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Abstract

Convergent cross-mapping (CCM) has attracted increased attention recently due to its capability to detect causality in nonseparable
systems under deterministic settings, which may not be covered by the traditional Granger causality. From an information-theoretic
perspective, causality is often characterized as the directed information (DI) flowing from one side to the other. As information is
essentially nondeterministic, a natural question is: does CCM measure DI flow? Here, we first causalize CCM so that it aligns with the
presumption in causality analysis—the future values of one process cannot influence the past of the other, and then establish and
validate the approximate equivalence of causalized CCM (cCCM) and DI under Gaussian variables through both theoretical
derivations and fMRI-based brain network causality analysis. Our simulation result indicates that, in general, cCCM tends to be more
robust than DI in causality detection. The underlying argument is that DI relies heavily on probability estimation, which is sensitive
to data size as well as digitization procedures; cCCM, on the other hand, gets around this problem through geometric cross-mapping
between the manifolds involved. Overall, our analysis demonstrates that cross-mapping provides an alternative way to evaluate DI
and is potentially an effective technique for identifying both linear and nonlinear causal coupling in brain neural networks and other
settings, either random or deterministic, or both.

Significance Statement

Causality analysis aims to find the relationship between causes and effects and is a central topic in science, economy, climate, and
many other fields. Causality can be characterized using the directed information (DI) flowing from one side to the other. However,
relying on probability estimation, DI may be very sensitive to data size and the quantization procedures used. Convergent cross-
mapping (CCM), on the other hand, gets around this problem through geometric cross-mapping between the systems and random
variables involved. In this paper, by establishing the approximate equivalence between causalized CCM and DI, we showed that cau-
salized CCM provides an effective model-free approach to measure causal coupling in deterministic, random, or hybrid settings and
can benefit a broad spectrum of applications that require quantitative causality detection.

Introduction the validity and computational simplicity of GC have been widely

Causality analysis aims to find the relationship between causes
and effects and has been a central topic in science, economy, cli-
mate, and many other fields (1-7). The first practical causality
analysis framework is Granger causality (GC), which was pro-
posed by Granger in 1969 (8). GC is a statistical approach that relies
on a multistep linear prediction model, where the basic idea is to
determine whether the values of one time series are useful in pre-
dicting the future values of the other. As a well-known technique,

recognized (9-12), and its nonlinear extensions have also been
studied in the literature (13-16). It has been observed by Granger
himself (8), as well as others (17), that GC requires separability be-
tween the variables under consideration and may be problematic
in detecting causation in deterministic settings.

As an effort to address this problem, in 2012, Sugihara et al. (17)
proposed to use the convergent cross-mapping (CCM) approach
and demonstrated that CCM could serve as an effective tool in
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Box 1. CCM and causalized CCM.

manifold M. Let X" = [X;, Xy, -+

Consider two dynamically coupled variables X and Y which share the same attractor
7X7L] and Yn = [}/1’}/27 e
consisting of samples of X and Y, respectively.

1. Construct the shadow manifolds with respect to X" and Y".

.Y, be the time series

Mx = {Xt | Xy = [Xt>Xt77‘7 o
M, ={y: | ye = [V, Yier, -

: 7Xt—(E—l)T]7 t=1+ (E - 1)Ta e 7n} (1)
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. For each vector x;, find its £+ 1 nearest neighbors and denote the time indices (from

closest to farthest) of the E 4+ 1 nearest neighbors of x; by t1, ..., tgi1.

. If the two signals X and Y are dynamically coupled, then the nearest neighbors of x;

in M, would be mapped to the nearby points of Y; on manifold M. The estimated

> uj
j=1

Causalized CCM (cCCM)

the cCCM causation, is denoted as p.com-

Y; based on M,, or say the cross mapping from X to Y, is defined as:

Bt1
VM, =) w, (3)
i=1
e (x (1), x(1)
Ui . _ _oX{1), XL
wi = g with u; = exp{ d(x(t),x(tl))}’

here d denotes the Euclidean distance between two vectors. The cross mapping from
Y to X can be defined in a similar way. As n increases, it is expected that X;|M,
and Y;|M, would converge to X; and Y}, respectively.

4. The cross mapping correlations are defined as
peen(X = Y) = p(Y",Y")
where p denotes the Pearson correlation.

5. If pocem(X = Y) > pcom(Y — X)) and converges faster than pcom(Y — X), then
we say that the causal effect of X on Y is stronger than that in the reverse.

If we limit the search of all the nearest neighbors in M, to
t; < t, that is, we only use the current and previous values of X and the past values of Y’
to predict the current value Y;, and operate in the same way for the other direction, then
CCM is converted to Causalized-CCM. The corresponding cross mapping correlation, or

n

and  peeu (Y — X) = p(X", X") (4)

addressing nonseparable systems and identifying weakly coupled
variables under deterministic settings, which may not be covered
by GC. Since then, CCM has attracted considerable attention from
the research community in many different fields (18-25).

Rooted in dynamic systems theory, the fundamental assump-
tion of CCM is that the dynamics in the world are not completely
random but governed by some underlying deterministic rules. In
dynamic systems theory, an attractor is a set of states toward
which a system tends to evolve from a wide variety of starting con-
ditions (26). In finite-dimensional systems, each evolving variable
could be represented as a d-dimensional vector. The attractor is
then a region in the d-dimensional space and is generally repre-
sented as a manifold. CCM relies on Takens’ embedding theorem
(27), which says that in general, the attractor manifold of a
dynamical system can be “reconstructed” from a single observa-
tion variable of the system, say X, in the sense that the

reconstructed attractor (called a shadow manifold) M, is diffeo-
morphic to the true manifold, M. Based on Takens’ theorem, if
two variables X and Y are causally linked, then they share the
same attractor manifold M, and their corresponding shadow
manifolds My and My will also be diffeomorphic. Consequently,
nearby time points on manifold My will be mapped to nearby
points on My. That is, the time indices of nearby points in My
can be used toidentify the nearby points in My. Therefore, the cur-
rent state of variable Y can be predicted based on X and vice versa.
If we denote the predicted version of Y as ¥, the CCM causation
from X to Y is defined as the Pearson correlation between Y and
Y. The CCM algorithm is summarized in Box 1, and the concept
of cross-mapping is illustrated through figures in Section 1 of
Supplementary material.

In literature, model-free methods like CCM, which rely on the
embedding theorem and allow the reconstruction of the system
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space from scalar observations, are collectively referred to as
state-space reconstruction approaches (28-34). They generally
use nearest neighbor search and cross-mapping in the shadow
manifolds to predict or reconstruct the state of variables, but
the prediction methods and the measures used to characterize
unidirectional causal coupling may vary in different approaches
(17, 29, 33). A notable feature of Sugihara's approach (17) is that
when X and Y are dynamically coupled, the prediction of X based
on 'Y (and vice versa) will converge to the true value itself as the
data length increases and was therefore named CCM. For this
reason, CCM turns out to be a popular and representative tech-
nique among the state-space reconstruction methods. Along
the same line, Porta et al. (29, 30) developed a multivariate
K-nearest-neighbor (KNN) search-based predictability approach
for causality detection in systems with multiple dynamically
coupled time series by taking the impact of conditioning variables
into consideration. As will be seen in Results section, this ap-
proach provides a possible way to extend bivariate CCM (17) to
multivariate conditional CCM.

Note that since the late 1960s, several causality analysis
frameworks have been proposed from different perspectives. In
addition to GC and CCM, other representative frameworks include
Directed Information (DI, 1990) (35) and Transfer Entropy (TE,
2000) (36), which were both developed based on information the-
ory, and dynamic causal modeling (DCM, 2003) (37), which is
rooted in the classical control theory and the neural mass model.

To this end, some natural and fundamental questions are: (i)
Would CCM still be effective in random settings? (ii) Does CCM
measure DI flow which is essentially nondeterministic? (iii) As a
relatively recent newcomer to the family, whatis the relationship
of CCM with existing causality detection frameworks?

To answer these questions, we need to take a closer look at ex-
isting causality detection tools. DI was proposed by Massey in 1990
(35) when studying discrete memoryless communication chan-
nels with feedback, and itis the first causality detection tool based
on information theory. DI measures the directed information
flowing from one sequence to the other. As an information-
theoretic framework, a major advantage of DIis thatitis a univer-
sal method that does not rely on any model assumptions of the
signals and is not limited by linearity or separability (38, 39).

TE is another information-theoretic causation measurement.
It was introduced by Schreiber in 2000 (36) and measures
the decrease of entropy in one signal Y after another signal X has
been observed. Like GC, TE measures how much additional infor-
mation the past values of X contain about the future observations
of Y, given that we already knew the past values of Y. It can be re-
garded as a direct generalization of GC based on information
theory.

Let X; and Y; represent the i-th sample of X and Y, respectively,
generally taken at the same time instants. The major difference
between DI and TE is that—TE only considers the impact of the
past values of X (i.e. all samples X, with k<i) on Y;, just as in
GC, while DI not only counts the impact of the past values of X,
but also takes the instantaneous information exchange between
Xjand Y;into consideration (40). When there is no (significant) in-
stantaneous information exchange between X; and Y, as in the
case when the information transmission from X to Y takes nonzero
time, then DI and the cumulative variant of TE are essentially
equivalent on the calculation of DI flow from one variable to the
other. Moreover, Barnett et al. (41) proved that GC and TE are
equivalent under the auto-regression model and Gaussian
variables. This implies that, as model-free causality measures,
both DI and TE are conditionally equivalent to GC under the

auto-regression model and Gaussian variables. In literature, all
the three frameworks have been applied for causality detection
in neuroscience (5, 42, 43).

The DCM framework was proposed by Friston et al. in 2003 (37). It
relies on the neural mass model and takes a similar format as the
dynamic state-space model in the classical control theory. DCM pro-
vides a flexible framework to characterize the connectivity or coup-
ling between brain regions and how the coupling is influenced by
external inputs and the environment. Relying on the expectation
maximization (EM) algorithm, DCM has been implemented on
both fMRI and electroencephalogram data (44-47). In practical ap-
plications, due to the computational complexity, DCM is usually
used as a confirmatory approach. That is, the users need to put for-
ward different connectivity models and then compare them based
on their likelihood evaluated under DCM, the process is known as
Bayesian modeling (45). In (48), we explored the relationship
between DI and DCM based on fMRI data and showed that: discre-
tized DCM and DI are equivalent in characterizing the causal relation-
ship between two brain regions under Gaussian variables when the
external input is approximately a constant (i.e. when the external
input changes much slower than the neuronal activity).

Based on the discussions above, we can see that as a universal
causality measure, DI serves as the pivot that links GC, TE, and
DCM together through the conditional equivalence between
them. From the information theory perspective, DI demonstrates
that causality can be quantified using the directed information
flow from one time series to the other. Therefore, if CCM can be
linked with DI, it is then connected with the whole causality ana-
lysis family and obtains its physical meaning in terms of directed
information transmission.

Before doing that, one prestep needs to be taken. Recall that in
its original definition, causality aims to determine whether the
current and past values of one time series are useful in predicting
the future values of the other in addition to its own past values. In
the existing CCM algorithm (Box 1), however, the whole time series
corresponding to X, and both the past and future values of Y are all
exploited to estimate the current value of Y. That is, the causality
defined in CCM is inconsistent with the original, widely accepted
definition of causality, and changes are therefore needed to fill
in the gap.

In this paper, first, we causalize the CCM algorithm so that only
the current and previous values of variable X and the past values
of variable Y are used to predict the current value of Y, and vice
versa. The cCCM aligns with the traditional definition of causality,
in the sense that the future values of one process cannot influence
the past of the other.

Second, we demonstrate the approximate equivalence of CCM
and cCCM through various simulation examples, including
Gaussian random processes, sinusoidal waveforms, autoregres-
sive processes, stochastic processes with a dominant frequency
component embedded in noise, deterministic chaotic maps, and
systems with memory. In all these examples, cCCM and CCM
are highly consistent in causality detection and show similar con-
vergence speeds in cross-mapping. Also, both cCCM and CCM can
detect the increase in coupling strength and show consistent sen-
sitivity to the changes in coupling strength. We also explore the
connections and differences between CCM causation and
Pearson correlation. The simulation result indicates that high cor-
relation might lead to high bidirectional causation, but low correl-
ation may correspond to either high or low causation, and either
unidirectional or bidirectional.

Third, based on Takens’ theorem (27) and Gel'fand's theorem
on the conditional equivalence between Pearson correlation and
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mutual information (MI) (49), as well as the Shannon-McMillan-
Breiman theorem (50), we show that—under the assumption
that the future of one process cannot influence the past or current
of the other, cCCM and DI are approximately equivalent under
Gaussian variables. An approximate mathematical relationship
between cCCM and DIis derived, and the theoretical resultis dem-
onstrated using experimental fMRI data. Relying on information
theory, this result reveals how cCCM measures the directed infor-
mation flow from one time series to the other and links cCCM with
other members of the causality detection family.

We also compare the performance of DI and ¢cCCM through
simulation examples where the time series may not (both) be
Gaussian random variables. It was observed that in general,
cCCM tends to be more robust or sensitive than DI in causality de-
tection. This is largely because DI relies heavily on probability es-
timation, which is sensitive to data size as well as the digitization
or quantization process used in the implementation algorithm.
cCCM, on the other hand, gets around this problem through geo-
metric cross-mapping of the corresponding neighborhoods be-
tween the manifolds involved. As exhaustive KNN search is
required at the prediction of every sample of the target time series,
the disadvantage of cCCM, therefore, is its high computational
complexity, which is O(n?) in the sequence length n, while the
computational complexity of DI is only O(n). Moreover, we also in-
vestigate the noise tolerance of cCCM and show that—in the pres-
ence of noise, the cCCM causation may decrease, but would be
very close to the noise-free case when the signal-to-noise ratio
(SNR) is reasonably high (>15 dB).

Finally, we demonstrate the capability of cCCM in detecting
unidirectional causality through task-driven fMRI data. It is
shown that unidirectional causality among the regions of interest
(ROIs) can be detected by cCCM, and the result is consistent with
that of CCM and DI and is also consistent across the majority of
subjects. We also conduct multivariate conditional CCM and
cCCM for all the ROI pairs. Our results indicate that due to rich di-
versity in the brain network, multivariate conditional CCM and
cCCM with respect to (i.e. conditioning on) all the rest of ROI re-
gions generally result in very small causality ratios and cannot
be used for causality detection. However, conditional cCCM and
CCM with respect to individual regions can detect unidirectional
causality and demonstrate the impact of interdependence be-
tween the ROI regions on the causality ratio.

Overall, our analysis demonstrates that CCM provides an in-
novative and reliable way to evaluate unidirectional and bidirec-
tional causation between causally coupled variables, and is
potentially an effective technique for identifying both linear and
nonlinear causal coupling in brain neural networks and other set-
tings, either random or deterministic, or both.

Results
Causalized CCM

In the existing CCM algorithm (Box 1), the whole time series corre-
sponding to X, and both the past and future values of Y are all ex-
ploited to estimate the current value Y(t). That is, for two time
series of length n, for each 1 < t < n, Y(t) is predicted based on
all X(t)s where 1 < t; < n, and all Y(t;)'s where 1 < t; < n and
t £t

Recall that causality aims to determine whether the current
and past values of one time series are useful in predicting the
future values of another time series, in addition to its own
past values. In CCM, if only the current and historical values of X and

the past values of Y are used to predict the current value Y(t), and vice
versa, then CCM is converted to cCCM. That is, in cCCM, we limit
the search of all the nearest neighbors in My to t; <t to predict
the current value Y(t) and operate in the same way for the other
direction.

The performance of CCM and cCCM is compared through simu-
lation examples, which include both deterministic and random
settings, with either bidirectional or unidirectional causation, or
no causation (Fig. 1). In Example 1, X and Y are both random var-
iables and experience bidirectional causation, but the causal ef-
fect of X on Y is stronger than that in the inverse direction. In
Example 2, X and Y are independent random variables that have
no causal coupling. In Example 3, X and Y are deterministic sig-
nals with strong bidirectional causation. In Example 4, X and Y
are random variables, and there is a strong unidirectional caus-
ation from X to Y, but no causation in the inverse direction.

The reason that we consider normally distributed random var-
iables in Examples 1, 2, and 4 is because the normal distribution is
the most commonly occurring one in practical applications, and
the reason that we consider the sinusoidal waveforms in
Example 3is because in practice, most signals can be decomposed
as the superposition of sinusoidal waveforms of different frequen-
cies through Fourier series. The simulation results for these exam-
ples are summarized in Fig. 1. Through Examples 1-4, we can see
that CCM and cCCM are highly consistent and converge at similar
speed, with the cCCM causation being slightly smaller than the
CCM causation in general, which is expected since the latter
uses a larger data set to predict the target time series. These nu-
merical examples also show that both CCM and cCCM can be ap-
plied to different signal settings, either deterministic or random.

The consistence of cCCM and CCM is further demonstrated
through additional examples, including autoregressive models
(Examples 5-1 and 5-2), stochastic processes with a dominant
spectral component embedded in noise (Examples 6-1 and 6-2),
deterministic chaotic maps (Examples 7-1 and 7-2), and systems
with memory (Examples 8-1 and 8-2). The results are shown in
Box 2 and Fig. 2. In all these examples, cCCM and CCM are also
highly consistent in causality detection and show similar conver-
gence speed in the cross-mapping. Both cCCM and CCM can detect
the increase in coupling strength and show consistent sensitivity
to the changes in coupling strength.

In all these examples, we generally choseE = 5, r = 1. Fromex-
amples on systems with memory (Examples 8-1 and 8-2), we tested
different choices of E and 7, and found that the dominant delays
(i.e. delays corresponding to the dominant peaks) in the channel im-
pulse response doimpose requirements on both the dimension of the
shadow manifolds E and the signal lag ¢ used in shadow
manifold construction. More specifically, for the causality to be ac-
curately detected in systems with memory, we need: (i) The product
E - 7 is larger than the dominant delays, and (ii) For each time
instant t, all the samples corresponding to the dominant delays
appear in the constructing vector of the shadow manifold,
x(t)=[X(t), X(t-7), ..., X(t-(E-1))]. This was illustrated in
Box 2. In Example 8-1, dominant delay = 4. IfE = 3, t = 1, then
condition (i) is not satisfied, and the corresponding causality cannot
be detected. If condition (i) is satisfied but condition (ii) is not fully
satisfied, then only the causality corresponding to the dominant
delays that appear in the constructing vector of the shadow
manifold will be detected. This can be seen from Example 8-2, where
Y (t)= 0.8X(t-1)+ 0.8X(t—4). When E = 3, t = 2, the shadow
manifold constructing vector x(t)= [X(t), X(t-2), ..., X(t—4)],
then X(t - 4) appears in x(t) but X(t — 1) does not. As a result, only
the causality corresponding to item 0.8X(t — 4) can be detected and
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Simulated Examples CCM: pcem Causalized CCM: p.ccm | Pearson: p
1. X = randn(1, 1024) X =Y :0.8871 X =Y :0.8379 0.7926
Y = sgn(X) Y 5 X:07778 | Y = X :0.7821 '
2 ); - ;Zﬂﬁg 1832 X Y :-00078 | X - Y : —0.0151 0.0023
PR Y —- X :-0.0054 | Y — X :0.0006
5 )}fgg _ Z)n&((?) X =Y :1.0000 | X —Y :0.9985 0
t—0:0.0Lr: 2% Y — X :1.0000 Y — X :0.9991
4. X = randn(1, 1024) X —Y :0.9248 X —Y :0.8761 0.0764
Y(t) = X? Y - X:0.0715 | Y — X :0.0526 ’
A . Example 1 B ] Example 2
5 —— XY (CCM)
- 08 "‘"'"'"""""; - —-Y - X (CCM)
S g e X Y (cCCM)
206 2 05 ~o Y = X (cCCM)
8 g
= 0.4 —X Y (CCM) = o |
g —Y = X (COM) S
=02 ~e-X =Y (¢cCCM) <
-6-Y = X (cCCM)
0 -0.5
0 200 400 600 800 1000 0 200 400 600 800 1000
Data Length Data Length
C Example 3 Example 4
1 - L3 .6—" i 1
_ 08 _ o8 e
= Z o6 —X - Y (COM)
< 06 % —-Y = X (CCM)
< 0. <
» L 04 ~e-X = Y (cCOM)
= 04 ——X = Y (CCM) > 0.2 -o-¥Y = X (cCCM)
Q%: —-Y 5 X (CCM) S g
02 ~e-X 5 Y (cCOM) = 0
-e-Y — X (cCCM) 0.2
0
0 50 100 150 200 0 200 400 600 800 1000
Data Length Data Length

Fig. 1. Comparison of CCM, cCCM, and Pearson correlation based on simulation examples. Here, randn(1, 1,024) returns a 1-by-1,024 matrix of
normally distributed random numbers, sgn represents the sign function, t= 0: 0.01z: 2z represents the sequence [0, 0.01x, ..., 1.99r, 2x], where the
step size is 0.01x. As can be seen, CCM and cCCM are highly consistent and converge at similar speed. However, in general, correlation cannot predict

causation.

the causality corresponding to item 0.8X(t — 1) cannot be detected.
When E = 5,7 = 1, x(t) = [X(t), X(t-1), , X(t-4)], then the
causality can be accurately detected since both X(t - 2) and X(t - 4)
appear in x(t). More discussions on the choices of E and the signal
lag 7 used in the construction of the shadow manifolds were pre-
sented in Section 8 of Supplementary material.

CCM causation and Pearson correlation

Examples 1-4 are also used to compare CCM causation and
Pearson correlation, and explore the possible relationship be-
tween them, as shown in Fig. 1. It can be observed that when
the Pearson correlation coefficient p is high, the CCM value might
be high as well. This is because Pearson correlation reflects the
mutual dependence between the two signals, and therefore high-
er Pearson correlation may imply strong causation in both direc-
tions, as shown in Example 1.

On the other hand, it can also be seen from Fig. 1 that when the
Pearson correlation p is low, the cross-mapping correlation
peem and pecey can either be low in both directions when X and
Y are completely independent (as shown in Example 2), or high ei-
ther only in one direction (as in Example 4) or in both directions (as
in Example 3). From Example 3, we can see that X = sin(t)andY =
cos(t) have a 90" phase shift, i.e. they are in quadrature or “orthog-
onal,” thatis why they are not correlated. However, both CCM and
cCCM can identify the strong bidirectional causation between
them. In summary, Pearson correlation, very often, cannot predict
the causation between two time series.

Approximate equivalence of cCCM and DI for
Gaussian variables

Recall that as a universal metric that does not rely on any model
assumptions of the signals, DI serves as the pivot that links the
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Box 2. cCCM vs. CCM: more simulation examples—autoregressive models, systems with dominant frequency embed-
ded in noise, deterministic chaotic maps, and systems with memory.

Simulation Examples

cCCM

CCM

Example 5-1:

X(t+1) = 0.8X(t) + 0.02Y(¢) + n1(t),n1 ~ N(0,0.052)
Y(t+1)=0.9X(t) + 0.05Y(t) + na(t), n2 ~ N(0,0.05?)
t=1:2000,X(1)=Y(1)=1

chCM(X — Y): 0.8175
PCCCM(Y — X)Z 0.6799
MSE(X", X™): 0.0046
MSE(Y", Y™): 0.0033

pCCM(X — Y): 0.8306
pCCM(Y — X)Z 0.7078
MSE(X", X™): 0.0044
MSE(Y", Y™): 0.0033

Example 5-2:

X(t+1) =0.7X(t) + 0.3Y(t) + n1(t), n1 ~ N(0,0.05%)
Y (t+1) = 0.01X(¢) + 0.9Y (¢) + na(t),n2 ~ N(0,0.05%)
t=1:2000,X(1)=Y(1) =1

pecom(X = Y): 0.6532
pecem (Y — X): 0.8160
MSE(X", X"): 0.0063
MSE(Y™, Y™): 0.0086

pCCM(X — Y)Z 0.6777
pCCM(Y — X): 0.8245
MSE(X", X™): 0.0066
MSE(Y™, Y™): 0.0084

Example 6-1:

X(t) = 0.2sin(10mt) + 0.8 sin(407t) + n1(t)

Y (t) = 0.8sin(407t) 4+ na(t)

t=10:0.005:2, nj,ng are AWGN noises, SNR = 15 dB

pecem (X — Y): 0.9752
pecom(Y — X): 0.9485
MSE(X"™, X"): 0.0356
MSE(Y™,Y™): 0.0163

pcem(X — Y): 0.9802
pcem(Y — X): 0.9465
MSE(X"™, X"): 0.0358
MSE(Y™, Y™): 0.0131

Example 6-2:

X (t) = 0.8sin(107t) + 0.2 sin(407t) + ny(¢)

Y (t) = 0.2sin(407t) + na(t)

t=0:0.005:2, ni,ny are AWGN noises, SNR = 15 dB

pecom(X — Y): 0.8066

pecem(Y — X): -0.0007

MSE(X", X"): 0.4345
MSE(Y™,Y™): 0.0072

PCCM(X — Y): 0.8513
poem(Y — X): 0.0360
MSE(X", X"): 0.4120
MSE(Y™, Y™): 0.0054

Example 7-1:
X(t+1)=X®)[3.9-39X(t)]
Y(t+1)=Y(#)[3.3-3.3Y(¢t) — 0.15X ()]
t=1:4000,X(1)=0.8,Y(1) =0.2

/)cCCM(X — Y): 0.2115
l)cCCM(Y — X): 0.9397
MSE(X", X"): 0.0105
MSE(Y", Y™): 0.0193

/)CCM(X — Y): 0.2248
pCCM(Y — X)Z 0.9851
MSE(X", X™): 0.0027
MSE(Y",Y™): 0.0187

Example 7-2:
X(t+1)=X(t)[3.9—-39X(t) — 0.1Y(¢)]
Y(t+1)=Y(#)[3.3-3.3Y(¢t) —0.156X (¢)]
t=1:4000,X(1)=0.8,Y(1) =0.2

chCM(X — Y): 0.9070
chCM(Y — X)Z 0.9840
MSE(X", X™): 0.0081
MSE(Y", Y™): 0.0026

,UCCM(X — Y): 0.9401
ﬂCCM(Y — X): 0.9873
MSE(X", X™): 0.0018
MSE(Y™, Y™): 0.0005

chCM(X — Y) :0.0173 pCCM(X — Y) : 0.0100
E = 3,7‘ =1 PCCCM(Y — X) :0.0412 pCCM(Y — X) 1 0.0498
MSE(X",X") : 1.2821 MSE(X",X") : 1.2505
MSE(Y",Y") : 0.8557 MSE(Y",Y") : 0.8526
Example 8-1. pecem(X — Y) 1 0.9714 pcem (X — Y) 1 0.9826
X =randn(1, 1024) E=371=2 pecem (Y — X)) :0.0298 pcem(Y — X) : 0.0487
Y(t) = 0.1X(t — 1)+ 0.8X (t — 4) MSE(X",X") : 1.2633 MSE(X",X") : 1.2389
MSE(Y",Y") : 0.0393 MSE(Y",Y") : 0.0236
pecem (X — Y) 1 0.9561 pcem(X = Y) 1 0.9777
E=571=1 chCM(Y T)ﬂX) : —0.0295 PCCM(Y *ii() : —0.0633
MSE(X"™,X") : 1.1714 MSE(X"™,X") : 1.2009
MSE(Y™,¥"): 0.0733 MSE(Y™,Y¥") : 0.0429
PCCCM(X — Y) : 0.5620 pCCM(X — Y) : 0.5819
E=371=1 pecem (Y T)nX) :0.0114 pcem (Y *ii() 1 0.0086
MSE(X"™,X") : 1.3030 MSE(X"™, X") : 1.2857
MSE(Y™,¥") : 0.8850 MSE(Y"™,Y") : 0.8614
Example 8-2. pecem(X = Y) 1 0.5607 pcem(X — Y) : 0.5902
X =randn(1, 1024) E=31=2 peccem (Y — X) : 0.0038 pcem(Y — X) : 0.0167
1) =08X(t—1)+0.8X(t— / /
Y (t) = 0.8X(t — 1)+ 0.8X(t — 4) MSE(X", X" : 1.2796 MSE(X", X") : 1.2652
MSE(Y",Y") : 0.8615 MSE(Y",Y") : 0.8416
ﬂ(:CCM(X — Y) 1 0.9553 PCCM(X — Y) :0.9744
E=571=1 pecen (Y = X) 1 =0.0036 | peem(Y — X) - ~0.0318
MSE(X™,X") : 1.1721 MSE(X"™,X") : 1.1902
MSE(Y™, Y¥") : 0.1486 MSE(Y™,Y¥") : 0.0958

existing causality frameworks. In this section, we first revisit the

definition of DI (35), then explore the relationship between
¢CCM and DI using information theory and show that they are ap-
proximately equivalent under Gaussian variables.

Directed information

Let X" =[Xq, X, ..., Xn] and Y" =[Y1, Yy, ..., Yy] denote the time
series corresponding to signals X and Y, respectively. The directed
information from X" to Y" is defined as

n . . . n . .

IX' = Y1) =3 [HYGY'™) - Y™, X)) = YIS YY), (5)
i=1 i=1

The average DI from X to Y, measured in bits per sample, is

defined as

. X" — Y")

L(X—Y)= - (6)

Here H denotes the entropy operator, H(Y|X) is the conditional en-
tropy of Y given X, and I(X; Y|Z) denotes the conditional MI of X
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Fig. 2. Performance of cCCM and CCM vs. the data length: A) Example 5-1. B) Example 5-2. C) Example 6-1. D) Example 6-2. E) Example 7-1. F) Example 7-2. G)
Example8-1,E=3,7=1.H)Example8-1,E=3,7=2.1) Example8-1,E=5,7=1.]) Example 8-2,E=3,7z=1.K) Example 8-2,E=3,7=2.L) Example 8-2,E=5,z=1.In
these examples, cCCM and CCM are highly consistent in causality detection and show similar convergence speed in cross-mapping. Both cCCM and CCM can
detect the increase in coupling strength and show consistent sensitivity to the changes in coupling strength. Simulation results also indicate that for causality
to be accurately detected in systems with memory, the product E - r needs to be larger than the dominant delays, and for each time instant t, all the samples
corresponding to the dominant delays need to appear in x(t) = [X(t), X(t-7), ..., X(t—(E-1)7)], the constructing vector of the shadow manifold.

and Y given Z. The definitions of all the information measures, as
well as the corresponding chain rules used in this article are sum-
marized in Section 2 of Supplementary material.

Next, we establish the approximate equivalence of DI and
cCCM by showing that: if (i) X and Y are dynamically coupled,
zero-mean Gaussian random variables and their joint distribution

is bivariate Gaussian, and (ii) X", Y' are stationary ergodic
Gaussian random processes, then when n is sufficiently large,

- 1

L(X—>Y)=~ ‘EIOg (1= PlccmnX = Y)),
where T, is the average DI from X to Y per sample and

n

ﬂcCCM,n(X - Y)=p(Y", Y )-
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This result can be proved in the following two steps.
Step 1: If the two signals X and Y are dynamically coupled, then

rl.g?j”(x —Y) =rlli£§°Tn(Y; ), @)
where
n n n. 't
T(X - Y)=w, Iw;?hw.

Step 2: If X and Y are zero-mean Gaussian random variables and
their joint distribution is bivariate Gaussian, and X", Y" are sta-
tionary ergodic Gaussian random processes, then when n is suffi-
ciently large,

WX~ ) ST D) 2 log (L~ pleoualX > V), ()

where pecemn(X — Y) =p(Y", ¥"). Steps 1 and 2 can be repeated to
get the results in the reverse direction.

The first step follows from Taken's theorem (27), and the se-
cond step is based on the closed-form relationship between MI
and Pearson correlation for Gaussian variables (which was
established by Gel'fand (49)), as well as the Shannon-McMillan-
Breiman theorem (50) which shows that when X", ¥" are station-
ary ergodic random processes, then lim,..h(X;Y)=I(X,Y).
Details of the theoretical derivations are summarized in
Section 4 of Supplementary material. In the rest of the paper,
we follow the notation p.coy(X — Y) from Sugihara's paper, we
would like to point out that this notation is for simplicity and ac-
tually represents p.coy (X" — Y") =p(Y", Y"). In a strict sense,

Oyl

peccuX = Y) =limy_ e p(Y', YY) .

fMRI-based demonstration for the approximate
equivalence of cCCM and DI

The approximate equivalence of cCCM and DI is demonstrated
using resting-state fMRI data, which are often modeled as
Gaussian random variables (51, 52). For fMRI, we investigate
the baseline data of 30 subjects from the risk reduction for
Alzheimer's disease (rTAD) trial (53, 54), where 18 common
ROIs of the default mode network (DMN) were extracted and
sorted in a descending order by their connection strength to
the isthmus of the posterior cingulate cortex seed region time
course. The fMRI data of each brain region is regarded as a dy-
namic manifold with a deterministic attractor but perturbed by
random afferent input and noise. Here, the total length of the
BOLD (blood-oxygen-level-dependent) signal is 284 samples,
with a sampling period of 2.5s, ie. the time duration of the
BOLD signal is ~12 min.

The relationship between the estimated DI and cCCM caus-
ation is illustrated in Fig. 3. Figure 3(A and B) plots the DI and
cCCM values between all the 18 x 17 =306 region pairs in the
DMN for all the 30 subjects. Thatis, each figure has 18 x 17 x 30 =
9, 180 points. We can see that there is a log-relationship between
them—DI can be represented using cCCM and vice versa.
Figure 3C and D presents the heatmaps of the cCCM and the
DI-predicted cCCM values (averaged over 30 subjects), respective-
ly. As can be seen, these two figures are highly consistent. It
should be noted though, due to the finite data size, the quantiza-
tion error in the digitization process of DI calculation (55), and the
noise in the fMRI data, the estimated DI and p.ccy satisfy the fol-
lowing relationship, which is a linear transformation of Eq. (8),

10 > ) ~ a5 Togu(1 - pccy (X Y|+

where a =0.7945, b=0.2578 in this case.

We also conducted causality analysis of the DMN using DI
and cCCM for two randomly selected subjects from the rrAD
trial, subject 1115 and subject 1151, respectively (see Section 6
of Supplementary material). Again, we can observe the log-
relationship between DI and cCCM. Region pairs that show
significantly asymmetric interactions (or say, with significant
unidirectional causality), selected as pairs (i,j) where
Ipccem(@ = J)I=1pecem( — 1)1 > 0.15, were identified in Fig. S5g for
subject 1115, and Fig. S6g for subject 1151. As can be seen, asym-
metric interactions (or unidirectional causality) can be observed
in individual subjects; however, the region pairs that show obvi-
ous unidirectional causality vary across different subjects.
When the result is averaged over all the scans, as shown in
Fig. 3C, the DMN network does not present dominant unidirec-
tional causality during the resting state but shows significant bi-
directional causality among regions right posterior cingulum,
left Posterior Cingulum, right precuneus/angular gyrus and left
precuneus/angular gyrus, where p..cy; is bigger or close to 0.5 in
both directions. This result is consistent with the previous find-
ings in literature (5).

The cCCM causation (p.ccy) distribution and average node sig-
nificance in DMN for all 30 subjects are shown in Fig. S7, where
node significance as a transmitter and receiver is evaluated using
Y24 Ioccom(i = J)I and Y8 o Ioecem(i — j)I, respectively, and
pecem for each region pair is averaged over all the 30 subjects.
The pattern of bidirectional causal interactions in the averaged
pecem indicates that Posterior cingula of DMN, followed by precu-
neus/angular gyri, and medial frontal gyri/medial orbital gyri, act
as key nodes for both information transmitting and receiving. Our
result is consistent with previous findings in (5) and (56).

Noise effect in cCCM and further comparisons
on cCCM and DI

We analyzed the impact of noise by evaluating the estimation er-
ror on cCCM under noise, along the line that increased noise level
may increase the prediction error in cCCM. The theoretical result
is shown in Eq. (9) at the bottom of Box 3, refer Section 7 of
Supplementary material for the mathematical proof of it. Our re-
sult indicates that cCCM causality tends to decrease as the noise
power increases.

We further evaluate the noise effect in both ¢cCCM and DI
through simulation examples. As shown in Box 3, the noise-free
case includes Examples 9-11, and the noisy case includes
Examples 12-14. All results are averaged over 100 Monte Carlo
runs (see Section 9 of Supplementary material for plots on the es-
timated cCCM and DI causation measures versus the number of
Monte Carlo runs). It should be noted that the values of GC,
cCCM, and DI cannot be compared directly, but should be ex-
plained based on their original definition. For the definition of
GC, refer Section 3 of Supplementary material. As DI values vary
with the corresponding MI values, both DI and its normalized ver-
sion DI/MI are provided in Box 3.

Noise-free results

We start with the noise-free case which serves as the benchmark
for noise effect analysis. From the simulation examples, we can
see that the results of cCCM and DI are consistent in Examples 9
and 11, while the result of GC is quite different from them. In
Example 9, both cCCM and DI show bidirectional causality but in-
dicate that the causal effect of X on Y is slightly stronger than that
in the reverse. GC is not able to identify the causal coupling


http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad422#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad422#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad422#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad422#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad422#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad422#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad422#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad422#supplementary-data

Dengetal. | 9

>

Estimated DI

0 0.5 1
cCCM

Causalized CCM

From
ENENENENENEIININ
ONOUNRWN_2OORNORWN =

TANMT OO N0 O
—

To

m

. Posterior Cingulum right

. Posterior Cingulum left

. Precuneus / Angular Gyrus right

. Precuneus / Angular Gyrus left

. Medial Frontal Gyrus / Medial Orbital Gyrus right
. Medial Frontal Gyrus / Medial Orbital Gyrus left

. Superior Frontal Gyrus right

. Superior Frontal Gyrus left

. anterior superior temporal sulcus right

anterior superior temporal sulcus left

OO TDUTAWN

—_

B
a
©
a8
©
E
?
1]
0 0.5 1 1.5
*%logz(l — Pacem)
D
DI predicted cCCM
IS
o
s

ONOTRWN=OOONOTRWN =

0.8
0.6
0.4
0.2

TN TN OMNO0OD O N M OO N0
~ Rl e

To

A

—
—

11. medial pre-frontal Thalamus right

12. medial pre-frontal Thalamus left

13. Hippocampus Subiculum / Presubiculum right

14. Hippocampus Subiculum / Presubiculum left

15. Lateral posterior parahippocampal gyrus /
Parahippocampal Place Area right

16. Lateral posterior parahippocampal gyrus /
Parahippocampal Place Area left

17. BA11 Inferior Frontal Gyrus right

18. BAI11 Inferior Frontal Gyrus left

J

Fig. 3. Demonstration of the approximate equivalence of cCCM and DI using resting-state fMRI data of 30 subjects from the rrAD trials (53, 54). A) The
approximate log-relationship between estimated DI and cCCM. The relationship between cCCM and DI can be modeled as: I,(X — Y) ~
a[-3 log,(1 - p2ccu(X — Y))] + b where a =0.7945, b=0.2578. The constantsa, bhere arelargely caused by the quantization noise and error propagation

in DI calculations, the finite data size, and the noise in the fMRI data. Equivalently, cCCM can be predicted from DI using: |p.ccu(X — Y)| =

[ (X—>Y)-b]
T

1-2- .B)

The approximate linear relationship between the directly estimated DI and cCCM-predicted DI, which is given by -2 log, (1 — p2ccy (X — Y)). C and D),
Heatmaps for the cCCM and DI-predicted cCCM, both are averaged over all the 30 subjects. E) The region index table.

between X(t) and Y(t), this is consistent with what was observed in
Wang et al. (38). However, it was observed in the simulation that
the GC is able to detect the causality from X(t)— Y(t—1)
and from Y(t) > X(t—7) for 1<7<20. In the Supplementary
material of Sugihara et al. (17), the authors illustrated that GC
causality may change back and forth with the time lag used in
the data.

In Example 11, GC fails to detect the bidirectional causality be-
tween X and Y because they are deterministic functions. This is
consistent with the previous findings that GC relies on the ran-
domness in the data and may be problematic in deterministic set-
tings (17). At the same time, while X =sin(t) and Y = cos(t) have a
90° phase shift (i.e. they are orthogonal with each other), both

cCCM and DI can successfully detect the bidirectional causality
between X and Y.

In Example 10, GC cannot detect any causal coupling between
XandY. cCCM can successfully identify the unidirectional causal-
ity from X - Y, and indicates that there is no significant causality
from Y - X. This is what we expect since the sign information in X
is completelylostin Y. On the other hand, DI not only can success-
fully detect the causality from X — Y, but can also indicate that
there is a causal effect from Y — X, which is unlikely to be true.
This may be due to the offsets in probability estimation and pos-
sible error propagation in DI calculation (55) and needs further ex-
ploration. Here, X is Gaussian, but Y is not, so they no longer
satisfy the conditions for the approximate equivalence between


http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad422#supplementary-data
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runs).

Box 3. Simulation results on causality detection with and without noise (all results were averaged over 100 Monte Carlo

Noise-Free Cases (GC: Granger causality; MI: mutual information. Since DI varies with MI, the normal-
ized value, DI/MI, is provided here for each case as well.)

Examples Direction Causation Measures
pres GC | cCCM DI DI/MI
X =Y | 00017 | 08514 | 0.8038 | 0.9952
9 }; - 5325;81024’ Uy 5% 00007 | 04859 | 0.7688 | 0.9510
- i), Difference | 0.0000 | 0.0655 | 0.0350 | 0.0433
X =Y | 00018 | 08717 | 1.0052 | 0.9827
10.;(__;311(111(1024, Uy 5 x 00024 | 00031 | 09759 | 0.0540
- Difference | -0.0006 | 0.8686 | 0.0293 | 0.0287
11. X(t) = sin(), XY - 0.9985 | 0.6526 | 0.9756
Y (t) = cos(t), Y5 X - 0.9991 | 0.6620 | 0.9895
t=0:0.017: 27. Difference - -0.0006 -0.0094 -0.0139

Noise Effect (Here n1,n2 are AWGN noises which are generated independently for X and Y, respectively.)

S SNR(dB) — cCCM
Examples Direction 0 5 10 5 0

12. Xy =randn(1024,1), | X —»Y 0.2575 | 0.5217 | 0.7115 | 0.8001 | 0.8338
X = Xo +ny, Y- X 0.2754 | 0.5563 | 0.6974 | 0.7311 | 0.7392

Y = sgn(Xo) + no, Difference | -0.0179 | -0.0346 | 0.0141 | 0.0690 | 0.0946
13. Xy =randn(1024,1), | X —»Y 0.1129 | 0.4074 | 0.6743 | 0.8033 | 0.8505
X = Xo +ny, Y- X 0.0008 | -0.0001 | 0.0006 | 0.0017 | -0.0040

Y = Xg + no, Difference | 0.1121 | 0.4075 | 0.6737 | 0.8016 | 0.8545
14. X (t) = sin(t) + nq, X—-Y 0.2327 | 0.5062 | 0.7882 | 0.9403 | 0.9798
Y (t) = cos(t) + na. Y- X 0.4402 | 0.6827 | 0.8632 | 0.9607 | 0.9877
t=0:0.0l7: 27 Difference | -0.2074 | -0.1765 | -0.0750 | -0.0204 | -0.0079

S SNR(dB) — DI/MI
Examples Direction 0 5 10 5 0

12. Xy =randn(1024,1), | X —»Y 0.8529 | 0.9193 | 0.9611 | 0.9776 | 0.9873
X = Xo +ny, Y- X 0.8850 | 0.9540 | 0.9711 | 0.9484 | 0.9457

Y = sgn(Xy) + no, Difference | -0.0321 | -0.0347 | -0.0100 | 0.0292 | 0.0416
13. Xp =randn(1024,1), | X —»Y 0.8832 | 0.9363 | 0.9664 | 0.9781 | 0.9801
X = Xo +ny, Y- X 0.7771 | 0.8620 | 0.9199 | 0.9466 | 0.9501

Y = X2 + no, Difference | 0.1061 | 0.0743 | 0.0465 | 0.0315 | 0.0300
14. X (t) = sin(t) + nq, X-Y 0.8281 | 0.8587 | 0.9184 | 0.9585 | 0.9582
Y (t) = cos(t) + na. Y- X 0.8600 | 0.9057 | 0.9484 | 0.9795 | 0.9779
t=0:0.01l7:27 Difference | -0.0319 | -0.047 | -0.0300 | -0.0210 | -0.0197

will decrease.

Difference in the Tables £ the difference between the causation value from X — Y and that from Y — X.

Theoretical Analysis on cCCM Noise Effect Let Y (£)|M, = 3. w;Y (t;). Write ¥ = Y + n., where

ne 18 the estimation error with zero-mean and variance o
pecem(X = Y) = p(Y,Y) =

As can be seen, when noise presents, the estimation error power Jg will increase, and hence pcoem(X — Y)

E+1

i=1
2

2, then we have

7 9)

\/o2 + o2

cCCM and DI, which also explains why DI and cCCM have different
performances in this example.

From these examples, we can see thatit may be difficult for GC to
detect causality in deterministic and nonlinear settings (without
timelags), and cCCM and DI may detect both deterministic and stat-
istical causality in nonlinear settings. Moreover, it was also observed
that cCCM tends to be more robust or sensitive than DI for causality
detection, especially when X and Y have significantly different
ranges (which is a challenging task for the DI estimation algorithm
(55)), with the price of a much higher computational complexity.

Relying on exhaustive search of nearest neighbors, the computa-
tional complexity of cCCM is O(n?) for two sequences of length n,
which is much higher than that of DI, where the computational
complexity is linear in the sequence length n, O(n).

Impact of the noise

To illustrate the effect of noise on cCCM and DI, we evaluate the
causality of the simulation data sets in Examples 9-11 under addi-
tive white Gaussian noise for different SNR levels, as shown in
Examples 12-14, respectively. As the SNR increases from O to
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20 dB, the estimated cCCM and DI causation gradually converge to
that in the noise-free case. The simulation result on cCCM echoes
our theoretical analysis, where it was proved that the estimated
causality would decrease as the noise power increases.
However, when the SNR is sufficiently large (i.e. SNR>15dB),
cCCM can deliver reliable results.

Extension of bivariate cCCM to multivariate
conditional cCCM

This method aligns with the multivariate KNN predictability ap-
proaches, which are also based on the embedding theorem and
geometric cross-mapping for state-space reconstruction (28-31),
and provides one way to extend bivariate cCCM to multivariate
conditional cCCM. The same approach can be applied to CCM as
well.

Let @={Xq, ..., Xq} be the set of dynamically coupled random
variables which share the same attractor manifold M. For
q=1,...,Q let XP=[Xq1, Xg2, ..., Xqn] denote the time series
consisting of samples of X; and construct the shadow manifold
with respect to Xj as

My, = {Xqt1%qt = [Xqt, Xgt—rs ---
q=1, ...,Q.

s Xq,t—(E—l)z]v t=1+ (E—l)‘[, N n}

)

(10)
Forg=1, ...,Q,let )A(iyt|MXq be the estimated X;; based on My, . Let

Xi,tlg denote the multivariate prediction of X;; based on all the

}A(iyt|MXq, qefl, ...,Q}, q#1i. Thatis,
N Q N
XitlQ= > aqX;IMx, +e;|Q, (11)
q=1, q#

where the coefficients ag, g € {1, ..., Q}, and q # i, are selected to
minimize the variance of the estimation error e;;|Q. Similarly,

XMQ\{XJ} denotes the multivariate prediction of X;, based on all
the )A(M|qu, qe{l, ...,Q}butq+#1i,j, thatis

A Q A
Kd@\Xj}= Y beXi My, +e; [ Q\(X)), (12)
q="1.q#1)

where the coefficients by, g € {1, ..., Q}butq #1,j, areselectedto
minimize the variance of the estimation error e;;|Q\{X;}. Following
Egs. (11) and (12), define the estimation error vectors as:

el =1[e11Q, ..., €,|Q],
el'|O\(X;} = [ei11Q\{X}}, ..., e |Q\{X}}].

Following (29), the CR from X; — X; is defined as

Var(el'|Q\{X;}) - Var(ef'|Q)
Var(e |\[X)

CRxlﬁX‘ = (13)
A natural question is: does the approximate equivalence still hold for
multivariate conditional cCCM and DI? In general, the relationship
between multivariate KNN search-based conditional cCCM and
conditional DI becomes very complicated and uncertain, and ap-
proximate equivalence may no longer holds, as in the case be-
tween conditional DI and DCM (48). This part still needs to be
further explored.

Detection of unidirectional causality in brain
network based on visual task-driven fMRI

Here, we consider another fMRI dataset where 14 right-handed
healthy college students (7 males and 7 females, 23.4 + 4.2 years

of age) from Michigan State University volunteered to partici-
patein a task-driven fMRI-based study (38, 57, 58). For each sub-
ject, fMRI datasets were collected on a visual stimulation
condition with a scene-object fMRI paradigm, where each vol-
ume of images was acquired 192 times (8 min) while a subject
was presented with 12 blocks of visual stimulation after an ini-
tial 10 s resting period. In a predefined randomized order, the
scenery pictures were presented in six blocks and the object pic-
tures were presented in other six blocks. All pictures were
unique. In each block, 10 pictures were presented continuously
for 255 (2.5 s for each picture), followed by a 15-s baseline con-
dition (a white screen with a black fixation cross at the center).
The subject needed to press his/her right index finger once
when the screen was switched from the baseline to picture con-
dition. More details on data acquisition and preprocessing are
given in Materials and methods section.

ROI selection

We selected 10 ROI regions, including: left primary visual cortex
(LV1), left parahippocampal place area (LPPA), left sensory motor
cortex (LSMC), left parahippocampal white matter (LPWM), left
retrosplenial cortex (LRSC), right primary visual cortex (RV1), right
parahippocampal place area (RPPA), right sensory motor cortex
(RSMC), right frontal white matter (RFWM), and right retrosplenial
cortex (RRSC).

Result for bivariate cCCM

Recall that the total length of the fMRI BOLD time seties under visual
stimulation condition is n =192, with the sampling period being
2.5 s. We conducted causality analysis for all the possible unidirec-
tional regional pairs using CCM, cCCM, and DI. However, since CCM
and ¢cCCM did not converge with the data length n =192, we chose
to interpolate the fMRI sequence by a factor of 2 using the spline
interpolation command in MATLAB, which reduced the sampling
period from 2.5 to 1.25s and increased the data length to
(2x192) — 1 =383. We then applied CCM, cCCM, and DI to the inter-
polated sequences and obtained consistent results on unidirectional
causality from all the three models.

The consistence of CCM, cCCM, and DI in the detection of uni-
directional causality (averaged over all the 14 subjects) is shown in
Fig. 4(A-D and G), where the approximate equivalence of cCCM
and DI is shown in Fig. 4C. The ROI region pairs which show con-
sistent unidirectional causality across bivariate CCM, cCCM, D],
and across majority of the subjects for all these three models
are shown in Fig. 4G. Here region pairs with averaged causation
difference (between the two opposite directions) larger than 0.1
for both bivariate CCM and cCCM, and with average difference lar-
ger than 0.01 for DI were identified as ROI pairs with significant
unidirectional causality, which include: RV1 - LPWM, LV1 -
LPWMV, LV1 - RFWM, RV1 - RFWM, RPPA - LPWM, RPPA -
RFWM, LV1 - LSMC, and LPPA — LPWM. As can be seen, CCM
and cCCM resulted in much larger causation difference in the
two opposite directions than that of DI, and hence is more robust
than DI in identifying unidirectional causality in brain networks
for this task-driven fMRI dataset.

It is worth noting that CCM, cCCM, and DI all identified the
same unidirectional causal relations among these ROI pairs,
with both the original BOLD sequences and the interpolated se-
quences. This implies that even if CCM and cCCM did not converge
with n =192 samples, they were still able to identify the unidirec-
tional causal relations correctly, but interpolation of the fMRI se-
quence did enhance the robustness of CCM- and ¢cCCM-based
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Fig. 4. Brain causality analysis using CCM, cCCM, and DI based on visual task-fMRI. A) Heatmap of bivariate cCCM. B) Heatmap of bivariate DI. C)
Approximate equivalence between cCCM and DI. D) Heatmap of bivariate CCM. E and F) Heatmap of multivariate conditional cCCM and CCM with respect
to all the other ROI regions, respectively. G) ROI region pairs that show consistent unidirectional causality across bivariate cCCM, CCM, DI, and the
majority of subjects. Here, Diff. means the causation difference in two opposite directions.
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causality analysis. In literature, it was also reported by Lin et al. in
2014 (59) that increasing the sampling rate of the fMRI signal can
improve the robustness of causality analysis.

The interpretation of the unidirectional causality from V1 and PPA to
LPWM and RFWM needs to be carefully made since the white matter
regions do not contain the cell bodies of the neurons, which are lo-
cated in the gray matter. As a result, the recorded BOLD signals in
the white matter tend to be noisy and have relatively low power
levels compared with other ROIs. In fact, the average power levels
of the BOLD signals of LPWM and RFWM are 5.28 and 6.71, respect-
ively, which is much lower than that of the other ROI regions.
More specifically, LV1 and RV1 turn out to have the highest aver-
age power levels among all the ROIs, which are 37.79 and 37.97, re-
spectively; the average power levels of LSMC and RSMC are 11.88
and 12.17, respectively, which are the lowest among all the ROIs
except the white matter.

On the other hand, while gray matter is a common focus in
fMRI studies, recent studies have consistently found that BOLD
signals can be reliably detected in white matter, and brain func-
tional connectivity has been organized into distributed networks
in white matter (60, 61). Our result on unidirectional causality
echoes the existing findings and indicates that neuronal activity
in V1 and PPA might lead to the information transfer activity in
the white matter, which connects regions that send and receive
signals. This is similar to the situation in human society—when
we have some thoughts, we may start to communicate with our
friends using a phone or computer, either through the internet
or the airlink. Although the phone, computer, internet, or airlink
themselves do not own or generate the thoughts, information
transmitting and receiving activities can be observed from them,
and the unidirectional causality here lies in that the information
exchange activity is caused by the thinking activity in human
beings.

If we exclude white matter from the result and focus on the cor-
tical regions, then only one ROI region pair, LV1- LSMC, demon-
strated significant unidirectional causality. In addition, RV1 —
LSMC also showed apparent unidirectional causality (though not
included in Fig. 4), where the difference between pqc in the two
opposite directions (i.e. RV1 - LSMC and LSMC - RV1) is 0.1018
with 11 consistent subjects, the difference between p.cqy in the
two opposite directions is 0.0875 with 12 consistent subjects,
and the corresponding difference for DI being 0.0343 with 12 con-
sistent subjects. The unidirectional causality from LV1 - LSMC
and RV1 - LSMC in visual task-fMRI aligns with the experimental
design where the subjects saw the picture before pressing the
finger.

In addition, from Fig. 4, it can also be observed that significant
bidirectional causality exists between many ROI region pairs, such
as LV1 and RV1, LPPA and RPPA, LRSC and RRSC, etc.

Result for multivariate conditional cCCM

We also conducted multivariate conditional CCM and conditional
cCCM for all the 10 x 9 = 90 unidirectional ROI pairs using the
same interpolated fMRI sequences of length n=383 as in the bi-
variate case.

The cCCM and CCM causality ratios for each ROI pair condition-
ing on all the rest of the state space are shown in Fig. 4(E and F). As can
be seen, both conditional CCM and cCCM are very sensitive to the
interdependence between the brain regions under consideration
and the rest of the regions in the state space. Due torich brain net-
work diversity, the multivariate conditional CCM and cCCM caus-
ality ratios with respect to the rest of the state space turn out to be

very small or insignificant and cannot really be used for unidirec-
tional causality detection. That is, when we consider the condi-
tional causality from X; — X;, if X; is largely dependent on the
random variables in @« {X;, X;}, then the KNN-based conditional
CR would be very small even if there exists (bivariate) unidirec-
tional causality from X; — X;.

We further checked the multivariate conditional CCM and cCCM
causality with respect to individual regions. More specifically, we com-
pared the conditional CCM and cCCM causality from LV1 - LSMC,
RV1 - LSMC with respect to all the other individual ROI regions
and the result is shown in Fig. 5. It can be observed that: (i)
Conditional CCM and cCCM ratios with respect to individual regions
are highly consistent; (ii) RV1 has the most significant impact on the
conditional causality from LV1 - LSMC, and LV1 has the most sig-
nificant impact on the conditional causality from RV1 - LSMC.
Thisimplies that RV1 has the highest interdependence with LV1, fol-
lowed by LPPA and RPPA, and the result is consistent with the
strengths of causal coupling among the ROI regions, as shown in
Fig. 4(A, B, and D). In short, our numerical analysis indicates that
conditional cCCM and CCM with respect to individual regions can
detect unidirectional causality and demonstrate the impact of inter-
dependence between the ROI regions on the conditional causality.

Discussion

In this article, we first causalized CCM so that it aligns with the
traditional definition of causality—in the sense that the future
values of one process cannot influence the past of the other—
and demonstrated the consistence of cCCM and CCM through rep-
resentative simulation examples. We then showed the approxi-
mate equivalence of cCCM and DI under Gaussian variables and
established an approximate mathematical relationship between
them. This result links cCCM to other representative causality
analysis frameworks in the family—GC, TE, and DCM, in the sense
that they are all approximately equivalent to each other under
certain conditions.

We explored the possible relationships between correlation
and causation, and showed that high correlation might imply
high causation, but low correlation may be connected to either
high or low causation, either unidirectional or bidirectional. This
is consistent with the findings in previous work that, in general,
correlation cannot predict causation (17). We also tested the noise
effect on cCCM and showed that in the presence of noise, the
cCCM causation decreases, but will get close to that in the noise-
free case when the SNR is 15 dB or higher.

We compared the performance of DI and cCCM when the sig-
nals are not jointly Gaussian and hence DI and cCCM are no longer
approximately equivalent. In the simulation examples, it was ob-
served that cCCM tends to be more robust in causality detection,
especially when the two sequences under consideration have sig-
nificantly different ranges, which is a condition that raises signifi-
cant challenges for DI calculation. This is because DI relies heavily
on probability estimation, which is sensitive to the digitization or
quantization process used in the implementation algorithm (55).
cCCM, on the other hand, gets around the problem of probability
estimation through geometric cross-mapping of the correspond-
ing neighborhoods between the manifolds involved, at the cost
that exhaustive KNN search (here K =E + 1 and E is the dimension
of the shadow manifold) is required at the prediction of every
sample of the target time series. The disadvantage of cCCM, there-
fore, is its high computational complexity, which is O(n?) in the se-
quence length n, while the computational complexity of DIis only
O(n).
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Fig. 5. Multivariate conditional CCM and cCCM with respect to individual regions. A) Conditional CCM from LV1 — LSMC. B) Conditional cCCM from
LV1 - LSMC. C) Conditional CCM from RV1 — LSMC. D) Conditional cCCM from RV1 — LSMC. The results indicate that: (i) Conditional CCM and cCCM
causality ratios with respect to individual regions are highly consistent; (ii) RV1 has the most significant impact on the conditional causality from LV1 —
LSMC, and LV1 has the most significant impact on the conditional causality from RV1 - LSMC. This implies that RV1 has the highest interdependence

with LV1, followed by LPPA and RPPA.

In the implementation of the cross-mapping technique, the
choice of the dimension of the shadow manifold plays a critical
role. According to Takens’ theorem (27) and Whitney's embedding
theorem (62), the magic number is E=2d + 1, and often less (17),
where d is the dimension of the attractor shared by the two time
series under consideration. If E is too large, cCCCM may no longer
deliver meaningful results (see Section 8 of Supplementary
material for simulation results).

Taking the interdependence between different random varia-
bles in a multivariate system into consideration, we extended bi-
variate CCM and cCCM to multivariate conditional CCM and cCCM
along the lines of multivariate KNN predictability approaches (29,
30). Whether the approximate equivalence between multivariate
conditional cCCM and DI still holds is an open question that needs
further investigation. An effective way to estimate multivariate
conditional DI also needs to be explored.

Our numerical analysis based on experimental fMRI indicated
that in the resting state, DMN shows significant bidirectional
causality among certain regions (mainly right posterior cingulum,
left Posterior Cingulum, right precuneus/angular gyrus, and left
precuneus/angular gyrus), but no dominant unidirectional caus-
ality was observed. On the other hand, analysis based on a visual

task-driven fMRI dataset showed that unidirectional causality
among the ROl regions (mainly from the left and right primary vis-
ual cortices to LSMC and to the related white matter regions) can
be detected by cCCM during the performance of tasks, and the re-
sult is consistent with that of CCM and DI and is also consistent
across the majority of subjects. In addition, due to rich diversity
in the brain network, multivariate conditional CCM and cCCM
conditioning on all the rest of ROI regions generally result in
very small causality ratios and cannot be used for causality detec-
tion. However, conditional cCCM and CCM with respect to individ-
ual regions can detect unidirectional causality and demonstrate
the impact of interdependence between the ROI regions on the
conditional causality.

For future work, we will continue to explore the (conditional)
causal relationships in brain networks under both resting-state
and task-driven scenarios, with the expectation that the study
on causality may help identify the possible paths on directed in-
formation flow among brain regions and provide us a better
understanding on the region-level information transmission
mechanisms in the brain. In addition, to study the transitive
causal chains (63) in the brain network, we will investigate time-
delayed causal interactions among brain regions to possibly
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determine the order of variables in each transitive information
processing and transmission chain.

We also explored the impact of sampling frequency
on cCCM through simulation examples, refer to Section 10 of
Supplementary material. Again, sinusoid waveforms were used
here since they can serve as the building blocks to approximate
most functions encountered in reality. As can be seen, cCCM
works well when the sampling rate is well above the Nyquist
rate and may require larger data length to converge as the sam-
pling frequency is above but very close to the Nyquist sampling
rate; when the sampling frequency is below or equal to the
Nyquist rate, very often, cCCM can no longer deliver meaningful
results.

In the case when the two signals under consideration are peri-
odic, CCM and cCCM are equivalent since the future is identical
with the past for periodic signals. When the data length of the
time series under consideration, say X and Y, is very limited,
can we concatenate the time series to increase the data length
and consider the causality of [X, X] and [Y, Y] instead, for ex-
ample? The answer is no. This is because concatenation can cre-
ate new causality which does not exist in the original X and Y. In
fact, evenif X and Y are two independent time series that are not
causally coupled, a causal patternis enforced in the concatenated
time series through signal repetition (see Section 11 of
Supplementary material for simulation result).

Overall, our analysis shows that the cross-mapping technique
is easy to implement and is a promising tool for identifying both
linear and nonlinear causal coupling in different settings, either
random or deterministic, or both. It has attracted considerable at-
tention in the research communities, and we believe that a broad
spectrum of applications is yet to come.

Materials and methods

In this study, we utilized two experimental fMRI datasets.

Dataset 1: resting-state fMRI
Data description

Here, we investigate the baseline data of 30 subjects (age 60-83, 17
men, and 13 women) from the 17AD trial (53, 54). All study proce-
dures were approved by the institutional review board at
University of Texas Southwestern Medical Center, University
of Kansas Medical Center Research Institute, Pennington
Biomedical Research Center, and Washington University in St
Louis, and each participant provided written, informed consent.
A detailed description of the imaging protocol of the rrAD trial, in-
cluding inclusion and exclusion criteria, has been provided by
Szabo-Reed et al. (64). Overall, individuals with a history of severe
neurological, psychological, cardiovascular, and other severe dis-
eases were excluded from this study. Included subjects under-
went baseline resting-state fMRI acquisition (eyes focused on a
cross) for 12min on a GE MR750W 3T MRI system with a
48-channel head/neck coil, located at the University of Texas
Southwestern Medical Center. The fMRI data were acquired with
2.5s TR (time of repetition), 28 ms TE (time of echo), and a 64 x
64 matrix size with 3.4 mm x 3.4 mm pixels. Slices with a thick-
ness of 3.4 mm were recorded without parallel imaging.

In addition to the functional images, anatomical 3D 1-mm? iso-
tropic T1-weighted Magnetization-Prepared Rapid Acquisition
Gradient Echo (MPRAGE) images with cerebrospinal fluid (CSF)
suppressed were also collected for each of the subjects using
the following parameters: 176 sagittal slices, TE=3.8-4 ms, TR

of acquisition <8.6 ms, time of inversion (TI) = 830 ms, TR of inver-
sion=2330ms, flip angle=8°, FOV (field of view)=25.6 cmx
25.6 cm, matrix size = 256 x 256, slice thickness = 1 mm, and paral-
lel imaging acceleration factor=2.

fMRI preprocessing and noise regression

The data of each subject was first processed with the AFNI (65) proc.-
Py script (AFNTI's tool to create a complete and standardized fMRI
preprocessing pipeline). This script includes the steps of outlier de-
tection, despiking, correction for slice-timing differences, functional
image coregistration to anatomical recordings, alignment between
functional volumes to correct for rigid motions, and smoothing us-
ing a 4-mm kernel. We then transformed the motion parameters ex-
tracted by AFNI's motion correction into an FSL compatible format
and performed aggressive ICA-AROMA (66) before applying a band-
pass filter (0.009-0.08 Hz) and third-order detrending.

Using DARTEL (67) from SPM (68) and the anatomical MPRAGE
images, we created a common template and normalized all sub-
ject's fMRI data into the common space. Using the isthmus of
the posterior cingulate cortex as the seed region for each subject,
we created seed-based connectivity maps of the DMN for each
subject. From these connectivity maps, 18 common ROI of the
DMN were extracted and sorted in a descending order by their
connection strength to the isthmus of the posterior cingulate cor-
tex seed region time course.

Dataset 2: visual task-driven fMRI
Data acquisition

Fourteen right-handed healthy college students (seven males,
23.4 + 4.2 years of age) from Michigan State University volun-
teered to participate in this study. All subjects provided informed
consent. All experimental procedures were approved by the
Michigan State University Institutional Review Board (38, 57, 58).
The experiment was conducted on a 3-T GE Signa HDx MR scanner
(GE Healthcare, Waukesha, WI, USA) with an eight-channel head
coil. For each subject, {MRI datasets were collected on a visual
stimulation condition with a scene-object fMRI paradigm, and
then, on a resting-state condition. The parameters for the fMRI
scan were: gradient-echo echo planar imaging, 36 contiguous
3-mm axial slices in an interleaved order, time of echo=
27.7 ms, time of repetition=2,500 ms, flip angle= 80°, FOV =
22 cm, matrix size= 64 x 64, ramp sampling, and with the first
four data points discarded. On the visual stimulation fMRI condi-
tion, each volume of images was acquired 192 times (8 min) while
a subject was presented with 12 blocks of visual stimulation after
an initial 10 s resting period. In a predefined randomized order,
the scenery pictures were presented in six blocks and the object
pictures were presented in other six blocks. All pictures were
unique. In each block, 10 pictures were presented continuously
for 255 (2.5 s for each picture), followed by a 15-s baseline condi-
tion (a white screen with a black fixation cross at the center) (38,
57, 58). The subject needed to press his/her right index finger
once when the screen was switched from the baseline to picture
condition. Stimuli were displayed in color on full screen on a
1,024 x768 32-in LCD monitor (Salvagione Design, Sausalito,
CA, USA) placed at the back of the magnet room. The LCD sub-
tended 10.2° x 13.1° of visual angle. On the rs-fMRI condition,
each volume of images was acquired 164 times (6 min and 50 s)
after a subject was informed to relax, keep his/her eyes closed,
and stay awake throughout the scan. After the aforementioned
functional data acquisition, high-resolution volumetric
T,-weighted spoiled gradient-recalled images with CSF
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suppression were obtained to cover the whole brain with 120
1.5-mm sagittal slices, 8° flip angle, and 24 cm FOV. These images
were used to identify anatomical locations (38, 57, 58).

Data preprocessing

All stimulus fMRI data preprocessing and analysis for each sub-
ject were conducted with AFNI software (65) as described in
Henderson et al. (57). Essentially, slice-timing correction and
rigid-body motion correction were carried. Spatial blurring with
a full width half maximum of 4 mm was applied to reduce random
noise. Multiple linear regressions (using the “3dDeconvolve” rou-
tine in AFNI) were applied on a voxel-wise basis to find the magni-
tude change when each picture condition was presented, followed
by general linear tests to find the statistical significances between
stimulus conditions. The ROI in this study was defined in the
Talairach coordinate space (69). Regions showing preferential ac-
tivation to scenes over objects (voxel-based P-value < 107%) in the
right and left parahippocampal gyri were defined as the RPPA and
LPPA (57). The right and left V1 ROIs were defined as the regions
activated by pictures (voxel-based P-value < 1071%) within
Brodmann area 17. Because there was a high level of activation
at and around V1, a highly conservative P-value threshold was
chosen to define relatively focal ROIs. The RSMC and LSMC spher-
ical ROIs with a 6-mm radius were defined with the centers at
(R36, P22, S54) and (L38, P26, S50) correspondingly in the
Talairach coordinate space (R=Right, L =Left, P =Posterior, S=
Superior). The SMC coordinate locations were defined by Witt
et al. (70) and the ROIs were created as in Zhu et al. (58). The
time courses from the stimulation fMRI dataset that were already
preprocessed as previously were detrended and had their base-
lines removed also. The spatially averaged time course at each
of the aforementioned ROIs was generated for the causality
analyses.
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Funding

This study was supported in part by the National Science
Foundation (NSF) under award 2032709 and the National
Institutes of Health (NIH) under awards R01-AG49749,
P30AG024824, and P30AG072931.

Author Contributions

R.Z.initiated the research. T.L. wrote the paper and did the theor-
etical analysis. R.Z. helped with paper planning and editing. J.D.
and B.S. did all the simulations and prepared all the boxes and fig-
ures. AB.R. and T.L. implemented and tested the CCM algorithm.
N.S. did the preprocessing of the fMRI data and wrote the online
methods part. D.C.Z. and D.J.Z. edited the paper. J.R. helped with
the analysis involvinginformation theory. All authors contributed
to simulation and experimental result interpretation.

Data Availability

The fMRI datasets presented in this study are available to quali-
fied investigators according to the NIH data-sharing policy upon
request. The rrAD public dataset can be accessed at https:/
rradtrial.org/. The 1D files corresponding to the task-fMRI can be
accessed at  https:/github.com/dengjinx/CCM-cCCM-DI.git.

Those who are interested in the original task-fMRI datasets should
contact D.C.Z. (zhuda@msu.edu) to arrange a research agreement
for data sharing. All the other data supporting the findings of this
study are available within the article and its Supplementary
material. The relevant MATLAB code can also be found at
https://github.com/dengjinx/CCM-cCCM-DI.git.

References

1 Stokes PA, Purdon PL. 2017. A study of problems encountered in
Granger causality analysis from a neuroscience perspective. Proc
Natl Acad Sci U S A. 114:E7063-E7072.

2 ZhangX, et al. 2016. Bayesian model reveals latent atrophy fac-
tors with dissociable cognitive trajectories in Alzheimer's dis-
ease. Proc Natl Acad Sci U S A. 113:E6535-E6544.

3 Hillebrandt H, Friston KJ, Blakemore S-J. 2014. Effective connect-
ivity during animacy perception—dynamic causal modelling of
human connectome project data. Sci Rep. 4:6240.

4 Marinescu IE, Lawlor PN, Kording KP. 2018. Quasi-experimental
causality in neuroscience and behavioural research. Nat Hum
Behav. 2:891-898.

5 Deshpande G, Santhanam P, Hu X. 2011. Instantaneous and
causal connectivity in resting state brain networks derived
from functional MRI data. Neuroimage. 54:1043-1052.

6 Neves G, Cooke SF, Bliss TVP. 2008. Synaptic plasticity, memory
and the hippocampus: a neural network approach to causality.
Nat Rev Neurosci. 9:65-75.

7 Ray S, Haney M, Hanson C, Biswal B, Hanson SJ. 2015. Modeling
causal relationship between brain regions within the drug-cue
processing network in  chronic cocaine  smokers.
Neuropsychopharmacology. 40:2960-2968.

8 Granger CWJ. 1969. Investigating causal relations by economet-
ric models and cross-spectral methods. Econometrica. 37:424.

9 Granger CWJ, Newbold P. 1977. Forecasting economic time series.
New York: Academic Press. p. 225.

10 Barnett L, Seth AK. 2014. The MVGC multivariate Granger caus-
ality toolbox: a new approach to Granger-causal inference. J
Neurosci Methods. 223:50-68.

11 Mannino M, Bressler SL. 2015. Foundational perspectives on
causality in large-scale brain networks. Phys Life Rev. 15:107-123.

12 Seth AK, Chorley P, Barnett LC. 2013. Granger causality analysis
of fMRI BOLD signals is invariant to hemodynamic convolution
but not downsampling. Neuroimage. 65:540-555.

13 Bezruchko BP, Ponomarenko VI, Prokhorov MD, Smirnov DA,
Tass PA. 2008. Modeling nonlinear oscillatory systems and diag-
nostics of coupling between them using chaotic time series ana-
lysis: applications in neurophysiology. Physics-Uspekhi. 51:304.

14 Marinazzo D, Liao W, Chen H, Stramaglia S. 2011. Nonlinear con-
nectivity by Granger causality. Neuroimage. 58:330-338.

15 Marinazzo D, Pellicoro M, Stramaglia S. 2008. Kernel method for
nonlinear Granger causality. Phys Rev Lett. 100:144103.

16 Hu M, Liang H. 2014. A copula approach to assessing Granger
causality. Neuroimage. 100:125-134.

17 Sugihara G, et al. 2012. Detecting causality in complex ecosys-
tems. Science. 338:496-500.

18 Tsonis AA, et al. 2015. Dynamical evidence for causality between
galactic cosmic rays and interannual variation in global tem-
perature. Proc Natl Acad Sci U S A. 112:3253-3256.

19 Deyle ER, Maher MC, Hernandez RD, Basu S, Sugihara G. 2016.
Global environmental drivers of influenza. Proc Natl Acad Sci U S
A. 113:13081-13086.

20 Liu OR, Gaines SD. 2022. Environmental context dependency in
species interactions. Proc Natl Acad Sci U S A. 119:2118539119.


http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad422#supplementary-data
https://rradtrial.org/
https://rradtrial.org/
https://github.com/dengjinx/CCM-cCCM-DI.git
mailto:zhuda@msu.edu
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad422#supplementary-data
http://academic.oup.com/pnasnexus/article-lookup/doi/10.1093/pnasnexus/pgad422#supplementary-data
https://github.com/dengjinx/CCM-cCCM-DI.git

Dengetal. | 17

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Chang C-W, et al. 2022. Causal networks of phytoplankton diver-
sity and biomass are modulated by environmental context. Nat
Commun. 13:1140.

Wang J-Y, Kuo T-C, Hsieh C. 2020. Causal effects of population
dynamics and environmental changes on spatial variability of
marine fishes. Nat Commun. 11:2635.

McCracken JM, Weigel RS. 2014. Convergent cross-mapping and
pairwise asymmetric inference. Phys Rev E. 90:062903.

Breston L, et al. 2021. Convergent cross sorting for estimating dy-
namic coupling. Sci Rep. 11:20374.

Wismdiller A, et al. 2015. Nonlinear functional connectivity net-
work recovery in the human brain with mutual connectivity ana-
lysis (MCA): convergent cross-mapping and non-metric
clustering. Proc SPIE Int Soc Opt Eng. 9417:94170M.

Ruelle D, Takens F. 1971. On the nature of turbulence. Commun
Math Phys. 20:167-192.

Takens F,Rand DA, YoungL-S. 1981. Dynamical systems and tur-
bulence. In: Rand DA, Young L-S, editors. Lecture notes in mathem-
atics, vol. 898. Springer. p. 366-381.

Porta A, et al. 2014. Effect of age on complexity and causality of
the cardiovascular control: comparison between model-based
and model-free approaches. PLoS One. 9:e89463.

Porta A, Faes L. 2016. Wiener-Granger causality in network
physiology with applications to cardiovascular control and
neuroscience. Proc IEEE. 104:282-309.

Porta A, et al. 2023. On the different abilities of cross-sample en-
tropy and K-nearest-neighbor cross-unpredictability in assess-
ing dynamic cardiorespiratory and  cerebrovascular
interactions. Entropy. 25:599.

Abarbanel HDI, Carroll TA, Pecora LM, Sidorowich JJ, Tsimring
LS. 1994. Predicting physical variables in time-delay embedding.
Phys Rev E. 49:1840-1853.

Sauer T, Yorke JA, Casdagli M. 1991. Embedology. J Stat Phys. 65:
579-616.

Schiff S, So P, Chang T, Burke RE, Sauer T. 1996. Detecting dy-
namical interdependence and generalized synchrony through
mutual prediction in a neural ensemble. Phys Rev E. 54:
6708-6724.

Deyle ER, Sugihara G. 2011. Generalized theorems for nonlinear
state space reconstruction. PLoS One. 6:18295.

Massey JL. Causality, feedback and directed information.
Proceedings of 1990 International Symposium on Information
Theory and its Applications, Waikiki, Hawaii, 1990.

Schreiber T. 2000. Measuring information transfer. Phys Rev Lett.
85:461-464.

Friston K, Harrison L, Penny W. 2003. Dynamic causal modelling.
Neuroimage. 19(4):1273-1302.

Wang Z, Alahmadi A, Zhu DC, Li T. 2016. Causality analysis of
fMRI data based on the directed information theory framework.
IEEE Trans Biomed Eng. 63:1002-1015.

Amblard PO, Michel OJJ. 2010. On directed information theory
and Granger causality graphs. ] Comput Neurosci. 30(1):7-16.
Newton NJ. 2016. Transfer entropy and directed information in
Gaussian diffusion processes. arXiv 01969. https:/doi.org/10.
48550/arXiv.1604.01969, preprint: not peer reviewed.

Barnett L, Barrett AB, Seth AK. 2009. Granger causality and trans-
fer entropy are equivalent for Gaussian variables. Phys Reu Lett.
103:238701.

Lungarella M, Sporns O. 2006. Mapping information flow in sen-
sorimotor networks. PLoS Comput Biol. 2:e144.

Vicente R, Wibral M, Lindner M, Pipa G. 2011. Transfer entropy—
a model-free measure of effective connectivity for the neuro-
sciences. ] Comput Neurosci. 30:45-67.

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

Stephan KE, et al. 2007. Dynamic causal models of neural system
dynamics: current state and future extensions. J Biosci. 32:129-144.
Ryali S, Supekar K, Chen T, Menon V. 2011. Multivariate dynam-
ical systems models for estimating causal interactions in fMRI.
Neuroimage. 54:807-823.

Friston K. 2011. Dynamic causal modeling and Granger causality
comments on: the identification of interacting networks in the
brain using fMRI: model selection, causality and deconvolution.
Neuroimage. 58:303-305.

Friston K, Moran R, Seth AK. 2013. Analysing connectivity with
Granger causality and dynamic causal modelling. Curr Opin
Neurobiol. 23:172-178.

Wang Z, Liang Y, Zhu DC, Li T. 2018. The relationship of discrete
DCM and directed information in fMRI-based causality analysis.
IEEE Trans Mol Biol Multiscale Commun. 4:3-13.

Gel'fand IM, Yaglom AM. 1959. Calculation of the amount of informa-
tion about a random function contained in another such function.
Providence, RI: American Mathematical Society.

Algoet PH, Cover TM. 1988. A sandwich proof of the
Shannon-McMillan-Breiman theorem. Ann Probab. 16:399-909.
Friston KJ, et al. 1994. Statistical parametric maps in functional
imaging: a general linear approach. Hum Brain Mapp. 2:189-210.
Wilzén J, Eklund A, Villani M. 2020. Physiological Gaussian pro-
cess priors for the hemodynamics in fMRI analysis. ] Neurosci
Methods. 342:108778.

Scheel N, et al. 2022. Evaluation of noise regression techniques in
resting-state fMRI studies using data of 434 older adults. Front
Neurosci. 16:1006056.

Zhang R. Data from “Risk Reduction for Alzheimer's disease
(rrAD)” (2016-2022), ClinicalTrialsgov identifier (NCT number):
NCT02913664. [deposited 2022 Feb 15] https:/clinicaltrials.gov/
ct2/show/NCT02913664.

Jiao J, Permuter HH, Zhao L, Kim Y-H, Weissman T. 2013.
Universal estimation of directed information. IEEE Trans Inf
Theory. 59:6220-6242.

Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S. 2004.
The role of the medial frontal Cortex in cognitive control.
Science. 306:443-447.

Henderson JM, Zhu DC, Larson CL. 2011. Functions of parahippo-
campal place area and retrosplenial cortex in real-world scene
analysis: an fMRI study. Vis Cogn. 19:910-927.

Zhu DC, Majumdar S. 2012. Integration of resting-state FMRI and
diffusion-weighted MRI connectivity analyses of the human
brain: limitations and improvement. ] Neuroimaging. 24:176-186.
Lin F-H, et al. 2014. Increasing fMRI sampling rate improves
granger causality estimates. PLoS One. 9:e100319.

Frizzell TO, et al. 2020. White matter neuroplasticity: motor
learning activates the internal capsule and reduces hemo-
dynamic response variability. Front Hum Neurosci. 14:509258.
Huang VY, et al. 2023. Intracranial electrophysiological and struc-
tural basis of BOLD functional connectivity in human brain white
matter. Nat Commun. 14:3414.

Whitney H, Eells ], Toledo D, Eells ], Toledo D. 1992. Graphs and
combinatorics. In: Eells J. Toledo D, editors. Hassler Whitney col-
lected papers. Birkhduser. p. 24-1461.

Ye H, Deyle ER, Gilarranz 1J, Sugihara G. 2015. Distinguishing
time-delayed causal interactions using convergent cross map-
ping. Sci Rep. 5:14750.

Szabo-Reed AN, et al. 2019. Rationale and methods for a multi-
center clinical trial assessing exercise and intensive vascular
risk reduction in preventing dementia (rrAD study). Contemp
Clin Trials. 79:44-54.


https://doi.org/10.48550/arXiv.1604.01969
https://doi.org/10.48550/arXiv.1604.01969
https://clinicaltrials.gov/ct2/show/NCT02913664
https://clinicaltrials.gov/ct2/show/NCT02913664

18 | PNAS Nexus, 2024, Vol. 3, No. 1
65 Cox RW. 1996. AFNI: software for analysis and visualization of 68 AshburnerJ. 2012. SPM: a history. Neuroimage. 62:791-800.
functional magnetic resonance neuroimages. Comput Biomed 69 Talairach J, Tournoux P. 1988. Co-planar stereotaxic atlas of the hu-

66

67

Res. 29:162-173.

Pruim RHR, et al. 2015. ICA-AROMA: a robust ICA-based strategy for
removing motion artifacts from fMRI data. Neuroimage. 112:267-277.
Ashburner J. 2007. A fast diffeomorphic image registration algo-
rithm. Neuroimage. 38:95-113.

70

man brain: 3-dimensional proportional system: an approach to cerebral
imaging. 1st ed. Germany: George Thieme Verlag. p. 1-122.

Witt ST, Laird AR, Meyerand ME. 2008. Functional neuroimaging
correlates of finger-tapping task variations: an ALE meta-
analysis. Neuroimage. 42:343-356.



	Causalized convergent cross-mapping and its approximate equivalence with directed information in causality analysis
	Introduction
	Results
	Causalized CCM
	CCM causation and Pearson correlation
	Approximate equivalence of cCCM and DI for Gaussian variables
	Directed information

	fMRI-based demonstration for the approximate equivalence of cCCM and DI
	Noise effect in cCCM and further comparisons on cCCM and DI
	Noise-free results
	Impact of the noise

	Extension of bivariate cCCM to multivariate conditional cCCM
	Detection of unidirectional causality in brain network based on visual task-driven fMRI
	ROI selection
	Result for bivariate cCCM
	Result for multivariate conditional cCCM


	Discussion
	Materials and methods
	Dataset 1: resting-state fMRI
	Data description
	fMRI preprocessing and noise regression

	Dataset 2: visual task-driven fMRI
	Data acquisition
	Data preprocessing


	Supplementary Material
	Funding
	Author Contributions
	Data Availability
	References


