicting the 
future values of another time series, in addition to its own 
past values. In CCM, if only the current and historical values of X and 

the past values of Y are used to predict the current value Y(t), and vice 
versa, then CCM is converted to cCCM. That is, in cCCM, we limit 
the search of all the nearest neighbors in Mx to ti < t to predict 
the current value Y(t) and operate in the same way for the other 
direction.

The performance of CCM and cCCM is compared through simu-
lation examples, which include both deterministic and random 
settings, with either bidirectional or unidirectional causation, or 
no causation (Fig. 1). In Example 1, X and Y are both random var-
iables and experience bidirectional causation, but the causal ef-
fect of X on Y is stronger than that in the inverse direction. In 
Example 2, X and Y are independent random variables that have 
no causal coupling. In Example 3, X and Y are deterministic sig-
nals with strong bidirectional causation. In Example 4, X and Y 
are random variables, and there is a strong unidirectional caus-
ation from X to Y, but no causation in the inverse direction.

The reason that we consider normally distributed random var-
iables in Examples 1, 2, and 4 is because the normal distribution is 
the most commonly occurring one in practical applications, and 
the reason that we consider the sinusoidal waveforms in 
Example 3 is because in practice, most signals can be decomposed 
as the superposition of sinusoidal waveforms of different frequen-
cies through Fourier series. The simulation results for these exam-
ples are summarized in Fig. 1. Through Examples 1–4, we can see 
that CCM and cCCM are highly consistent and converge at similar 
speed, with the cCCM causation being slightly smaller than the 
CCM causation in general, which is expected since the latter 
uses a larger data set to predict the target time series. These nu-
merical examples also show that both CCM and cCCM can be ap-
plied to different signal settings, either deterministic or random.

The consistence of cCCM and CCM is further demonstrated 
through additional examples, including autoregressive models 
(Examples 5-1 and 5-2), stochastic processes with a dominant 
spectral component embedded in noise (Examples 6-1 and 6-2), 
deterministic chaotic maps (Examples 7-1 and 7-2), and systems 
with memory (Examples 8-1 and 8-2). The results are shown in 
Box 2 and Fig. 2. In all these examples, cCCM and CCM are also 
highly consistent in causality detection and show similar conver-
gence speed in the cross-mapping. Both cCCM and CCM can detect 
the increase in coupling strength and show consistent sensitivity 
to the changes in coupling strength.

In all these examples, we generally chose E = 5, τ = 1. From ex-
amples on systems with memory (Examples 8-1 and 8-2), we tested 
different choices of E and τ, and found that the dominant delays 
(i.e. delays corresponding to the dominant peaks) in the channel im-
pulse response do impose requirements on both the dimension of the 
shadow manifolds E and the signal lag τ used in shadow 
manifold construction. More speci!cally, for the causality to be ac-
curately detected in systems with memory, we need: (i) The product 
E · τ is larger than the dominant delays, and (ii) For each time 
instant t, all the samples corresponding to the dominant delays 
appear in the constructing vector of the shadow manifold, 
x(t) = [X(t), X(t – τ ), . . . , X(t – (E – 1)τ )]. This was illustrated in 
Box 2. In Example 8-1, dominant delay  =  4. If E = 3, τ = 1, then 
condition (i) is not satis!ed, and the corresponding causality cannot 
be detected. If condition (i) is satis!ed but condition (ii) is not fully 
satis!ed, then only the causality corresponding to the dominant 
delays that appear in the constructing vector of the shadow 
manifold will be detected. This can be seen from Example 8-2, where 
Y (t) = 0.8X(t – 1) + 0.8X(t – 4). When E = 3, τ = 2, the shadow 
manifold constructing vector x(t) = [X(t), X(t − 2), . . . , X(t − 4)], 
then X(t – 4) appears in x(t) but X(t – 1) does not. As a result, only 
the causality corresponding to item 0.8X(t – 4) can be detected and 
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the causality corresponding to item 0.8X(t – 1) cannot be detected. 
When E = 5, τ = 1, x(t) = [X(t), X(t – 1), . . . , X(t – 4)], then the 
causality can be accurately detected since both X(t – 2) and X(t – 4) 
appear in x(t). More discussions on the choices of E and the signal 
lag τ used in the construction of the shadow manifolds were pre-
sented in Section 8 of Supplementary material.

CCM causation and Pearson correlation
Examples 1–4 are also used to compare CCM causation and 
Pearson correlation, and explore the possible relationship be-
tween them, as shown in Fig. 1. It can be observed that when 
the Pearson correlation coef!cient ρ is high, the CCM value might 
be high as well. This is because Pearson correlation re"ects the 
mutual dependence between the two signals, and therefore high-
er Pearson correlation may imply strong causation in both direc-
tions, as shown in Example 1.

On the other hand, it can also be seen from Fig. 1 that when the 
Pearson correlation ρ is low, the cross-mapping correlation 
ρCCM and ρcCCM can either be low in both directions when X and 
Y are completely independent (as shown in Example 2), or high ei-
ther only in one direction (as in Example 4) or in both directions (as 
in Example 3). From Example 3, we can see that X  =  sin(t) and Y  =  
cos(t) have a 90° phase shift, i.e. they are in quadrature or “orthog-
onal,” that is why they are not correlated. However, both CCM and 
cCCM can identify the strong bidirectional causation between 
them. In summary, Pearson correlation, very often, cannot predict 
the causation between two time series.

Approximate equivalence of cCCM and DI for 
Gaussian variables
Recall that as a universal metric that does not rely on any model 
assumptions of the signals, DI serves as the pivot that links the 

A B

C D

Fig. 1. Comparison of CCM, cCCM, and Pearson correlation based on simulation examples. Here, randn(1, 1,024) returns a 1-by-1,024 matrix of 
normally distributed random numbers, sgn represents the sign function, t = 0 : 0.01π: 2π represents the sequence [0, 0.01π, . . . , 1.99π, 2π], where the 
step size is 0.01π. As can be seen, CCM and cCCM are highly consistent and converge at similar speed. However, in general, correlation cannot predict 
causation.
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existing causality frameworks. In this section, we !rst revisit the 
de!nition of DI (35), then explore the relationship between 
cCCM and DI using information theory and show that they are ap-
proximately equivalent under Gaussian variables.

Directed information
Let Xn = [X1, X2, . . . , Xn] and Yn = [Y1, Y2, . . . , Yn] denote the time 
series corresponding to signals X and Y, respectively. The directed 
information from Xn to Yn is de!ned as

I(Xn ! Yn) = Pn

i=1
[H(Yi|Yi−1) − H(Yi|Yi−1, Xi)] = Pn

i=1
I(Xi; Yi|Yi−1). (5) 

The average DI from X to Y, measured in bits per sample, is 
de!ned as

�In(X ! Y) = I(Xn ! Yn)
n

. (6) 

Here H denotes the entropy operator, H(Y|X) is the conditional en-
tropy of Y given X, and I(X; Y|Z) denotes the conditional MI of X 

Box 2. cCCM vs. CCM: more simulation examples—autoregressive models, systems with dominant frequency embed-
ded in noise, deterministic chaotic maps, and systems with memory.
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and Y given Z. The de!nitions of all the information measures, as 
well as the corresponding chain rules used in this article are sum-
marized in Section 2 of Supplementary material.

Next, we establish the approximate equivalence of DI and 
cCCM by showing that: if (i) X and Y are dynamically coupled, 
zero-mean Gaussian random variables and their joint distribution 

is bivariate Gaussian, and (ii) Xn, Yn are stationary ergodic 
Gaussian random processes, then when n is suf!ciently large,

�In(X ! Y) ≈ − 1
2

log (1 − ρ2
cCCM,n(X ! Y)), 

where �In is the average DI from X to Y per sample and 

ρcCCM,n(X ! Y) = ρ(Yn, Ŷ
n
).

CBA

FED

IHG

LKJ

Fig. 2. Performance of cCCM and CCM vs. the data length: A) Example 5-1. B) Example 5-2. C) Example 6-1. D) Example 6-2. E) Example 7-1. F) Example 7-2. G) 
Example 8-1, E = 3, τ = 1. H) Example 8-1, E = 3, τ = 2. I) Example 8-1, E = 5, τ = 1. J) Example 8-2, E = 3, τ = 1. K) Example 8-2, E = 3, τ = 2. L) Example 8-2, E = 5, τ = 1. In 
these examples, cCCM and CCM are highly consistent in causality detection and show similar convergence speed in cross-mapping. Both cCCM and CCM can 
detect the increase in coupling strength and show consistent sensitivity to the changes in coupling strength. Simulation results also indicate that for causality 
to be accurately detected in systems with memory, the product E · τ needs to be larger than the dominant delays, and for each time instant t, all the samples 
corresponding to the dominant delays need to appear in x(t) = [X(t), X(t – τ), . . . , X(t –(E–1)τ)], the constructing vector of the shadow manifold.
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This result can be proved in the following two steps.
Step 1: If the two signals X and Y are dynamically coupled, then

lim
n!∞

�In(X ! Y) = lim
n!∞

�In(Y; Ŷ), (7) 

where

�In(X ! Y) = I(Xn ! Yn)
n

, �In(Y; Ŷ) = I(Yn; Ŷ
n
)

n
.

Step 2: If X and Y are zero-mean Gaussian random variables and 
their joint distribution is bivariate Gaussian, and Xn, Yn are sta-
tionary ergodic Gaussian random processes, then when n is suf!-
ciently large,

�In(X ! Y) ≈ �In(Y; Ŷ) ≈ − 1
2

log (1 − ρ2
cCCM,n(X ! Y)), (8) 

where ρcCCM,n(X ! Y) = ρ(Yn, Ŷ
n
). Steps 1 and 2 can be repeated to 

get the results in the reverse direction.
The !rst step follows from Taken's theorem (27), and the se-

cond step is based on the closed-form relationship between MI 
and Pearson correlation for Gaussian variables (which was 
established by Gel’fand (49)), as well as the Shannon–McMillan– 
Breiman theorem (50) which shows that when Xn, Yn are station-
ary ergodic random processes, then limn!∞�In(X; Y) = I(X, Y). 
Details of the theoretical derivations are summarized in 
Section 4 of Supplementary material. In the rest of the paper, 
we follow the notation ρcCCM(X ! Y) from Sugihara's paper, we 
would like to point out that this notation is for simplicity and ac-
tually represents ρcCCM,n(Xn ! Yn) = ρ(Yn, Ŷ

n
). In a strict sense, 

ρcCCM(X ! Y) = limn!∞ ρ(Yn, Ŷ
n
) .

fMRI-based demonstration for the approximate 
equivalence of cCCM and DI
The approximate equivalence of cCCM and DI is demonstrated 
using resting-state fMRI data, which are often modeled as 
Gaussian random variables (51, 52). For fMRI, we investigate 
the baseline data of 30 subjects from the risk reduction for 
Alzheimer's disease (rrAD) trial (53, 54), where 18 common 
ROIs of the default mode network (DMN) were extracted and 
sorted in a descending order by their connection strength to 
the isthmus of the posterior cingulate cortex seed region time 
course. The fMRI data of each brain region is regarded as a dy-
namic manifold with a deterministic attractor but perturbed by 
random afferent input and noise. Here, the total length of the 
BOLD (blood-oxygen-level-dependent) signal is 284 samples, 
with a sampling period of 2.5 s, i.e. the time duration of the 
BOLD signal is ∼12 min.

The relationship between the estimated DI and cCCM caus-
ation is illustrated in Fig. 3. Figure 3(A and B) plots the DI and 
cCCM values between all the 18 × 17 = 306 region pairs in the 
DMN for all the 30 subjects. That is, each !gure has 18 × 17 × 30 = 
9, 180 points. We can see that there is a log-relationship between 
them—DI can be represented using cCCM and vice versa. 
Figure 3C and D presents the heatmaps of the cCCM and the 
DI-predicted cCCM values (averaged over 30 subjects), respective-
ly. As can be seen, these two !gures are highly consistent. It 
should be noted though, due to the !nite data size, the quantiza-
tion error in the digitization process of DI calculation (55), and the 
noise in the fMRI data, the estimated DI and ρcCCM satisfy the fol-
lowing relationship, which is a linear transformation of Eq. (8),

�In(X ! Y) ≈ a − 1
2

log2(1 − ρ2
cCCM(X ! Y))

 �
+ b 

where a = 0.7945, b = 0.2578 in this case.
We also conducted causality analysis of the DMN using DI 

and cCCM for two randomly selected subjects from the rrAD 
trial, subject 1115 and subject 1151, respectively (see Section 6 
of Supplementary material). Again, we can observe the log- 
relationship between DI and cCCM. Region pairs that show 
signi!cantly asymmetric interactions (or say, with signi!cant 
unidirectional causality), selected as pairs (i, j) where 
|ρcCCM(i ! j)|−|ρcCCM(j ! i)| > 0.15, were identi!ed in Fig. S5g for 
subject 1115, and Fig. S6g for subject 1151. As can be seen, asym-
metric interactions (or unidirectional causality) can be observed 
in individual subjects; however, the region pairs that show obvi-
ous unidirectional causality vary across different subjects. 
When the result is averaged over all the scans, as shown in 
Fig. 3C, the DMN network does not present dominant unidirec-
tional causality during the resting state but shows signi!cant bi-
directional causality among regions right posterior cingulum, 
left Posterior Cingulum, right precuneus/angular gyrus and left 
precuneus/angular gyrus, where ρcCCM is bigger or close to 0.5 in 
both directions. This result is consistent with the previous !nd-
ings in literature (5).

The cCCM causation (ρcCCM) distribution and average node sig-
ni!cance in DMN for all 30 subjects are shown in Fig. S7, where 
node signi!cance as a transmitter and receiver is evaluated using P18

j=1(j≠i) |ρcCCM(i ! j)| and 
P18

i=1(i≠j) |ρcCCM(i ! j)|, respectively, and 
ρcCCM for each region pair is averaged over all the 30 subjects. 
The pattern of bidirectional causal interactions in the averaged 
ρcCCM indicates that Posterior cingula of DMN, followed by precu-
neus/angular gyri, and medial frontal gyri/medial orbital gyri, act 
as key nodes for both information transmitting and receiving. Our 
result is consistent with previous !ndings in (5) and (56).

Noise effect in cCCM and further comparisons 
on cCCM and DI
We analyzed the impact of noise by evaluating the estimation er-
ror on cCCM under noise, along the line that increased noise level 
may increase the prediction error in cCCM. The theoretical result 
is shown in Eq. (9) at the bottom of Box 3, refer Section 7 of 
Supplementary material for the mathematical proof of it. Our re-
sult indicates that cCCM causality tends to decrease as the noise 
power increases.

We further evaluate the noise effect in both cCCM and DI 
through simulation examples. As shown in Box 3, the noise-free 
case includes Examples 9–11, and the noisy case includes 
Examples 12–14. All results are averaged over 100 Monte Carlo 
runs (see Section 9 of Supplementary material for plots on the es-
timated cCCM and DI causation measures versus the number of 
Monte Carlo runs). It should be noted that the values of GC, 
cCCM, and DI cannot be compared directly, but should be ex-
plained based on their original de!nition. For the de!nition of 
GC, refer Section 3 of Supplementary material. As DI values vary 
with the corresponding MI values, both DI and its normalized ver-
sion DI/MI are provided in Box 3.

Noise-free results
We start with the noise-free case which serves as the benchmark 
for noise effect analysis. From the simulation examples, we can 
see that the results of cCCM and DI are consistent in Examples 9 
and 11, while the result of GC is quite different from them. In 
Example 9, both cCCM and DI show bidirectional causality but in-
dicate that the causal effect of X on Y is slightly stronger than that 
in the reverse. GC is not able to identify the causal coupling 
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between X(t) and Y(t), this is consistent with what was observed in 
Wang et al. (38). However, it was observed in the simulation that 
the GC is able to detect the causality from X(t) ! Y(t − τ) 
and from Y(t) ! X(t − τ) for 1 ≤ τ ≤ 20. In the Supplementary 
material of Sugihara et al. (17), the authors illustrated that GC 
causality may change back and forth with the time lag used in 
the data.

In Example 11, GC fails to detect the bidirectional causality be-
tween X and Y because they are deterministic functions. This is 
consistent with the previous !ndings that GC relies on the ran-
domness in the data and may be problematic in deterministic set-
tings (17). At the same time, while X = sin(t) and Y = cos(t) have a 
90° phase shift (i.e. they are orthogonal with each other), both 

cCCM and DI can successfully detect the bidirectional causality 
between X and Y.

In Example 10, GC cannot detect any causal coupling between 
X and Y. cCCM can successfully identify the unidirectional causal-
ity from X → Y, and indicates that there is no signi!cant causality 
from Y → X. This is what we expect since the sign information in X 
is completely lost in Y. On the other hand, DI not only can success-
fully detect the causality from X → Y, but can also indicate that 
there is a causal effect from Y → X, which is unlikely to be true. 
This may be due to the offsets in probability estimation and pos-
sible error propagation in DI calculation (55) and needs further ex-
ploration. Here, X is Gaussian, but Y is not, so they no longer 
satisfy the conditions for the approximate equivalence between 

A B

C

E

D

Fig. 3. Demonstration of the approximate equivalence of cCCM and DI using resting-state fMRI data of 30 subjects from the rrAD trials (53, 54). A) The 
approximate log-relationship between estimated DI and cCCM. The relationship between cCCM and DI can be modeled as: �In(X ! Y) ≈ 
a − 1

2 log2(1 − ρ2
cCCM(X ! Y))

⇥ ⇤
+ b where a = 0.7945, b = 0.2578. The constants a, b here are largely caused by the quantization noise and error propagation 

in DI calculations, the !nite data size, and the noise in the fMRI data. Equivalently, cCCM can be predicted from DI using: |ρcCCM(X ! Y)| =
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 − 2−2[�In (X!Y)−b]

a

q
. B) 

The approximate linear relationship between the directly estimated DI and cCCM-predicted DI, which is given by − 1
2 log2(1 − ρ2

cCCM(X ! Y)). C and D), 
Heatmaps for the cCCM and DI-predicted cCCM, both are averaged over all the 30 subjects. E) The region index table.
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cCCM and DI, which also explains why DI and cCCM have different 
performances in this example.

From these examples, we can see that it may be dif!cult for GC to 
detect causality in deterministic and nonlinear settings (without 
time lags), and cCCM and DI may detect both deterministic and stat-
istical causality in nonlinear settings. Moreover, it was also observed 
that cCCM tends to be more robust or sensitive than DI for causality 
detection, especially when X and Y have signi!cantly different 
ranges (which is a challenging task for the DI estimation algorithm 
(55)), with the price of a much higher computational complexity. 

Relying on exhaustive search of nearest neighbors, the computa-
tional complexity of cCCM is O(n2) for two sequences of length n, 
which is much higher than that of DI, where the computational 
complexity is linear in the sequence length n, O(n).

Impact of the noise
To illustrate the effect of noise on cCCM and DI, we evaluate the 
causality of the simulation data sets in Examples 9–11 under addi-
tive white Gaussian noise for different SNR levels, as shown in 
Examples 12–14, respectively. As the SNR increases from 0 to 

Box 3. Simulation results on causality detection with and without noise (all results were averaged over 100 Monte Carlo 
runs).
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20 dB, the estimated cCCM and DI causation gradually converge to 
that in the noise-free case. The simulation result on cCCM echoes 
our theoretical analysis, where it was proved that the estimated 
causality would decrease as the noise power increases. 
However, when the SNR is suf!ciently large (i.e. SNR ≥ 15 dB), 
cCCM can deliver reliable results.

Extension of bivariate cCCM to multivariate 
conditional cCCM
This method aligns with the multivariate KNN predictability ap-
proaches, which are also based on the embedding theorem and 
geometric cross-mapping for state-space reconstruction (28–31), 
and provides one way to extend bivariate cCCM to multivariate 
conditional cCCM. The same approach can be applied to CCM as 
well.

Let Ω = {X1, . . . , XQ} be the set of dynamically coupled random 
variables which share the same attractor manifold M. For 
q = 1, . . . , Q, let Xn

q = [Xq,1, Xq,2, . . . , Xq,n] denote the time series 
consisting of samples of Xq and construct the shadow manifold 
with respect to Xn

q as

MXq = {xq,t|xq,t = [Xq,t, Xq,t−τ, . . . , Xq,t−(E−1)τ], t = 1 + (E − 1)τ, . . . , n },

q = 1, . . . , Q.

(10) 

For q = 1, . . . , Q, let X̂i,t|MXq be the estimated Xi,t based on MXq . Let 

X̂i,t|Ω denote the multivariate prediction of Xi,t based on all the 

X̂i,t|MXq , q ∈ {1, . . . , Q}, q ≠ i. That is,

X̂i,t|Ω = PQ

q=1, q≠i
aqX̂i,t|MXq + ei,t|Ω, (11) 

where the coef!cients aq, q ∈ {1, . . . , Q} , and q ≠ i, are selected to 
minimize the variance of the estimation error ei,t|Ω. Similarly, 

X̂i,t|Ω\{Xj} denotes the multivariate prediction of Xi,t based on all 

the X̂i,t|MXq , q ∈ {1, . . . , Q} but q ≠ i, j, that is

X̂i,t|Ω\{Xj} = PQ

q=1,q≠i,j
bqX̂i,t|MXq + ei,t|Ω\{Xj}, (12) 

where the coef!cients bq, q ∈ {1, . . . , Q} but q ≠ i, j, are selected to 
minimize the variance of the estimation error ei,t|Ω\{Xj}. Following 

Eqs. (11) and (12), de!ne the estimation error vectors as:

en
i |Ω = [ei,1|Ω, . . . , ei,n|Ω],

en
i |Ω\{Xj} = [ei,1|Ω\{Xj}, . . . , ei,n|Ω\{Xj}].

Following (29), the CR from Xj ! Xi is de!ned as

CRXj!Xi = Var(en
i |Ω\{Xj}) − Var(en

i |Ω)
Var(en

i |Ω\{Xj})
(13) 

A natural question is: does the approximate equivalence still hold for 
multivariate conditional cCCM and DI? In general, the relationship 
between multivariate KNN search-based conditional cCCM and 
conditional DI becomes very complicated and uncertain, and ap-
proximate equivalence may no longer holds, as in the case be-
tween conditional DI and DCM (48). This part still needs to be 
further explored.

Detection of unidirectional causality in brain 
network based on visual task-driven fMRI
Here, we consider another fMRI dataset where 14 right-handed 
healthy college students (7 males and 7 females, 23.4 ± 4.2 years 

of age) from Michigan State University volunteered to partici-
pate in a task-driven fMRI-based study (38, 57, 58). For each sub-
ject, fMRI datasets were collected on a visual stimulation 
condition with a scene-object fMRI paradigm, where each vol-
ume of images was acquired 192 times (8 min) while a subject 
was presented with 12 blocks of visual stimulation after an ini-
tial 10 s resting period. In a prede!ned randomized order, the 
scenery pictures were presented in six blocks and the object pic-
tures were presented in other six blocks. All pictures were 
unique. In each block, 10 pictures were presented continuously 
for 25 s (2.5 s for each picture), followed by a 15-s baseline con-
dition (a white screen with a black !xation cross at the center). 
The subject needed to press his/her right index !nger once 
when the screen was switched from the baseline to picture con-
dition. More details on data acquisition and preprocessing are 
given in Materials and methods section.

ROI selection
We selected 10 ROI regions, including: left primary visual cortex 
(LV1), left parahippocampal place area (LPPA), left sensory motor 
cortex (LSMC), left parahippocampal white matter (LPWM), left 
retrosplenial cortex (LRSC), right primary visual cortex (RV1), right 
parahippocampal place area (RPPA), right sensory motor cortex 
(RSMC), right frontal white matter (RFWM), and right retrosplenial 
cortex (RRSC).

Result for bivariate cCCM
Recall that the total length of the fMRI BOLD time series under visual 
stimulation condition is n = 192, with the sampling period being 
2.5 s. We conducted causality analysis for all the possible unidirec-
tional regional pairs using CCM, cCCM, and DI. However, since CCM 
and cCCM did not converge with the data length n = 192, we chose 
to interpolate the fMRI sequence by a factor of 2 using the spline 
interpolation command in MATLAB, which reduced the sampling 
period from 2.5 to 1.25 s and increased the data length to 
(2 × 192) − 1 = 383. We then applied CCM, cCCM, and DI to the inter-
polated sequences and obtained consistent results on unidirectional 
causality from all the three models.

The consistence of CCM, cCCM, and DI in the detection of uni-
directional causality (averaged over all the 14 subjects) is shown in 
Fig. 4(A–D and G), where the approximate equivalence of cCCM 
and DI is shown in Fig. 4C. The ROI region pairs which show con-
sistent unidirectional causality across bivariate CCM, cCCM, DI, 
and across majority of the subjects for all these three models 
are shown in Fig. 4G. Here region pairs with averaged causation 
difference (between the two opposite directions) larger than 0.1 
for both bivariate CCM and cCCM, and with average difference lar-
ger than 0.01 for DI were identi!ed as ROI pairs with signi!cant 
unidirectional causality, which include: RV1 → LPWM, LV1 → 
LPWM, LV1 → RFWM, RV1 → RFWM, RPPA → LPWM, RPPA → 
RFWM, LV1 → LSMC, and LPPA → LPWM. As can be seen, CCM 
and cCCM resulted in much larger causation difference in the 
two opposite directions than that of DI, and hence is more robust 
than DI in identifying unidirectional causality in brain networks 
for this task-driven fMRI dataset.

It is worth noting that CCM, cCCM, and DI all identi!ed the 
same unidirectional causal relations among these ROI pairs, 
with both the original BOLD sequences and the interpolated se-
quences. This implies that even if CCM and cCCM did not converge 
with n  = 192 samples, they were still able to identify the unidirec-
tional causal relations correctly, but interpolation of the fMRI se-
quence did enhance the robustness of CCM- and cCCM-based 

Deng et al. | 11



A B

C D

E

G

F

Fig. 4. Brain causality analysis using CCM, cCCM, and DI based on visual task-fMRI. A) Heatmap of bivariate cCCM. B) Heatmap of bivariate DI. C) 
Approximate equivalence between cCCM and DI. D) Heatmap of bivariate CCM. E and F) Heatmap of multivariate conditional cCCM and CCM with respect 
to all the other ROI regions, respectively. G) ROI region pairs that show consistent unidirectional causality across bivariate cCCM, CCM, DI, and the 
majority of subjects. Here, Diff. means the causation difference in two opposite directions.
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causality analysis. In literature, it was also reported by Lin et al. in 
2014 (59) that increasing the sampling rate of the fMRI signal can 
improve the robustness of causality analysis.

The interpretation of the unidirectional causality from V1 and PPA to 
LPWM and RFWM needs to be carefully made since the white matter 
regions do not contain the cell bodies of the neurons, which are lo-
cated in the gray matter. As a result, the recorded BOLD signals in 
the white matter tend to be noisy and have relatively low power 
levels compared with other ROIs. In fact, the average power levels 
of the BOLD signals of LPWM and RFWM are 5.28 and 6.71, respect-
ively, which is much lower than that of the other ROI regions. 
More speci!cally, LV1 and RV1 turn out to have the highest aver-
age power levels among all the ROIs, which are 37.79 and 37.97, re-
spectively; the average power levels of LSMC and RSMC are 11.88 
and 12.17, respectively, which are the lowest among all the ROIs 
except the white matter.

On the other hand, while gray matter is a common focus in 
fMRI studies, recent studies have consistently found that BOLD 
signals can be reliably detected in white matter, and brain func-
tional connectivity has been organized into distributed networks 
in white matter (60, 61). Our result on unidirectional causality 
echoes the existing !ndings and indicates that neuronal activity 
in V1 and PPA might lead to the information transfer activity in 
the white matter, which connects regions that send and receive 
signals. This is similar to the situation in human society—when 
we have some thoughts, we may start to communicate with our 
friends using a phone or computer, either through the internet 
or the airlink. Although the phone, computer, internet, or airlink 
themselves do not own or generate the thoughts, information 
transmitting and receiving activities can be observed from them, 
and the unidirectional causality here lies in that the information 
exchange activity is caused by the thinking activity in human 
beings.

If we exclude white matter from the result and focus on the cor-
tical regions, then only one ROI region pair, LV1→ LSMC, demon-
strated signi!cant unidirectional causality. In addition, RV1 → 
LSMC also showed apparent unidirectional causality (though not 
included in Fig. 4), where the difference between ρCCM in the two 
opposite directions (i.e. RV1 → LSMC and LSMC → RV1) is 0.1018 
with 11 consistent subjects, the difference between ρcCCM in the 
two opposite directions is 0.0875 with 12 consistent subjects, 
and the corresponding difference for DI being 0.0343 with 12 con-
sistent subjects. The unidirectional causality from LV1 → LSMC 
and RV1 → LSMC in visual task-fMRI aligns with the experimental 
design where the subjects saw the picture before pressing the 
!nger.

In addition, from Fig. 4, it can also be observed that signi!cant 
bidirectional causality exists between many ROI region pairs, such 
as LV1 and RV1, LPPA and RPPA, LRSC and RRSC, etc.

Result for multivariate conditional cCCM
We also conducted multivariate conditional CCM and conditional 
cCCM for all the 10 × 9 = 90 unidirectional ROI pairs using the 
same interpolated fMRI sequences of length n = 383 as in the bi-
variate case.

The cCCM and CCM causality ratios for each ROI pair condition-
ing on all the rest of the state space are shown in Fig. 4(E and F). As can 
be seen, both conditional CCM and cCCM are very sensitive to the 
interdependence between the brain regions under consideration 
and the rest of the regions in the state space. Due to rich brain net-
work diversity, the multivariate conditional CCM and cCCM caus-
ality ratios with respect to the rest of the state space turn out to be 

very small or insigni!cant and cannot really be used for unidirec-
tional causality detection. That is, when we consider the condi-
tional causality from Xj → Xi, if Xj is largely dependent on the 
random variables in Ω ∖ {Xi, Xj}, then the KNN-based conditional 
CR would be very small even if there exists (bivariate) unidirec-
tional causality from Xj ! Xi.

We further checked the multivariate conditional CCM and cCCM 
causality with respect to individual regions. More speci!cally, we com-
pared the conditional CCM and cCCM causality from LV1 → LSMC, 
RV1 → LSMC with respect to all the other individual ROI regions 
and the result is shown in Fig. 5. It can be observed that: (i) 
Conditional CCM and cCCM ratios with respect to individual regions 
are highly consistent; (ii) RV1 has the most signi!cant impact on the 
conditional causality from LV1 → LSMC, and LV1 has the most sig-
ni!cant impact on the conditional causality from RV1 → LSMC. 
This implies that RV1 has the highest interdependence with LV1, fol-
lowed by LPPA and RPPA, and the result is consistent with the 
strengths of causal coupling among the ROI regions, as shown in 
Fig. 4(A, B, and D). In short, our numerical analysis indicates that 
conditional cCCM and CCM with respect to individual regions can 
detect unidirectional causality and demonstrate the impact of inter-
dependence between the ROI regions on the conditional causality.

Discussion
In this article, we !rst causalized CCM so that it aligns with the 
traditional de!nition of causality—in the sense that the future 
values of one process cannot in"uence the past of the other— 
and demonstrated the consistence of cCCM and CCM through rep-
resentative simulation examples. We then showed the approxi-
mate equivalence of cCCM and DI under Gaussian variables and 
established an approximate mathematical relationship between 
them. This result links cCCM to other representative causality 
analysis frameworks in the family—GC, TE, and DCM, in the sense 
that they are all approximately equivalent to each other under 
certain conditions.

We explored the possible relationships between correlation 
and causation, and showed that high correlation might imply 
high causation, but low correlation may be connected to either 
high or low causation, either unidirectional or bidirectional. This 
is consistent with the !ndings in previous work that, in general, 
correlation cannot predict causation (17). We also tested the noise 
effect on cCCM and showed that in the presence of noise, the 
cCCM causation decreases, but will get close to that in the noise- 
free case when the SNR is 15 dB or higher.

We compared the performance of DI and cCCM when the sig-
nals are not jointly Gaussian and hence DI and cCCM are no longer 
approximately equivalent. In the simulation examples, it was ob-
served that cCCM tends to be more robust in causality detection, 
especially when the two sequences under consideration have sig-
ni!cantly different ranges, which is a condition that raises signi!-
cant challenges for DI calculation. This is because DI relies heavily 
on probability estimation, which is sensitive to the digitization or 
quantization process used in the implementation algorithm (55). 
cCCM, on the other hand, gets around the problem of probability 
estimation through geometric cross-mapping of the correspond-
ing neighborhoods between the manifolds involved, at the cost 
that exhaustive KNN search (here K = E + 1 and E is the dimension 
of the shadow manifold) is required at the prediction of every 
sample of the target time series. The disadvantage of cCCM, there-
fore, is its high computational complexity, which is O(n2) in the se-
quence length n, while the computational complexity of DI is only 
O(n).
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In the implementation of the cross-mapping technique, the 
choice of the dimension of the shadow manifold plays a critical 
role. According to Takens’ theorem (27) and Whitney's embedding 
theorem (62), the magic number is E = 2d + 1, and often less (17), 
where d is the dimension of the attractor shared by the two time 
series under consideration. If E is too large, cCCM may no longer 
deliver meaningful results (see Section 8 of Supplementary 
material for simulation results).

Taking the interdependence between different random varia-
bles in a multivariate system into consideration, we extended bi-
variate CCM and cCCM to multivariate conditional CCM and cCCM 
along the lines of multivariate KNN predictability approaches (29, 
30). Whether the approximate equivalence between multivariate 
conditional cCCM and DI still holds is an open question that needs 
further investigation. An effective way to estimate multivariate 
conditional DI also needs to be explored.

Our numerical analysis based on experimental fMRI indicated 
that in the resting state, DMN shows signi!cant bidirectional 
causality among certain regions (mainly right posterior cingulum, 
left Posterior Cingulum, right precuneus/angular gyrus, and left 
precuneus/angular gyrus), but no dominant unidirectional caus-
ality was observed. On the other hand, analysis based on a visual 

task-driven fMRI dataset showed that unidirectional causality 
among the ROI regions (mainly from the left and right primary vis-
ual cortices to LSMC and to the related white matter regions) can 
be detected by cCCM during the performance of tasks, and the re-
sult is consistent with that of CCM and DI and is also consistent 
across the majority of subjects. In addition, due to rich diversity 
in the brain network, multivariate conditional CCM and cCCM 
conditioning on all the rest of ROI regions generally result in 
very small causality ratios and cannot be used for causality detec-
tion. However, conditional cCCM and CCM with respect to individ-
ual regions can detect unidirectional causality and demonstrate 
the impact of interdependence between the ROI regions on the 
conditional causality.

For future work, we will continue to explore the (conditional) 
causal relationships in brain networks under both resting-state 
and task-driven scenarios, with the expectation that the study 
on causality may help identify the possible paths on directed in-
formation "ow among brain regions and provide us a better 
understanding on the region-level information transmission 
mechanisms in the brain. In addition, to study the transitive 
causal chains (63) in the brain network, we will investigate time- 
delayed causal interactions among brain regions to possibly 

BA

DC

Fig. 5. Multivariate conditional CCM and cCCM with respect to individual regions. A) Conditional CCM from LV1 → LSMC. B) Conditional cCCM from 
LV1 → LSMC. C) Conditional CCM from RV1 → LSMC. D) Conditional cCCM from RV1 → LSMC. The results indicate that: (i) Conditional CCM and cCCM 
causality ratios with respect to individual regions are highly consistent; (ii) RV1 has the most signi!cant impact on the conditional causality from LV1 → 
LSMC, and LV1 has the most signi!cant impact on the conditional causality from RV1 → LSMC. This implies that RV1 has the highest interdependence 
with LV1, followed by LPPA and RPPA.
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determine the order of variables in each transitive information 
processing and transmission chain.

We also explored the impact of sampling frequency 
on cCCM through simulation examples, refer to Section 10 of 
Supplementary material. Again, sinusoid waveforms were used 
here since they can serve as the building blocks to approximate 
most functions encountered in reality. As can be seen, cCCM 
works well when the sampling rate is well above the Nyquist 
rate and may require larger data length to converge as the sam-
pling frequency is above but very close to the Nyquist sampling 
rate; when the sampling frequency is below or equal to the 
Nyquist rate, very often, cCCM can no longer deliver meaningful 
results.

In the case when the two signals under consideration are peri-
odic, CCM and cCCM are equivalent since the future is identical 
with the past for periodic signals. When the data length of the 
time series under consideration, say X and Y, is very limited, 
can we concatenate the time series to increase the data length 
and consider the causality of [X, X] and [Y, Y] instead, for ex-
ample? The answer is no. This is because concatenation can cre-
ate new causality which does not exist in the original X and Y. In 
fact, even if X and Y are two independent time series that are not 
causally coupled, a causal pattern is enforced in the concatenated 
time series through signal repetition (see Section 11 of 
Supplementary material for simulation result).

Overall, our analysis shows that the cross-mapping technique 
is easy to implement and is a promising tool for identifying both 
linear and nonlinear causal coupling in different settings, either 
random or deterministic, or both. It has attracted considerable at-
tention in the research communities, and we believe that a broad 
spectrum of applications is yet to come.

Materials and methods
In this study, we utilized two experimental fMRI datasets.

Dataset 1: resting-state fMRI
Data description
Here, we investigate the baseline data of 30 subjects (age 60–83, 17 
men, and 13 women) from the rrAD trial (53, 54). All study proce-
dures were approved by the institutional review board at 
University of Texas Southwestern Medical Center, University 
of Kansas Medical Center Research Institute, Pennington 
Biomedical Research Center, and Washington University in St 
Louis, and each participant provided written, informed consent. 
A detailed description of the imaging protocol of the rrAD trial, in-
cluding inclusion and exclusion criteria, has been provided by 
Szabo-Reed et al. (64). Overall, individuals with a history of severe 
neurological, psychological, cardiovascular, and other severe dis-
eases were excluded from this study. Included subjects under-
went baseline resting-state fMRI acquisition (eyes focused on a 
cross) for 12 min on a GE MR750W 3T MRI system with a 
48-channel head/neck coil, located at the University of Texas 
Southwestern Medical Center. The fMRI data were acquired with 
2.5 s TR (time of repetition), 28 ms TE (time of echo), and a 64 ×  
64 matrix size with 3.4 mm × 3.4 mm pixels. Slices with a thick-
ness of 3.4 mm were recorded without parallel imaging.

In addition to the functional images, anatomical 3D 1-mm3 iso-
tropic T1-weighted Magnetization-Prepared Rapid Acquisition 
Gradient Echo (MPRAGE) images with cerebrospinal "uid (CSF) 
suppressed were also collected for each of the subjects using 
the following parameters: 176 sagittal slices, TE = 3.8–4 ms, TR 

of acquisition ≍8.6 ms, time of inversion (TI) = 830 ms, TR of inver-
sion = 2330 ms, "ip angle = 8°, FOV (!eld of view) = 25.6 cm ×  
25.6 cm, matrix size = 256 × 256, slice thickness = 1 mm, and paral-
lel imaging acceleration factor = 2.

fMRI preprocessing and noise regression
The data of each subject was !rst processed with the AFNI (65) proc.-
py script (AFNI's tool to create a complete and standardized fMRI 
preprocessing pipeline). This script includes the steps of outlier de-
tection, despiking, correction for slice-timing differences, functional 
image coregistration to anatomical recordings, alignment between 
functional volumes to correct for rigid motions, and smoothing us-
ing a 4-mm kernel. We then transformed the motion parameters ex-
tracted by AFNI's motion correction into an FSL compatible format 
and performed aggressive ICA-AROMA (66) before applying a band-
pass !lter (0.009–0.08 Hz) and third-order detrending.

Using DARTEL (67) from SPM (68) and the anatomical MPRAGE 
images, we created a common template and normalized all sub-
ject's fMRI data into the common space. Using the isthmus of 
the posterior cingulate cortex as the seed region for each subject, 
we created seed-based connectivity maps of the DMN for each 
subject. From these connectivity maps, 18 common ROI of the 
DMN were extracted and sorted in a descending order by their 
connection strength to the isthmus of the posterior cingulate cor-
tex seed region time course.

Dataset 2: visual task-driven fMRI
Data acquisition
Fourteen right-handed healthy college students (seven males, 
23.4 ± 4.2 years of age) from Michigan State University volun-
teered to participate in this study. All subjects provided informed 
consent. All experimental procedures were approved by the 
Michigan State University Institutional Review Board (38, 57, 58). 
The experiment was conducted on a 3-T GE Signa HDx MR scanner 
(GE Healthcare, Waukesha, WI, USA) with an eight-channel head 
coil. For each subject, fMRI datasets were collected on a visual 
stimulation condition with a scene-object fMRI paradigm, and 
then, on a resting-state condition. The parameters for the fMRI 
scan were: gradient-echo echo planar imaging, 36 contiguous 
3-mm axial slices in an interleaved order, time of echo =  
27.7 ms, time of repetition = 2,500 ms, "ip angle =  80�, FOV =  
22 cm, matrix size =  64 × 64, ramp sampling, and with the !rst 
four data points discarded. On the visual stimulation fMRI condi-
tion, each volume of images was acquired 192 times (8 min) while 
a subject was presented with 12 blocks of visual stimulation after 
an initial 10 s resting period. In a prede!ned randomized order, 
the scenery pictures were presented in six blocks and the object 
pictures were presented in other six blocks. All pictures were 
unique. In each block, 10 pictures were presented continuously 
for 25 s (2.5 s for each picture), followed by a 15-s baseline condi-
tion (a white screen with a black !xation cross at the center) (38, 
57, 58). The subject needed to press his/her right index !nger 
once when the screen was switched from the baseline to picture 
condition. Stimuli were displayed in color on full screen on a 
1, 024 × 768 32-in LCD monitor (Salvagione Design, Sausalito, 
CA, USA) placed at the back of the magnet room. The LCD sub-
tended 10.2o × 13.1o of visual angle. On the rs-fMRI condition, 
each volume of images was acquired 164 times (6 min and 50 s) 
after a subject was informed to relax, keep his/her eyes closed, 
and stay awake throughout the scan. After the aforementioned 
functional data acquisition, high-resolution volumetric 
T1-weighted spoiled gradient-recalled images with CSF 
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suppression were obtained to cover the whole brain with 120 
1.5-mm sagittal slices, 8o "ip angle, and 24 cm FOV. These images 
were used to identify anatomical locations (38, 57, 58).

Data preprocessing
All stimulus fMRI data preprocessing and analysis for each sub-
ject were conducted with AFNI software (65) as described in 
Henderson et al. (57). Essentially, slice-timing correction and 
rigid-body motion correction were carried. Spatial blurring with 
a full width half maximum of 4 mm was applied to reduce random 
noise. Multiple linear regressions (using the “3dDeconvolve” rou-
tine in AFNI) were applied on a voxel-wise basis to !nd the magni-
tude change when each picture condition was presented, followed 
by general linear tests to !nd the statistical signi!cances between 
stimulus conditions. The ROI in this study was de!ned in the 
Talairach coordinate space (69). Regions showing preferential ac-
tivation to scenes over objects (voxel-based P-value < 10−4) in the 
right and left parahippocampal gyri were de!ned as the RPPA and 
LPPA (57). The right and left V1 ROIs were de!ned as the regions 
activated by pictures (voxel-based P-value < 10−10) within 
Brodmann area 17. Because there was a high level of activation 
at and around V1, a highly conservative P-value threshold was 
chosen to de!ne relatively focal ROIs. The RSMC and LSMC spher-
ical ROIs with a 6-mm radius were de!ned with the centers at 
(R36, P22, S54) and (L38, P26, S50) correspondingly in the 
Talairach coordinate space (R = Right, L = Left, P = Posterior, S =  
Superior). The SMC coordinate locations were de!ned by Witt 
et al. (70) and the ROIs were created as in Zhu et al. (58). The 
time courses from the stimulation fMRI dataset that were already 
preprocessed as previously were detrended and had their base-
lines removed also. The spatially averaged time course at each 
of the aforementioned ROIs was generated for the causality 
analyses.

Supplementary Material
Supplementary material is available at PNAS Nexus online.
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