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Abstract. We consider load balancing in large-scale heterogeneous server systems in the 
presence of data locality that imposes constraints on which tasks can be assigned to which 
servers. The constraints are naturally captured by a bipartite graph between the servers 
and the dispatchers handling assignments of various arrival flows. When a task arrives, 
the corresponding dispatcher assigns it to a server with the shortest queue among d ≥ 2 
randomly selected servers obeying these constraints. Server processing speeds are hetero
geneous, and they depend on the server type. For a broad class of bipartite graphs, we 
characterize the limit of the appropriately scaled occupancy process, both on the process 
level and in steady state, as the system size becomes large. Using such a characterization, 
we show that imposing data locality constraints can significantly improve the performance 
of heterogeneous systems. This is in stark contrast to either heterogeneous servers in a full 
flexible system or data locality constraints in systems with homogeneous servers, both of 
which have been observed to degrade the system performance. Extensive numerical 
experiments corroborate the theoretical results.
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1. Introduction
Over the last two decades, large-scale load balancing has emerged as a fundamental research problem. In simple 
terms, the goal is to investigate how to efficiently allocate tasks in large-scale service systems, such as data centers 
and cloud networks. As modern data centers continue to process massive amounts of data with increasingly strin
gent processing time requirements, the need for more efficient and scalable, dynamic load-balancing algorithms is 
greater than ever. The study of scalable load-balancing algorithms started with the seminal works of Adler et al. 
(1995), Mitzenmacher (1996a, b), and Vvedenskaya et al. (1996), in which the popular “power-of-d choices” or the 
join-shortest-queue (d) (JSQ(d)) algorithm was introduced. Here, a canonical model was considered that consists 
of N identical parallel servers, each serving a dedicated queue of tasks. Arriving tasks are routed to the shortest of 
d ≥ 2 randomly selected queues by a centralized dispatcher, irrevocably and instantaneously, at the time of arrival. 
Since then, this model has received significant attention from the research community, and we have seen tremen
dous progress in our understanding of the performance of various algorithms; see van der Boor et al. (2022) for a 
recent survey.

Despite this phenomenal progress, when it comes to modern large-scale systems, much of the existing wisdom 
can be observed to be false. This is primarily because of the fact that the classical model fails to capture two of the 
most significant factors that impact the performance of these systems. The first is data locality constraints. In simple 
terms, it means that tasks of a particular type can only be routed to a small subset of servers that are equipped with 
the appropriate resources to execute them (Tsitsiklis and Xu 2017, Tirmazi et al. 2020, Weng et al. 2020, Rutten and 
Mukherjee 2022). For example, an image classification request must be routed to a server that is trained with 
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appropriate machine learning models, such as deep convolutional neural network. Also, in online video services 
like Netflix and YouTube, users’ requests may only be routed to servers that are equipped with the required data 
(e.g., movies, music). The classical model ignores this effect and assumes full flexibility: that is, that any task can be 
assigned to any server in the system. In the presence of data locality constraints, the delay performance of the sys
tem may degrade drastically as compared with fully flexible systems. The second is heterogeneity in service rates. 
Servers in any modern large-scale server clusters do not process tasks at equal speeds. This heterogeneity of the ser
vice rates is a major bottleneck in implementing the existing heuristics of the classical model. For example, if there 
are two groups of servers in the system, one faster and the other slower, then popular dynamic algorithms like 
JSQ(d), which has a provably excellent delay performance when all server speeds are identical, can be observed to 
be unstable (i.e., their queue lengths blow up) (Mukhopadhyay and Mazumdar 2016, Mukhopadhyay et al. 2016, 
Gardner et al. 2021, Hurtado-Lange and Maguluri 2021). In other words, heterogeneity shrinks the stability region 
as formally established in Hurtado-Lange and Maguluri (2021). This happens simply because if all the servers are 
treated equally, then the slower server pool may receive a higher flow of arrivals than what it can process.

1.1. Takeaway
In summary, both data locality and heterogeneity of server speeds may significantly degrade the system perfor
mance. The main contribution of the current work is to establish that when these two aspects are considered 
together, then the performance can in fact be drastically improved. That is, if servers are heterogeneous, then effi
ciently designing the data locality constraints (by appropriately placing the resource files in the server network) can 
regain the full stability region, which was shrunk for fully flexible systems. Moreover, we also establish that care
fully designed data locality constraints can ensure the celebrated double-exponential decay of tail probability of the 
steady-state queue-length distribution even for the heterogeneous systems.

1.2. Our Contributions
Motivated by this, in the current paper, we consider a bipartite graph model for large-scale load-balancing systems, 
which has recently gained popularity in the research community. In this model, a bipartite graph between the ser
vers and task types describes the compatibility between the two, where an edge represents the server’s ability to pro
cess the corresponding task type. This encompasses the classical full-flexibility models as those having a complete 
bipartite compatibility graph. An immediate difficulty of the new model is that when the graph is nontrivial (i.e., 
not a collection of isolated pairs or a complete bipartite graph), the mean-field techniques break down. This is 
because, the queues no longer remain exchangeable, making the aggregate processes, such as the vector of number 
of servers with queue length i with i � 0, 1, 2, : : : , non-Markovian. In addition, we also consider that each dispatcher 
handles the arrival flow of one of K possible task clusters and that there are M server types. The rate of service at a 
server depends on its type. Throughout the paper, the key quantity of interest will be the global occupancy process 
qN(t) � (qN

m, l(t), m � 1, : : : , M, l ≥ 1), where qN
m, l(t) represents the fraction of servers of type m with queue length at 

least l at time t in the Nth system with N servers, and we will look at the large-system asymptotic regime: N → ∞.
Because of the compatibility constraints, the servers become nonexchangeable, even if they belong to the same 

type. This causes most of the existing frameworks to break down; see, for example, Mitzenmacher (1996b), Ethier 
and Kurtz (2009), and Stolyar (2015). To characterize the process-level limit of the queue-length process, we resort 
to the theory of weakly interacting particle systems and asymptotically couple the evolution of the N-dimensional 
vector of queue lengths with an appropriately defined infinite system of independent McKean–Vlasov processes; see, 
for example, Sznitman (1991) and Méléard (1996). We also show the asymptotic independence of any finite number 
of queue-length processes, also known as the propagation of chaos property. This convergence of the queue-length 
processes (in L2 sense) is then used to establish the transient convergence of the occupancy process. One downside 
of the convergence is that it depends on the assumption that the initial queue lengths within each set of servers 
of the same type are independent and identically distributed (i.i.d.) and are independent across the set of servers of 
different types. Because of this assumption, this convergence result cannot be used to establish the interchange of 
t → ∞ and N → ∞ limits, which is crucial in studying the limit of steady states.

To overcome this issue, we use the framework of Rutten and Mukherjee (2022), recently introduced in the con
text of homogeneous systems. Here, a notion called proportional sparsity for graph sequences was introduced, 
which ensures that the empirical queue-length distribution within the set of compatible servers of any dispatcher 
is close to the empirical queue-length distribution of the entire system. This was used in Rutten and Mukherjee 
(2022) to construct conditions on graphs that match the performance of a fully flexible system. In the current 
setup, however, this notion is inadequate because our goal is not to match the performance of the fully flexible 
system (which is usually poor under heterogeneity). That is why we extend this notion to what we call the clus
tered proportional sparsity for a sequence of graphs with increasing size to accommodate the heterogeneous 
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systems. The clustered proportional sparsity property allows us to construct a stochastic coupling between the 
system and another intermediate system whose task allocation is done by a carefully constructed algorithm 
called global weighted shortest queue (GWSQ(d)) (Algorithm 1). This coupling with the intermediate system, 
along with clustered proportional sparsity, helps us establish that if the initial occupancy of two systems is close, 
then the distance (in the ℓ1-norm) between their global occupancy remains small uniformly over any finite time 
interval. In turn, it implies that their limits of the global occupancy systems are the same. As a consequence, we 
can remove the i.i.d. assumption of the initial queue lengths because this guarantees that under clustered propor
tional sparsity, the convergence of the occupancy process depends only on the initial occupancy and not on how 
the individual queues are distributed.

The process-level limit result shows that the transient limit of the occupancy process can be described as a sys
tem of ODEs that depend on various graph parameters. Next, we also show that the interchange of limits holds 
and that the sequence of occupancy states in stationarity converges weakly to the unique fixed point of the ordi
nary differential equation (ODE). One celebrated feature of the classical JSQ(d) policy for homogeneous systems 
under full flexibility is that the steady-state queue length decays doubly exponentially as λ(di�1)=(d�1), where λ ∈

(0, 1) is the load per server (Mitzenmacher 1996b, Vvedenskaya et al. 1996). We establish this double-exponential 
decay property for the heterogeneous system.

It is worthwhile to note that the strength of the results lies in that they hold for arbitrary deterministic sequences 
of graphs satisfying certain properties. However, we show that all these properties are satisfied almost surely by a 
sequence of inhomogeneous random graphs (IRGs) with parameters prescribed by the theorems. This makes it easy 
to design graphs with the desired favorable properties.

1.3. Related Works
The research on task allocation systems with limited flexibility can be traced back to the works of Foss and Cher
nova (1998) and Turner (1998). Of particular importance to the current work, Foss and Chernova (1998) considered 
stability properties of the system using the fluid model. Later, Bramson (2011) generalized some parts of the results 
in Foss and Chernova (1998) to a broad class of JSQ-type systems, including the JSQ(d) policy, via the Lyapunov 
function approach. Stolyar (2005) considered optimal routing in an output-queued flexible server system, which is 
essentially the bipartite graph model for the load-balancing system. Here, the author considered a system with a 
fixed number of servers and dispatchers in the conventional heavy traffic regime and proposed a routing policy 
that is optimal in terms of server workload. Recently, Cruise et al. (2020) considered load-balancing problems on 
hypergraphs and proved their stability conditions. The works, however, did not aim to precisely characterize the 
system performance in the large-scale scenario.

The analysis in the large-scale scenario became prominent in the last decade, with the emergence of its appli
cations to load balancing in data centers and cloud networks. In the full-flexibility setup, the analysis of hetero
geneous server systems gained some attention. In this case, Stolyar (2015, 2017) studied the zero-queueing 
property of the join-idle-queue policy, Mukhopadhyay and Mazumdar (2016) and Mukhopadhyay et al. (2016) 
analyzed the JSQ(d) policy in heterogeneous systems with processor-sharing service discipline, Hurtado-Lange 
and Maguluri (2021) studied the throughput and delay optimality properties of JSQ(d), and Bhambay and 
Mukhopadhyay (2022) studied a speed-aware JSQ policy. The works on the JSQ(d) policy observe that the stabil
ity region shrinks if the dispatcher applies the JSQ(d) policy blindly. One way to mitigate this performance deg
radation is to take the server speeds into consideration while sampling servers or while assigning tasks to the 
sampled servers. Such a “hybrid JSQ(d)” scheme is able to recover the stability region. The current work can be 
contrasted with this approach. First, in the presence of data locality, both the server speeds and the underlying 
compatibility constraints need to be taken into account during the sampling procedure, and the approach 
becomes significantly more complicated. Second, we show how exploiting the data locality, the blind JSQ(d) pol
icy can recover the stability region and even achieve the double-exponential decay of tail probabilities of the 
steady-state queue-length distribution. One advantage of the latter approach is that the dispatchers can be obliv
ious to the server speeds, which reduces the implementation complexity and also, makes it robust against 
changes to the servers (e.g., when servers are added/removed).

Recently, Allmeier and Gast (2022) studied the application of (refined) mean-field approximations for heteroge
neous systems. Their method is using an ODE to approximate the evolution of each server, and the error vanishes 
as the system scales. However, this method cannot be directly used in our case. Because of the bipartite compatibil
ity graph structure, it is hard to capture the interactions between two servers, which means that we cannot write the 
transition rates of the underlying Markov chain as Allmeier and Gast (2022) does. Also, one important assumption 
in their work is the finite buffer, but we consider the infinite buffer case here.
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The aspect of task-server compatibility constraints in large-scale load balancing and scheduling gained popular
ity only recently, as the data locality became prominent in data centers and cloud networks. This led to many works 
in this area (Tsitsiklis and Xu 2013, 2017; Gast 2015; Mukherjee et al. 2018a; Budhiraja et al. 2019; Weng et al. 2020; 
Rutten and Mukherjee 2022). All these works consider homogeneous processing speeds at the servers. The initial 
works of Turner (1998) and Gast (2015) focused on certain fixed-degree graphs and showed that the flexibility to 
forward tasks to even a few neighbors with possibly shorter queues may significantly improve the waiting time 
performance as compared with dedicated arrival streams or a collection of independent M/M/1 queues that the 
system has a Poisson arrival process, an exponential service time distribution, and one server. Tsitsiklis and Xu 
(2013, 2017) considered asymptotic optimality properties of the bipartite graph topology in an input-queued, 
dynamic scheduling framework. Later, in the (output-queued) load-balancing setup, Mukherjee et al. (2018a) con
sidered the JSQ policy, and Budhiraja et al. (2019) considered the transient analysis of the JSQ(d) policy on nonbipar
tite graphs. The goal in these papers was to provide sufficient conditions on the graph sequence to asymptotically 
match the performance of a complete graph. Here, we should mention that the nonbipartite graph model cannot be 
used to capture the data locality constraints. In the presence of data locality constraints, the analysis of the JSQ(d) 
policy for homogeneous systems, including both transient and interchange of limits, was performed by Rutten and 
Mukherjee (2022). Weng et al. (2020) is the first to consider the large-scale heterogeneous server model under data 
locality. They showed that the join-the-fastest-shortest-queue and join-the-fastest-idle-queue policies achieve 
asymptotic optimality for minimizing mean steady-state waiting time when the bipartite graph is sufficiently well 
connected. However, these results fall in the category of JSQ-type policies, where the asymptotic behavior is degen
erate in the sense that the queue lengths at servers can be either zero or one. Naturally, the results and their analysis 
are very different from the JSQ(d)-type policies where queues of any length are possible.

1.4. Notations
Let N0 � N ∪ {0}. For a set S, its cardinality is denoted as |S | . For a polish space S, the space of right continuous func
tions with left limits from [0, ∞) to S is denoted as D([0, ∞),S), endowed with the Skorokhod topology. The distribu
tion of S-valued random variable X will be denoted as L(X). For a function f : [0, ∞) → R, let ‖f ‖∗, t :� sup0 ≤ s ≤ t | f (s) | . 
The distribution of S-valued random variable X will be denoted as L(X). For x ∈ S, the Dirac measure at the point x is 
denoted as δx. ‖ · ‖p represents the ℓp-norm. Define 

�X
Y

�
�

X(X�1)⋯ (X�Y+1)

Y!
if X ≥ Y and is zero otherwise. RHS is the 

acronym of right-hand side.

2. Model Description
The model for large-scale systems with limited flexibility was considered by Tsitsiklis and Xu (2013, 2017) in the 
context of scheduling algorithms for input-queued systems. Subsequently, it was considered in Mukherjee et al. 
(2018a), Budhiraja et al. (2019), Weng et al. (2020), and Rutten and Mukherjee (2022) for output-queued load- 
balancing systems. Let GN � (WN, VN, EN) be a system with N single servers, each serving its own queue, and W(N) 
dispatchers, each handling the assignment of tasks of one type, where WN � {1, : : : , W(N)} and VN � {1, : : : , N}

denote the sets of dispatchers and servers, respectively. We will interchangeably use the terms task type and dis
patcher type throughout the article. Similar to Tsitsiklis and Xu (2013, 2017), we assume that limN→∞ W(N)=N � ζ, 
where ζ > 0 is a constant. The set EN ⊆ WN × VN of edges represents hard compatibility between the dispatchers 
and servers in the Nth system. In other words, tasks of type i can be assigned to a server j if and only if (i, j) ∈ EN. 
Tasks arriving at a dispatcher must be assigned instantaneously and irrevocably to one of the compatible servers. 

• Dispatcher clusters. Each dispatcher belongs to one of K possible clusters labeled in K � {1, : : : , K}. Let WN
k 

denote the set of all dispatchers in the kth cluster. As N → ∞, assume that |WN
k |=W(N) → wk ∈ (0, 1) for k ∈ K with 

PK
k�1 wk � 1. Tasks arrive at each dispatcher as an independent Poisson process with rate λ. Note that dispatchers 

in the same cluster may not have the same set of compatible servers.
• Server types. Based on its processing capability, each server belongs to one of M possible types labeled in 

M � {1, : : : , M}. The processing time at a type-m server is exponentially distributed with mean 1=um, where um is a 
positive constant. Let VN

m denote the set of type-m servers, and as N → ∞, |VN
m |=N → vm ∈ (0, 1) for m ∈ M with 

PM
m�1 vm � 1. Throughout, we will assume that asymptotically, the system has sufficient service capacity in the 

sense that

λζ <
X

m∈M

umvm: (2.1) 

Note that the left- and right-hand sides represent the scaled total arrival rate and the scaled maximum departure 
rate, respectively.
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For all the asymptotic results, we consider a general class of systems where the compatibility graph satisfies cer
tain asymptotic criteria as specified in Condition 1. Define

degN
w (i, m) � |{j ∈ VN

m : (i, j) ∈ EN} | , i ∈ WN, m ∈ M,

degN
v (k, j) � |{i ∈ WN

k : (i, j) ∈ EN} | , j ∈ VN, k ∈ K:

Namely, degN
w (i, m) is the number of the dispatcher i’s neighboring servers whose type is m ∈ M. Similarly, 

degN
v (k, j) is the number of the server j’s neighboring dispatchers whose cluster is k ∈ K.

Condition 1. The sequence {GN}N≥1 satisfies the following. 
a. For each k ∈ K and m ∈ M, let EN(k, m) � {(i, j) ∈ WN

k × VN
m : (i, j) ∈ EN},

lim
N→∞

|EN(k, m) |

|WN
k | × |VN

m |
� pk, m ∈ [0, 1]: (2.2) 

We call the matrix p � (pk, m, k ∈ K, m ∈ M) the compatibility matrix.
b. For each k ∈ K and m ∈ M,

lim
N→∞

maxi∈WN
k

degN
w (i, m)

mini∈WN
k

degN
w (i, m)

� 1, lim
N→∞

maxj∈VN
m

degN
v (k, j)

minj∈VN
m

degN
v (k, j)

� 1:

Intuitively, the condition implies that the “asymptotic density” of edges between cluster-k dispatchers and type- 
m servers is given by pk, m and that, for each task-cluster-server-type pair, the servers have similar levels of flexibil
ity. The classical, well-studied setup, where any task can be processed by any server, corresponds to the complete 
bipartite graph with pN

k, m � 1, ∀k ∈ K, m ∈ M. In Section 3.5, we show that for any given p :� (pk, m, k ∈ K, m ∈ M), a 
sequence of graphs satisfying Condition 1 can be obtained simply by putting edges suitably randomly. This is a cer
tain class of inhomogeneous random graphs, which we call IRG(p); see Definition 3 for details. In fact, the IRG(p) 
sequence of graphs will be proved to satisfy the required conditions for all the results of this article to hold.

2.1. State Space
In the Nth system, let XN

j (t) be the number of tasks (including those in service) in the queue of server j ∈ VN at time 
t. Let qN

m, l(t) be the proportion of servers of type m with queue length at least l at time t, namely

qN
m, l(t) :�

1
|VN

m |

X

j∈VN
m

1(XN
j (t)≥l), t ≥ 0, m ∈ M, l ∈ N0: (2.3) 

Let qN(t) � (qN
m, l(t), m ∈ M, l ∈ N0). Then, qN :� {qN(t)}0 ≤ t < ∞ is a process with sample paths in D([0, ∞),S), where

S :� q ∈ [0, 1]
M×N0 : qm, 0 � 1, qm, l ≥ qm, l+1, and

X

l∈N0

qm, l < ∞, ∀m ∈ M, l ∈ N0

( )

is equipped with the ℓ1-topology. Note that the space S is a complete metric space.

2.2. Local JSQ(d) Policy
For any fixed d ≥ 2, each dispatcher uses the JSQ(d) policy (Mitzenmacher 1996b, Vvedenskaya et al. 1996) to assign 
the incoming tasks to servers. To describe the policy, define the neighborhood of dispatcher i ∈ WN, N N

w (i) :� {j ∈ VN :

(i, j) ∈ EN} with δN
i � |N

N
w (i) | . When a new task arrives at the dispatcher i ∈ WN with δN

i ≥ d, it is immediately 
assigned to the server with the shortest queue among d servers selected uniformly at random from N N

w (i). Ties are 
broken uniformly at random. If δN

i < d, then the task is assigned to one server selected from N N
w (i) uniformly at ran

dom. This δN
i < d scenario is asymptotically not relevant for us because all the graphs that we will consider have 

diverging degrees as N → ∞.
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3. Main Results
3.1. Mitigating the Stability Issue
As discussed earlier, when the server speeds are heterogeneous, the fully flexible systems (with the complete bipar
tite compatibility graph) may not be stable under the JSQ(d) policy, even if we assume that the sufficient service 
capacity in (2.1) is satisfied. The next lemma provides a necessary and sufficient condition for ergodicity of the 
queue-length process. Recall δN

i � |N
N
w (i) | . For any fixed N, define

ρN :� max
U⊆VN

U ≠ ∅

X

j∈U

X

m∈M

1(j∈VN
m )um

0

@

1

A

�1
X

i∈WN

1(δN
i ≥d)

X

S⊆(U∩N
N
w (i)) :

|S | �d

λ

δN
i
d

� �+ 1(δN
i < d)

|U ∩ N
N
w (i) |

δN
i

0

B
B
B
@

1

C
C
C
A

8
>>><

>>>:

9
>>>=

>>>;

:

Lemma 1. The queue-length process (XN
j (t))j∈VN under the local JSQ(d) policy is ergodic if and only if ρN < 1.

The lemma is an immediate consequence of Foss and Chernova (1998, theorem 2.5); see also Bramson (2011). We 
omit its proof. Intuitively, ρN < 1 means that in the Nth system, for any subset U of servers with possibly long 
queues (compared with the rest servers), the total rate at which tasks are assigned to some server in this set must be 
less than the rate of departure from this set.

Because we are interested in large-N behavior, we will assume a certain asymptotic version of the stability crite
rion. This is fairly standard in the large-system analysis, as one would want to avoid the “heavy traffic” regime 
when ρN ↑ 1 as N → ∞. The behavior in the latter scenario is typically qualitatively different from the so-called 
“subcritical” regime as defined.

Definition 1 (Subcritical Regime). The sequence {GN}N of systems defined is said to be in the subcritical regime 
with asymptotic load ρ < 1 if ρN → ρ < 1, as N → ∞.

Throughout this paper, we will assume that the sequence of systems under consideration is in the subcritical 
regime. From Lemma 1, it is immediate that if a sequence of systems is in subcritical regime, then its queue- 
length process is ergodic for all large-enough N. The potential nonergodicity of fully flexible, heterogeneous 
server clusters brings us to the question of when the sufficient service capacity in (2.1) is satisfied, whether we 
can design the underlying compatibility structure carefully so that the queue-length process is ergodic. In other 
words, can we regain the stability region? Proposition 1 shows that this is indeed the case. In some sense, this 
highlights the first-order improvements (i.e., in terms of stability properties) of a careful compatibility structure 
design in contrast to a fully flexible system.

The establishment of Proposition 1 relies on first building a simple criteria involving the system parameters, 
which for the sequence of systems satisfying Condition 1, ensures stability for all large-enough N (Lemma 2). Then, 
we show that given other parameters, a value of (pk, m)k∈K, m∈M satisfying this criteria can be found by checking the 
feasibility region defined by M inequalities. Denote δk :�

P
m∈Mpk, mvm for each k ∈ K.

Lemma 2. Let {GN}N be a sequence satisfying Condition 1. The sequence of systems is in subcritical regime if

λζ

um

X

k∈K

wkpk, m
δk

< 1, for all m ∈ M: (3.1) 

Proposition 1. Let the parameters λ,ζ, d and wk, vm, um, k ∈ K, m ∈ M, be such that (2.1) is satisfied. Then, there exists 
(pk, m)k∈K, m∈M ∈ [0, 1]

K×M such that for any sequence of systems {GN}N≥1 satisfying Condition 1, the queue-length process 
(XN

j (t))j∈VN is ergodic for all N large enough. Moreover, such a (pk, m)k∈K, m∈M can be obtained explicitly by solving a set of 
inequalities.

The proof of Proposition 1 is provided in Appendix A.
In the following sections, we will demonstrate, in addition to the first-order improvements, how asymptotic 

queue-length distribution can be improved as well, for example, in terms of having a double-exponential decay of 
tail probabilities.

3.2. Process-Level Limit: i.i.d. Case
Our first main result characterizes the process-level limit of the queue-length process (XN

j , j ∈ V), as N → ∞, when 
the starting states {XN

j (0) : j ∈ VN
m} are i.i.d. for all m ∈ M and independent across different m-values. When the 
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sequence of graphs {GN}N satisfies a stronger condition, called clustered proportional sparsity (Definition 2), the i.i.d. 
condition can be removed. This is the content of Section 3.3.

Now, note that for a fixed N ≥ 1, {XN
j : j ∈ VN} is a system of N interacting stochastic processes, where interactions 

enter the dynamics through the local empirical measures of neighboring states (the precise dynamics are given in 
(4.3) and (4.4)). Exploiting tools from the theory of weakly interacting particles, we show in Theorem 1 that as the 
system size becomes large, queue-length processes converge weakly to those of an infinite system of independent 
McKean–Vlasov processes {Xj : j ∈ N} (see, e.g., Sznitman 1991, Méléard 1996). In fact, using a suitable coupling to be 
described in more detail in Section 4.1, the convergence holds in L2. For ease of describing such processes and cou
pling, although we only assumed that certain fractions of servers are of certain types in the model description, it 
will be convenient to fix the type of each server j ∈ N in this subsection by defining a membership map M : N→ M, so 
that VN

m � {j ∈ VN : M(j) � m} with limN→∞
| VN

m |

N � vm and Vm � limN→∞VN
m for each m ∈ M. With such fixed server 

types and XN
j (0) ≡ Xj(0), let

Xj(t) � Xj(0) �

Z t

0
1(Xj(s�)>0)Dj(ds) +

Z

[0, t]×R+

1(0 ≤ y ≤ Cj(s�))Aj(dsdy), (3.2) 

Cj(t) � dζ
X

k∈K

pk, mwk

δk

X

(M2, : : : ,Md)∈Md�1

ht(j, M2, : : : , Md), (3.3) 

where M(j) � m and

ht(j, M2, : : : , Md) �
Yd

h�2

vMh pk, Mh

δk

Z

Nd�1
b(Xj(t), xj2 , : : : , xjd )µM2

t (dxj2 ) ⋯ µ
Md
t (dxjd ),

b(x) � b(x1, : : : , xd) :�
Xd

r�1

1
r
1(x1�minj∈[d]x, | arg min x | �r), x � (x1, : : : , xd) ∈ Nd

0,

µm
t � L(Xi(t)), ∀ i ∈ Vm, m ∈ M, t ≥ 0: (3.4) 

Here, {Dj : j ∈ Vm} are i.i.d. Poisson processes with rate um for each m ∈ M, {Aj : j ∈ N} are i.i.d. Poisson random 
measures on [0, ∞) × R+ with intensity λdsdy, and all Dj’s and Aj’s are independent. Loosely speaking, Aj corre
sponds to the arrival processes, and Dj corresponds to the departure processes at servers. ht(j, ⋯ ) is the probability 
that at time t, the server j will receive the new task given the event that the server j is among the d selected servers 
and the new task is of cluster k. Neglecting d and ζ, Cj(t) can be understood as the probability that the server j will 
receive the new task. We note that the existence and uniqueness of solutions to (3.2) and (3.3) can be proved by stan
dard arguments (see, e.g., Sznitman 1991, Méléard 1996) using the boundedness and Lipschitz property of the func
tions b and x ⊢→ 1(x>0) on N0.

Theorem 1 (Convergence to the McKean–Vlasov Process and Propagation of Chaos). Consider any fixed q∞ � (q∞
m, l, 

m ∈ M, l ∈ N0) ∈ S. Assume that all XN
j (0)’s are independent, and for each m ∈ M, {XN

j (0) : j ∈ VN
m} is i.i.d. with 

P(XN
j (0) ≥ l) � q∞

m, l, l ∈ N0. On any finite time interval [0, T], T > 0, for any m ∈ M and j ∈ Vm, the queue-length process 
XN

j (·) at server j weakly converges to the process Xj(·) in (3.2). In fact, one can suitably couple XN
j with Xj such that

max
j∈VN

E‖XN
j � Xj‖

2
∗, T !

N→∞

0, (3.5) 

and hence, the propagation of chaos property holds; that is, for any n ∈ N and distinct jh ∈ VMh , h � 1, : : : , n,

L(XN
j1 , : : : , XN

jn )!
N→∞

L(Xj1 , : : : , Xjn ) � µM1 ⊗ ⋯ ⊗ µMn : (3.6) 

Theorem 1 gives us the limit law of all individual queues. Next, in Theorem 2, we will show how such a server- 
level convergence can be used to obtain a convergence result for the global occupancy process qN(·) to a deter
ministic dynamical system, which was our primary goal. The proofs of Theorem 1 and Theorem 2 are provided 
in Section 4.

Theorem 2 (Process-Level Convergence for i.i.d. Starting State). Assume that all XN
j (0)’s are independent, and for each 

m ∈ M, {XN
j (0) : j ∈ VN

m} is i.i.d. with P(XN
j (0) ≥ l) � q∞

m, l, l ∈ N0 for some q∞ � (q∞
m, l, m ∈ M, l ∈ N0) ∈ S. Then, on any 

finite time interval, the occupancy process qN(·) converges weakly with respect to Skorokhod J1 topology to the deterministic 
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limit q(·) :� (qm, l(·), m ∈ M, l ∈ N0) given by the unique solution to the following system of ODEs. For all m ∈ M, qm, 0(t)
� 1, qm, l(0) � q∞

m, l, and

dqm, l(t)
dt

� �um(qm, l(t) � qm, l+1(t))

+λζ(qm, l�1(t) � qm, l(t))
X

k∈K

pk, mwk

δk

(q̃k, l�1(t))d
� (q̃k, l(t))

d

q̃k, l�1(t) � q̃k, l(t)
, ∀l ∈ N: (3.7) 

Here, q̃k, l(t) �
P

m∈M

vmpk,m
δk

qm, l(t) for all k ∈ K.

Remark 1. Using the propagation of chaos property (3.6) and the fact that {Xj(t) : j ∈ N} is independent and 
{Xj(t) : j ∈ Vm} is i.i.d. for each m ∈ M, it follows that the limit of the global occupancy process at any time instant 
t, in fact, corresponds to the laws of Xj(t) for each type of servers j in (3.2): that is,

µm
t [l, ∞) � P(Xj(t) ≥ l) � qm, l(t), j ∈ Vm, m ∈ M, l ∈ N0, t ≥ 0:

3.3. Process-Level Limit: General Case
Theorem 2 requires the strong assumption that for each m ∈ M, XN

j (0), j ∈ VN
m , are i.i.d. In order to argue the 

interchange of limits, we need to relax this assumption on initial states. This is because the arguments for the 
interchange of limits involve initiating the prelimit system at the steady state and then showing that as N → ∞, 
the system must converge to the unique fixed point of the limiting ODE. This requires us to characterize the 
(process-level) limiting trajectory of the system starting from the arbitrary occupancy state. We achieve this in 
this section.

Intuitively, the assumption of i.i.d. in Theorems 1 and 2 ensures that the local occupancy observed by any 
dispatcher i ∈ WN

k , k ∈ K is “close,” in suitable sense, to the average occupancy at the entire system. This phe
nomenon can be ensured asymptotically, even without the i.i.d. assumption, if the graph sequence satisfies a 
property we call the clustered proportional sparsity. This notion was first introduced for the homogeneous sys
tems in Rutten and Mukherjee (2022). The definition is a modified notion that is suitable for the current hetero
geneous setting.

Definition 2 (Clustered Proportional Sparsity). Recall N N
w (i) � {j ∈ VN : (i, j) ∈ EN}. The sequence {GN}N is called 

clustered proportionally sparse if for any ε > 0,

sup
k∈K

sup
U⊆VN

i ∈ WN
k :

|N
N
w (i) ∩ U |

|N
N
w (i) |

�
|EN

k (U) |

|EN
k (VN) |

�
�
�
�
�

�
�
�
�
�

≥ ε

( )�
�
�
�
�

�
�
�
�
�
= |WN

k | !
N→∞

0, (3.8) 

where EN
k (U) :� {(i, j) ∈ WN

k × U : (i, j) ∈ EN}.

Remark 2. We can view the subset U in the definition as a test set, say U � QN
m, l(t), where QN

m, l(t) is the set of 
type m ∈ M servers with queue length at least l ∈ N0 at time t. Hence, Definition 2 ensures that for all but o(N) 
dispatchers, the observed empirical queue-length distribution within its neighborhood is close to the global 
weighted empirical queue-length distribution (Definition 4) of its corresponding type. Then, the global occu
pancy process evolves similarly to (and converges to the same limit as) the case when the initial states are 
i.i.d.

Theorem 3 (Process-Level Convergence). Let {GN}N be a clustered proportionally sparse sequence of graphs. Assume 
that qN(0) weakly converges to q∞ ∈ S. Then, on any finite time interval, the occupancy process qN(·) converges weakly 
with respect to the Skorokhod J1 topology to the deterministic limit q(·) :� (qm, l(·), m ∈ M, l ∈ N0) given by the unique solu
tion to the system of ODEs defined by (3.7) with initial state q(0) � (q∞

m, l, m ∈ M, l ∈ N0).

The proof of Theorem 3 is given in Section 4.4.

3.4. Convergence of Steady States
In the last section, we showed the process-level convergence of global occupancy process qN(·) to a mean-field limit 
q(·). In this section, we will establish the convergence of the sequence of stationary distributions to the unique fixed 
point of the mean-field limit by establishing the interchange of large-N and large-t limits: limt→∞limN→∞qN(t) �

limN→∞limt→∞qN(t). Throughout this section, we will assume that the sequence of systems is in the subcritical 
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regime (recall Definition 1). The first result states that the limiting system of ODEs has a unique fixed point q∗ and 
that it satisfies the global stability property (i.e., for any initial point q(0) ∈ S, limt→∞ q(t) � q∗).

Theorem 4 (Global Stability). Let q(t, q0) be the solution to the system of ODEs in (3.7) with the initial point 
q(0) � q0 ∈ S. Then, there exists a unique fixed point q∗ � (q∗

m, l, m ∈ M, l ∈ N0) ∈ S such that limt→∞ q(t, q0) � q∗:

The proof of Theorem 4 is given in Section 5. It relies on a monotonicity property of the system, which ensures 
that for two processes q1(·) and q2(·), if q1(0) ≤ q2(0), then q1(t) ≤ q2(t) for all t ≥ 0 (see Martin and Suhov 1999, 
Stolyar 2015).

The last ingredient that we need in order to prove the interchange of limits is to establish tightness of the 
sequence of random variables {qN(∞)}N≥1 under a suitable metric, where qN(∞) :� limt→∞ qN(t). Here, as 
before, we should note that the process (qN(t))t≥0 is not Markovian. That is why the random variable qN(∞)

should be interpreted as the functional applied to the steady-state system. The tightness result is stated in the 
next theorem.

Theorem 5 (Tightness). For any ε > 0, there exists a compact subset K(ε) ⊆ S, when S is equipped with the ℓ1-topology, 
such that P(qN(∞) ∉ K(ε)) < ε, ∀N ≥ 1:

Theorem 5 is proved in Section 5. The key idea is to use the Lyapunov function approach to bound the 
expected sum of tails qN

m, l(∞). Combining Theorems 3, 4, and 5, we can prove the following interchange of limits 
result.

Theorem 6 (Convergence of Steady States). Let {GN}N≥1 be a clustered proportionally sparse sequence of graphs satisfy
ing Condition 1. Then, the sequence of random variables {qN(∞)}N≥1 converges weakly to q∗, the unique fixed point of the 
system of ODEs in (3.7).

One major discovery about the JSQ(d) policy for the classical, homogeneous, fully flexible system is that the limit 
of the stationary distribution (which in our case, is given by q∗) has a double-exponential decay of tail (Mitzenma
cher 1996b, Vvedenskaya et al. 1996) for any d ≥ 2. This is in sharp contrast with the (single) exponential decay of 
the corresponding tail for random routing or d � 1. In fact, in this case, for any d ≥ 2, q∗ can be characterized explic
itly as q∗

l � λ
dl�1
d�1 , where q∗

l is the (limiting) steady-state fraction of servers with queue length at least l � 1, 2, : : : . In the 
current case of heterogeneous systems, it is intractable to characterize the fixed point q∗ explicitly. However, as 
stated in the next theorem, we can still prove that the doubly exponential decay of the tails q∗

m, l for each m ∈ M 

holds.

Theorem 7 (Double-Exponential Tail Decay). Let q∗ � (q∗
m, l, m ∈ M, l ∈ N0) be the unique fixed point of the system of 

ODEs in (3.7). Then, for all m ∈ M, the sequence {q∗
m, l, l ∈ N0} decreases doubly exponentially; that is, there exist positive 

constant lm ∈ N0, am ∈ (0, 1), and bm > 0 such that for all l ≥ lm, q∗
m, l ≤ bmadl

m:

3.5. Simple Data Locality Design Using Randomization
Sections 3.1–3.4 characterize the performance of the occupancy process for arbitrary deterministic sequence of sys
tems where the underlying graph sequence satisfies certain properties. In particular, Condition 1 and Definition 2
provide sufficient criteria under which both the process-level convergence (Theorem 3) and the interchange of 
limits (Theorem 6) hold. In this section, we show that graphs satisfying the required criteria can be obtained easily 
if the compatibility graph is designed suitably randomly. Given the asymptotic edge-density parameters in Condi
tion 1, we define a certain sequence of inhomogeneous random graphs or IRG as follows.

Definition 3 (IRG(p)). Given p :� (pk, m, k ∈ K, m ∈ M), the Nth system of IRG(p) is constructed as follows. For any 
k ∈ K and m ∈ M, dispatcher i and server j share an edge with probability pk, m for all i ∈ WN

k and j ∈ VN
m , indepen

dently of each other.
For any p for which the asymptotic stability criterion holds, we have the following result for the sequence of 

IRG(p).

Theorem 8. Let p � (pk, m, k ∈ K, m ∈ M) be such that the stability criterion in (3.1) holds and {GN}N≥1 be a sequence of 
IRG(p) with increasing N. Then, the conclusions of Theorems 3 and 6 hold for {GN}N≥1.

The proof of Theorem 8 is provided in Appendix I. It relies on verifying that the sequence of IRG(p) graphs 
satisfies Condition 1 and the property of clustered proportional sparsity almost surely. The verification 
involves using the concentration of measure arguments to establish structural properties of the compatibility 
graphs.
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4. Proof of Transient Limit Results
In this section, we will prove the results of transient limit results (Theorems 1–3 in Sections 4.2, 4.3, and 4.4, respec
tively). We start by proving a few auxiliary results in Section 4.1.

4.1. Auxiliary Results
First, we will need a characterization of the evolution of the queue-length process at each server. To describe this 
evolution, let us introduce the following notations:

setN(j) :� {(j2, : : : , jd) ∈ [N]
d�1

: (j, j2, : : : , jd) are distinct}, (4.1) 

settN(j) :� {(j2, : : : , jd, j′2, : : : , j′d) ∈ [N]
2d�2

: (j2, : : : , jd) ∈ setN(j), (j′
2, : : : , j′d) ∈ setN(j),

(j2, : : : , jd) ∩ (j′
2, : : : , j′d) ≠ ∅}: (4.2) 

To represent the graph, define the edge occupancy ξN
i, j to be the binary variable:

ξN
i, j �

1, if (i, j) ∈ EN,
0, otherwise,

for all i ∈ WN, j ∈ VN:

(

Recall the function b, Poisson processes {Dj}, and Poisson random measures {Aj} in and after (3.4). By Condition 1, 
for all large-enough N, all dispatchers in the Nth system have at least d neighbors. Hence, without loss of generality, 
in the rest of this section, we will only consider the case δN

i ≥ d, ∀i ∈ WN. In that case, because of the Poisson thin
ning property, note that we can write XN

j (t) as follows:

XN
j (t) � XN

j (0) �

Z t

0
1(XN

j (s�)>0)Dj(ds) +

Z

[0, ∞)×R+

1(0 ≤ y ≤ CN
j (s�))Aj(dsdy), (4.3) 

where

CN
j (s) �

X

i∈WN

ξN
i, j

X

(j2, : : : , jd)∈setN(j)

ξN
i, j2 × ⋯× ξN

i, jd

δN
i

d

 !

(d � 1)!

b(XN
j (s), XN

j2 (s), : : : , XN
jd (s))

�
X

k∈K

X

i∈WN
k

ξN
i, j

X

(j2, : : : , jd)∈setN(j)

ξN
i, j2 × ⋯× ξN

i, jd

δN
i

d

 !

(d � 1)!

b(XN
j (s), XN

j2 (s), : : : , XN
jd (s)): (4.4) 

The RHS of the first summation in (4.4) represents the probability that a job arriving at the dispatcher i ∈ WN will be 
assigned to the server j ∈ VN given the state (XN

j , j ∈ VN). Moreover, by Condition 1, the term CN
j for all j ∈ VN can be 

upper bounded, uniformly for all t, by a constant for all large-enough N, which is stated in Lemma 4.
When we do some estimation, like bounding the term CN

j , we need to uniformly bound the number of the neigh
bors of servers or dispatchers. Such uniformity is stated in Lemma 3 and is a direct result of Condition 1. Recall 
δN

i � |N
N
w (i) | and δk �

P
m∈Mpk, mvm.

Lemma 3. For each k ∈ K,

lim
N→∞

max
i∈WN

k

degN
w (i, m)

|VN
m |

� lim
N→∞

min
i∈WN

k

degN
w (i, m)

|VN
m |

� pk, m, m ∈ M, (4.5) 

and

lim
N→∞

max
i∈WN

k

δN
i

N
� lim

N→∞
min
i∈WN

k

δN
i

N
� δk: (4.6) 
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Also, for each m ∈ M,

lim
N→∞

max
j∈VN

m

degN
v (k, j)

|WN
k |

� lim
N→∞

min
j∈VN

m

degN
v (k, j)

|WN
k |

� pk, m, k ∈ K: (4.7) 

Lemma 4. For all large-enough N, we have that for any m ∈ M, j ∈ VN
m , and t ≥ 0,

CN
j (t) ≤ 2ζd

X

k∈K

pk, mwk

δk
: (4.8) 

Proof. By the definition of CN
j (t), for any t ≥ 0 and large-enough N,

CN
j (t) ≤

X

k∈K

X

i∈WN
k

ξN
i, j

X

(j2, : : : , jd)∈setN(j)

ξN
i, j2 × ⋯× ξN

i, jd

δN
i

d

 !

(d � 1)!

�
X

k∈K

X

i∈WN
k

ξN
i, j

δN
i � 1
d � 1

 !

δN
i

d

 ! ≤ 2ζd
X

k∈K

pk, mwk

δk
, 

where the first inequality is because of b(·) ≤ 1 and the last inequality comes from Lemma 3. w

By Lemma 3, we know that the neighborhoods of dispatchers of the same type are almost the same. With 
the scale of the system size, the local graph structure for each dispatcher of the same type will converge to the 
average one. The following two lemmas give necessary approximation of the graph structures for large-N sys
tems. Their proofs are combinatorial and are based on Condition 1 and Lemma 3. They are provided in 
Appendix B.

Lemma 5. Consider a sequence {GN}N satisfying Condition 1. For each m ∈ M,

max
j∈VN

m

max
k∈K

max
(M2, : : : ,Md)∈Md�1

�
�
�
�
�

X

i∈WN
k

ξN
i, j

X

(j2, : : : , jd)∈setN(j)
s:t: j2 ∈ VN

M2
, : : : , jd ∈VN

Md

ξN
i, j2 × ⋯× ξN

i, jd

δN
i
d

� �

(d � 1)!

� ζd pk, mwk
δk

Yd

h�2

vMh pk, Mh

δk

�
�
�
�
�
!
N→∞

0: (4.9) 

Lemma 5 states that the probability that the server j in the Nth system will be among the d selected servers when 
a new task arrives converges to the corresponding probability in the limit system. The argument is mainly based on 
the law of large numbers (L.L.N.).

Lemma 6. Consider any m ∈ M and j ∈ Vm. For large-enough N,

X

i∈WN

X

settN(j)

ξN
i, j × ξN

i, j2 × ⋯× ξN
i, jd

δN
i

d

 !

(d � 1)!

ξN
i, j × ξN

i, j′2
× ⋯ × ξN

i, j′d

δN
i

d

 !

(d � 1)!

≤
C1

N2 , (4.10) 

where C1 is a positive constant. Similarly,

X

i1, i2 ∈WN,
i1 ≠ i2

X

settN(j)

ξN
i1, j × ξN

i1, j2 × ⋯ × ξN
i1, jd

δN
i1
d

 !

(d � 1)!

ξN
i2, j × ξN

i2, j′2
× ⋯× ξN

i2, j′d

δN
i2
d

� �

(d � 1)!

≤
C2

N
, (4.11) 

where C2 is a positive constant.

Lemma 6 implies that if we select two elements, say (j2, : : : , jd), (j′2, : : : , j′d) independently from setN(j), then the 
probability of (j2, : : : , jd, j′2, : : : , j′d) ∈ settN(j) is small. (4.10) and (4.11) are used in (4.16).
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4.2. Convergence to the McKean–Vlasov Process: i.i.d. Case

Proof of Theorem 1. It suffices to prove (3.5). Fix any m ∈ M, j ∈ Vm, and T > 0. We have that for any fixed t ∈

[0, T] and any N such that j ∈ VN,

E‖XN
j � Xj‖

2
∗, t ≤ c0E‖XN

j (t) � Xj(t)‖2

≤ c1E
Z t

0
|1(XN

j (s)>0) � 1(Xj(s)>0) |2ds
� �

+ c1E
Z t

0
|1(XN

j (s)>0) � 1(Xj(s)>0) |ds
� �2

+ c1E
Z

[0, t]×R+

|1(0 ≤ y ≤ CN
j (s)) � 1(0 ≤ y ≤ Cj(s)) |2dsdy

� �

+ c1E
Z

[0, t]×R+

|1(0 ≤ y ≤ CN
j (s)) � 1(0 ≤ y ≤ Cj(s)) |dsdy

� �2

≤ c1E
Z t

0
|XN

j (s) � Xj(s) |2ds
� �

+ c1E
Z t

0
|XN

j (s) � Xj(s) |ds
� �2

+ c1E
Z t

0
|CN

j (s) � Cj(s) |2ds
� �

+ c1E
Z t

0
|CN

j (s) � Cj(s) |ds
� �2

≤ c2

Z t

0
E |XN

j (s) � Xj(s) |2ds + c2

Z t

0
E |CN

j (s) � Cj(s) |ds, (4.12) 

where c0, c1, and c2 are positive constants. The first two inequalities are by Doob’s inequalities and Cauchy–Schwarz, 
respectively. The last inequality comes from the uniform boundedness of CN

j (t) proved in Lemma 4 and Cj(t) ≤ dζ by 
the definition. By adding and subtracting terms, we have

|CN
j (s) � Cj(s) | ≤ |CN

j (s) � CN, 1
j (s) | + |CN, 1

j (s) � CN, 2
j (s) | + |CN, 2

j (s) � Cj(s) | , (4.13) 

where

CN, 1
j �

X

k∈K

X

i∈WN
k

ξN
i, j

X

(j2, : : : , jd)∈setN(j)

ξN
i, j2 × ⋯ × ξN

i, jd

δN
i

d

 !

(d � 1)!

b(Xj(s), Xj2 (s), : : : , Xjd (s))

2

6
6
6
6
6
4

3

7
7
7
7
7
5

,

CN, 2
j �

X

k∈K

X

i∈WN
k

ξN
i, j

X

(j2, : : : , jd)∈setN(j)

ξN
i, j2 × ⋯ × ξN

i, jd

δN
i

d

 !

(d � 1)!

Z

Nd�1
b(Xj(t), xj2 , : : : , xjd )µ

M(j2)

t (dxj2 ) ⋯ µ
M(jd)

t (dxjd )

2

6
6
6
6
6
4

3

7
7
7
7
7
5

:
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First, consider |CN
j (s) � CN, 1

j (s) | . For large-enough N,

E |CN
j (s) � CN, 1

j (s) |

� E

�
�
�
�
�

X

k∈K

X

i∈WN
k

2

6
6
6
4
ξN

i, j

X

(j2, : : : , jd)∈setN(j)

ξN
i, j2 ×⋯ × ξN

i, jd

δN
i

d

 !

(d � 1)!

(b(XN
j (s), XN

j2 (s), : : : , XN
jd (s))

� b(Xj(s), Xj2 (s), : : : , Xjd (s)))

3

7
7
7
5

�
�
�
�
�

≤ E
X

k∈K

X

i∈WN
k

2

6
6
6
6
4
ξN

i, j

X

(j2, : : : , jd)∈setN(j)

ξN
i, j2 × ⋯ × ξN

i, jd

δN
i

d

 !

(d � 1)!

( |XN
j (s) � Xj(s) |+ ⋯ +|XN

jd (s) � Xjd (s) | )

3

7
7
7
7
5

≤ d × max
j∈VN

E |XN
j (s) � Xj(s) | ×

X

k∈K

X

i∈WN
k

ξN
i, j

X

(j2, : : : , jd)∈setN(j)

ξN
i, j2 × ⋯× ξN

i, jd

δN
i

d

 !

(d � 1)!

≤ c3 max
j∈VN

E |XN
j (s) � Xj(s) | , (4.14) 

where c3 is constant. The first inequality is from that b(·) is Lipschitz continuous with Lipschitz constant 1 and that 
the last inequality is from (4.9).

Second, consider |CN, 1
j (s) � CN, 2

j (s) | . By Jensen’s inequality, we have [E |CN, 1
j (s) � CN, 2

j (s) | ]
2

≤ E |CN, 1
j (s) � CN, 2

j 
(s) | 2. Hence, it is sufficient to bound E |CN, 1

j (s) � CN, 2
j (s) |2:

E |CN, 1
j (s) � CN, 2

j (s) |2

� E

�
�
�
�
�

X

k∈K

X

i∈WN
k

2

6
6
6
4
ξN

i, j

X

(j2, : : : , jd)∈setN(j)

ξN
i, j2 × ⋯× ξN

i, jd

δN
i

d

 !

(d � 1)!

b(Xj(s), Xj2 (s), : : : , Xjd (s))

3

7
7
7
5

�
X

k∈K

X

i∈WN
k

2

6
6
6
6
4
ξN

i, j

X

(j2, : : : , jd)∈setN(j)

ξN
i, j2 ×⋯ × ξN

i, jd

δN
i

d

 !

(d � 1)!

Z

Nd�1
0

b(Xj(s), xj2 , : : : , xjd )µM(j2)
s (dxj2 ) ⋯ µM(jd)

s (dxjd )

3

7
7
7
7
5

�
�
�
�
�

2

(4.15) 

≤ E
X

i1, i2∈WN

X

settN(j)

ξN
i1, j × ξN

i1, j2 × ⋯× ξN
i1, jd

δN
i1
d

 !

(d � 1)!

ξN
i2, j × ξN

i2, j′2
× ⋯× ξN

i2, j′d

δN
i2
d

 !

(d � 1)!

2

6
6
6
6
4

3

7
7
7
7
5

≤
(a)

E

2

6
6
6
4

X

i∈WN

X

settN(j)

ξN
i, j × ξN

i, j2 × ⋯ × ξN
i, jd

δN
i

d

 !

(d � 1)!

ξN
i, j × ξN

i, j′2
× ⋯ × ξN

i, j′d

δN
i

d

 !

(d � 1)!
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+
X

i1, i2∈WN, i1≠i2

X

settN(j)

ξN
i1, j × ξN

i1, j2 ×⋯ × ξN
i1, jd

δN
i1

d

 !

(d � 1)!

ξN
i2, j × ξN

i2, j′2
× ⋯× ξN

i2, j′d

δN
i2

d

 !

(d � 1)!

3

7
7
7
5

≤ c4N�2 + c5N�1, (4.16) 

where the first inequality is because of the fact that Xj(0) is i.i.d. for j ∈ Vm and independent for different m; so, for 
each m ∈ M, {Xj(s), j ∈ Vm} are also i.i.d., and the independence across the server pools holds for any fixed s > 0. 
Hence, if (j, j2, : : : , jd, j′2, : : : , j′d) are distinct, then

E

"

(b(Xj(t), Xj2 (t), : : : , Xjd (t)) �

Z

Nd�1
b(Xj(t), xj2 , : : : , xjd )µ

M(j2)

t (dxj2 ) ⋯ µ
M(jd)

t (dxjd )) ×

(b(Xj(t), Xj′2 (t), : : : , Xj′d (t)) �

Z

Nd�1
b(Xj(t), xj′2 , : : : , xj′d )µ

M(j′2)

t (dxj′2 ) ⋯ µ
M(j′d)

t (dxj′d ))

#

� 0, 

and b(·) and 
R

b(·)µ(d·) are both in [0, 1]. The last inequality of (4.16) is by (4.10) and (4.11).
Third, consider |CN, 2

j (s) � Cj(s) | :

E |CN, 2
j (s) � Cj(s) |

� E

�
�
�
�
�

X

k∈K

X

i∈WN
k

2

6
6
6
4
ξN

i, j

X

(j2, : : : , jd)∈setN(j)

ξN
i, j2 ×⋯ × ξN

i, jd

δN
i

d

 !

(d � 1)!

Z

Nd�1
b(Xj(t), xj2 , : : : , xjd )µ

M(j2)

t (dxj2 ) ⋯ µ
M(jd)

t (dxjd )

3

7
7
7
5

� dζ
X

k∈K

pk, mwk
δk

X

(M2, : : : ,Md)∈Md�1

Yd

h�2

vMh pk, Mh

δk

Z

Nd�1
b(Xj(t), xj2 , : : : , xjd )µ

M(j2)

t (dxj2 ) ⋯ µ
M(jd)

t (dxjd )

�
�
�
�
�

≤ c6(N), (4.17) 

where c6(N) only depends on N and goes to zero as N → ∞ and where the inequality comes from (4.9) and the fact 
that 

R
b(·)µ(d·) ∈ [0, 1]. Now, by (4.12), (4.13), (4.14), (4.16), and (4.17), we have that for large-enough N,

max
j∈VN

E‖XN
j � Xj‖

2
∗, t ≤ c10

Z t

0
max
j∈VN

E‖XN
j � Xj‖

2
∗, tds + f (N), 

where c10 is a constant and f(N) is a function, which goes to zero as N → ∞. Last, by Gronwall’s inequality, we have 
(3.5), and this completes the proof. w

4.3. Convergence of the Occupancy Process: i.i.d. Case
In this section, we want to show the convergence of the occupancy process qN(·) to the limit process q represented 
by the ODE (3.7). The first step is to investigate the existence and uniqueness of the solution of the ODE (3.7). Define

S :� {q ∈ [0, 1]
M×N0 : qm, 0 � 1, qm, l ≥ qm, l+1, ∀m ∈ M, l ∈ N0}, 

and clearly, S ⊆ S .

Lemma 7. If q(0) � q0 ∈ S , then the ODE system (3.7) has a unique solution denoted as q(t, q0), t ≥ 0 in S .

The proof of Lemma 7 is based on the Picard successive approximation method (Martin and Suhov 1999, theorem 
1(i)) and is provided in Appendix C.

Proof of Theorem 2. Fix any T ∈ (0, ∞). For each m ∈ M, consider random measures µN
m � 1

| VN
m |

P
j∈VN

m
δXN

j (·) and 
µN

m � 1
| VN

m |

P
j∈VN

m
δXj(·) on S :� D([0, T],N0), where Xj(·) is defined in (3.2). Denote the joint measures µN � (µN

1 , : : : , µN
M)

Zhao, Mukherjee, and Wu: Data Locality to Improve Heterogeneous Server Clusters 
14 Stochastic Systems, Articles in Advance, pp. 1–44, © 2024 The Author(s) 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[9

2.
11

9.
18

.2
09

] o
n 

10
 Ju

ly
 2

02
4,

 a
t 1

2:
33

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



and µN � (µN
1 , : : : , µN

M). Denote by dBL(·, ·) the bounded Lipschitz metric for probability measures on S:

dBL(µ1, µ2) :� sup
‖f ‖BL ≤ 1

�
�
�
�
�

Z

S
f dµ1 �

Z

S
f dµ2

�
�
�
�
�
, ‖f ‖BL :� max ‖f ‖∞, sup

x≠y

f (x) � f (y)

d(x, y)

( )

:

From (3.5), we have

EdBL(µN
m, µN

m) ≤ E sup
‖f ‖BL ≤ 1

1
|VN

m |

X

j∈VN
m

| f (XN
j ) � f (Xj) | ≤

1
|VN

m |

X

j∈VN

E‖XN
j � Xj‖∗, T !

N→∞

0, 

which implies that dBL(µN
m, µN

m) →
P 0 for each m ∈ M. Because µN

m →
P

µm by the L.L.N., we have µN � (µN
1 , : : : , µN

M) →
P 

(µ1, : : : , µM) by Slutsky’s theorem. Also, it is easy to check that supN E[sup0 ≤ t ≤ T‖qN(t)‖2
ℓ1

] < ∞: Thus, we have 
qN →

P q. Next, we need to show that q satisfies (3.7). Define fl(x) � 1{x≥l}, l ∈ N0. By (3.2), we have that for any m ∈ M 

and j ∈ Vm,

Efl(Xj(t)) � Efl(Xj(0)) +

Z t

0
umE 1{Xj(s)>0}(fl(Xj(s) � 1) � fl(Xj(s)))ds

+

Z t

0

Z

Nd�1
λζd

X

k∈K

pk, mwk

δk

X

(M2, : : : ,Md)∈Md�1

Yd

h�2

vMh pk, Mh

δk

× E[b(Xj(s), xj2 , : : : , xjd )(fl(Xj(s) + 1) � fl(Xj(s)))]µM2
s (dxj2 ) ⋯ µMd

s (dxjd )ds

� Efl(Xj(0)) +

Z t

0
umE 1{Xj(s)>0}(fl+1(Xj(s)) � fl(Xj(s)))ds

+

Z t

0

Z

Nd�1
λζd

X

k∈K

pk, mwk
δk

X

(M2, : : : ,Md)∈Md�1

Yd

h�2

vMh pk, Mh

δk

× E[b(l � 1, xj2 , : : : , xjd )(fl�1(Xj(s)) � fl(Xj(s)))]µM2
s (dxj2 ) ⋯ µMd

s (dxjd )ds:

For any m ∈ M, if j ∈ Vm, then Efl(Xj(t)) � qm, l(t) � µm
t [l, ∞) for l � 1, 2, : : : . Hence,

qm, l(t) � qm, l(0) �

Z t

0
um(qm, l(s) � qm, l+1(s))ds +

Z t

0
λζd

X

k∈K

pk, mwk

δk
(qm, l�1(s) � qm, l(s))

×
X

(M2, : : : ,Md)∈Md�1

Yd

h�2

vMh pk, Mh

δk

Z

Nd�1
b(l � 1, xj2 , : : : , xjd )µM2

s (dxj2 ) ⋯ µMd
s (dxjd )ds: (4.18) 

Also,

X

(M2, : : : , Md)∈Md�1

Yd

h�2

vMh pk, Mh

δk

Z

Nd�1
b(l � 1, xj2 , : : : , xjd )µM2

s (dxj2 ) ⋯ µMd
s (dxjd )

�
X

r∈R

X

r′
∈R

′
(r)

1
1 + |r′ |

Y

m∈M

rm

r′
m

 !
vmpk, m

δk

� �rm

(qm, l�1(s) � qm, l(s))
r′

m (qm, l(s))
rm�r′

m

�
Xd�1

r�0

1
1 + r

d � 1

r

 !
X

m∈M

vmpk, m
δk

qm, l�1(s) �
X

m∈M

vmpk, m
δk

qm, l(s)

 !r
X

m∈M

vmpk, m
δk

qm, l(s)

 !d�1�r

�
Xd

r�1

1
r

d � 1

r � 1

 !

(q̃k, l�1(s) � q̃k, l(s))
r�1

(q̃k, l(s))
d�r Let q̃k, l(s) �

X

m∈M

vmpk, m

δk
qm, l(s)

 !

�
(q̃k, l�1(s))

d
� (q̃k, l(s))

d

d(q̃k, l�1(s) � q̃k, l(s))
, (4.19) 
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where R � {r � (r1, : : : , rM) ∈ NM
0 :
P

m∈Mrm � d � 1} and R
′
(r) � {r′ � (r′

1, : : : , r′
M) ∈ NM

0 : r′
m ≤ rm, ∀m ∈ M} given 

r ∈ R. Plugging (4.19) into (4.18), we get the desired result. w

4.4. Convergence of the Occupancy Process: General Case
In this section, we will discuss the case in which the sequence {GN}N is clustered proportionally sparse, which helps 
us remove the i.i.d. assumption in Theorem 3. Intuitively, if {GN}N is clustered proportionally sparse, then for each 
k ∈ K and each dispatcher i ∈ WN

k , the queue-length distribution of its neighborhood will always be close (in an 
appropriate sense) to the corresponding global weighted queue-length distribution (GWQD). Clustered propor
tional sparsity ensures that this statement holds uniformly for all occupancy states. Loosely speaking, this statement 
enables us to make sure that the evolution of the occupancy process happens in the same way for any initial state as 
in the case of the i.i.d. initial state. For the case of homogeneous systems, the notion of proportional sparsity was 
introduced in Rutten and Mukherjee (2022). Here, proportional sparsity was defined in a way that for most dis
patcher i, the fraction of its neighbors within any subset U of servers is proportional to the size of the subset U. 
However, because of the heterogeneous compatibility between dispatchers and servers, such a fraction, in the cur
rent setup, depends on the corresponding type of the dispatcher as well 

�
see the term EN

k (U)

EN
k (VN)

in Definition 2
�

. Thus, 
unlike the homogeneous case where the local queue-length distribution (LQD) is directly compared with the global 
queue-length distribution of the system, for the heterogeneous case, we need to define K types of global weighted 
queue-length distribution (see Definition 4), where the weights are determined by the asymptotic properties of the 
graph structure: (vm, m ∈ M) and (pk, m, k ∈ K, m ∈ M). Then, we compare the local queue-length distribution of dis
patcher i with the global weighted queue-length distribution of the corresponding type as defined.

Definition 4. Consider any fixed N ∈ N and k ∈ K. Given the global occupancy qN � (qN
m, l, m ∈ M, l ∈ N0) of the Nth 

system, the GWQD of cluster k is defined as (xN
k, m, l, m ∈ M, l ∈ N0), where xN

k, m, l �
vmpk,m
δk

(qN
m, l+1 � qN

m, l):

Also, the local queue-length distribution is defined as follows.

Definition 5. Consider any fixed N ∈ N and k ∈ K. Given the state (XN
j , j ∈ VN) of the Nth system, the LQD of dis

patcher i ∈ WN
k is defined as (x̂N

i, m, l, m ∈ M, l ∈ N0), where x̂N
i, m, l �

| {j∈VN
m :ξN

i, j�1 and XN
j �l} |

|N
N
w (i) |

:

Although the dispatcher following the JSQ(d) policy selects a target server based on its LQD, if its LQD is close 
(in a suitable sense) to its corresponding GWQD, then the selection can be viewed as if the decision was based on 
the GWQD. The latter case is easier to analyze. Hence, if a dispatcher’s LQD is close to its corresponding GWQD, 
we call it a good dispatcher

Definition 6 (ε-Good Dispatcher). Consider any fixed N ∈ N and an ε > 0. Given the state (XN
j , j ∈ VN) of the Nth 

system, a dispatcher i ∈ WN
k , k ∈ K, is ε-good if

X

m∈M

X

l∈N0

| x̂N
i, m, l � xN

k, m, l | ≤ ε: (4.20) 

Also, a dispatcher is ε-bad if it is not ε-good.

4.4.1. Consequences of Clustered Proportional Sparsity. The proof of Theorem 3 relies on the idea that if the local 
occupancy of each dispatcher within a particular type evolves similar to the global occupancy of that type, then the 
process-level limiting behavior should not depend on any specific initial state. That is, it will enable us to go beyond 
the i.i.d. assumption. The first step for this approach to work is to show that almost all dispatchers are ε-good for 
any ε > 0. Here is where we need the property of clustered proportional sparsity. This is stated in the next 
proposition.

Proposition 2. Let {GN}N be a sequence of clustered proportionally sparse graphs. For any T ≥ 0 and ε1,ε2 > 0,

P sup
t∈[0,T]

B
ε1
N (t) ≥ ε2 |WN |

 !

!
N→∞

0, (4.21) 

where Bε1
N (t) is the number of ε1-bad dispatchers at time t.

The intuition behind Proposition 2 is that the servers of type m ∈ M with queue length l ∈ N0 form a subset UN
m, l 

of the server set VN. If this set is large, then by the clustered proportional sparsity, for any fixed k ∈ K and almost all 
i ∈ WN

k , the fraction of the dispatcher i’s neighbors within UN
m, l is close to 

| EN
k (UN

m, l) |

| EN
k (VN) |

, which is close to xN
k, m, l for large- 
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enough N by Condition 1. Also, in order to deal with the sum over l ∈ N0, we will need to establish uniform bounds 
of the tail of the occupancy process on any finite time interval. The complete proof is given in Appendix D.

4.4.2. Coupling with an Intermediate System. The main methodology for the proof of Theorem 3 is a stochastic 
coupling with a sequence {G′N}N≥1 of carefully constructed systems where the evolution of each system G′N can be 
coupled with that of the system GN. For each N, the system G′N has the same sets of dispatchers and servers as GN 

(i.e., W′N � WN and V′N � VN). However, the task assignment in G′N happens differently. To describe the task 
assignment policy, let us introduce the following notations. Let X′N

j (t) be the number of tasks (including those in 
service) in the queue of server j ∈ V′N at time t. Let q′N(t) � (q′N

m, l(t), m ∈ M, l ∈ N0) be the corresponding global occu
pancy at time t, which is defined in the same way as qN for the system GN. Then, the system G′N assigns tasks under 
the GWSQ(d) policy as described in Algorithm 1. The GWSQ(d) policy is essentially a variant of the JSQ(d) policy 
because for each new task, the dispatcher selects a target set of servers of size d according to the global weighted 
queue-length distribution.

Algorithm 1 (GWSQ(d))
while A new task arrives at dispatcher i ∈ WN

k , k ∈ K do
Get the current global occupancy qN � (qN

m, l, m ∈ M, l ∈ N0);
Calculate the global weighted queue-length distribution xN

k � (xN
k, m, l, m ∈ M, l ∈ N0) of cluster k,

xN
k, m, l �

vmpk, m
δk

(qN
m, l+1 � qN

m, l);

Randomly select a set selectN with size d as the following. 
• Let YN

k, m, l(t) ∈ N0 be the number of servers of type m ∈ M with queue length l ∈ N0 in the set selectN;
• (YN

k, m, l(t), m ∈ M, l ∈ N0) satisfies
X

m∈M, l∈N0

YN
k, m, l(t) � d;

• the probability of selecting (YN
k, m, l(t), m ∈ M, l ∈ N0) is

P(YN
k, m, l(t), m ∈ M, l ∈ N0) �

Y

m∈M, l∈N0

XN
k, m, l(t)

YN
k, m, l(t)

 !

= N
d

� �

;

where XN
k, m, l � N × xN

k, m, l.
Get l∗ � min(l ∈ N0 : ∃k ∈ K, m ∈ M such that YN

k, m, l > 0);
Assign the task to a type m ∈ M server with queue length l∗ with probability

YN
k, m, l∗

P
m∈MYN

k, m, l∗
:

end

Next, we couple the evolution of the system G′N with that of the system GN by the optimal coupling method. The 
optimal coupling for two stochastic processes is similar to the maximal coupling for two discrete random variables 
(say, X and Y), maximizing the probability P(X � Y).

4.4.2.1. Optimal Coupling. Fix any N. In both systems, within the pool of servers of each type, arrange the servers 
in the nondecreasing order of their queue lengths (ties are broken arbitrarily). Now, couple the evolution of the sys
tem GN with the system G′N in the following way. 

• Departure. For any m ∈ M and n � 1, : : : , |VN
m | , synchronize the departure epochs of the nth ordered servers of 

type m in the two systems.
• Arrival. The coupling of arrivals is the tricky part. For this, first synchronize the arrival epochs at each dis

patcher i in both systems G′N and GN. At an arrival epoch of dispatcher i ∈ WN
k , let (x̂N

i, m, l, m ∈ M, l ∈ N0) be the local 
empirical distribution of dispatcher i in the system GN and (x′N

k, m, l, m ∈ M, l ∈ N0) be the weighted global empirical 
distribution of cluster-k dispatchers in the system G′N. Then, in the system GN, the probability that the task will be 
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assigned to a server of type m ∈ M with queue length l ∈ N0 is given by

pN
m, l(i) :�

Pd
r�1
Pr

r1�1
r1
r

|N
N
w (i) | x̂N

i, m, l

r1

 !
|N

N
w (i) |

P
M\{m}x̂

N
i, m, l

r � r1

 !
|N

N
w (i) |

P
M

P
l′≥l+1x̂N

i, m, l′

d � r

 !

|N
N
w (i) |

d

 ! : (4.22) 

In the system G′N, the probability that the task will be assigned to a server of type m ∈ M with queue length l ∈ N0 
is given by

p′N
m, l(k) :�

Pd
r�1
Pr

r1�1
r1
r

X′N
k, m, l
r1

 ! P
M\{m}X

′N
k, m, l

r � r1

 ! P
M

P
l′≥l+1X′N

k, m, l′

d � r

 !

N
d

� � : (4.23) 

For convenience, we denote pN
m, l(i) and p′N

m, l(k) as pN
m, l and p′N

m, l, respectively. Denote pN
m, l � min(pN

m, l, p′N
m, l) for m ∈ M 

and l ∈ N0.
Now, to couple the task assignment, let us draw a Uniform[0, 1] random variable U, independently of any other 

processes and across various arrival epochs. U is used to generate the random variables (MN, LN) ∈ M × N0 and 
(M′N, L′N) ∈ M × N0 for the system GN and the system G′N, respectively. In the system GN, set (MN, LN) � (m, l) ∈

M × N0 if

U ∈

"
Xm�1

m′�1

X∞

l′�0
pN

m′, l′ +
Xl�1

l′�0
pN

m, l′ ,
Xm�1

m′�1

X∞

l′�0
pN

m′, l′ +
Xl

l′�0
pN

m, l′

!

[
"

pN +
Xm�1

m′�1

X∞

l′�0
(pN

m′, l′ � pN
m′, l′ ) +

Xl�1

l′�0
(pN

m, l′ � pN
m, l′ ),

pN +
Xm�1

m′�1

X∞

l′�0
(pN

m′, l′ � pN
m′, l′ ) +

Xl

l′�0
(pN

m, l′ � pN
m, l′ )

!

, (4.24) 

where pN �
PM

m′�1
P∞

l′�0 pN
m′, l′ , and assign the task to a server of type m with queue length l. Similarly, in the system 

G′N, set (M′N, L′N) � (m, l) ∈ M × N0, if

U ∈

"
Xm�1

m′�1

X∞

l′�0
pN

m′, l′ +
Xl�1

l′�0
pN

m, l′ ,
Xm�1

m′�1

X∞

l′�0
pN

m′, l′ +
Xl

l′�0
pN

m, l′

!

[
"

pN +
Xm�1

m′�1

X∞

l′�0
(p′N

m′, l′ � pN
m′, l′ ) +

Xl�1

l′�0
(p′N

m, l′ � pN
m, l′ ),

pN +
Xm�1

m′�1

X∞

l′�0
(p′N

m′, l′ � pN
m′, l′ ) +

Xl

l′�0
(p′N

m, l′ � pN
m, l′ )

!

, (4.25) 

and assign the task to a server of type m with queue length l.
As alluded to before, the coupling is constructed in a way that maximizes the probability of the two systems to 

assign an arriving task to some server with the same queue length. Next, the difference in the occupancy processes 
of the two systems, on any finite time interval, can be upper bounded by the number of times the two systems 
assign to two different queue lengths. This is formalized by the notion of mismatch, which was originally introduced 
in Mukherjee et al. (2018b).

Definition 7 (Mismatch). At an arrival epoch, the system GN and the system G′N are said to mismatch if (MN, LN)

≠ (M′N, L′N); that is, the arriving task is not assigned to servers of the same type with the same queue length in 
the two systems. Denote by ∆N(t) the cumulative number of times the systems mismatch in queue length up to 
time t.
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The next proposition provides a deterministic bound on the difference between the occupancy processes of the 
two systems in terms of the number of mismatches.

Proposition 3. For any N ≥ 1, consider the system GN and the system G′N coupled. Then, the following holds almost 
surely on the coupled probability space: for t ≥ 0,

X

m∈M

X

l∈N0

|QN
m, l(t) � Q′N

m, l(t) | ≤ 2∆N(t), (4.26) 

provided the inequality holds at t � 0. QN
m, l(t) and Q′N

m, l(t) represent the number of servers of type m ∈ M with queue length at 
least l ∈ N0 in the system GN and the system G′N at time t, respectively.

Bounds of the form as given in (4.26) were originally established in Mukherjee et al. (2018b, proposition 4), and 
they were later used in various contexts (Mukherjee et al. 2018a, Rutten and Mukherjee 2022). The proof does not 
depend on any specific assignment policy and relies on showing inductively that if the inequality in (4.26) holds 
before an event time epoch, then it is preserved after the event time epoch as well. The proof of Proposition 3 can be 
obtained following the similar arguments. We omit the details.

Lemma 8. Given 
P

m∈M

P
l∈N0

|QN
m, l � Q′N

m, l | ≤ 2∆N, then there exist N0 ∈ N0 and a positive constant L such that for any 
k ∈ K,

X

m∈M

X

l∈N0

|xN
k, m, l � x′N

k, m, l | ≤ L∆N=N, ∀N ≥ N0: (4.27) 

Proof. By the model assumption, there exists N0 ∈ N0 such that for all N ≥ N0, |VN
m | ≥ 1

2 Nvm, ∀m ∈ M, which 
gives us that

X

m∈M

X

l∈N0

|xN
k, m, l � x′N

k, m, l | �
X

m∈M

X

l∈N0

vmpk, m
δk

|QN
m, l � Q′N

m, l |= |VN
m |

≤
X

m∈M

X

l∈N0

2pk, m
δk

|QN
m, l � Q′N

m, l |=N ≤ L∆N=N, (4.28) 

where L � 4 maxk∈K, m∈M
pk,m
δk

. w

The final ingredient that we need is the probability of mismatch in a particular epoch under the optimal coupling 
method. The next lemma bounds this probability in terms of the ℓ1-distance between the LQD of the GN system and 
the GWQD of the G′N system.

Lemma 9. Consider an arrival epoch at dispatcher i, and assume that in this epoch, the LQD in the system GN is given by 
(x̂N

i, m, l, m ∈ M, l ∈ N0) and the GWQD of cluster-k servers in the system G′N is given by (x′N
k, m, l, m ∈ M, l ∈ N0). Then, there 

exists a finite positive constant L1 such that for all large-enough N,

P(Mismatch) ≤ L1
X

m∈M

X

l∈N0

| x̂N
i, m, l � x′N

k, m, l | : (4.29) 

The key step in the proof of Lemma 9 is that given the queue-length distribution x � (xm, l, m ∈ M, l ∈ N0), the 
probability pm, l that a task will be assigned to a server of type m ∈ M with queue length l ∈ N0 can be approximated 
by

pm, l ≈
Xd

r�1

Xr

r1�1

r1

r
d!

r1!(r � r1)!(d � r)!
(xm, l)

r1
X

M\{m}

xm, l

 !r�r1 X

M

X

l′≥l+1
xm, l′

 !d�r 

and that the function xk is Lipschitz for x ∈ [0, 1]. The complete proof is given in Appendix E.

4.4.3. Proof of Theorem 3. Now, we have all the ingredients to prove Theorem 3. Let us explain the high-level 
proof scheme first. 

Step 1. Using the optimal coupling, we will show that the global occupancy processes {qN(·)}N and {q′N(·)}N 
must converge to the same limit process as N → ∞ if their initial states are the same, XN

j (0) � X′N
j (0) for all j. In 
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other words, with the same initial states,

lim
N→∞

qN(·) � lim
N→∞

q′N(·):

Step 2. Because there is no graph structure in the system G′N, all servers of the same type in the system G′N are 
exchangeable. Hence, q′N(·) is Markovian, which implies that given q′N(0), its evolution does not depend on how 
individual X′N

j (0)’s are distributed. Denote the system G′N with the i.i.d. assumption as G′N
1 , where the i.i.d. 

assumption refers to that for any m ∈ M, XN
j (0), j ∈ VN

m , are i.i.d. Also, denote the system G′N without the i.i.d. 
assumption as G′N

2 . Their occupancy processes are q′N
1 (·) and q′N

2 (·), respectively. Because task assignment policy in 
G′N does not distinguish between two servers having the same type and queue lengths, by a natural coupling, 
q′N

1 (t) � q′N
2 (t) holds for all t ≥ 0, implying that

lim
N→∞

q′N
1 (·) � lim

N→∞
q′N

2 (·):

Step 3. Denote the system GN with the i.i.d. assumption as GN
1 and the system G′N without the i.i.d. assumption 

as GN
2 , and denote their occupancy processes by qN

1 (·) and qN
2 (·), respectively. Combining Step 1 and Step 2, the fol

lowing equation holds. With the same initial global occupancy state,

lim
N→∞

qN
1 (·) � lim

N→∞
q′N

1 (·) � lim
N→∞

q′N
2 (·) � lim

N→∞
qN

2 (·), 

where the first and last equalities are because of Step 1 and the second equality is because of Step 2.
Step 4. Use Theorem 2 to note that when the sequence {GN}N satisfies the assumption that for each 

m ∈ M, XN
j (0), j ∈ VN

m , are i.i.d., the scaled global occupancy process qN converge weakly to q described by the sys
tem of ODEs in (3.7).

Step 5. By Steps 3 and 4, Theorem 3 holds.
In the proof scheme, observe that all that remains is to show Step 1, which is given here.

Proof of Theorem 3. For Step 1 described in the proof scheme, by Proposition 3, it is sufficient to show that for 
any ε∗ > 0 and δ∗ > 0, there exists an N0 ≥ 1 such that

P sup
t∈[0,T]

∆N(t)=N ≥ ε∗

 !

≤ δ∗, ∀N ≥ N0: (4.30) 

Fix an ε > 0, which will be chosen later. Let GεN(t) and Bε
N(t) be the numbers of ε-good and ε-bad dispatchers in 

the system GN at time t, respectively. We couple the evolution of the system GN with that of the system G′N by 
the optimal coupling method. In system GN, let (xN

k, m, l(t), m ∈ M, l ∈ N0) be the global weighted queue-length dis
tribution of cluster k ∈ K and (x̂N

i, m, l(t), m ∈ M, l ∈ N0) be the local queue-length distribution of the dispatcher 
i ∈ WN

k , k ∈ K. Also, let (x′N
k, m, l(t), m ∈ M, l ∈ N0) be the global weighted queue-length distribution of cluster k ∈ K 

in system G′N. Denote ρN
k (t) �

P
m∈M

P
l∈N0

|xN
k, m, l(t) � x′N

k, m, l(t) | . At an arrival epoch t ≥ 0, if a task arrives at an 
ε-good dispatcher i ∈ WN

k , then
X

m∈M

X

l∈N0

| x̂N
i, m, l(t�) � x′N

k, m, l(t�) |

≤
X

m∈M

X

l∈N0

| x̂N
i, m, l(t�) � xN

k, m, l(t�) | +
X

m∈M

X

l∈N0

|xN
k, m, l(t�) � x′N

k, m, l(t�) | � ε+ ρN
k (t): (4.31) 

Recall the uniform random variable U and pN
m, l defined in the description of the optimal coupling method. The 

probability that the systems have a mismatch at such arrival epoch is bounded by

P U ∉ 0,
X

m∈M

X

l∈N0

pN
m, l

" # !

� 1 �
X

m∈M

X

l∈N0

pN
m, l �

X

m∈M

X

l∈N0

p′N
m, l �

X

m∈M

X

l∈N0

pN
m, l

≤
X

m∈M

X

l∈N0

|p′N
m, l � pN

m, l | ≤ L1
X

m∈M

X

l∈N0

| x̂N
i, m, l(t�) � x′N

k, m, l | ≤ L1(ρN
k (t) + ε), (4.32) 
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where the second inequality is from Lemma 9. At an arrival epoch t ≥ 0, if a task arrives at an ε-bad dispatcher 
i ∈ WN

k , then with probability at most one, the systems have a mismatch. Because of the Poisson thinning property, 
we can construct an independent unit-rate Poisson process (Z(t))t≥0 so that ∆N(t) can be upper bounded by a ran
dom time change of Z as the following; for all t ∈ [0, T],

∆N(t) ≤ Z
X

k∈K

X

i∈WN
k

λ
Z t

0
[1(i∈G

ε
N(s�))L1(ρN

k (s�) + ε) + 1(i∈B
ε
N(s�)) · 1]ds

0

@

1

A

≤ Z
X

k∈K

X

i∈WN
k

λ
Z t

0
[1(i∈G

ε
N(s�))L1(L∆N(s�)=N + ε) + 1(i∈B

ε
N(s�)) · 1]ds

0

@

1

A

� Z λ
Z t

0
[G
ε
N(s�)L1(L∆N(s�)=N + ε) + B

ε
N(s�) · 1]ds

� �

, (4.33) 

where the second inequality is because of Lemma 8. By Proposition 2, we have that for any ε′ > 0, there exists an 
N(ε′) such that for all N ≥ N(ε′),

P sup
t∈[0,T]

B
ε
N(t) ≥ ε′ |WN |

 !

≤
ε′

2 : (4.34) 

Hence, by (4.33), (4.34), and Tonelli’s theorem, we have that for all N ≥ N(ε′) and t ∈ [0, T],

E
∆N(t)

N

� �

≤ λ
Z t

0
L1 L W(N)

N
E(∆N(s�))

N
+ ε

� �

+
W(N)

N
3ε′

2

� �

ds: (4.35) 

Also, by the assumption that limN→∞
W(N)

N � ζ, there exists N0 such that W(N)

N ≤ 2ζ. Hence, we have that for all N ≥

max(N(ε′), N0) and t ∈ [0, T],

E
∆N(t)

N

� �

≤ λ
Z t

0
L1 2LζE(∆N(s�))

N
+ ε

� �

+ 3ζε′

� �

ds: (4.36) 

By applying Grönwall’s inequality to (4.36), we have

E
∆N(t)

N

� �

≤ λ(L1ε + 3ζε′)t exp(2LL1ζλt): (4.37) 

Because ∆N(t) is nonnegative, by Markov’s inequality and (4.37), we have

P sup
t∈[0,T]

∆N(t)=N ≥ ε∗

 !

≤
1
ε∗
λ(L1ε+ 3ζε′)t exp(2LL1ζλt), (4.38) 

and we can choose small-enough ε and ε′ such that (4.30) holds. w

5. Proof of Interchange of Limits
5.1. Properties of the Limiting System of ODEs
First, we define the fixed point of the ODE (3.7). Recall δk �

P
m∈Mpk, mvm and q̃k, l(t) �

P
m∈M

vmpk,m
δk

qm, l(t). Let q∗ �

(q∗
m, l ∈ R+, m ∈ M, l ∈ N0) be a fixed point of the ODE (3.7) if for all m ∈ M, l ∈ N,

um(q∗
m, l � q∗

m, l+1) � λζ(q∗
m, l�1 � q∗

m, l)
X

k∈K

pk, mwk

δk

(q̃∗
k, l�1)

d
� (q̃∗

k, l)
d

q̃∗
k, l�1 � q̃∗

k, l
, (5.1) 

with q∗
m, 0 � 1, m ∈ M. The next proposition shows some important properties of the fixed point q of the 

ODE (3.7).
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Proposition 4. If there exists a fixed point q∗ of the ODE (3.7) such that for each m ∈ M, qm, 0 � 1 and qm, l →
l→∞ 0, then for 

each m ∈ M, the sequence {qm, l, l ∈ N0} decreases doubly exponentially.

The proof of Proposition 4 is provided in Appendix F. The key observation used in the proof is that by (5.1), q∗
m, l 

can be expressed in terms of q∗
m, l�1 and q∗

m, l�2. Thus, we can recursively characterize the values of q∗
m, l, l ≥ 2, if we 

know q∗
m, 0 and q∗

m, 1, m ∈ M.
By Proposition 4, we know that if q∗ is a fixed point of the ODE (3.7) and for all m ∈ M, q∗

m, l →
l→∞ 0, then such q∗

must be in S, so we only need to show that such q∗ exists. For the proof of the existence of such q∗, we need a techni
cal lemma, which will be used in (5.4).

Lemma 10. Consider a sequence {GN}N satisfying Condition 1. If {GN}N is proportionally sparse and in the subcritical 
regime, then for any (α1, : : : ,αM) ∈ [0, 1]

M with 
P

m∈Mαm > 0, the following holds:

X

m∈M

αmvmum

 !�1

λζ
X

k∈K

wk

P
m∈Mαmpk, mvm

δk

� �d
≤ ρ < 1: (5.2) 

The proof of Lemma 10 is provided in Appendix G.

Proof of Theorem 4. We prove the existence of the fixed point first. From (5.1), we know that if (q∗
m, 1, m ∈ M) are 

fixed, then all (q∗
m, l, m ∈ M, l ≥ 2) are determined as well. Hence, q∗ can be the viewed as the function of 

(q∗
m, 1, m ∈ M). Moreover, in the steady state, 

P
m∈Mq∗

m, 1 � λζ, which implies that q∗
M, 1 can be decided by the 

values of q∗
m, 1, m ∈ M \ {M}. Hence, we construct the sequence q(α) � (qm, l(α), m ∈ M, l ∈ N0) as functions of the 

vector α � (α1, : : : ,αM�1) ∈ (0, 1)
M�1 as follows:

qm, 0(α) � 1, ∀m ∈ M,

qm, 1(α) � αm, m ∈ M \ {M}, and qM, 1 �
λζ�

P
m∈M\{M}αmvmum

vMuM
,

um(qm, l(α) � qm, l+1(α)) � λζ(qm, l�1(α) � qm, l(α))
X

k∈K

pk, mwk
δk

(q̃k, l�1(α))
d

� (q̃k, l(α))
d

q̃k, l�1(α) � q̃k, l(α)
, l ≥ 1: (5.3) 

Because for all m ∈ M, qm, 1(α) should be in (0, 1), then α � (α1, : : : ,αM�1) must lie in the polyhedron P1 defined as 
follows:

P1 :�

(

αm ∈

 

max
 

0,
λζ�

P
m′∈M\{m}vm′ um′

vmum

!

, min λζ

vmum
, 1

� �!

, ∀m ≤ M � 1,

and λζ� vMuM <
X

m ≤ M�1
αmvmum < λζ

)

:

For all α ∈ P1, we have 1 � qm, 0(α) > qm, 1(α) > 0, ∀m ∈ M. Consider l � 2. By (5.3), we have that when 
αm � 0, m ∈ M \ {M},

um(0 � qm, 2(α)) � λζ(1 � 0)
X

k∈K

pk, mwk

δk

1 � (q̃k, 1(α))
d

1 � q̃k, 1(α)
, 

implying that qm, 2(α) < 0; when αm � 1, m ∈ M \ {M},

um(1 � qm, 2(α)) � 0, 

implying that qm, 2(α) � 1 > 0. When αm � λζ
vmum

, m ∈ M \ M{ },

um
λζ

vmum
� qm, 2(α)

� �

� λζ 1 �
λζ

vmum

� �
X

k∈K

pk, mwk

δk

1 � (q̃k, 1(α))
d

1 � q̃k, 1(α)
, 

Zhao, Mukherjee, and Wu: Data Locality to Improve Heterogeneous Server Clusters 
22 Stochastic Systems, Articles in Advance, pp. 1–44, © 2024 The Author(s) 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[9

2.
11

9.
18

.2
09

] o
n 

10
 Ju

ly
 2

02
4,

 a
t 1

2:
33

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



implying that

qm, 2(α) �
λζ

vmum
�
λζ

um
1 �

λζ

vmum

� �
X

k∈K

pk, mwk
δk

1 � (q̃k, 1(α))
d

1 � q̃k, 1(α)

>
λζ

vmum
�
λζ

um
1 �

λζ

vmum

� �
X

k∈K

pk, mwk

δk

>
λζ

vmum
�
λζ

um
1 �

λζ

vmum

� �
X

k∈K

pk, mwk
pk, mvm

�
λζ

vmum
�
λζ

vmum
1 �

λζ

vmum

� �

> 0:

Let rm, 1, m ≤ M � 1 be the maximum number, which satisfies the following: 
1. rm, 1 < min λζ

vmum
, 1

� �
,

2. ∃α ∈ P1 with αm � rm, 1 such that qm, 2(α) � 0.
Define P′

1 ⊆ P1 as the following:

P′
1 :�

(

αm ∈

 

max
 

rm, 1,
λζ�

P
m ≤ M�1vm′ um′

vmum

!

, min λζ

vmum
, 1

� �!

, ∀m ≤ M � 1,

and λζ� vMuM <
X

m ≤ M�1
αmvmum < λζ

)

:

Again, by using (5.3), we get that when 
P

m ≤ M�1αmum � λζ� vMuM (i.e., qM, 1(α) � 1),

uM(1 � qM, 2(α)) � 0, 

implying that qM, 2(α) � 1 > 0; when 
P

m ≤ M�1αmum � λζ  (i.e., qM, 1(α) � 0),

uM(0 � qM, 2(α)) � λζ(1 � 0)
X

k∈K

pk, Mwk

δk

1 � (q̃k, 1(α))
d

1 � q̃k, 1(α)
, 

implying that qM, 2(α) < 0.
Let r1 be the minimum number that satisfies the following: 
1. r1 < λζ.
2. There exists α ∈ P′

1 such that 
P

m ≤ M�1αmvmum � r1 and qM, 2(α) � 0.
Define P2 ⊆ P′

1 ⊆ P1 as the following:

P2 :�

(

αm ∈

 

max
 

rm, 1,
λζ�

P
m′ ≤ M�1vm′ um′

vmum

!

, min r1

vmum
, 1

� �!

, ∀m ≤ M � 1

and λζ� vMuM ≤
X

m ≤ M�1
αmvmum ≤ r1

)

:

Hence, for all α ∈ P2, we have 1 � qm, 0(α) > qm, 1(α) > qm, 2(α) > 0, ∀m ∈ M. Continuing this process, we can define 
a sequence {P1 ⊇ P2 ⊇ ⋯ } of polyhedra such that for all α ∈ Pn, we have 1 � qm, 0(α) > qm, 1(α) > ⋯> qm, n(α)

> 0, ∀m ∈ M. Thus, we can get decreasing sequences {qm, l(α)}l∈N0 , m ∈ M for some α. Because qm, l ≥ 0, ∀m ∈ M, 
l ∈ N0, then ∀m ∈ M, ∃x∗

m such that liml→∞ qm, l(α) � x∗
m. Next, we need to show that x∗

m � 0, ∀m ∈ M. By (F.2), we 
have

X

m∈M

vmumx∗
m � λζ

X

k∈K

wk
X

m∈M

pk, mvm

δk
x∗

m

 !d

: (5.4) 
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Clearly, x∗
m � 0, ∀m ∈ M is a solution of (5.4). It must be the unique solution because by Lemma 10, for all 

(x∗
m, m ∈ M) ∈ [0, 1]

M with 
P

m∈Mx∗
m > 0,

X

m∈M

vmumx∗
m

 !�1

λζ
X

k∈K

wk
X

m∈M

pk, mvm

δk
x∗

m

 !d

< 1, 

implying that (5.4) does not hold. Now, let q∗
m, l � qm, l(α), ∀m ∈ M, l ∈ N0.

Now, we are going to show the uniqueness. The proof of the uniqueness is based on a monotonicity property of 
the system, which is stated in the following claim.

Claim 1. If q ≤ q̂ for q, q̂ ∈ S, then q(t, q) ≤ q(t, q̂) for all t.

Proof. Consider any q ≤ q̂ ∈ S. It is easy to construct two copies of the Nth systems with initial states {XN
j (0), j ∈

VN} and {X̂N
j (0), j ∈ VN} satisfying the following. 

1. For all j ∈ VN, XN
j (0) ≤ X̂N

j (0).
2. {XN

j (0), j ∈ VN} has the corresponding global occupancy qN(0) � q ∈ S; similarly, {X̂N
j (0), j ∈ VN} has q̂N(0) �

q̂ ∈ S.
By a natural coupling, we have that for all j ∈ VN and t ≥ 0, XN

j (t) ≤ X̂N
j (t), implying that qN(t) ≤ q̂N(t). 

Because systems are stable, then qN(t), q̂N(t) ∈ S for all t ≥ 0. Moreover, by Theorem 2, the claim follows. w

We continue the proof of the uniqueness. Now, it is sufficient to show that limt→∞ q(t, q0) � q∗, in which either 
q0 ≤ q∗ or q0 ≥ q∗ component wise, because Claim 1 implies that

q(t, min(q0, q∗)) ≤ q(t, q0) ≤ q(t, max(q0, q∗)), ∀q0 ∈ S, t ≥ 0:

We will prove the case that if q0 ≤ q∗, then

lim
t→∞

q(t, q0) � q∗:

The case that q0 ≥ q∗ is similar. Also, note that qm, l(∞), ∀m ∈ M, l ≥ 2 can be solved recursively by (5.1) when 
qm, 1(∞), ∀m ∈ M are determined, so it is sufficient to show that qm, 1(∞) � q∗

m, 1, ∀m ∈ M. By ODE (3.7), we have
d
dt
X

m∈M

vmqm, 1(t) � �
X

m∈M

vmumqm, 1(t) +λζ:

Because q0 ≤ q∗, then q(t, q0) ≤ q(t, q∗) � q∗. Observe that 
P

m∈Mvmumq∗
m, 1 � λζ. Hence, if for some m ∈ M, 

qm, 1(t) < q∗
m, 1, then d

P
m∈M

vmqm, 1(t)
dt > 0, which implies that

lim
t→∞

X

m∈M

vmqm, 1(t) �
X

m∈M

vmqm, 1(∞) � λζ:

Because for all m ∈ M and t ≥ 0, qm, 1(t) ≤ q∗
m, 1, then limt→∞ qm, 1(t) � q∗

m, 1 must hold for all m ∈ M. w

Proof of Theorem 7. The result holds immediately from Proposition 4 and Theorem 4. w

5.2. Proof of Tightness and Interchange of Limits
Next, we are going to prove the tightness of the steady-state occupancy processes {qN(∞)}N. Let qN

l (∞) �P
m∈MqN

m, l(∞) and qN(∞) � (qN
l (∞), l ∈ N0). In order to show the tightness of {qN(∞)}N, it is sufficient to show that 

the sequence is {qN(∞)}N, which is stated in the next proposition. For showing the tightness, we will bound the tail 
of the expected global occupancy of the stationary state first.

Lemma 11. Let {GN}N be a sequence of proportionally sparse graphs satisfying Condition 1. There exists an N0 such that 
for all N ≥ N0 and ℓ ≥ 1,

X∞

l�ℓ
E(qN

l (∞)) ≤
(1 + ρ)=2

1 � (1 + ρ)=2E(qN
ℓ�1(∞)): (5.5) 

Furthermore,

E(qN
ℓ (∞)) ≤

1 + ρ

2

� �ℓ

, ∀ℓ ∈ N0: (5.6) 
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The proof of Lemma 11 is similar to Rutten and Mukherjee (2022, lemma 3). We define a sequence {LN
m, ℓ}m∈M, ℓ∈N0 

of Lyapunov functions and bound the drift of LN
m, ℓ, which enables us to bound the tail sum of qN

l (∞) starting from ℓ. 
Given the Nth system state, XN � (XN

j , j ∈ VN). Let QN
m, l(X) be the set of servers of type m ∈ M with queue length at 

least l ∈ N0. For each m ∈ M, we define a sequence of Lyapunov functions LN
m, ℓ(X) �

P∞
i�ℓ
P

l�i |QN
m, l(X) | , ℓ ∈ N0. The 

complete proof is provided in Appendix H.
The next lemma from Mukherjee et al. (2018a) gives us the criterion for ℓ1-tightness.

Lemma 12 (Mukherjee et al. 2018b, lemma 2). Let {XN} be a sequence of random variables in S′, where S′ � {x ∈ [0, 1]
N0 

: xi ≤ xi�1, ∀i ∈ N0, and
P

ixi < ∞}. Then, the following are equivalent. 
i. {XN} is tight with respect to the product topology, and for all ε > 0,

lim
k→∞

lim
N→∞

P
X

i≥k
xN

i > ε

 !

� 0: (5.7) 

ii. {XN} is tight with respect to the ℓ1-topology.

Proof of Theorem 5. Because for all l ∈ N0, qN
l ∈ [0, 1], then it is easy to check that {qN(∞)} is tight with respect to 

the product topology. Hence, it is sufficient to show that for any ε > 0,

lim
ℓ→∞

lim
N→∞

P
X

l≥ℓ
qN

l (∞) > ε

 !

� 0: (5.8) 

By Markov’s inequality and Lemma 11, we have that for all N ≥ N0,

P
X

l≥ℓ
qN

l (∞) > ε

 !

≤
1
ε
E
X

l≥ℓ
qN

l (∞)

 !

≤
1
ε

(1 + ρ)=2
1 � (1 + ρ)=2E(qN

ℓ�1(∞)) ≤
1
ε

((1 + ρ)=2)
ℓ

1 � (1 + ρ)=2 , (5.9) 

which implies that (5.8) holds. By Lemma 12, the desired result holds. w

Proof of Theorem 6. By Theorem 5, {qN(∞)}N is tight with respect to the ℓ1-topology. Then, any subsequence has 
a convergent further subsequence. Let {qNn (∞)}n be such convergent subsequence, and assume qN(∞)→

d q∗. 
Clearly, q∗ must be in the space S. Now, initiate the Nth system at its stationarity. Then, the system is in steady 
state at any fixed finite time t ≥ 0. That is, we have qNn (t) ~ qNn (∞) for all t ∈ [0, T]. Also, by Theorem 3, 
qNn (t)→d q(t): Thus, for all t ∈ [0, T], q(t) ~ q∗, which implies that q∗ is a stationary point of the limiting system. By 
Theorem 4, we know that q∗ is unique. Therefore, the desired result holds. w

6. Numerical Results
In this section, we will present the simulation to validate the theoretical results. Using the insights from the theoreti
cal results, we will also show that systems with carefully designed compatibility structure perform much better 
than the classical, fully flexible systems. Throughout this section, we set the system parameters as follows: K � 2: 
two clusters of dispatchers; M � 3: three types of servers; d � 2: the system follows the JSQ(2) policy; m � (1, 5, 10), 
where each µm, m � 1, 2, 3, is the service rate of type m servers; λ � 3, which is the arrival rate at each dispatcher is λ; 

Q �

�
0:2 0:5 0:3
0:5 0 0:5
0:9 0:1 0

�

, where each qm, l is the probability that type m, m � 1, 2, 3 server’s initial queue length is l, l � 1, 2, 3; 

fraction of types of dispatchers: [ w1 w2 ] � [ 0:2 0:8 ]; fraction of types of servers: [ v1 v2 v3 ] � [ 0:5 0:3 0:2]; 
and ζ � 1: the relationship between the number of dispatchers and that of servers in the system.

In the setting, the capacity sufficiency is satisfied, λζ � 3 <
P

m∈Mvmum � 4. The first experiment is to compare 
the performance of the classical, fully flexible system with that of the system with carefully designed compatibility 
structure.

6.1. Complete Bipartite vs. Designed Compatibility Structure
The complete bipartite is the case that the compatibility matrix p0 � (p0

m, k, m ∈ M, k ∈ K) is a matrix with all elements 
equal to one. From Lemma 1, we have that an Nth system under JSQ(d) is stable if and only if it satisfies the 
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following:

ρN � max
U ⊆VN

U≠∅

X

j∈U

X

m∈M

1(j∈VN
m )um

0

@

1

A

�1
X

i∈WN

X

S⊆(U∩N
N
w (i)) :

|S | �d

λ

δN
i
d

� �

8
>><

>>:

9
>>=

>>;

< 1:

By Lemma 10, for the complete bipartite case, we have that

lim
N→∞

ρN ≥ max
M′⊆M

X

m∈M′

vmum

 !�1

λζ
X

k∈K

wk
X

m∈M′

vm

 !d

≥ (0:5 × 1)
�1

× 3 × (0:5)
2

> 1, 

which implies that for large-enough N, the system under JSQ(2) is unstable. The bottleneck here is that the type 1 
servers with poor performance receive heavy workload. By Proposition 1, if the capacity sufficiency is satisfied, 
then there always exists a compatibility matrix p1 ∈ [0, 1]

K×M making all large-enough systems stable under JSQ(2). 
Checking the feasible region defined in Lemma 2, we get one of the appropriate matrices p1 defined as p1 �
�

0:05 0:6 1
0:1 0:7 1

�

: The intuition for designing the compatibility matrix, like p1, is to lower the traffic intensity for type 1 
servers by decreasing the fraction of the type 1 servers in the neighborhood of each dispatcher. For the experiment, 
we set the number of servers n � 1,000 and consider two systems S1 and S2. S1 is a system with complete bipartite 
graph structure; S2, generated by IRG(p1) (Definition 3), is a system with compatibility matrix p1. We simulate the 
evolution of each system 100 times and plot the mean sample path in Figure 1.

Figure 1 shows that the average queue length of type 1 servers in S1 almost monotonically increases as t 
increases, which implies that the average queue length of type 1 servers in S1 is unbounded. However, in the sys
tem S2, the average queue length of each type of servers is bounded. From this numerical result, we observe that 
with an appropriately designed graph structure, the performance of the system can be improved. Although we 
tried to plot the 95% confidence interval (CI) for each point t � 0:5, 1:0, 1:5, 2:0, 2:5, the CI is narrow, and its size is 
smaller than that of markers in the plot. One reasonable explanation for such a narrow CI is that for large-enough 
N, the scaled occupancy process qN is close to the fluid limit q. In other words, the error of the mean-field approxi
mation is quite small, which can be of independent interest. With a similar heterogeneous setting, Allmeier and 
Gast (2022) show that the error of the mean-field approximation is O(1=N).

6.2. Convergence of Global Occupancy States
In this experiment, we generate systems by IRG(p1) and simulate the evolution of systems with size n � 100, 500, 
1,000. For each system, we also simulate 100 times and plot the mean trajectories of qN

m, 1 and qN
m, 2, m ∈ {1, 2, 3} in 

Figure 2. Also, we plot the evolution of qm, 1 and qm, 2, m � 1, 2, 3, of the limit system. The simulation results show 
that the evolution of the global occupancy of the Nth system converges to that of the limit system as N goes to infin
ity. From the simulation result, we find that qN

1, 1 and especially, qN
1, 2 decrease very fast when their initial values are 

Figure 1. Complete Bipartite vs. Appropriate Designed Structure 
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large. In other words, when the average queue length of type 1 servers is large, it will decrease very fast. The reason 
is because of our designed compatibility matrix such that compared with other type servers, type 1 servers are sam
pled much less often.

6.3. Uniqueness of the Fixed Point of the Limit System
From Theorem 4, we have that for all q ∈ S, lim→∞ q(t, q0) � q∗. In order to verify this, we use a simulation of the 
evolution of q(t, q0) with different q0 ∈ S (i.e., consider the different Q mentioned). We also simulate the system 

with Q1 �

�
0:4 0:3 0:3
0:1 0:8 0:1
0:3 0:6 0:1

�

and Q2 �
0:6 0:3 0:1
0:8 0:1 0:1
0:7 0:2 0:1

� �

. Figure 3 shows that with different q ∈ S, limt→∞qm, 1(t), m � 1, 2, 3, are 

the same. If qm, 1, m � 1, 2, 3 are fixed, then the values of all qm, l, l ≥ 2, m � 1, 2, 3 are fixed as well by using (5.1). 
Hence, Figure 3 verifies the uniqueness of the fixed point.

7. Conclusion
In this paper, we model a heterogeneous system as a bipartite graph and investigate how we can impose the data 
locality to significantly improve the system performance even if the individual task assignment remains oblivious 
to the service rates. We figure out that if the sequence of systems satisfies the capacity sufficiency, we can always 

Figure 2. The Simulated Trajectories of qN
m, 1 and qN

m, 2, m � 1, 2, 3 Converging to the Solution of the System of ODEs as N 
Increases 

Figure 3. Multiple Trajectories of qm, 1, m � 1, 2, 3 in the Limit System Converging to the Fixed Point 
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design an appropriate graph structure between dispatchers and servers such that the vanilla JSQ(d) policy achieves 
maximal throughput and the tail of queue-length distribution decreases doubly exponentially. However, it is 
worthwhile to mention that although we consider the data locality, which restricts the compatible servers for each 
dispatcher, our work is not really to investigate the sparsest system. It is an interesting future research direction to 
see what is the sparsest in which such a compatibility graph can achieve similar favorable properties, like the 
double-exponential tail decay.

Appendix A. Proofs for Stability Results
The goal of this appendix is to prove Proposition 1. We start by proving Lemma 2, for which we need the next technical lemma. 
This lemma will help us to upper bound the probability that a new task will be assigned to a specific subset of servers (in particu
lar, (A.5)).

Lemma A.1. Consider the following optimization problem:

max
XN

i�1

xi

d

� �

s:t:
XN

i�1
xi � C and xi ∈ [0, D], 

where C and D are positive integers. Let k∗ � ⌊C=D⌋. Then, the optimal value is k∗ D
d

� �

+ C � Dk∗

d

� �
, if N > k∗; otherwise, the optimal value is 

N D
d

� �
.

Proof. We will prove by contradictions. Suppose the maximizer {x∗
i : i � 1, : : : , N} contains some x∗

j , x∗
k ∈ {1, : : : , D � 1} for some 

j ≠ k. Note that

x∗
j

d

 !

+
x∗

k
d

� �

<
x̃j

d

� �

+
x̃k

d

� �

, 

where x̃j � min{x∗
j + x∗

k, D} and x̃k � x∗
j + x∗

k � x̃j; that is, the pair (x∗
j , x∗

k) gives a smaller value than the extremer pair (x̃j, x̃k). This 
contradicts the assumption that {x∗

i : i � 1, : : : , N} is the maximizer. Therefore the maximizer {x∗
i : i � 1, : : : , N} must contain at 

most one x∗
j ∈ {1, : : : , D � 1}, with all the other x∗

i being either zero or D. This completes the proof. w

Proof of Lemma 2. Suppose that (3.1) holds. Because M is finite, then there exists a ρ ∈ (0, 1) such that λζum

P
k∈K

wkpk,m
δk

< ρ for all 
m ∈ M. Fix any ε ∈ 0, 1�ρ

1+3ρ

� �
. Recall δN

i � |N
N
w(i) | . By our model assumption and Condition 1, there exists Nε ∈ N0 such that for 

all m ∈ M and j ∈ VN
m ,

pk, mwkW(N)(1 � ε) ≤ degN
v (k, j) ≤ pk, mwkW(N)(1 + ε), ∀k ∈ K, (A.1) 

and for all K ∈ K and i ∈ WN
k ,

Nδk(1 � ε) ≤ δN
i ≤ Nδk(1 + ε): (A.2) 

Consider the Nth system. Consider any nonempty subset U ⊆ V of servers. If |U | ≤ C(λ,ρ) :� λ
ρminm∈Mum

, then there exists an N1 ∈ N0 
such that for all N ≥ (Nε ∨ N1),

X

j∈U

X

m∈M

1(j∈VN
m )um

0

@

1

A

�1
X

i∈WN

X

S⊆(U ∩ N
N
w(i)) :

|S |�d

λ

δN
i

d

 ! ≤
1

|U |minm∈M um

X

k∈K

X

i∈WN
k

λ
|C(λ,ρ) |

d

� �

δN
i
d

� � ≤ ρ, 

and for all i ∈ WN, δN
i goes to infinity as N → ∞ uniformly by (A.2). Next, consider the case |U | > C(λ,ρ). Denote αm � |U ∩

VN
m |= |VN

m | for each m ∈ M. Then,

X

j∈U

X

m∈M

1(j∈VN
m )um

0

@

1

A

�1
X

i∈WN

X

S⊆(U ∩ N
N
w (i)) :

|S | �d

λ

δN
w(i)
d

 ! ≤
X

m∈M

⌊ |VN
m |αm⌋um

 !�1
X

k∈K

X

i∈WN
k

λ |U ∩ N
N
w(i) |

d

� �

δN
w(i)
d

� � : (A.3) 

By (A.1), we have that for each k ∈ K,
X

i∈WN
k

|U ∩ N
N
w(i) | �

X

j∈U
degN

v (k, j) ≤
X

m∈M

|VN
m |αmpk, mwkW(N)(1 + ε): (A.4) 
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By Lemma A.1, (A.2), and (A.4),

(A:3) ≤
X

m∈M

⌊ |VN
m |αm⌋um

 !�1

λ
X

k∈K

$P
m∈M |VN

m |αmpk, mwkW(N)(1 + ε)

δkN(1 � ε)

%

+ 1
 !

δkN(1 + ε)

d

 !

δkN(1 � ε)

d

 !

≤ C1(N)
1 + ε

1 � ε

� �d X

m∈M

vmαmum

 !�1

λζ
X

k∈K

wk

$P
m∈Mvmαmpk, m(1 + ε)

δk(1 � ε)

%

+
1
N

 !

, (A.5) 

where C1(N) only depends on N and goes to one as N → ∞. Let

K′ :� k ∈ K :

$P
m∈Mvmαmpk, m(1 + ε)

δk(1 � ε)

%

≥ 1
( )

:

If K′ � ∅, then

(A:5) ≤ C1(N)
1 + ε

1 � ε

� �d λζ

N
P

m∈Mvmαmum

≤ C1(N)
1 + ε

1 � ε

� �d λζ

C(λ,ρ)minm∈M um
≤ ρ

1 + ε

1 � ε

� �d
: (A.6) 

Consider the case K′ ≠ ∅. Then, we get

(A:5) ≤ C1(N)
1 + ε

1 � ε

� �d X

m∈M

vmαmum

 !�1

λζ
X

k∈K

wk

P
m∈Mvmαmpk, m(1 + ε)

δk(1 � ε)
+

1
N

 !

≤ C1(N)
1 + ε

1 � ε

� �d X

m∈M

vmαmum

 !�1

λζ
X

k∈K

wk

P
m∈Mvmαmpk, m(1 + ε)

δk(1 � ε)

 !

+ C1(N)
1 + ε

1 � ε

� �d λζ

N
P

m∈Mvmαmum
: (A.7) 

By (3.1), we have that for all m ∈ M and αm ∈ (0, 1),

(αmvmum)
�1λζ

X

k∈K

wk
αmpk, mvm

δk

 !
1 + ε

1 � ε
≤
ρ(1 + ε)

1 � ε
<

1 + ρ

2 , 

which implies that

λζ
X

k∈K

wk

P
m∈Mvmαmpk, m(1 + ε)

δk(1 � ε)

 !

<
1 + ρ

2
X

m∈M

vmαmum

 !

: (A.8) 

Because K′ is nonempty, then we assume k′ ∈ K is in K′ (i.e., 
P

m∈Mvmαmpk′ , m(1 + ε) ≥ δk′ (1 � ε)). Hence,

λζ

N
P

m∈Mvmαmum
≤

λζ(1 + ε)

Nδk′ (1 � ε)minm∈M um
≤

λζρ

Nδk′ minm∈Mum
, (A.9) 

which implies that there exists N2 ∈ N0 such that for all N ≥ N2,

λζ

N
P

m∈Mvmαmum
≤

λζ(1 + ε)

Nδk′ (1 � ε)minm∈Mum
< C2(N)!

N→∞

0: (A.10) 

We choose ε such that 1+ε
1�ε

� �d 1+ρ
2 < 1. By (A.8) and (A.10), we have that there exists a positive integer N3 ≥ (Nε ∨ N1 ∨ N2) such 

that for all N3 ∈ N0,

X

j∈U

X

m∈M′

1(j∈VN
m )um

0

@

1

A

�1
X

i∈WN

X

S⊆(U∩N
N
w(i)) :

|S |�d

λ

δN
w(i)
d

 ! <
1 + ε

1 � ε

� �d
C1(N)

1 + ρ

2 + C2(N)

� �

< 1: (A.11) 

We choose ε such that 1+ε
1�ε

� �d 1+ρ
2 < 1. Now, because the subset U ⊆ VN is arbitrary, then for all N ≥ N3, the Nth system is stable 

under JSQ(d) policy. w
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Proof of Proposition 1. By Lemma 2, it is sufficient to show that there exists some p such that for each m ∈ M,

λζ
X

k∈K

wk
vmpk, m

δk
< vmum: (A.12) 

Let xm, k �
vmpk,m
δk

∈ [0, 1], k ∈ K, m ∈ M with 
P

m∈Mxm, k � 1. Now, we can formulate a linear optimization problem as the follow
ing; the objective is minρ, and the constraints are

λζ
X

k∈K

wkxk, m ≤ ρvmum, ∀m ∈ M,

X

m∈M

xk, m � 1, ∀k ∈ K,

xk, m ∈[0, 1], ∀k ∈ K, m ∈ M: (A.13) 

Next, we construct a specific solution x′ � (x′
k, m, k ∈ K, m ∈ M) satisfying Constraints (A.13) with ρ0 � λζ=

P
m∈Mvmum. Note that 

ρ0 < 1 by (2.1). For convenience, we denote x′
k, 0 � 0 for all k ∈ K. First, consider k � 1. Let x′

1, 1 �
min(ρ0v1u1,λζw1)

λζw1
, and for m ≥ 2,

x′
1, m �

min(ρ0vmum,λζw1(1 �
P

m′<mx′
1, m′ ))

λζw1
:

Because λζw1 ≤ λζ � ρ0
P

m∈Mvmum, then 
P

m∈Mx′
1, m � 1 and m1 :� min{m ∈ M : ρ0vmum � x′

1, mλζw1 > 0} ∈ M. Then, consider 
k � 2. For all m < m1, let x′

2, m � 0. Let

x′
2, m1

�
min(ρ0vm1 um1 � x′

1, m1
λζw1,λζw2)

λζw2
, 

and let

x′
2, m �

min(ρ0vmum,λζw2(1 �
P

m′<mx′
2, m′ ))

λζw2
, m > m1:

Again, because λζ(w1 + w2) ≤ λζ ≤ ρ0
P

m∈Mvmum, then 
P

m∈Mx′
2, m � 1 and m2 :� min{m ≥ m1 : ρ0vmum � x′

2, mλζw2 > 0} ∈ M. 
We can construct x′

k, m, m ∈ M, k ≥ 3 by following the steps of the construction of x′
2, m, m ∈ M. Hence, we get a specific solution 

x′ satisfying (A.13) with ρ0 < 1. Therefore, minρ is strictly less than one, and our desired result holds. w

Appendix B. Approximation of the Graph Structure for Large N Systems
Proof of Lemma 5. Consider any fixed m ∈ M and fixed j ∈ Vm. Also, fix any k ∈ K and (M2, : : : , Md) ∈ Md�1:

X

i∈WN
k

ζN
i, j

X

(j2, : : : , jd)∈setN(j)
s:t: j2 ∈VN

M2
, : : : , jd ∈VN

Md

ξN
i, j2 ×⋯ × ξN

i, jd

δN
i

d

 !

(d � 1)!

� dζpk, mwk

δk

Yd

h�2

vMh pk, Mh

δk

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

≤
X

i∈WN
k

ξN
i, j

X

(j2, : : : , jd)∈setN(j)
s:t: j2 ∈VN

M2
, : : : , jd ∈VN

Md

ξN
i, j2 × ⋯ × ξN

i, jd

δN
i

d

 !

(d � 1)!

�
X

i∈WN
k

ξN
i, j

δN
i

d � 1

 !

δN
i

d

 !
Yd

h�2

vMh pk, Mh

δk

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

(B.1) 

+
X

i∈WN
k

ξN
i, j

δN
i

d � 1

 !

δN
i

d

 !
Yd

h�2

vMh pk, Mh

δk
� dζpk, mwk

δk

Yd

h�2

vMh pk, Mh

δk

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

: (B.2) 
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First,

max
i∈WN

k

X

(j2, : : : , jd)∈setN(j)
s:t: j2 ∈VN

M2
, : : : , jd ∈VN

Md

ξN
i, j2 × ⋯ × ξN

i, jd

δN
i

d � 1

 !

(d � 1)!

�
Yd

h�2

vMh pk, Mh

δk

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

≤ max
i∈WN

k

X

(j2, : : : , jd)∈setN(j)
s:t: j2 ∈VN

M2
, : : : , jd ∈VN

Md

ξN
i, j2 × ⋯ × ξN

i, jd

δN
i

d � 1

 !

(d � 1)!

�
degN

w(i, M2) × ⋯ × degN
w(i, Md)

δN
i

d � 1

 !

(d � 1)!

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

+ max
i∈WN

k

degN
w(i, M2) × ⋯ × degN

w(i, Md)

δN
i

d � 1

 !

(d � 1)!

�
Yd

h�2

vMh pk, Mh

δk

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

:

For large-enough N,

max
i∈WN

k

X

(j2, : : : , jd)∈setN(j)
s:t: j2 ∈VN

M2
, : : : , jd ∈VN

Md

ξN
i, j2 × ⋯ × ξN

i, jd

δN
i

d � 1

 !

(d � 1)!

�
degN

w(i, M2) × ⋯ × degN
w(i, Md)

δN
i

d � 1

 !

(d � 1)!

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

≤ max
i∈WN

k

d(d � 1)

δN
i

d � 1

 !

(d � 1)!

max
m∈M

(degN
w(i, m))

d�2

≤
d(d � 1)

mini∈WN
k

δN
i

d � 1

 !

(d � 1)!

max
i∈WN

k

max
m∈M

(degN
w(i, m))

d�2

≤ cN(m, k)d(d � 1)
(N maxm∈M vmpk, m)

d�2

(Nδk)
d�1 !

N→∞

0, (B.3) 

where cN(m, k) goes to one as N goes to infinity and only depends on k and m for each N. The last inequality comes from Condi

tion 1, Lemma 3, and δ
N
i × ⋯ ×(δN

i �d+2)

(δN
i )

d�1 →
N→∞ 1. Similarly, we have

max
i∈WN

k

degN
w(i, M2) × ⋯ × degN

w(i, Md)

δN
i

d � 1

 !

(d � 1)!

�
Yd

h�2

vMh pk, Mh

δk

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

≤ max
Yd

h�2

maxi∈WN
k

degN
w(i, Mh)

mini∈WN
k

(δN
i � d)

�
vMh pk, Mh

δk

 !

,
Yd

h�2

mini∈WN
k

degN
w(i, Mh)

maxi∈WN
k
δN

i
�

vMh pk, Mh

δk

 ! !

≤ cN(m, k, M2, : : : , Md)!
N→∞

0, (B.4) 

where cN(m, k, M2, : : : , Md) depends on m, k, M2, : : : , Md. By (B.3) and (B.4), we have

max
i∈WN

k

X

(j2, : : : , jd)∈setN(j)
s:t: j2 ∈VN

M2
, : : : , jd ∈VN

Md

ξN
i, j2 × ⋯ × ξN

i, jd

δN
i

d � 1

 !

(d � 1)!

�
Yd

h�2

vMh pk, Mh

δk

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

≤ cN
1 (m, k, M2, : : : , Md)!

N→∞

0, (B.5) 
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where cN
1 (m, k, M2, : : : , Md) depends on m, k, M2, : : : , Md. By Lemma 3, we have

lim
N→∞

max
i∈WN

k

N
δN

i

d � 1

 !

δN
i

d

 ! � lim
N→∞

min
i∈WN

k

N
δN

i

d � 1

 !

δN
i

d

 ! �
d
δk

,

lim
N→∞

max
j∈VN

m

degN
v (k, j)
N

� lim
N→∞

min
j∈VN

m

degN
v (k, j)
N

� ζpk, mwk:

Then,

X

i∈WN
k

ξN
i, j

δN
i

d � 1

 !

δN
i

d

 ! � dζ pk, mwk

δk

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

≤
X

i∈WN
k

ξN
i, j

δN
i

d � 1

 !

δN
i

d

 ! � degN
v (k, j) d

Nδk

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

+

�
�
�
�
�
degN

v (k, j) d
Nδk

� dζ pk, mwk

δk

�
�
�
�
�

≤ cN
1 (m, k)!

N→∞

0, (B.6) 

where cN
1 (m, k) only depends on m and k.

Consider (B.1).

X

i∈WN
k

ξN
i, j

X

(j2, : : : , jd)∈setN(j)
s:t: j2 ∈VN

M2
, : : : , jd ∈VN

Md

ξN
i, j2 × ⋯ × ξN

i, jd

δN
i

d

 !

(d � 1)!

�
X

i∈WN
k

ξN
i, j

δN
i

d � 1

 !

δN
i

d

 !
Yd

h�2

vMh pk, Mh

δk

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
X

i∈WN
k

ξN
i, j

δN
i

d � 1

 !

δN
i

d

 !
X

(j2, : : : , jd)∈setN(j)
s:t: j2 ∈VN

M2
, : : : , jd ∈VN

Md

ξN
i, j2 × ⋯ × ξN

i, jd

δN
i

d � 1

 !

(d � 1)!

�
X

i∈WN
k

ξN
i, j

δN
i

d � 1

 !

δN
i

d

 !
Yd

h�2

vMh pk, Mh

δk

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

≤
X

i∈WN
k

ξN
i, j

δN
i

d � 1

 !

δN
i

d

 !
X

(j2, : : : , jd) ∈setN(j)
s:t: j2 ∈VN

M2
, : : : , jd ∈VN

Md

ξN
i, j2 × ⋯ × ξN

i, jd

δN
i

d � 1

 !

(d � 1)!

�
Yd

h�2

vMh pk, Mh

δk

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

≤
(a) X

i∈WN
k

ξN
i, j

δN
i

d � 1

 !

δN
i

d

 ! cN
2 (m, k, M2, : : : , Md)

≤
(b)

cN
2 (m, k, M2, : : : , Md)cN

2 (m, k)dζ pk, mwk
δk

!
N→∞

0, (B.7) 

where cN
2 (m, k, M2, : : : , Md) →

N→∞ 0 and cN
2 (m, k) →

N→∞ 1. (a) is from (B.5), and (b) is from (B.6). Hence, (B.1) goes to zero as N → ∞. 
Then,

X

i∈WN
k

ξN
i, j

X

(j2, : : : , jd)∈setN(j)
s:t: j2 ∈VN

M2
, : : : , jd ∈VN

Md

ξN
i, j2 ×⋯ × ξN

i, jd

δN
i

d

 !

(d � 1)!

� dζpk, mwk

δk

Yd

h�2

vMh pk, Mh

δk

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

≤ cN
3 (m, k, M2, : : : , Md)!

N→∞

0, (B.8) 
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where cN
3 (m, k, M2, : : : , Md) only depends on m, k, M2, : : : , Md. Because k ∈ K and (M2, : : : , Md) ∈ Md�1 are arbitrary and because K 

and Md�1 are finite sets, we have

max
k∈K

max
(M2, : : : ,Md)∈Md�1

X

i∈WN
k

ξN
i, j

X

(j2, : : : , jd)∈setN(j)
s:t: j2 ∈VN

M2
, : : : , jd ∈VN

Md

ξN
i, j2 × ⋯ × ξN

i, jd

δN
i

d

 !

(d � 1)!

� dζpk, mwk

δk

Yd

h�2

vMh pk, Mh

δk

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

≤ cN(m)!
N→∞

0, (B.9) 

where cN(m) only depends on m. Because cN(m) does not depend on j ∈ VN
m , (4.9) holds. w

Proof of Lemma 6. Fix any m ∈ M and j ∈ Vm. Consider (4.10). When ξN
i, j � 1, by the definition (4.2) of settN(·),

X

settN(j)

ξN
i, j × ξN

i, j2 ×⋯ × ξN
i, jd

δN
i

d

 !

(d � 1)!

ξN
i, j × ξN

i, j′2
×⋯ × ξN

i, j′d

δN
i

d

 !

(d � 1)!

�

(d � 1)!
δN

i � 1
d � 1

 !" #2

� (2d � 2)!
δN

i � 1
2d � 2

 !

δN
i

d

 !2

((d � 1)!)
2

:

Also, by Lemma 3, we have that for all k ∈ K and i ∈ Wk,

(d � 1)!
δN

i � 1

d

 !" #2

� (2d � 2)!
δN

i � 1

2d � 2

 !

δN
i

d

 !2

((d � 1)!)
2

≤

(d � 1)! maxi∈WN
k

δN
i � 1

d

 !" #2

� (2d � 2)! mini∈WN
k

δN
i � 1

2d � 2

 !

mini∈WN
k

δN
i

d

 !2

((d � 1)!)
2

≤ c1(N)

(d � 1)!
Nδk

d � 1

 !" #2

� (2d � 2)!
Nδk

2d � 2

 !

Nδk

d

 !2

((d � 1)!)
2

, 

where c1(N) only depends on N and goes to one as N → ∞. By Lemma 3, we have that for all k ∈ K, maxj∈WN
m

degN
v (k, j)

≤ c2(N, m) |WN
k |pk, m, where c2(N, m) only depends on N and m and goes to one as N → ∞. Hence,

X

i∈WN

X

settN(j)

ξN
i, j × ξN

i, j2 × ⋯ × ξN
i, jd

δN
i

d

 !

(d � 1)!

ξN
i, j × ξN

i, j′2
× ⋯ × ξN

i, j′d

δN
i

d

 !

(d � 1)!

�
X

k∈K

X

i∈WN
k

(d � 1)!
δN

i � 1

d

 !" #2

� (2d � 2)!
δN

i � 1

2d � 2

 !

δN
i

d

 !2

((d � 1)!)
2

≤ c1(N)
X

k∈K

degN
v (k, j)

(d � 1)!
Nδk

d � 1

 !" #2

� (2d � 2)!
Nδk

2d � 2

 !

Nδk

d

 !2

((d � 1)!)
2

≤ c1(N)c2(N, m)
X

k∈K

|WN
k |pk, m

(d � 1)!
Nδk

d � 1

 !" #2

� (2d � 2)!
Nδk

2d � 2

 !

Nδk

d

 !2

((d � 1)!)
2

:
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Let c3(N) � maxm∈Mc1(N)c2(N, m) with c3(N) →
N→∞ 1. Then, we have that for large-enough N,

X

i∈WN

X

settN(j)

ξN
i, j × ξN

i, j2 × ⋯ × ξN
i, jd

δN
i

d

0

@

1

A(d � 1)!

ξN
i, j × ξN

i, j′2
× ⋯ × ξN

i, j′d

δN
i

d

0

@

1

A(d � 1)!

≤ c3(N)
X

k∈K

|WN
k |pk, m

(d � 1)!
Nδk

d � 1

 !" #2

� (2d � 2)!
Nδk

2d � 2

 !

Nδk

d

 !2

((d � 1)!)
2

≤ 2
X

k∈K

|WN
k |pk, m

(d � 1)!
Nδk

d � 1

 !" #2

� (2d � 2)!
Nδk

2d � 2

 !

Nδk

d

 !2

((d � 1)!)
2

: (B.10) 

Because limN→∞ |WN
k |=N � ζwk and 

�

(d � 1)!
x

d � 1

� ��2
� (2d � 2)!

�
x

2d � 2

�
≤ C3x2d�3 for some constant C3, then by choosing C1 appro

priately, (4.10) holds for all large-enough N. We can get (4.11) in a similar way. w

Appendix C. Unique Solution of ODE (3.7)
Proof of Lemma 7. Recall that q(t, q0) is a solution of (3.7) given the initial point qN(0) � q0. For convenience, we denote 
q(t, q0) as q(t) and write the ODE (3.7) as the following:

q(0) � q0, q· (t) � h(q(t)), (C.1) 

where for all m ∈ M,

hm, 0(q) � 0,

hm, l(q) � �um(qm, l � qm, l+1) +λζ(qm, l�1 � qm, l)
X

k∈K

pk, mwk

δk

(q̃k, l�1)
d

� (q̃k, l)
d

q̃k, l�1 � q̃k, l
, l ≥ 1: (C.2) 

Observe that under (C.2), if qm, l(t) � qm, l+1(t) for some m ∈ M, l ∈ N0, t ≥ 0, then hm, l(q(t)) ≥ 0 and hm, l+1(q(t)) ≤ 0; if qm, l(t) � 0 for 
some m ∈ M, l ∈ N0, t ≥ 0, then hm, l(q(t)) ≥ 0. Hence, if q ∈ S , then any solution of (C.1) and (C.2) remains within S . In order to 
show the existence and the uniqueness, we use the Picard successive approximation method (Martin and Suhov 1999, theorem 
1(i)). In the rest of the proof, we use the norm

‖q‖ � sup
m∈M

sup
l∈N0

|qm, l |

l + 1 :

For any q, q′ ∈ S ,

‖h(q)‖ ≤ K1, ‖h(q) � h(q′)‖ ≤ K2‖q � q′‖, (C.3) 

where K1 :� maxm∈Mum +λζ  and K2 :� 2 maxm∈Mum + 2dλζ. For t ≥ 0, let q(0)(t) � q0, and by the Picard successive approxima
tion method, let

q(n)(t) � q0 +

Z t

0
h(q(n�1)(s))ds, n ∈ N:

By induction, we have that q(n)(t) is continuous w.r.t. t on [0, ∞) for all n and that

‖q(n+1)(t) � q(n)(t)‖ ≤
K1Kn

2tn+1

(n + 1)!
, ∀n ∈ N, t ≥ 0:

Hence, for all t ≥ 0, q(∞) � limn→∞ q(n) exists uniformly for s ∈ [0, t]. Also, by (C.3) and the dominated convergence theorem, the 
following holds:

q(∞)(t) � q0 +

Z t

0
h(q(∞)(s))ds: (C.4) 
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Next, we show the uniqueness by contradiction. Assume that q̃(∞) also satisfies

q̃(∞)(t) � q0 +

Z t

0
h(q̃(∞)(s))ds:

Then, we have

q̃(∞)(t) � q(n)(t) �

Z t

0
[h(q̃(∞)(s)) � h(q(n�1)(s))]ds:

Similarly, we get

‖q̃(∞)(t) � q(n)(t)‖ ≤
K1Kn

2tn+1

(n + 1)!
, 

which implies that q̃(∞)(t) � limn→∞ q(n)(t) � q(∞). w

Appendix D. Proof of Proposition 2
Lemma D.1. If qN(0) weakly converges to q(0) � q∞ ∈ S, then for any ε > 0, δ > 0, and T > 0, there exist ℓ ∈ N0 and Nℓ ∈ N0, depending 
on q∞, ε, δ, and T, such that for all N ≥ N1,

P sup
t∈[0,T]

sup
m∈M

qN
m, ℓ(t) ≥ ε

 !

< δ: (D.1) 

Proof. Fix any ε > 0 and δ > 0. Because q∞ ∈ S, then there exists ℓ1 ∈ N0 such that supm∈M
q∞

m,ℓ1 ≤ ε=4. By the weak convergence 
qN(0) ⇒ q∞, there exists N1 ∈ N0 such that for all N ≥ N1,

P(qN
m,ℓ1 (0) ≤ ε=2) ≤ P(‖qN(0) � q∞‖1 ≥ ε=4) <

δ

2 : (D.2) 

Let ℓ � ℓ1 + supm∈M
⌈4ζλT

vmε
⌉. Hence,

P sup
t∈[0,T]

sup
m∈M

qN
m,ℓ(t) ≥ ε

 !

≤ P sup
t∈[0,T]

sup
m∈M

qN
m,ℓ(t) ≥ ε

�
�
�
�
�

sup
m∈M

qN
m, ℓ1 (0) < ε=2

 !

+P(qN
m,ℓ1 (0) ≤ ε=2): (D.3) 

Because given supm∈M
qN

m,ℓ1 (0) < ε=2 (i.e., for all m ∈ M, qN
m,ℓ1 (0) |VN

m | < ε=2 |VN
m | ), then if for some t ∈ [0, T] and m ∈ M, qN

m, ℓ(t) ≥ ε 
(i.e., qN

m,ℓ(t) |VN
m | ≥ ε |VN

m | ), there must be at least infm∈M |VN
m |ε(ℓ� ℓ1)=2 tasks arriving in the system. By using the standard concen

tration inequality for Poisson random variables (Habib et al. 1998, theorem 2.3(b)), we have

P sup
t∈[0,T]

sup
m∈M

qN
m,ℓ(t) ≥ ε

�
�
�
�
�

sup
m∈M

qN
m, ℓ1 (0) < ε=2

 !

≤ P(Po(W(N)λ) ≥ inf
m∈M

|VN
m |ε(ℓ� ℓ1)=2)

≤ P(Po(NζλT) ≥ 2C(N)NζλT) ≤ exp �
((2C(N) � 1)NζλT)

2

2(NζλT + ((2C(N) � 1)NζλT)=3)

 !

!
N→∞

0, (D.4) 

where Po(·) is a unit-rate Poisson random variable and C(N) is a positive constant only dependent on N that goes to one as N 
goes to infinity. The second inequality comes from the assumption that W(N)=N → ζ and |VN

m |=N → vm, ∀m ∈ M. By (D.4), 
there exists N2 ∈ N0 such that for all N ≥ N2,

P sup
t∈[0,T]

sup
m∈M

qN
m,ℓ(t) ≥ ε

�
�
�
�
�

sup
m∈M

qN
m,ℓ1 (0) < ε=2

 !

<
δ

2 : (D.5) 

Let N0 � max(N1, N2). By (D.2), (D.3), and (D.5),

P sup
t∈[0,T]

sup
m∈M

qN
m,ℓ(t) ≥ ε

 !

< δ: w 

Lemma D.2. For each m ∈ M and k ∈ K,

sup
U⊆VN

m

|EN
k (U) |

|EN
k (VN) |

�
vmpk, m

δk

|U |

|VN
m |

�
�
�
�
�

�
�
�
�
�

→ 0 as N → ∞: (D.6) 
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Proof. Fix any ε > 0. By Condition 1 and Lemma 3, there exists N(ε) ∈ N0 such that for all N ≥ N(ε),

(1 � ε)pk, m |WN
k | |U | ≤ |EN

k (U) | ≤ (1 + ε)pk, m |WN
k | |U | , ∀U ⊆ VN

m , (D.7) 

and

(1 � ε)
X

m∈M

pk, m |WN
k | |VN

m | ≤ |EN
k (VN) | ≤ (1 + ε)

X

m∈M

pk, m |WN
k | |VN

m | : (D.8) 

Hence, for all N ≥ N(ε),

sup
U⊆VN

m

|EN
k (U) | |VN

m |

|EN
k (VN) | |U |

�
vmpk, m
δk

�
�
�
�
�

�
�
�
�
�

≤ max{ε1(ε, N),ε2(ε, N)}, (D.9) 

where ε1(ε, N) �

�
�
�

(1�ε)pk,m | WN
k | | VN

m |

(1+ε)
P

m∈M
pk,m | WN

k | | VN
m |

�
vmpk,m
δk

�
�
� and ε2(ε, N) �

�
�
�

(1+ε)pk,m | WN
k | | VN

m |

(1�ε)
P

m∈M
pk,m | WN

k | | VN
m |

�
vmpk,m
δk

�
�
�. Again, by Condition 1 and Lemma 3,

lim
N→∞

sup
U⊆VN

m

|EN
k (U) | |VN

m |

|EN
k (VN) | |U |

�
vmpk, m
δk

�
�
�
�
�

�
�
�
�
�

≤ lim
N→∞

max{ε1(ε, N),ε2(ε, N)}

� max

�
�
�
�
�

(1 � ε)vmpk, m

(1 + ε)δk
�

vmpk, m

δk

�
�
�
�
�
,

�
�
�
�
�

(1 + ε)vmpk, m

(1 � ε)δk
�

vmpk, m

δk

�
�
�
�
�

( )

: (D.10) 

Because (D.10) holds for any ε > 0, we have

lim
N→∞

sup
U⊆VN

m

|EN
k (U) | |VN

m |

|EN
k (VN) | |U |

�
vmpk, m

δk

�
�
�
�
�

�
�
�
�
�

≤ lim
ε↓0

max (1 � ε)vmpk, m

(1 + ε)δk
�

vmpk, m

δk

�
�
�
�

�
�
�
�,

� �
�
�
�
(1 + ε)vmpk, m

(1 � ε)δk
�

vmpk, m

δk
|} � 0: w (D.11) 

Proof of Proposition 2. Consider any fixed k ∈ K. Also, fix ε1 > 0 and ε2 > 0. By the triangle inequality, we have

P

 

sup
t∈[0,T]

�
�
�
�
�

i ∈ WN
k :
X

m∈M

X

l∈N0

| x̂N
i, m, l(t) � xN

k, m, l(t) | > ε1

( )�
�
�
�
�

≥ ε2M(N)=K

!

≤ P

 

sup
t∈[0,T]

�
�
�
�
�

i ∈ WN
k :
X

m∈M

X

0≤l≤ℓ�1
| x̂N

i, m, l(t) � xN
k, m, l(t) | > ε1=4

( )�
�
�
�
�

≥ ε2M(N)=(4K)

!

+P

 

sup
t∈[0,T]

�
�
�
�
�

i ∈ WN
k :
X

m∈M

X

l≥ℓ
x̂N

i, m, l(t) > ε1=2
( )�

�
�
�
�

≥ ε2M(N)=(2K)

!

+P

 

sup
t∈[0,T]

�
�
�
�
�

i ∈ WN
k :
X

m∈M

X

l≥ℓ
xN

k, m, l(t) > ε1=4
( )�

�
�
�
�

≥ ε2M(N)=(4K)

!

≤
X

0≤l≤ℓ�1
P sup

t∈[0,T]

�
�
�
�
�

i ∈ WN
k :
X

m∈M

| x̂N
i, m, l(t) � xN

k, m, l(t) | > ε1=(4ℓ)
( )�

�
�
�
�

≥ ε2M(N)=(4ℓK)

 !

+P

 

sup
t∈[0,T]

�
�
�
�
�

i ∈ WN
k :
X

m∈M

�
�
�
�
�

X

l≥ℓ
(x̂N

i, m, l(t) � xN
k, m, l(t))

�
�
�
�
�

> ε1=4
( )�

�
�
�
�

≥ ε2M(N)=(4K)

!

+ 2P
 

sup
t∈[0,T]

�
�
�
�
�

i ∈ WN
k :
X

m∈M

X

l≥ℓ
xN

k, m, l(t) > ε1=4
( )�

�
�
�
�

≥ ε2M(N)=(4K)

!

: (D.12) 
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By the triangle inequality and Markov’s inequality,

X

0≤l≤ℓ�1
P

 

sup
t∈[0, T]

�
�
�
�
�

i ∈ WN
k :

X

m∈M

| x̂N
i, m, l(t) � xN

k, m, l(t) | > ε1=(4ℓ)
( )�

�
�
�
�

≥ ε2M(N)=(4ℓK)

!

≤
X

0≤l≤ℓ�1

 

P

 

sup
t∈[0, T]

�
�
�
�
�

i ∈ WN
k :

X

m∈M

�
�
�
�
�
x̂N

i, m, l(t) �
|EN

k (UN
m, l(t)) |

|EN
k (VN) |

�
�
�
�
�

> ε1=(8ℓ)
( )�

�
�
�
�

≥ ε2M(N)=(4ℓK)

!

+ P

 

sup
t∈[0, T]

X

m∈M

�
�
�
�
�

|EN
k (UN

m, l(t)) |

|EN
k (VN) |

� xN
k, m, l

�
�
�
�
�

> ε1=(8ℓ)
!!

≤
4ℓK
ε2M(N)

X

0≤l≤ℓ�1
E

 

sup
t∈[0, T]

�
�
�
�
�

i ∈ WN
k :

X

m∈M

�
�
�
�
�
x̂N

i, m, l(t) �
EN

k (UN
m, l(t))

�
�
�

�
�
�

EN
k (VN)

�
�

�
�

�
�
�
�
�

> ε1=(8ℓ)

8
<

:

9
=

;

�
�
�
�
�

!

+
X

0≤l≤ℓ�1
P

 
X

m∈M

sup
U∈VN

m

�
�
�
�
�

|EN
k (U) |

|EN
k (VN) |

�
vm

δk

|U |

|VN
m |

�
�
�
�
�

> ε1=(8ℓ)
!

≤
4ℓK
ε2M(N)

X

0≤l≤ℓ�1

X

m∈M

E

 

sup
t∈[0, T]

�
�
�
�
�

i ∈ WN
k :

�
�
�
�
�
x̂N

i, m, l(t) �
|EN

k (UN
m, l(t)) |

|EN
k (VN) |

�
�
�
�
�

> ε1=(8Mℓ)

( )�
�
�
�
�

!

+
X

0≤l≤ℓ�1

X

m∈M

P

 

sup
U∈VN

m

�
�
�
�
�

|EN
k (U) |

|EN
k (VN) |

�
vmpk, m
δk

|U |

|VN
m |

�
�
�
�
�

> ε1=(8Mℓ)
!

≤
4ℓK
ε2M(N)

X

0≤l≤ℓ�1

X

m∈M

sup
U∈VN

m

�
�
�
�
�

i ∈ WN
k :

�
�
�
�
�

|N
N
w(i) ∩ U |

|N
N
w(i) |

�
|EN

k (U) |

|WN
k (VN) |

�
�
�
�
�

> ε1=(8Mℓ)

( )�
�
�
�
�

+
X

0≤l≤ℓ�1

X

m∈M

P

 

sup
U∈VN

m

�
�
�
�
�

|EN
k (U) |

|EN
k (VN) |

�
vmpk, m
δk

|U |

|VN
m |

�
�
�
�
�

> ε1=(8Mℓ)

!

≤
4ℓ2KM
ε2M(N)

sup
U∈VN

�
�
�
�
�

i ∈ WN
k :

�
�
�
�
�

|N
N
w(i) ∩ U |

|N
N
w(i) |

�
|EN

k (U) |

|WN
k (VN) |

�
�
�
�
�

> ε1=(8Mℓ)

( )�
�
�
�
�

+
X

0≤l≤ℓ�1

X

m∈M

P

 

sup
U∈VN

m

�
�
�
�
�

|EN
k (U) |

|EN
k (VN) |

�
vmpk, m

δk

|U |

|VN
m |

�
�
�
�
�

> ε1=(8Mℓ)

!

: (D.13) 

By Lemma D.2, there exists N1 ∈ N0 such that for all N ≥ N1,

sup
m∈M

sup
U⊆VN

m

�
�
�
�
�

|EN
k (U) |

|EN
k (VN) |

�
vmpk, m
δk

|U |

|VN
m |

�
�
�
�
�

≤ ε1=(8Mℓ), (D.14) 

implying

X

0≤l≤ℓ�1
P sup

t∈[0,T]

�
�
�
�
�

i ∈ WN
k :
X

m∈M

| x̂N
i, m, l(t) � xN

k, m, l(t) | > ε1=(4ℓ)
( )�

�
�
�
�

≥ ε2M(N)=(4ℓK)

 !

≤
4ℓ2KM
ε2M(N)

sup
U∈VN

�
�
�
�
�

i ∈ WN
k :

�
�
�
�
�

|N
N
w(i) ∩ U |

|N
N
w(i) |

�
|EN

k (U) |

|WN
k (VN) |

�
�
�
�
�

> ε1=(8Mℓ)

( )�
�
�
�
�
: (D.15) 

Similarly, we have that there exists N2 ∈ N0 such that N ≥ N2,

P sup
t∈[0,T]

�
�
�
�
�

i ∈ WN
k :
X

m∈M

�
�
�
�
�

X

l≥ℓ
(x̂N

i, m, l(t) � xN
k, m, l(t))

�
�
�
�
�

> ε1=4
( )�

�
�
�
�

≥ ε2M(N)=(4K)

 !

≤
4K

ε2M(N)
sup
U∈VN

�
�
�
�
�

i ∈ WN
k :

�
�
�
�
�

|N
N
w(i) ∩ U |

|N
N
w (i) |

�
|EN

k (U) |

|WN
k (VN) |

�
�
�
�
�

> ε1=4
( )�

�
�
�
�
: (D.16) 
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By (D.12), (D.15), and (D.16), there exists N3 � max(N1, N2) such that for all N ≥ N3,

P sup
t∈[0,T]

�
�
�
�
�

i ∈ WN
k :
X

m∈M

X

l∈N0

�
�
�
�
�
x̂N

i, m, l(t) � xN
k, m, l(t) | > ε1

( )�
�
�
�
�

≥ ε2M(N)=K

 !

≤
8ℓ2KM
ε2M(N)

sup
U∈VN

�
�
�
�
�

i ∈ WN
k :

�
�
�
�
�

|N
N
w(i) ∩ U |

|N
N
w(i) |

�
|EN

k (U) |

|WN
k (VN) |

�
�
�
�
�

> ε1=4
( )�

�
�
�
�

+ 2P sup
t∈[0,T]

�
�
�
�
�

i ∈ WN
k :
X

m∈M

X

l≥ℓ
xN

k, m, l(t) > ε1=4
( )�

�
�
�
�

≥ ε2M(N)=(4K)

 !

: (D.17) 

Fix any ε3 > 0. By Definition 2, there exists N4 ∈ N0 such that for all N ≥ N4,

sup
U∈VN

�
�
�
�
�

i ∈ WN
k :

�
�
�
�
�

|N
N
w(i) ∩ U |

|N
N
w(i) |

�
|EN

k (U) |

|WN
k (VN) |

�
�
�
�
�

> ε1=4
( )�

�
�
�
�

≤
ε2M(N)ε3

16ℓ2KM
: (D.18) 

By Lemma D.1, there exists N5 ∈ N0 such that for all N ≥ N5,

P sup
t∈[0,T]

�
�
�
�
�

i ∈ WN
k :
X

m∈M

X

l≥ℓ
xN

k, m, l(t) > ε1=4
( )�

�
�
�
�

≥ ε2M(N)=(4K)

 !

≤
ε3

4 : (D.19) 

Hence,

P sup
t∈[0, T]

�
�
�
�
�

i ∈ WN
k :

X

m∈M

X

l∈N0

| x̂N
i, m, l(t) � xN

k, m, l(t) | > ε1

( )�
�
�
�
�

≥ ε2M(N)=K

 !

≤ ε3: (D.20) 

Because ε3 > 0 are arbitrary, then the desired result holds. w

Appendix E. Bound the Mismatch
Proof of Lemma 9. Define a function FN

m, l(·) : S → [0, 1] as for x � (xm, l, m ∈ M, l ∈ N0) ∈ S,

FN
m, l(x) �

Pd
r�1
Pr

r1�1
r1
r

Nxm, l

r1

� � N
P

M\{m}xm, l

r � r1

� � N
P

M

P
l′≥l+1xm, l

d � r

� �

N
d

� � : (E.1) 

Also, define a function fm, l(·) as for x ∈ S,

fm, l(x) �
Xd

r�1

Xr

r1�1

r1

r
d!

r1!(r � r1)!(d � r)!
(xm, l)

r1
X

M\{m}

xm, l

 !r�r1 X

M

X

l′≥l+1
xm, l′

 !d�r

: (E.2) 
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Note that for any 0 ≤ y ≤ x ≤ 1 and 1 ≤ k ≤ d, xk � (x � y)
k

≤ kxy ≤ ky. Then, we have
X

m∈M

X

l∈N0

|FN
m, l(x) � fm, l(x) |

≤
X

m∈M

X

l∈N0

Xd

r�1

Xr

r1�1

r1

r
d!

r1!(r � r1)!(d � r)!

 

(xm, l)
r1

X

M\{m}

xm, l

 !r�r1 X

M

X

l′≥l+1
xm, l′

 !d�r

� (xm, l �
r1

N)
r1

X

M\{m}

xm, l �
r � r1

N

 !r�r1 X

M

X

l′≥l+1
xm, l′ �

d � r
n

 !d�r!

≤
X

m∈M

X

l∈N0

Xd

r�1

Xr

r1�1

r1

r
d!r1(r � r1)(d � r)

r1!(r � r1)!(d � r)!
xm, l

X

M\{m}

xm, l

 !
X

M

X

l′≥l+1
xm, l′

 !
d
N

� �d

≤
X

m∈M

X

l∈N0

Xd

r�1

Xr

r1�1

r1

r
d!r1(r � r1)(d � r)

r1!(r � r1)!(d � r)!
xm, l

d
N

� �d

�
Xd

r�1

Xr

r1�1

r1

r
d!r1(r � r1)(d � r)

r1!(r � r1)!(d � r)!

d
N

� �d
→ 0 as 0: (E.3) 

Let x̂N
i � (x̂N

i, m, l, m ∈ M, l ∈ N0) and x′N
k � (x′N

k, m, l, m ∈ M, l ∈ N0). By (4.22) and (4.23), pN
m, l(i) � FN

m, l(x̂N
i ) and p′N

m, l(k) � FN
m, l(x

′N
k ). By 

the optimal coupling, we have

P(Mismatch) ≤
X

m∈M

X

l∈N0

|FN
m, l(x̂

N
i ) � FN

m, l(x
′N
k ) |

≤
X

m∈M

X

l∈N0

|FN
m, l(x̂

N
i ) � fm, l(x̂N

i ) | +
X

m∈M

X

l∈N0

|FN
m, l(x

′N
k ) � fm, l(x

′N
k ) |

+
X

m∈M

X

l∈N0

| fm, l(x̂N
i ) � fm, l(x

′N
k ) | : (E.4) 

Next, we are going to show that f (·) is Lipschitz continuous for x ∈ S:
X

m∈M

X

l∈N0

| fm, l(x̂N
i ) � fm, l(x

′N
k ) |

≤
X

m∈M

X

l∈N0

Xd

r�1

Xr

r1�1

r1

r
d!

r1!(r � r1)!(d � r)!

�
�
�
�
�
(x̂N

i, m, l)
r1

X

M\{m}

x̂N
i, m, l

 !r�r1 X

M

X

l′≥l+1
x̂N

i, m, l′

 !d�r

� (x′N
k, m, l)

r1
X

M\{m}

x′N
k, m, l

 !r�r1 X

M

X

l′≥l+1
x′N

k, m, l′

 !d�r��
�
�
�

≤
X

m∈M

X

l∈N0

Xd

r�1

Xr

r1�1

r1

r
d!r1(r � r1)(d � r)

r1!(r � r1)!(d � r)!

�
�
�
�
�
(x̂N

i, m, l � x′N
k, m, l)

X

M\{m}

x̂N
i, m, l �

X

M\{m}

x′N
k, m, l

 !
X

M

X

l′≥l+1
x̂N

i, m, l′ �
X

M

X

l′≥l+1
x′N

k, m, l′

 !�
�
�
�
�

≤
X

m∈M

X

l∈N0

Xd

r�1

Xr

r1�1

r1

r
d!r1(r � r1)(d � r)

r1!(r � r1)!(d � r)!
| (x̂N

i, m, l � x′N
k, m, l) |

�
Xd

r�1

Xr

r1�1

r1

r
d!r1(r � r1)(d � r)

r1!(r � r1)!(d � r)!
‖x̂N

i � xN
k ‖1: (E.5) 

Let L � 2
Pd

r�1
Pr

r1�1
r1
r

d!r1(r�r1)(d�r)

r1!(r�r1)!(d�r)!
. By (E.3), (E.4), and (E.5), we have that for large-enough N,

P(Mismatch) ≤ L‖x̂N
i � xN

k ‖1: w (E.6) 
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Appendix F. Doubly Exponential Decay
Proof of Proposition 4. Because q is a fixed point of (3.7), then we have

um(qm, l � qm, l+1) � λζ(qm, l�1 � qm, l)
X

k∈K

pk, mwk

δk

(q̃k, l�1)
d

� (q̃k, l)
d

q̃k, l�1 � q̃k, l
:

Multiplying both sides by vm and summing over m ∈ M gives
X

m∈M

vmum(qm, l � qm, l+1) � λζ
X

k∈K

wk((q̃k, l�1)
d

� (q̃k, l)
d
): (F.1) 

Also, because qm, l →
l→∞ 0, ∀m ∈ M, then for ℓ ≥ 1, by adding l ≥ ℓ, we have

X

m∈M

vmumqm, ℓ � λζ
X

k∈K

wk(q̃k,ℓ�1)
d
: (F.2) 

From (F.2) and 
P

k∈Kwk � 1, we have
X

m∈M

vmumqm, ℓ ≤ λζ(q̃∗
ℓ�1)

d, 

where q̃∗
ℓ�1 � maxk∈Kq̃k,ℓ�1. Hence, for all m ∈ M,

qm, ℓ ≤
λζ

vmum
(q̃∗
ℓ�1)

d
≤ c∗(m, ℓ� 1)q̃∗

ℓ�1, 

where c∗(m, ℓ� 1) � (q̃∗
ℓ�1)

d�1maxm∈Mλζ=(vmum). Because we assume that qm,ℓ →
ℓ→∞0 for all m ∈ M, then we can choose a large- 

enough ℓ such that c∗(m, ℓ� 1) < 1. By definition, for each k ∈ K,

q̃k,ℓ �
X

m∈M

vmpk, m

δk
qm,ℓ ≤ c∗(m, ℓ� 1)(q̃∗

ℓ�1)
d�1, 

which implies that q̃∗
ℓ ≤ c∗(m, ℓ� 1)q̃∗

ℓ�1 and

qm,ℓ+1 ≤
λζ

vmum
(q̃∗
ℓ)

d
≤ (c∗(m, ℓ� 1)q̃∗

ℓ�1)
d max

m∈M
λζ=(vmum) � (c∗(m,ℓ� 1))

d+1q̃∗
ℓ�1:

By induction, we obtain that for n ∈ N0,

qm,ℓ+n ≤ (c∗(m, ℓ� 1))
e(n)q̃∗

ℓ�1 ≤ (c∗(m, ℓ� 1))
dn

q̃∗
ℓ�1, (F.3) 

where e(n) �
Pn

i�0 di. (F.3) implies that {qm, l, l ∈ N0} decreases doubly exponentially. w

Remark F.1. Recall q̃k, l �
P

m∈M

vmpk,m
δk

qm, l. From Proposition 4, we know that {q̃k, l, l ∈ N0} decreases doubly exponentially. In 
fact, they do not decay further faster. To see this, let c0 � mink∈K minm∈M

pk,m
δk

∈ (0, 1]: Then, q̃k, l �
PM

m�1
vmpk,m
δk

qm, l ≥ c0
P

m∈Mvmqm, l:

It then follows from (F.2) that

min
k∈K

q̃k,ℓ ≥ c0
X

m∈M

vmqm,ℓ � λc0
X

k∈K

wk(q̃k, ℓ�1)
d

≥ λc0 min
k∈K

q̃k, ℓ�1

� �d
:

So,

(λc0)
1

d�1 min
k∈K

q̃k, ℓ ≥ (λc0)
1

d�1 min
k∈K

q̃k, ℓ�1

� �d
≥ ⋯ ≥ (λc0)

1
d�1 min

k∈K
q̃k, 0

� �dℓ

, 

and hence, mink∈Kq̃k,ℓ ≥ (λc0)
dℓ�1
d�1 :

Appendix G. Proof of Lemma 10
Proof of Lemma 10. Fix any (α1, : : : ,αM) ∈ (0, 1)

M with 
P

m∈Mαm > 0. Consider any sequence {UN}N of subsets with UN ⊆ VN 

and limN→∞
| UN∩VN

m |

| VN
m |

� αm for all m ∈ M. By Condition 1, we have that for all k ∈ K and m ∈ M,

lim
N→∞

|EN
k (UN ∩ VN

m) |

|EN
k (VN

m) |
� αmvm: (G.1) 

Fix any ε > 0, which will be chosen later. Let GN
k,ε � i ∈ WN

k :

�
�
�
�
�

|N
N
w (i)∩v |

|N
N
w (i) |

�
| EN

k (v) |

| EN
k (VN) |

�
�
�
�
�

≥ ε

( )

and BN
k,ε � WN

k \ G
N
k,ε. By (G.1), for all 

large-enough N and i ∈ G
N
k,ε,

N(1 � 2ε)
X

m∈M

αmvmpk, m ≤ |N
N
w(i) ∩ UN | ≤ N(1 + 2ε)

X

m∈M

αmvmpk, m: (G.2) 

Zhao, Mukherjee, and Wu: Data Locality to Improve Heterogeneous Server Clusters 
40 Stochastic Systems, Articles in Advance, pp. 1–44, © 2024 The Author(s) 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[9

2.
11

9.
18

.2
09

] o
n 

10
 Ju

ly
 2

02
4,

 a
t 1

2:
33

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



Also, by Condition 1, for all large-enough N,

Nδk(1 � ε) ≤ δN
i ≤ Nδk(1 + ε): (G.3) 

Because the sequence {GN}N is in the subcritical, then for large-enough N,

ρ ≥ ρN ≥

 
X

j∈UN

X

m∈M′

1(j∈VN
m )um

!�1
X

i∈WN

X

S⊆(UN ∩N
N
w(i)) :

|S | �d

λ
 

|N
N
w(i) |

d

!

≥ c′(N)

 
X

m∈M′

Nvmαmum

!�1
X

k∈K

X

i∈WN
k

λ

 
|UN ∩ N

N
w(i) |

d

!

 
|N

N
w(i) |

d

!

≥

 
X

m∈M′

Nvmαmum

!�1
X

k∈K

λ |G
N
k,ε |

 
N(1 � 2ε)

P
m∈Mαmvmpk, m

d

!

 
Nδk(1 + ε)

d

! ,

(G.4) 

where c′(N) is a constant only depending on N with c′(N) →
N→∞ 1. Because the sequence {GN} is proportionally sparse, then 

limN→∞
|G

N
k,ε |

| WN
k |

� 1. Then, we have

ρ ≥
X

m∈M

vmαmpk, m

 !�1

λζ
X

m∈M

wk
(1 � 2ε)

P
m∈Mαmvmpk, m

δk(1 + ε)

� �d
: (G.5) 

Because (G.5) holds for all ε > 0, then

ρ ≥
X

m∈M

vmαmpk, m

 !�1

λζ
X

m∈M

wk

P
m∈Mαmvmpk, m

δk

� �d
: w (G.6) 

Appendix H. Proof of Lemma 11
Proof of Lemma 11. Given the system state XN, when a task arrives at the system, by the Poisson thinning property, the proba
bility that the task will be assigned to a server in the set QN

m, l(XN) is

P(E(QN
m, l)) �

1
W(N)

X

i∈WN

X

U⊆(QN
m, l ∩N

N
w(i))

|U | �d

1
N

N
w (i)
d

 ! , (H.1) 

where E(QN
m, l) :� the event that the new task will be assigned to QN

m, l(XN). Fix any ε > 0. Because the sequence {GN} is subcriti
cal, then for large-enough N, we have that

P(E(QN
m, l)) ≤

N
W(N)

ρN

λ

|QN
m, l(XN) |um

N
≤
ρ

λζ
qN

m, lum(1 + ε): (H.2) 

We consider the system state at event times t0 � 0 < t1 < t2 <⋯ < ti < ⋯ ; for all i, ti can be an arrival or a potential departure 
epoch. Define the drift ∆LN

m, ℓ(XN) as

∆LN
m,ℓ(X

N) � E(LN
m,ℓ(X

N(t1)) � LN
m, ℓ(X

N) |XN(t0) � XN): (H.3) 

Again, by the Poisson thinning property, we have that for all large N,

∆LN
m, ℓ(X

N) �
X∞

i�ℓ

λW(N)

λW(N) +
P

m∈M |VN
m |um

P(E(QN
m, i�1)) �

P
m∈M |VN

m |um

λW(N) +
P

m∈M |VN
m |um

|QN
m, i |um

P
m∈M |VN

m |um

 !

≤
X∞

i�ℓ

ρqN
m, i�1um(1 + ε)

λζ +
P

m∈Mvmum
�

qN
m, ium

λζ +
P

m∈Mvmum

 !

�
ρqN

m, ℓ�1um(1 + ε)

λζ +
P

m∈Mvmum
�

1 � (1 + ε)ρ

λζ +
P

m∈Mvmum

X∞

i�ℓ
qN

m, ium: (H.4) 
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By the definition of the steady state, E(∆LN
m,ℓXN(∞)) � 0. Choosing ε such that (1 + ε)ρ ≤ (1 + ρ)=2 < 1, we have
X∞

i�ℓ
E(qN

m, i(∞)) ≤
(1 + ρ)=2

1 � (1 + ρ)=2E(qN
m, ℓ�1): (H.5) 

Finally, summing over m ∈ M, we get the desired result. w

Appendix I. Proof for the Sequence of Random Graphs
Proof of Theorem 8. First, to show that the sequence {GN}N satisfies Condition 1, consider any fixed k ∈ K and m ∈ M. Let ei, j 
be a Bernoulli random variable with probability pk, m for each i ∈ WN

k and j ∈ VN
m . Then, EN(k, m) �

P
(i, j)∈WN

k ×VN
m

ei, j, and by the 
L.L.N., we have that

lim
N→∞

EN(k, m)

|WN
k | × |VN

m |
� pk, m, 

which implies that Condition 1(a) holds. Next, we prove that Condition 1(b) holds. Based on the definition degN
w(i), we have 

degN
w(i) �

P
j∈VN

m
ei, j, which is a binomial random variable Binomial( |VN

m | , pk, m). By the Chernoff bound (Cheng and Yang 2005, 
theorem 2.4), it follows that for i ∈ WN

k ,

P( |degN
w(i) �E(degN

w(i)) | ≥ x) ≤ 2 exp �
x2

2E(degN
w(i)) + 2x=3

 !

:

Let X(N) � pk, mN3=4(ln(N))
1=4. Then, for some c1 ∈ (0, ∞),

P( |degN
w(i) � |VN

m |pk, m | ≥ X(N)) ≤ c1 exp(�c1pk, mN1=2(ln(N))
1=2

=vm) (I.1) 

for sufficiently large N. Also, by limN→∞
WN

k
W(N)

� wk, limN→∞
W(N)

N � ζ, and the union bound, we have that there exists c2 ∈ (0, ∞)

such that for large-enough N,

P(∪i∈WN
k

|degN
w(i) � |VN

m |pk, m | ≥ X(N)) ≤ c2wkζN exp(�c1pk, mN1=2(ln(N))
1=2

=vm): (I.2) 

Then, the RHS of (I.2) is summable over N. From the Borel–Cantelli lemma, we get that a.s., for all large-enough N,

|degN
w(i) � |VN

m |pk, m | ≤ X(N), i ∈ WN
k , 

which implies that the following equation holds:

1 ≤ lim
N→∞

maxi∈WN
k

degN
w(i)

mini∈WN
k

degN
w(i)

≤ lim
N→∞

|VN
m |pk, m + X(N)

|VN
m |pk, m � X(N)

� 1, a:s::

Thus, Condition 1(b) holds.
Now, we show that the sequence {GN}N is clustered proportionally sparse. Fix any k ∈ K, i ∈ WN

k , ε > 0, and U ⊆ VN. Let Bi(U)

be the event that the dispatcher i is bad w.r.t. the set U: that is,

Bi(U) :�

�
�
�
�
�

N
N
w(i) ∩ U
N

N
w(i)

�
EN

k (U)

EN
k (VN)

�
�
�
�
�

≥ ε

( )

: (I.3) 

Define αm :�
| U∩VN

m |

| VN |
for each m ∈ M. By the union bound, we have that

P(Bi(U)) ≤ P

 

Bi(U),

�
�
�
�
�
|N

N
w(i) ∩ U | �

X

m∈M

|VN
m ∩ U |pk, m

�
�
�
�
�

< ε1
X

m∈M

|VN
m |pk, m,

�
�
�
�
�

EN
k (U)

EN
k (VN)

�

P
m∈Mαmpk, m
P

vmpk,m

�
�
�
�
�

< ε2, and

�
�
�
�
�
N

N
w(i) �

X

m∈M

|VN
m |pk, m

�
�
�
�
�

< ε3
X

m∈M

|VN
m |pk, m

!

+P

�
�
�
�
�
|N

N
w(i) ∩ U | �

X

m∈M

|VN
m ∩ U |pk, m

�
�
�
�
�

≥ ε1
X

m∈M

|VN
m |pk, m

 !

+P

�
�
�
�
�
N

N
w(i) �

X

m∈M

|VN
m |pk, m

�
�
�
�
�

≥ ε2
X

m∈M

|VN
m |pk, m

 !

: (I.4) 

We will bound each term of the RHS of (I.4). By choosing ε1, ε2 and ε3 satisfying
ε3
P

m∈Mαmpk, m + ε1
P

m∈Mvmpk, m

(1 � ε3)
P

m∈Mvmpk, m
+ ε2 < ε, (I.5) 
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we have that

N
N
w(i) ∩ U
N

N
w(i)

�
EN

k (U)

EN
k (VN)

�
N

N
w(i) ∩ U
N

N
w(i)

�

P
m∈Mαmpk, m
P

vmpk,m

+

P
m∈Mαmpk, m
P

vmpk,m

�
EN

k (U)

EN
k (VN)

<
ε3
P

m∈Mαmpk, m + ε1
P

m∈Mvmpk, m

(1 � ε3)
P

m∈Mvmpk, m
+ ε2 < ε (I.6) 

and

N
N
w(i) ∩ U
N

N
w(i)

�
EN

k (U)

EN
k (VN)

�
N

N
w(i) ∩ U
N

N
w(i)

�

P
m∈Mαmpk, m
P

vmpk,m

+

P
m∈Mαmpk, m
P

vmpk,m

�
EN

k (U)

EN
k (VN)

> �
ε3
P

m∈Mαmpk, m + ε1
P

m∈Mvmpk, m

(1 + ε3)
P

m∈Mvmpk, m
� ε2 > �ε, (I.7) 

which implies that the first term is equal to zero with ε1, ε2, and ε3. Using the Chernoff bound again, we can bound the second 
term and the third term as follows; for some c3 ∈ (0, ∞) and large-enough N,

P

�
�
�
�
�
|N

N
w(i) ∩ U | �

X

m∈M

|VN
m ∩ U |pk, m

�
�
�
�
�

≥ ε1
X

m∈M

|VN
m |pk, m

 !

≤ c3 exp �c3N
X

m∈M

vmpk, m

 !

(I.8) 

and

P

�
�
�
�
�
N

N
w(i) �

X

m∈M

|VN
m |pk, m

�
�
�
�
�

≥ ε2
X

m∈M

|VN
m |pk, m

 !

≤ c3 exp �c3N
X

m∈M

vmpk, m

 !

: (I.9) 

Therefore, for large-enough N, we have

P(Bi(U)) ≤ 2c3 exp �c3N
X

m∈M

vmpk, m

 !

(I.10) 

and

P(∪i∈WN
k

Bi(U)) ≤ 2c3 |WN
k |exp �c3N

X

m∈M

vmpk, m

 !

: (I.11) 

Moreover, for some c4 ∈ (0, ∞) and large-enough N,

P sup
U⊆VN

∪i∈WN
k

Bi(U)

 !

≤ exp(�c4N): (I.12) 

The RHS of (I.12) is summable over N, and the set K is finite; so, by the Borel Cantelli lemma, the sequence is clustered propor
tionally sparse.

If p satisfies (3.1), by Lemma 2, there exists an N0 ∈ N0 such that for all N ≥ N0, the queue-length process (XN
j (t))j∈VN under the 

local JSQ(d) policy is ergodic, which implies that all assumptions of Theorem 6 hold. w
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