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1. Introduction

Over the last two decades, large-scale load balancing has emerged as a fundamental research problem. In simple
terms, the goal is to investigate how to efficiently allocate tasks in large-scale service systems, such as data centers
and cloud networks. As modern data centers continue to process massive amounts of data with increasingly strin-
gent processing time requirements, the need for more efficient and scalable, dynamic load-balancing algorithms is
greater than ever. The study of scalable load-balancing algorithms started with the seminal works of Adler et al.
(1995), Mitzenmacher (1996a, b), and Vvedenskaya et al. (1996), in which the popular “power-of-d choices” or the
join-shortest-queue (d) (JSQ(d)) algorithm was introduced. Here, a canonical model was considered that consists
of N identical parallel servers, each serving a dedicated queue of tasks. Arriving tasks are routed to the shortest of
d > 2 randomly selected queues by a centralized dispatcher, irrevocably and instantaneously, at the time of arrival.
Since then, this model has received significant attention from the research community, and we have seen tremen-
dous progress in our understanding of the performance of various algorithms; see van der Boor et al. (2022) for a
recent survey.

Despite this phenomenal progress, when it comes to modern large-scale systems, much of the existing wisdom
can be observed to be false. This is primarily because of the fact that the classical model fails to capture two of the
most significant factors that impact the performance of these systems. The first is data locality constraints. In simple
terms, it means that tasks of a particular type can only be routed to a small subset of servers that are equipped with
the appropriate resources to execute them (Tsitsiklis and Xu 2017, Tirmazi et al. 2020, Weng et al. 2020, Rutten and
Mukherjee 2022). For example, an image classification request must be routed to a server that is trained with
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appropriate machine learning models, such as deep convolutional neural network. Also, in online video services
like Netflix and YouTube, users’ requests may only be routed to servers that are equipped with the required data
(e.g., movies, music). The classical model ignores this effect and assumes full flexibility: that is, that any task can be
assigned to any server in the system. In the presence of data locality constraints, the delay performance of the sys-
tem may degrade drastically as compared with fully flexible systems. The second is heterogeneity in service rates.
Servers in any modern large-scale server clusters do not process tasks at equal speeds. This heterogeneity of the ser-
vice rates is a major bottleneck in implementing the existing heuristics of the classical model. For example, if there
are two groups of servers in the system, one faster and the other slower, then popular dynamic algorithms like
JSQ(d), which has a provably excellent delay performance when all server speeds are identical, can be observed to
be unstable (i.e., their queue lengths blow up) (Mukhopadhyay and Mazumdar 2016, Mukhopadhyay et al. 2016,
Gardner et al. 2021, Hurtado-Lange and Maguluri 2021). In other words, heterogeneity shrinks the stability region
as formally established in Hurtado-Lange and Maguluri (2021). This happens simply because if all the servers are
treated equally, then the slower server pool may receive a higher flow of arrivals than what it can process.

1.1. Takeaway

In summary, both data locality and heterogeneity of server speeds may significantly degrade the system perfor-
mance. The main contribution of the current work is to establish that when these two aspects are considered
together, then the performance can in fact be drastically improved. That is, if servers are heterogeneous, then effi-
ciently designing the data locality constraints (by appropriately placing the resource files in the server network) can
regain the full stability region, which was shrunk for fully flexible systems. Moreover, we also establish that care-
fully designed data locality constraints can ensure the celebrated double-exponential decay of tail probability of the
steady-state queue-length distribution even for the heterogeneous systems.

1.2. Our Contributions

Motivated by this, in the current paper, we consider a bipartite graph model for large-scale load-balancing systems,
which has recently gained popularity in the research community. In this model, a bipartite graph between the ser-
vers and task types describes the compatibility between the two, where an edge represents the server’s ability to pro-
cess the corresponding task type. This encompasses the classical full-flexibility models as those having a complete
bipartite compatibility graph. An immediate difficulty of the new model is that when the graph is nontrivial (i.e.,
not a collection of isolated pairs or a complete bipartite graph), the mean-field techniques break down. This is
because, the queues no longer remain exchangeable, making the aggregate processes, such as the vector of number
of servers with queue length i withi=0,1,2, ..., non-Markovian. In addition, we also consider that each dispatcher
handles the arrival flow of one of K possible task clusters and that there are M server types. The rate of service at a
server depends on its type. Throughout the paper, the key quantity of interest will be the global occupancy process
qV(t) = (qfi (,m=1,...,M,1>1), where qln\il(t) represents the fraction of servers of type m with queue length at
least ] at time ¢ in the Nth system with N servers, and we will look at the large-system asymptotic regime: N — oo.

Because of the compatibility constraints, the servers become nonexchangeable, even if they belong to the same
type. This causes most of the existing frameworks to break down; see, for example, Mitzenmacher (1996b), Ethier
and Kurtz (2009), and Stolyar (2015). To characterize the process-level limit of the queue-length process, we resort
to the theory of weakly interacting particle systems and asymptotically couple the evolution of the N-dimensional
vector of queue lengths with an appropriately defined infinite system of independent McKean—Vlasov processes; see,
for example, Sznitman (1991) and Méléard (1996). We also show the asymptotic independence of any finite number
of queue-length processes, also known as the propagation of chaos property. This convergence of the queue-length
processes (in L, sense) is then used to establish the transient convergence of the occupancy process. One downside
of the convergence is that it depends on the assumption that the initial queue lengths within each set of servers
of the same type are independent and identically distributed (i.i.d.) and are independent across the set of servers of
different types. Because of this assumption, this convergence result cannot be used to establish the interchange of
t — coand N — oo limits, which is crucial in studying the limit of steady states.

To overcome this issue, we use the framework of Rutten and Mukherjee (2022), recently introduced in the con-
text of homogeneous systems. Here, a notion called proportional sparsity for graph sequences was introduced,
which ensures that the empirical queue-length distribution within the set of compatible servers of any dispatcher
is close to the empirical queue-length distribution of the entire system. This was used in Rutten and Mukherjee
(2022) to construct conditions on graphs that match the performance of a fully flexible system. In the current
setup, however, this notion is inadequate because our goal is not to match the performance of the fully flexible
system (which is usually poor under heterogeneity). That is why we extend this notion to what we call the clus-
tered proportional sparsity for a sequence of graphs with increasing size to accommodate the heterogeneous
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systems. The clustered proportional sparsity property allows us to construct a stochastic coupling between the
system and another intermediate system whose task allocation is done by a carefully constructed algorithm
called global weighted shortest queue (GWSQ(d)) (Algorithm 1). This coupling with the intermediate system,
along with clustered proportional sparsity, helps us establish that if the initial occupancy of two systems is close,
then the distance (in the £;-norm) between their global occupancy remains small uniformly over any finite time
interval. In turn, it implies that their limits of the global occupancy systems are the same. As a consequence, we
can remove the i.i.d. assumption of the initial queue lengths because this guarantees that under clustered propor-
tional sparsity, the convergence of the occupancy process depends only on the initial occupancy and not on how
the individual queues are distributed.

The process-level limit result shows that the transient limit of the occupancy process can be described as a sys-
tem of ODEs that depend on various graph parameters. Next, we also show that the interchange of limits holds
and that the sequence of occupancy states in stationarity converges weakly to the unique fixed point of the ordi-
nary differential equation (ODE). One celebrated feature of the classical JSQ(d) policy for homo§eneous systems
under full flexibility is that the steady-state queue length decays doubly exponentially as A ~D/@"1 where A €
(0,1) is the load per server (Mitzenmacher 1996b, Vvedenskaya et al. 1996). We establish this double-exponential
decay property for the heterogeneous system.

It is worthwhile to note that the strength of the results lies in that they hold for arbitrary deterministic sequences
of graphs satisfying certain properties. However, we show that all these properties are satisfied almost surely by a
sequence of inhomogeneous random graphs (IRGs) with parameters prescribed by the theorems. This makes it easy
to design graphs with the desired favorable properties.

1.3. Related Works

The research on task allocation systems with limited flexibility can be traced back to the works of Foss and Cher-
nova (1998) and Turner (1998). Of particular importance to the current work, Foss and Chernova (1998) considered
stability properties of the system using the fluid model. Later, Bramson (2011) generalized some parts of the results
in Foss and Chernova (1998) to a broad class of JSQ-type systems, including the JSQ(d) policy, via the Lyapunov
function approach. Stolyar (2005) considered optimal routing in an output-queued flexible server system, which is
essentially the bipartite graph model for the load-balancing system. Here, the author considered a system with a
fixed number of servers and dispatchers in the conventional heavy traffic regime and proposed a routing policy
that is optimal in terms of server workload. Recently, Cruise et al. (2020) considered load-balancing problems on
hypergraphs and proved their stability conditions. The works, however, did not aim to precisely characterize the
system performance in the large-scale scenario.

The analysis in the large-scale scenario became prominent in the last decade, with the emergence of its appli-
cations to load balancing in data centers and cloud networks. In the full-flexibility setup, the analysis of hetero-
geneous server systems gained some attention. In this case, Stolyar (2015, 2017) studied the zero-queueing
property of the join-idle-queue policy, Mukhopadhyay and Mazumdar (2016) and Mukhopadhyay et al. (2016)
analyzed the JSQ(d) policy in heterogeneous systems with processor-sharing service discipline, Hurtado-Lange
and Maguluri (2021) studied the throughput and delay optimality properties of JSQ(d), and Bhambay and
Mukhopadhyay (2022) studied a speed-aware JSQ policy. The works on the JSQ(d) policy observe that the stabil-
ity region shrinks if the dispatcher applies the JSQ(d) policy blindly. One way to mitigate this performance deg-
radation is to take the server speeds into consideration while sampling servers or while assigning tasks to the
sampled servers. Such a “hybrid JSQ(d)” scheme is able to recover the stability region. The current work can be
contrasted with this approach. First, in the presence of data locality, both the server speeds and the underlying
compatibility constraints need to be taken into account during the sampling procedure, and the approach
becomes significantly more complicated. Second, we show how exploiting the data locality, the blind JSQ(d) pol-
icy can recover the stability region and even achieve the double-exponential decay of tail probabilities of the
steady-state queue-length distribution. One advantage of the latter approach is that the dispatchers can be obliv-
ious to the server speeds, which reduces the implementation complexity and also, makes it robust against
changes to the servers (e.g., when servers are added /removed).

Recently, Allmeier and Gast (2022) studied the application of (refined) mean-field approximations for heteroge-
neous systems. Their method is using an ODE to approximate the evolution of each server, and the error vanishes
as the system scales. However, this method cannot be directly used in our case. Because of the bipartite compatibil-
ity graph structure, it is hard to capture the interactions between two servers, which means that we cannot write the
transition rates of the underlying Markov chain as Allmeier and Gast (2022) does. Also, one important assumption
in their work is the finite buffer, but we consider the infinite buffer case here.
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The aspect of task-server compatibility constraints in large-scale load balancing and scheduling gained popular-
ity only recently, as the data locality became prominent in data centers and cloud networks. This led to many works
in this area (Tsitsiklis and Xu 2013, 2017; Gast 2015; Mukherjee et al. 2018a; Budhiraja et al. 2019; Weng et al. 2020;
Rutten and Mukherjee 2022). All these works consider homogeneous processing speeds at the servers. The initial
works of Turner (1998) and Gast (2015) focused on certain fixed-degree graphs and showed that the flexibility to
forward tasks to even a few neighbors with possibly shorter queues may significantly improve the waiting time
performance as compared with dedicated arrival streams or a collection of independent M/M/1 queues that the
system has a Poisson arrival process, an exponential service time distribution, and one server. Tsitsiklis and Xu
(2013, 2017) considered asymptotic optimality properties of the bipartite graph topology in an input-queued,
dynamic scheduling framework. Later, in the (output-queued) load-balancing setup, Mukherjee et al. (2018a) con-
sidered the JSQ policy, and Budhiraja et al. (2019) considered the transient analysis of the JSQ(d) policy on nonbipar-
tite graphs. The goal in these papers was to provide sufficient conditions on the graph sequence to asymptotically
match the performance of a complete graph. Here, we should mention that the nonbipartite graph model cannot be
used to capture the data locality constraints. In the presence of data locality constraints, the analysis of the JSQ(d)
policy for homogeneous systems, including both transient and interchange of limits, was performed by Rutten and
Mukherjee (2022). Weng et al. (2020) is the first to consider the large-scale heterogeneous server model under data
locality. They showed that the join-the-fastest-shortest-queue and join-the-fastest-idle-queue policies achieve
asymptotic optimality for minimizing mean steady-state waiting time when the bipartite graph is sufficiently well
connected. However, these results fall in the category of JSQ-type policies, where the asymptotic behavior is degen-
erate in the sense that the queue lengths at servers can be either zero or one. Naturally, the results and their analysis
are very different from the J[SQ(d)-type policies where queues of any length are possible.

1.4. Notations

Let No = N U {0}. For a set S, its cardinality is denoted as |S|. For a polish space S, the space of right continuous func-
tions with left limits from [0, c0) to S is denoted as D([0, c0), S), endowed with the Skorokhod topology. The distribu-
tion of S-valued random variable X will be denoted as £(X). For a function f : [0,00) — R, let [[f]l, , := sup, ., _,f(s)]-
The distribution of S-valued random variable X will be denoted as £(X). For x € S, the Dirac measure at the point x is

denoted as Oy. || - ||, represents the £,-norm. Define (i;) = w if X > Y and is zero otherwise. RHS is the
acronym of right-hand side.

2. Model Description

The model for large-scale systems with limited flexibility was considered by Tsitsiklis and Xu (2013, 2017) in the
context of scheduling algorithms for input-queued systems. Subsequently, it was considered in Mukherjee et al.
(2018a), Budhiraja et al. (2019), Weng et al. (2020), and Rutten and Mukherjee (2022) for output-queued load-
balancing systems. Let GN = (WY, VN, EN) be a system with N single servers, each serving its own queue, and W(N)
dispatchers, each handling the assignment of tasks of one type, where WN ={1,...,W(N)} and V¥ ={1,...,N}
denote the sets of dispatchers and servers, respectively. We will interchangeably use the terms task type and dis-
patcher type throughout the article. Similar to Tsitsiklis and Xu (2013, 2017), we assume that limy_,.o W(N)/N =,
where C >0 is a constant. The set EN € WN x VN of edges represents hard compatibility between the dispatchers
and servers in the Nth system. In other words, tasks of type i can be assigned to a server j if and only if (i,j) € EV.
Tasks arriving at a dispatcher must be assigned instantaneously and irrevocably to one of the compatible servers.

e Dispatcher clusters. Each dispatcher belongs to one of K possible clusters labeled in K ={1,...,K}. Let W
denote the set of all dispatchers in the kth cluster. As N — oo, assume that |W,I(\’ | /W(N) — wy € (0,1) for k € L with
S, wy = 1. Tasks arrive at each dispatcher as an independent Poisson process with rate A. Note that dispatchers
in the same cluster may not have the same set of compatible servers.

e Server types. Based on its processing capability, each server belongs to one of M possible types labeled in
M ={1,...,M}. The processing time at a type-m server is exponentially distributed with mean 1/u,,, where u,, is a
positive constant. Let VY denote the set of type-m servers, and as N — oo, |VN| /N — v,, € (0,1) for m € M with
S"M v, = 1. Throughout, we will assume that asymptotically, the system has sufficient service capacity in the

m=1
sense that

A<D Oy, 2.1)

meM

Note that the left- and right-hand sides represent the scaled total arrival rate and the scaled maximum departure
rate, respectively.
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For all the asymptotic results, we consider a general class of systems where the compatibility graph satisfies cer-
tain asymptotic criteria as specified in Condition 1. Define

degh(i,m)=[{je VN :(i,j) e EN}|, ie WN,meM,
deg\(k,j) = {ie WY : (i,j) e EN}|, jeVNkeKk.

Namely, deg!(i,m) is the number of the dispatcher i's neighboring servers whose type is m € M. Similarly,
deg (k,j) is the number of the server j’s neighboring dispatchers whose cluster is k € K.

Condition 1. The sequence {GN}y, satisfies the following.
a. Foreachk € K and m € M, let EN(k,m) = {(i,j) € WY x VIV . (i,j) € EN},

- |EN(k,m)|
lim —— " e 0,1]. 22
NI—I>I;[o |W1[(\]| % |V,I1\l] k,m € [ ] ( )
We call the matrix p = (p,m, k € IC, m € M) the compatibility matrix.
b. Foreachk € K and me M,
maX;epy deg" (i,m) . maXiepy deg(k, D

lim 1/
N=e mingepy deg" (i,m)

N=e mingeyy deg (k, ])

Intuitively, the condition implies that the “asymptotic density” of edges between cluster-k dispatchers and type-
m servers is given by py ,, and that, for each task-cluster-server-type pair, the servers have similar levels of flexibil-
ity. The classical, well-studied setup, where any task can be processed by any server, corresponds to the complete
bipartite graph with pg n =1, Vke€ C,m e M.In Section 3.5, we show that for any given p := (py ,,,k € K,m € M), a
sequence of graphs satisfying Condition 1 can be obtained simply by putting edges suitably randomly. This is a cer-
tain class of inhomogeneous random graphs, which we call 1rG(p); see Definition 3 for details. In fact, the rG(p)
sequence of graphs will be proved to satisfy the required conditions for all the results of this article to hold.

2.1. State Space
In the Nth system, let X]N (t) be the number of tasks (including those in service) in the queue of server j € VV at time
t. Let ‘ﬁ, ,(t) be the proportion of servers of type m with queue length at least / at time f, namely

q%,l(t) e | Zl(XN(t)>l)/ t> 0 me M le NO (23)
]EVN

Let q"(¢) = (g} ,(t),m € M, € Ny). Then, @V := {q"(#)}y</ < o is a process with sample paths in D([0, ), S), where

S:= {q € [0, 11" g0 = 1,1 = G101, and qu,z < oo, Vme M,l€ No}

ZENU

is equipped with the £;-topology. Note that the space S is a complete metric space.

2.2. Local JSQ(d) Policy

For any fixed d > 2, each dispatcher uses the JSQ(d) policy (Mitzenmacher 1996b, Vvedenskaya et al. 1996) to assign
the incoming tasks to servers. To describe the policy, define the neighborhood of dispatcher i € WY, NN (@) ={jeVN:
(i,j) € EN} with 6N |N (i)]. When a new task arrives at the dispatcher i € WN with 6N >d, it is 1mmed1ately
assigned to the server with the shortest queue among d servers selected uniformly at random from N\ (i). Ties are
broken umformly atrandom. If 6} < d, then the task is assigned to one server selected from N (@) umformly at ran-
dom. This &) < d scenario is asymptotlcally not relevant for us because all the graphs that we will consider have
diverging degrees as N — oo.
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3. Main Results

3.1. Mitigating the Stability Issue

As discussed earlier, when the server speeds are heterogeneous, the fully flexible systems (with the complete bipar-
tite compatibility graph) may not be stable under the JSQ(d) policy, even if we assume that the sufficient service
capacity in (2.1) is satisfied. The next lemma provides a necessary and sufficient condition for ergodicity of the
queue-length process. Recall 5 = |V (i)|. For any fixed N, define

-1

A [UNNYG)|
pVi=max S DD Lt | D [ Lgsg D —(5N>+]1(6,N<d>7éw
i

N
ucv el mem ieWN scunaNay: [ T
IS =d

d

Lemma 1. The queue-length process (XjN (1))jev under the local JSQ(d) policy is ergodic if and only if pN < 1.

The lemma is an immediate consequence of Foss and Chernova (1998, theorem 2.5); see also Bramson (2011). We
omit its proof. Intuitively, pN < 1 means that in the Nth system, for any subset U of servers with possibly long
queues (compared with the rest servers), the total rate at which tasks are assigned to some server in this set must be
less than the rate of departure from this set.

Because we are interested in large-N behavior, we will assume a certain asymptotic version of the stability crite-
rion. This is fairly standard in the large-system analysis, as one would want to avoid the “heavy traffic” regime
when pV 11 as N — oo. The behavior in the latter scenario is typically qualitatively different from the so-called
“subcritical” regime as defined.

Definition 1 (Subcritical Regime). The sequence {GN}y of systems defined is said to be in the subcritical regime
with asymptotic load p < 1if pN — p < 1,as N — .

Throughout this paper, we will assume that the sequence of systems under consideration is in the subcritical
regime. From Lemma 1, it is immediate that if a sequence of systems is in subcritical regime, then its queue-
length process is ergodic for all large-enough N. The potential nonergodicity of fully flexible, heterogeneous
server clusters brings us to the question of when the sufficient service capacity in (2.1) is satisfied, whether we
can design the underlying compatibility structure carefully so that the queue-length process is ergodic. In other
words, can we regain the stability region? Proposition 1 shows that this is indeed the case. In some sense, this
highlights the first-order improvements (i.e., in terms of stability properties) of a careful compatibility structure
design in contrast to a fully flexible system.

The establishment of Proposition 1 relies on first building a simple criteria involving the system parameters,
which for the sequence of systems satisfying Condition 1, ensures stability for all large-enough N (Lemma 2). Then,
we show that given other parameters, a value of (pk,m)rerc mers Satisfying this criteria can be found by checking the
feasibility region defined by M inequalities. Denote &y := 3", _\ Pk mvm for each k € K.

Lemma 2. Let {GN}y be a sequence satisfying Condition 1. The sequence of systems is in subcritical regime if

/\C WikPk,m
um%; 5 < 1, forallme M. (3.1)

Proposition 1. Let the parameters A,C,d and wy, vy, uy, k € K, m € M, be such that (2.1) is satisfied. Then, there exists
Pk, mkerc, mem € [0,11°M such that for any sequence of systems {GN}ys, satisfying Condition 1, the queue-length process
(X]N (t))jevn is ergodic for all N large enough. Moreover, such a (px,m)iex, mers can be obtained explicitly by solving a set of
inequalities.

The proof of Proposition 1 is provided in Appendix A.

In the following sections, we will demonstrate, in addition to the first-order improvements, how asymptotic
queue-length distribution can be improved as well, for example, in terms of having a double-exponential decay of
tail probabilities.

3.2. Process-Level Limit: i.i.d. Case
Our first main result characterizes the process-level limit of the queue-length process (X]N ,j€V),as N — oo, when
the starting states {X]N (0):j€ VV} are i.id. for all m € M and independent across different m-values. When the
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sequence of graphs {GN'}; satisfies a stronger condition, called clustered proportional sparsity (Definition 2), the i.i.d.
condition can be removed. This is the content of Section 3.3.

Now, note that for a fixed N > 1, {X]N :j € V}isasystem of N interacting stochastic processes, where interactions
enter the dynamics through the local empirical measures of neighboring states (the precise dynamics are given in
(4.3) and (4.4)). Exploiting tools from the theory of weakly interacting particles, we show in Theorem 1 that as the
system size becomes large, queue-length processes converge weakly to those of an infinite system of independent
McKean—Vlasov processes {X; : j € N} (see, e.g., Sznitman 1991, Méléard 1996). In fact, using a suitable coupling to be
described in more detail in Section 4.1, the convergence holds in L,. For ease of describing such processes and cou-
pling, although we only assumed that certain fractions of servers are of certain types in the model description, it
will be convenient to fix the type of each server j € N in this subsection by defining a membership map M : N — M, so
that VN = {j € VN : M(j) = m} with limy_c l‘l/\,’”l =10, and V,, = limy_,. VN for each m € M. With such fixed server
types and X}(0) = X;(0), let

t
Xj(t) = X;(0) — /0 Lx,s-)>0)Dj(ds) + /[0 - Lio<y<cs—nAj(dsdy), (3.2)
), EIXIR 4

Ci(t) = dczp" m N WMy, My), (3.3)

Y T

where M(j) = m and

he(j,Ma, ..., My) = i!%g:“h /N X8 X7 ) (),
b(x) = b(x ot - d
=b(xy,...,x5) = ; r]]'(-’(l:mmje[d]x/ largminx|=r), X = (X1,...,%) €Ng,
=L(X;(t), VieV,meM,t=>0. (3.4)

Here, {D;:j€ V,} are ii.d. Poisson processes with rate u,, for each m € M, {A;:j € N} are i.i.d. Poisson random
measures on [0,00) X R, with intensity Adsdy, and all D;’s and A/’s are independent. Loosely speaking, A; corre-
sponds to the arrival processes, and D; corresponds to the departure processes at servers. /1(j, ---) is the probability
that at time ¢, the server j will receive the new task given the event that the server j is among the d selected servers
and the new task is of cluster k. Neglecting d and C, C;(t) can be understood as the probability that the server j will
receive the new task. We note that the existence and uniqueness of solutions to (3.2) and (3.3) can be proved by stan-
dard arguments (see, e.g., Sznitman 1991, Méléard 1996) using the boundedness and Lipschitz property of the func-
tions b and x F— 1 (,-() on No.

Theorem 1 (Convergence to the McKean-Viasov Process and Propagation of Chaos). Consider any fixed q* = (q,; ;,
me M,leNy) €S. Assume that all XN(O) s are independent, and for each me M, {XN(O) jEVNY is iid. with
IP’(XN(O) >1)=q,,1€Ny. On anyﬁmte time interval [0,T], T > 0, for any m€ M and j € V,,,, the queue-length process
XN ( ) at server j weakly converges to the process X;(-) in (3.2). In fact, one can suitably couple XN with X; such that

N—oo
N_yvI|2 —>
max ElIX;" — Xl ¢ 0, (3.5)
and hence, the propagation of chaos property holds; that is, for any n € N and distinct j, € Va,, h=1,...,n,
N—oo
ﬁ(X]I:]/,X]I:,]) 'C(X]U/XJ”)ZHM1® ®yM”' (36)

Theorem 1 gives us the limit law of all individual queues. Next, in Theorem 2, we will show how such a server-
level convergence can be used to obtain a convergence result for the global occupancy process q"(-) to a deter-
ministic dynamical system, which was our primary goal. The proofs of Theorem 1 and Theorem 2 are provided
in Section 4.

Theorem 2 (Process-Level Convergence for i.i.d. Starting State). Assume that all X]N (0)’s are independent, and for each
me M, {X}(0):je Vy} is idd. with P(XY(0) 21) = g5, , 1 € Ny for some q* = (g5, ,m € M,1 € No) € S. Then, on any
finite time interval, the occupancy process q"(-) converges weakly with respect to Skorokhod [, topology to the deterministic
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limit q(-) := (g, 1(-), m € M, 1 € Ny) given by the unique solution to the following system of ODEs. For all m € M, qy,o(t)
=1, Qm,l(o) = q;fll, and

dq";lr;(t) - —um(qm,l(t) — Qm,l+1(t))

~ d ~ d
AL (D) — qm,l(t))z Pk, mWk (‘7k,l—1 ()" — (qk,z(t))  Vien. (37)

o 0 g (®) =)

Here, i /(t) = 3 em v"’g:'”’qm,l(t)for all ke K.

Remark 1. Using the propagation of chaos property (3.6) and the fact that {X(t):j € N} is independent and
{Xj(t) :j € Viu} is iid. for each m € M, it follows that the limit of the global occupancy process at any time instant
t, in fact, corresponds to the laws of X;(t) for each type of servers j in (3.2): that is,

‘u:n[lr 00) = IEJJ(Xj(t) >1)= Qm,z(f), JEVm,meM,l €Ny, t>0.

3.3. Process-Level Limit: General Case

Theorem 2 requires the strong assumption that for each m € M, X]N (0),j € VN, are i.i.d. In order to argue the
interchange of limits, we need to relax this assumption on initial states. This is because the arguments for the
interchange of limits involve initiating the prelimit system at the steady state and then showing thatas N — oo,
the system must converge to the unique fixed point of the limiting ODE. This requires us to characterize the
(process-level) limiting trajectory of the system starting from the arbitrary occupancy state. We achieve this in
this section.

Intuitively, the assumption of i.i.d. in Theorems 1 and 2 ensures that the local occupancy observed by any
dispatcher i € WY, k € K is “close,” in suitable sense, to the average occupancy at the entire system. This phe-
nomenon can be ensured asymptotically, even without the i.i.d. assumption, if the graph sequence satisfies a
property we call the clustered proportional sparsity. This notion was first introduced for the homogeneous sys-
tems in Rutten and Mukherjee (2022). The definition is a modified notion that is suitable for the current hetero-
geneous setting.

Definition 2 (Clustered Proportional Sparsity). Recall AV (i) = {j € VN : (i,j) € EN}. The sequence {GN}y is called
clustered proportionally sparse if for any ¢ > 0,

{iEW}(\’:

where EY (U) := {(i,j) e WN¥ x U : (i,j) € EN}.

N—oo

N, .
WY@nul BN 25}‘/|w{f|—>0, (38)

INNG) TER(VN)]

sup sup
kek UCYN

Remark 2. We can view the subset U in the definition as a test set, say U = Qz/ ,(t), where Qz/ /(t) is the set of
type m € M servers with queue length at least | € Ny at time t. Hence, Definition 2 ensures that for all but o(N)
dispatchers, the observed empirical queue-length distribution within its neighborhood is close to the global
weighted empirical queue-length distribution (Definition 4) of its corresponding type. Then, the global occu-
pancy process evolves similarly to (and converges to the same limit as) the case when the initial states are
iid.

Theorem 3 (Process-Level Convergence). Let {GN}y be a clustered proportionally sparse sequence of graphs. Assume
that qN(0) weakly converges to q® € S. Then, on any finite time interval, the occupancy process q™(-) converges weakly
with respect to the Skorokhod [, topology to the deterministic limit q(-) := (g, /(-), m € M, 1 € Ny) given by the unique solu-
tion to the system of ODEs defined by (3.7) with initial state q(0) = (q,, ;,m € M, € Np).

The proof of Theorem 3 is given in Section 4.4.

3.4. Convergence of Steady States

In the last section, we showed the process-level convergence of global occupancy process q(-) to a mean-field limit
q(-). In this section, we will establish the convergence of the sequence of stationary distributions to the unique fixed
point of the mean-field limit by establishing the interchange of large-N and large-t limits: lim;_, e limy—cq™ (t) =
limy—elim;—,q™ (). Throughout this section, we will assume that the sequence of systems is in the subcritical
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regime (recall Definition 1). The first result states that the limiting system of ODEs has a unique fixed point q* and
that it satisfies the global stability property (i.e., for any initial point q(0) € S, lim; . q(t) = q*).

Theorem 4 (Global Stability). Let q(t,q,) be the solution to the system of ODEs in (3.7) with the initial point
q(0) = q, € S. Then, there exists a unique fixed point q* = (q;, ;,m € M,l € No) € S such that lim; q(t,qy) = q

The proof of Theorem 4 is given in Section 5. It relies on a monotonicity property of the system, which ensures
that for two processes q'(-) and g°(-), if q'(0) < q(0), then q'(t) < q*(t) for all t > 0 (see Martin and Suhov 1999,
Stolyar 2015).

The last ingredient that we need in order to prove the interchange of limits is to establish tightness of the
sequence of random variables {q"(e0)}ys; under a suitable metric, where qV(e0):=1lim; ., q"(t). Here, as
before, we should note that the process (q"(t)),, is not Markovian. That is why the random variable q"(c)
should be interpreted as the functional applied to the steady-state system. The tightness result is stated in the
next theorem.

Theorem 5 (Tightness). For any ¢ > 0, there exists a compact subset K(¢) C S, when S is equipped with the ¢,-topology,
such that P(qN(c0) ¢ K(¢)) < &, VN=1.

Theorem 5 is proved in Section 5. The key idea is to use the Lyapunov function approach to bound the
expected sum of tails g} /(c0). Combining Theorems 3, 4, and 5, we can prove the following interchange of limits
result.

Theorem 6 (Convergence of Steady States). Let {GN}y»1 be a clustered proportionally sparse sequence of graphs satisfy-
ing Condition 1. Then, the sequence of random variables {qN(c0)}ys, converges weakly to q°, the unique fixed point of the
system of ODEs in (3.7).

One major discovery about the J[SQ(d) policy for the classical, homogeneous, fully flexible system is that the limit
of the stationary distribution (which in our case, is given by q*) has a double-exponential decay of tail (Mitzenma-
cher 1996b, Vvedenskaya et al. 1996) for any d > 2. This is in sharp contrast with the (single) exponential decay of
the correspopdmg tail for random routing or d = 1. In fact, in this case, for any d > 2, q* can be characterized explic-
itly as q; = = A7, where q; is the (limiting) steady-state fraction of servers with queue length atleast/ =1,2,.... In the
current case of heterogeneous systems, it is intractable to characterize the fixed point q* explicitly. However, as
stated in the next theorem, we can still prove that the doubly exponential decay of the tails g, ; for each m € M
holds.

Theorem 7 (Double-Exponential Tail Decay). Let q* = (q;, ;,m € M, € No) be the unique fixed point of the system of
ODEs in (3.7). Then, for all m € M, the sequence {q;, ;| € No} decreases doubly exponentially; that is, there exist positive
constant I, € Ny, a,, € (0,1), and by, > 0 such that for all 1> b, G, 1 < bma

3.5. Simple Data Locality Design Using Randomization

Sections 3.1-3.4 characterize the performance of the occupancy process for arbitrary deterministic sequence of sys-
tems where the underlying graph sequence satisfies certain properties. In particular, Condition 1 and Definition 2
provide sufficient criteria under which both the process-level convergence (Theorem 3) and the interchange of
limits (Theorem 6) hold. In this section, we show that graphs satisfying the required criteria can be obtained easily
if the compatibility graph is designed suitably randomly. Given the asymptotic edge-density parameters in Condi-
tion 1, we define a certain sequence of inhomogeneous random graphs or IrRG as follows.

Definition 3 (irg(p)). Given p := (p ,,, k € K,m € M), the Nth system of IRG(p) is constructed as follows. For any
k € K and m € M, dispatcher i and server j share an edge with probability py,,, for all i € WY and j € V, indepen-
dently of each other.

For any p for which the asymptotic stability criterion holds, we have the following result for the sequence of

IRG(P).

Theorem 8. Let p = (px,m, k € KC,m € M) be such that the stability criterion in (3.1) holds and {Gn}nsq be a sequence of
IRG(p) with increasing N. Then, the conclusions of Theorems 3 and 6 hold for {Gn}ns1-

The proof of Theorem 8 is provided in Appendix I. It relies on verifying that the sequence of IrG(p) graphs
satisfies Condition 1 and the property of clustered proportional sparsity almost surely. The verification
involves using the concentration of measure arguments to establish structural properties of the compatibility
graphs.
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4. Proof of Transient Limit Results
In this section, we will prove the results of transient limit results (Theorems 1-3 in Sections 4.2, 4.3, and 4.4, respec-
tively). We start by proving a few auxiliary results in Section 4.1.

4.1. Auxiliary Results
First, we will need a characterization of the evolution of the queue-length process at each server. To describe this
evolution, let us introduce the following notations:

setN() :={(2,...,ja) € [NI* 2 (jo, ..., js) are distinct}, (4.1)
settNG) = {Go, . L jarfor-- ) € INP 2 (o, ja) € 5etN(), (- . ., 1) € setN(j),
Gar oo rji) O (oo 1) # O} (4.2)

To represent the graph, define the edge occupancy éf\]] to be the binary variable:

. P N

Ef-\]j: {1' 1f(z,])§E " forallie WN,je VN,
’ 0, otherwise,

Recall the function b, Poisson processes {D;}, and Poisson random measures {A;} in and after (3.4). By Condition 1,

for all large-enough N, all dispatchers in the Nth system have at least d neighbors. Hence, without loss of generality,

in the rest of this section, we will only consider the case 5?’ >d, Vie WN. In that case, because of the Poisson thin-

ning property, note that we can write X]N (t) as follows:

t
X0 = X0~ [ 1 oD@+ [

0 e L< ygc/N(sf))Aj(dey)/ (4.3)

where

N N
51',]'2 X eee X 5

ANe=>"&" Y Wb(X}%s»x}ﬂs»...,x;j<s>>
ieWN <jz,..v,jd>esetN(f>< i )(d—l)!
d

=N &N L ZB(X} (), X7 (s), -, XN(s))- (4.4)
kekC iEWZ‘\] (]’2,..4,jd)EsetN(j) <6l > (d _ 1)'
d

The RHS of the first summation in (4.4) represents the probability that a job arriving at the dispatcher i € WN will be
assigned to the server j € VN given the state (X}",j € V). Moreover, by Condition 1, the term C}! for all j € VN can be
upper bounded, uniformly for all f, by a constant for all large-enough N, which is stated in Lemma 4.

When we do some estimation, like bounding the term CJN , we need to uniformly bound the number of the neigh-
bors of servers or dispatchers. Such uniformity is stated in Lemma 3 and is a direct result of Condition 1. Recall
oN = |N§J](i)| and O, = >, Pk, mUm-

Lemma 3. Foreach ke K,

N Ny
eg. (i,m) _deg_(i,m)
lim max & lim min—3% = , meM, 4.5
N—oo jeWN |Vn1\17| N-oco jeN |V%| Pk,m (4.5)
and
N N
lim max-- = lim min-- = 0. (4.6)

N—w jewd N Nooo jewN N
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Also, for each m € M,
deg(k deg (k,
lim max g”;’])_l gv; ])—pkm, kek. 4.7)
N—oo jevii W] Noeo oy Wil '

Lemma 4. For all large-enough N, we have that for any m € M, j € VN, and t > 0,

Pik,mWk
() < 20dy s (4.8)

kek

Proof. By the definition of C}V (t), for any t > 0 and large-enough N,

oN -1

1
N N
EijZX---XcSi]d

<> > &y > (SNi' Sy e ( ) ZCdekmwk
kek ieWII{V (2y - - ,ja)esetN() ( )(d 1)' kelc lEWN ( ; ) ek

d

where the first inequality is because of b(-) < 1 and the last inequality comes from Lemma 3. O

By Lemma 3, we know that the neighborhoods of dispatchers of the same type are almost the same. With
the scale of the system size, the local graph structure for each dispatcher of the same type will converge to the
average one. The following two lemmas give necessary approximation of the graph structures for large-N sys-
tems. Their proofs are combinatorial and are based on Condition 1 and Lemma 3. They are provided in
Appendix B.

Lemma 5. Consider a sequence {GN}y satisfying Condition 1. For each m € M,

&N XX &Y Wy v N=e
max max E 5 E l’]zN l]d—Cdpk’m K M Pk My | — . (4.9)
VR KK 0t Mgt WY G jpeseedg) (% @ =11 % Gz %
st p eV, ... jaeVl, \ d

Lemma 5 states that the probability that the server j in the Nth system will be among the d selected servers when
anew task arrives converges to the corresponding probability in the limit system. The argument is mainly based on
the law of large numbers (L.L.N.).

Lemma 6. Consider any m € M and j € V,,. For large-enough N,

EN X EN XX &N SN X EN XX &Y

1]2 1 ],1
Z > | 5N . Lo (4.10)
i€eWN settN(j) (d—1)! i (d—1)
d
where Cy is a positive constant. Similarly,
N N N N
51'1,] X 51'1 o XX S, Ju 512] oy s élz i C (4.11)

ZN e &N N TN’
ETI ( >(d 1! (d>(d‘”’

where C, is a positive constant.

Lemma 6 implies that if we select two elements, say (j,...,ja), (3, - . -,j;) independently from set!N(j), then the
probability of (ja, ..., ju, jb, - - -, J;) € settN(j) is small. (4.10) and (4.11) are used in (4.16).
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4.2. Convergence to the McKean-Vlasov Process: i.i.d. Case

Proof of Theorem 1. It suffices to prove (3.5). Fix any me M, j€ V,,, and T > 0. We have that for any fixed ¢ €
[0,T] and any N such thatje V¥,

A

ElIXY - X1, < coBIXY () — X0

t t 2
Cl]E(/O |]1(X].N(s)>0) = Lix,(5)50) |2d5> +ak </o |]1(le.\’(s)>0) — x50 |d5>

+C1E</ 1To<y<cie —ﬂ(OSySCf(s))|2dey>
[0, F]XR /

IN

2
+C1E</ 1Lo<y<cvs) ﬂ(Osyscf(s))|de]/>
[0, t]xR 7

< C1E</Ot|X]N(S) _ Xj(s)lzds> +ooE (/Ot|x;v(s) _ Xj(s)lds>2

+C1E</Ot|C]N(s) —Cj(s)|2ds) +c1]E</0t|C]l4\’(s)—Cj(s)lds:)2

<o /O tE|x]N (5) = X,(s) 25 + ¢ /0 tElC]N (5)— C(s)]ds, 412)

where ¢y, ¢1, and ¢, are positive constants. The first two inequalities are by Doob’s inequalities and Cauchy-Schwarz,
respectively. The last inequality comes from the uniform boundedness of C]N (t) proved in Lemma 4 and Cj(t) < dCby
the definition. By adding and subtracting terms, we have

ICN(s) — Gils)] < 1CV(s) — CVA(s)| + [CNA(s) — CV2(s)| + 1CY2(s) — (o)), (4.13)
where
&N X x &N
chJ = Z Z gﬁ.fj Z %b(x (s), X;,(5), ..., X;,(9) |,
kel iEW}(\] (j2s - - rja)EsetN(j) ( i > (d _ 1)]
i d
&N X &Y M M
=3 e % [ 0 e ) )|
kel ieW}(\I G2y - - ,ja)esetN(j) ( >(d 1)'
i d
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First, consider |C]N (s) — C]N "1(s)|. For large-enough N,
E|CY(s) - CV()

B SIS et

N (b(XJN(s), X].Ij(s), . .,X]I-:I](s))

‘ . . N

kel ieWl (2 - ja)esecN(j) < i )(d —1)!
d

— b(Xj(s), X, (s), - .., Xj,(5)))

N 55\]]2 X éﬁ;d N N
<Y | % Wuxj (5) = Xi(3) |+ - +[X(s) — X, (5)])
i) d -1y

kel iewN (s -- - sja)EsetN(j)

N N
é1',]2 X X él JJd

IA

dxmax EIXN(S) X(S)|><ZZ5 Z

kek 1€WN (j2s - - sja)esetN()) <6£11 >(d—1)'

camax E|XN(s) — X;(s)!, (4.14)
jEVN ]

IN

where c; is constant. The first inequality is from that b(-) is Lipschitz continuous with Lipschitz constant 1 and that
the last inequality is from (4.9).

Second, consider |CN L) — CN %(s)|. By Jensen’s inequality, we have []ElCN Ys)— CJN’Z(S)I]2 < ]EleN’l(s) - C]N’z
(s)|?. Hence, it is suff1c1ent to bound IElCN Ys)— CN 2(s)]%:

EIC(s) - O3 ()12

=K Z Z éﬁl] Z %b(Xj(s),ij (S)r s 'de (S))
kel iew (2s - sja)esecN(j) ( )(d 1)!
2
SN (SN .
i/ BOS) - ) ) - ) 415)

N
P ID I D DI
kelC iewN (2s -+ sja)EsetN(j) < )(d
d

N N N N N
élljxé p X Xé 512] ézzj'x Xglzl

1,]2 i1,ja
<E , ZN ZN N oy
i1,i€WN settN(j) )(d— 1)| )(d_ 1)!
@ 55\’] X 55"]2 X e X éf\’M Efvj X EN X oo X EN

<E|Y"
ieWN seteN(j) <6N>(d 1)! <5N>(d 1!
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N N N N N N
Si ><£11]'2>< Xélljdéhlxéh]' X XélZ]

+ Z Z ll] (5 oY
i1, €WN iy #ip set tN(j) ( J >(d — 1)' ( ; ) (d — 1)'

<eN240N7Y, (4.16)

where the first inequality is because of the fact that X]-(O) isii.d. for j € V,, and independent for different m; so, for
each m € M, {Xj(s),j € V,,} are also i.i.d., and the independence across the server pools holds for any fixed s > 0.
Hence, if (j,j2, ..., ja, 5, - - - ,j;) are distinct, then

E | (6(X)(8), X (8), . me—LHmwa%,.%wﬂwwp~uWWamx

, M7
(b(Xj(t), X]';(t), .. .,Xj;(t)) — /Nd—lb(Xj(t)’ x]-é, .. .,xj;)y?d(lz)(dxj;) e Ly (]d)(dx]'&)) =0,
and b(-) and [b(-)u(d-) are both in [0, 1]. The last inequality of (4.16) is by (4.10) and (4.11).
Third, consider |C§\]’2(s) - Ci(9)]:
E|C"*(s) — Ci(s)]

£y xx el
B Y ey 2 A

(SN dqb(Xj(t)’x]’Z’ ' x]d).ut (]2)(dx]2) ° [«l?/[(]’d)(dx]‘d)
kel iewy (ay---sja)esetN()) < i )(d ~1) N
d

d

w v ‘ |

O D DI | £ / B0, 3 1 ) e M)
kek Ok (Ma, ..., Mg)eM® 1 h=2 k N

< c(N), (4'17)

where c(N) only depends on N and goes to zero as N — oo and where the inequality comes from (4.9) and the fact
that [b(-)u(d-) € [0,1]. Now, by (4.12), (4.13), (4.14), (4.16), and (4.17), we have that for large-enough N,

t
max EIXN = X2, < c10 | max EIIXY — X2 ds +f(N),
jev 0 jevN ’

where ¢y is a constant and f(N) is a function, which goes to zero as N — co. Last, by Gronwall’s inequality, we have
(3.5), and this completes the proof. [

4.3. Convergence of the Occupancy Process: i.i.d. Case
In this section, we want to show the convergence of the occupancy process qV(-) to the limit process q represented
by the ODE (3.7). The first step is to investigate the existence and uniqueness of the solution of the ODE (3.7). Define

g = {q S [O,I]MXNU qm,0 = 1/qm,l 2 Gm,1+1s Vme M,le NO}r
and clearly, SC S.
Lemma 7. If q(0) = q, € S, then the ODE system (3.7) has a unique solution denoted as q(t,q,), t > 0in S.

The proof of Lemma 7 is based on the Picard successive approximation method (Martin and Suhov 1999, theorem
1(i)) and is provided in Appendix C.

Proof of Theorem 2. Fix any T € (0, ). For each m € M, consider random measures p\ = IVNI ZJEVNéxN() and
N = |VN| >_jevn0x;() on S := ([0, T],Ny), where X;(-) is defined in (3.2). Denote the joint measures uN = ((TAPTIAR)
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and i = (@, ..., m))). Denote by dg. (-, -) the bounded Lipschitz metric for probability measures on S:
x —
s~ [l W= max{ww, SUPM}.
N—oo

XY d(x/y)
Edp (1, 1T,,) < E sup TN ZIf(XN) —FOOI < STEIXY - X, > 0,

[Fllp <1 ]eVN | I 1! jeyN

dpL(py, fy) == sup
[Ifllp <1

From (3.5), we have

which implies that dp; (1, 7)) 5,0 for each m € M. Because i [T 5 i, by the LLN., we have u™ = (i, ..., ul) 5
(le .., lyy) by Slutsky’s theorem. Also, it is easy to check that supy E[sup,_,_7llq" (t)||51] < c0. Thus, we have

qV 5 q. Next, we need to show that q satisfies (3.7). Define f;(x) = 1(,>y, [ € Ny. By (3.2), we have that for any m € M
andjeV,,

t
Efi(X;(t)) = Ef(X;(0)) + /0 umB x50, (i(Xj(s) — 1) = filXj(5)))ds

IR > e

kek (My, ..., My)eM?~1 h=2

x E[b(X;(s), xj,, . .., x;,)(fi(Xj(s) + 1) —ﬁ(Xj(s)))]yQAZ(dsz) /Jéwf’ (dx;,)ds

= BA(X(0)) + /0 5 T g0y o (X1(5)) — Fi(X)(5)))s

d
/ /Nd 1)\Cdzpk mWk Z HUth:,M,,

kek (M, ..., Mg)eM ™1 =2

XE[b(—1,%;,, ..., %) (fi-1(X(5)) — fi(X;(s)) 2 (dxy,) -+ u(dx;, )ds.
For any m € M, if j € V,, then Efi(X;(t)) = g, 1(t) = u}*[I,00) for [=1,2,.... Hence,

B 1) = 111(0) / (G 1(5) — Q12 (5))s + / NG P 14(5) = (9

kel

d
(9
D DI | e B O A AR T AL (4.18)
(Ma, ..., Ma)eMi—1 =2 N

Also,

d
S IR b0 ) e )
Nd71

(M, ... Moemith=2 K

PP 1+|r|H< ><Umpk m) G 18) = G 1) (G ()™

7eR 7R (7) meM

a1 1 d-1 Umpk m mpk m ' Umpk m S
=> 1 > G 11(8) = > OIS G, 1(5)

=0 r mem mem mem

d 1 d—1 ~ ~ r—1/~ d—r ~ mpkm
-y2 1) = T O @) (Let g )= 32 2 Ferg, 5
r 1

meM

_ (‘771(,1,1(5)){1 - (Qk,l(s))d
Ay, 11(5) — G 1(9)

(4.19)
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where R={7=(r,...,ry) eNM: S v rw=d—1} and R'F) = {7 =(1,...,1}) e N} : 7, < 1, VM € M} given
7 € R. Plugging (4.19) into (4.18), we get the desired result. O

4.4. Convergence of the Occupancy Process: General Case

In this section, we will discuss the case in which the sequence {GN}y is clustered proportionally sparse, which helps
us remove the i.i.d. assumption in Theorem 3. Intuitively, if {GN}, is clustered proportionally sparse, then for each
k € K and each dispatcher i € WY, the queue-length distribution of its neighborhood will always be close (in an
appropriate sense) to the corresponding global weighted queue-length distribution (GWQD). Clustered propor-
tional sparsity ensures that this statement holds uniformly for all occupancy states. Loosely speaking, this statement
enables us to make sure that the evolution of the occupancy process happens in the same way for any initial state as
in the case of the i.i.d. initial state. For the case of homogeneous systems, the notion of proportional sparsity was
introduced in Rutten and Mukherjee (2022). Here, proportional sparsity was defined in a way that for most dis-
patcher i, the fraction of its neighbors within any subset U of servers is proportional to the size of the subset U.
However, because of the heterogeneous compatibility between dispatchers and servers, such a fraction, in the cur-

ENk ((VJ) in Definition 2) Thus,
unlike the homogeneous case where the local queue-length distribution (LQD) is d1rectly compared with the global
queue-length distribution of the system, for the heterogeneous case, we need to define K types of global weighted
queue-length distribution (see Definition 4), where the weights are determined by the asymptotic properties of the
graph structure: (v, m € M) and (pi, ., k € IC,m € M). Then, we compare the local queue-length distribution of dis-

patcher i with the global weighted queue-length distribution of the corresponding type as defined.

rent setup, depends on the corresponding type of the dispatcher as well (see the term

Definition 4. Consider any fixed N € N and k € K. Given the global occupancy q" = (g} ,,m € /\/l I € Np) of the Nth
system, the GWQD of cluster k is defined as (ka/ M € M, 1 € Np), where xg mi= v”’p Jym (qm 1 qm )-

Also, the local queue-length distribution is defined as follows.

Definition 5. Consider any fixed N € N and k € K. Given the state (XN ,j € VN) of the Nth system, the LQD of dis-
AN [{jeVhy: zN =1 and X)'=l}|
bl = TG

Although the dispatcher following the JSQ(d) policy selects a target server based on its LQD, if its LQD is close
(in a suitable sense) to its corresponding GWQD, then the selection can be viewed as if the decision was based on
the GWQD. The latter case is easier to analyze. Hence, if a dispatcher’s LQD is close to its corresponding GWQD,
we call it a good dispatcher

Definition 6 (¢-Good Dispatcher). Consider any fixed N € N and an ¢ > 0. Given the state (X},j € V") of the Nth
system, a dispatcher i € WY, k € K, is e-good if

Z Z I zml xk,m,ll < e (420)

meM leNy

patcheri e WN is defined as (£, m € M, € Ny), where £/

im,l’

Also, a dispatcher is e-bad if it is not e-good.

4.4.1. Consequences of Clustered Proportional Sparsity. The proof of Theorem 3 relies on the idea that if the local
occupancy of each dispatcher within a particular type evolves similar to the global occupancy of that type, then the
process-level limiting behavior should not depend on any specific initial state. That is, it will enable us to go beyond
the i.i.d. assumption. The first step for this approach to work is to show that almost all dispatchers are e-good for
any ¢ > 0. Here is where we need the property of clustered proportional sparsity. This is stated in the next
proposition.

Proposition 2. Let {GN}y be a sequence of clustered proportionally sparse graphs. For any T > 0 and €1, &, > 0,

N—oo
P( sup Z5(H) = e|WN| | —0, (4.21)
te0, T]

where () is the number of e1-bad dispatchers at time t.

The intuition behind Proposition 2 is that the servers of type m € M with queue length [ € Ny form a subset UN

of the server set V. If this set is large, then by the clustered proportional sparsity, for any fixed k € K and almost all
[EY (U )|

i€ WY, the fraction of the dispatcher i’s neighbors within Uﬁ/l is close to W

, which is close to xk ; for large-
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enough N by Condition 1. Also, in order to deal with the sum over [ € Ny, we will need to establish uniform bounds
of the tail of the occupancy process on any finite time interval. The complete proof is given in Appendix D.

4.4.2. Coupling with an Intermediate System. The main methodology for the proof of Theorem 3 is a stochastic
coupling with a sequence {G"N}; of carefully constructed systems where the evolution of each system G’~ can be
coupled with that of the system G". For each N, the system G’N has the same sets of dispatchers and servers as G"
(e, WN=WN and VN = VN). However, the task assignment in G’V happens differently. To describe the task
assignment policy, let us introduce the following notations. Let X}N () be the number of tasks (including those in
service) in the queue of server j € V'N at time t. Let 'V (t) = (q%(t), m € M, € Ny) be the corresponding global occu-
pancy at time t, which is defined in the same way as q" for the system G". Then, the system G’ assigns tasks under
the GWSQ(d) policy as described in Algorithm 1. The GWSQ(d) policy is essentially a variant of the JSQ(d) policy
because for each new task, the dispatcher selects a target set of servers of size d according to the global weighted
queue-length distribution.

Algorithm 1 (GWSQ(0d))
while A new task arrives at dispatcher i € WY, k € K do
Get the current global occupancy qV = (g} ,m € M,l € No);
Calculate the global weighted queue-length distribution x)Y = (ka,m, pm e M,leNy) of cluster k,

N mpkm
Xk, 1 =

(qm I+1 ‘ﬁ,z)?

Randomly select a set select! with size d as the following.
o Let YkN .1(t) € No be the number of servers of type m € M with queue length I € Ny in the set select®;
° (Yk, l(t) m e M, € Ny) satisfies

Z Yy, (0 =d;

meM, 1eN,

e the probability of selecting (Yg m (B, m € M, 1€ Ny) is

Xgui Y /(N
otomesieso= T (0)/())

meM, 1N,

N _ N
where X ]—Nxkal

Get I = mm(l €Np: 3k e K,m e M such that Y)Y, ;> 0);
Assign the task to a type m € M server with queue length [* with probability

N
Yk,m,l*

=  wN
Zme./\/l Yk, m,I*

end

Next, we couple the evolution of the system G'N with that of the system G by the optimal coupling method. The
optimal coupling for two stochastic processes is similar to the maximal coupling for two discrete random variables
(say, X and Y), maximizing the probability P(X = Y).

4.4.2.1. Optimal Coupling. Fix any N. In both systems, within the pool of servers of each type, arrange the servers
in the nondecreasing order of their queue lengths (ties are broken arbitrarily). Now, couple the evolution of the sys-
tem G" with the system G’N in the following way

e Departure. Forany me M andn =1,...,| VY|, synchronize the departure epochs of the nth ordered servers of
type m in the two systems.

e Arrival. The coupling of arrivals is the tricky part. For this, first synchronize the arrival epochs at each dis-
patcher i in both systems G’N and GV. At an arrival epoch of dispatcher i € WY, let (£, ;, m € M, € Ny) be the local

empirical distribution of dispatcher i in the system G" and (xk myMmEeM,Ie NO) be the weighted global empirical
distribution of cluster-k dispatchers in the system G’V. Then, in the system G, the probability that the task will be

im,l’
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assigned to a server of type m € M with queue length [ € Ny is given by

Sy ( VYD), ) ( VYD ey B, ) ( |N$’<i)|ZM2p>mfme,p>

71 r—r d—r

NG|
d

In the system GV, the probability that the task will be assigned to a server of type m € M with queue length [ € Ny

is given by
Z Z X;cl,vm,l ZM\{m}X;cl,\lm,l ZM Zl’zl+1 X;cl,\]m,l’
r=1 r= 1 r " r—r d—r

(4)

d

For convenience, we denote p} (i) and p;fl\/’l (k) as ply ; and p;fl\{l, respectively. Denote ?7%,1 = min(pfn’,l,p;s/]l) for me M
and ! € Nj.

Now, to couple the task assignment, let us draw a Uniform[0, 1] random variable U, independently of any other
processes and across various arrival epochs. U is used to generate the random variables (MN,LN) € M x Ny and
(M'N,L'N) e M x Ny for the system G~ and the system G'N, respectively. In the system G, set (MN,LN) = (m,]) €
M XNy if

ph (i) = (4.22)

p(k) = (423)

m—1 oo m—1 oo
ue ZZ,ZPW l'+I’mel”21’me’ l,+l/me l’)
m—1 oo
U |f7 + Zz(pm’ r pm’ l’)+z(pm r pm l’
m'=10"=

m—1 oo
p + Zz(pm’ r pm’ l’) + Z(pm r pm 14 ) (424)

=1r=

where g = S0 _ ST, pm, - and assign the task to a server of type m with queue length /. Similarly, in the system
G'N, set (M'N,L'N) = (m,]) € M x Ny, if

m—1 oo — m—1 oo
ZZ m' l’+zpml”zzpm’ l’+zpm l’)
'=1I'=0

I'=0 m'=11'=0 I'=0
m—1 oo -1
=N 'N =N ‘N =N
U p+ E :E :(pm’,l’ _pm’,l')+ § :(pm,l’ _pm,l’)'
m=11=0 =0

m—1 oo
P+ ZZ(PW =P, 1')+Z(Pm =P ) (4.25)

l!_ l/_

and assign the task to a server of type m with queue length /.

As alluded to before, the coupling is constructed in a way that maximizes the probability of the two systems to
assign an arriving task to some server with the same queue length. Next, the difference in the occupancy processes
of the two systems, on any finite time interval, can be upper bounded by the number of times the two systems
assign to two different queue lengths. This is formalized by the notion of mismatch, which was originally introduced
in Mukherjee et al. (2018b).

Definition 7 (Mismatch). At an arrival epoch, the system G" and the system G’V are said to mismatch if (MN,LN)
# (M'N,L'N); that is, the arriving task is not assigned to servers of the same type with the same queue length in
the two systems. Denote by AN() the cumulative number of times the systems mismatch in queue length up to
time ¢.
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The next proposition provides a deterministic bound on the difference between the occupancy processes of the
two systems in terms of the number of mismatches.

Proposition 3. For any N > 1, consider the system G and the system G'N coupled. Then, the following holds almost
surely on the coupled probability space: for t > 0,

SO I - QN < 2AN(), (4.26)

meM [eNy

provided the inequality holds at t = 0. sz ,(t) and Qm /() represent the number of servers of type m € M with queue length at
least | € Ny in the system G and the system G'N at time t, respectively.

Bounds of the form as given in (4.26) were originally established in Mukherjee et al. (2018b, proposition 4), and
they were later used in various contexts (Mukherjee et al. 2018a, Rutten and Mukherjee 2022). The proof does not
depend on any specific assignment policy and relies on showing inductively that if the inequality in (4.26) holds
before an event time epoch, then it is preserved after the event time epoch as well. The proof of Proposition 3 can be
obtained following the similar arguments. We omit the details.

Lemma 8. Given Y-, \> e, |QN  — Q)| < 2AN, then there exist Ny € Ng and a positive constant L such that for any
ke,

SO I — a1 < LAY/N, VN2 No. (4.27)
meM leNy

Proof. By the model assumption, there exists Ny € Ny such that for all N > Nj, |V% | >1Nv,,, Yme M, which
gives us that

SN =Y Z”’"p’“ﬂg QN,|/IVN]

meM leNy meM leNy

<> Zzp S QN — QN /N < LAY/N, 4.28)

meM leNy

where L = 4 maxer, mem p kim0

The final ingredient that we need is the probability of mismatch in a particular epoch under the optimal coupling
method. The next lemma bounds this probability in terms of the £;-distance between the LQD of the Gy system and
the GWQD of the G'N system.

Lemma 9. Consider an arrival epoch at dispatcher i, and assume that in this epoch, the LQD in the system G" is given by
(xl M € M, 1€ No) and the GWQD of cluster-k servers in the system G'N is given by ([, |, m € M,1 € Ny). Then, there
exists a finite positive constant Ly such that for all large-enough N,

P(Mismatch) < Ly Z Z |20 1 — X 1] (4.29)

meM leNy

The key step in the proof of Lemma 9 is that given the queue-length distribution x = (x,, ;,m € M, € Ny), the
probability p,, ; that a task will be assigned to a server of type m € M with queue length [ € Ny can be approximated
by

r—n d—r
Pmi = ZZ rrl(r— 1’1)'(d 7’)!(x’ﬂ"’l)r1 ( Z x’”’”) (Z Z Xm, l’)

r=1 r= M\ {m} I'>1+1

and that the function x* is Lipschitz for x € [0, 1]. The complete proof is given in Appendix E.

4.4.3. Proof of Theorem 3. Now, we have all the ingredients to prove Theorem 3. Let us explain the high-level
proof scheme first.

Step 1. Using the optimal coupling, we will show that the global occupancy processes {q"(-)}y and {qN()}y
must converge to the same limit process as N — oo if their initial states are the same, X]N 0)= X}N (0) for all j. In
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other words, with the same initial states,
lim aV() = li N,
N 1 ©) e ¢

Step 2. Because there is no graph structure in the system G'V, all servers of the same type in the system G’V are
exchangeable. Hence, @'V (-) is Markovian, which implies that given q'(0), its evolution does not depend on how
individual XN(0)’s are distributed. Denote the system G’V with the ii.d. assumption as G}V, where the i.i.d.
assumption refers to that for any m € M, X}(0), ]E VN are iid. Also, denote the system G'N without the i.i.d.
assumption as G,". Their occupancy processes are q;(- ) and q;"(-), respectively. Because task assignment policy in
G'N does not dlstmgulsh between two servers having the same type and queue lengths, by a natural coupling,
qN(t) = @V (t) holds for all t > 0, implying that

I\l]lm q1 N = hm q2 N ).

Step 3. Denote the system G with the i.i.d. assumption as GY and the system G’N without the i.i.d. assumption
as GY, and denote their occupancy processes by q)¥(-) and q)'(-), respectively. Combining Step 1 and Step 2, the fol-
lowing equation holds. With the same initial global occupancy state,

hm ‘h()— hm q1 N = hm q2 Ny = hm qz()

where the first and last equalities are because of Step 1 and the second equality is because of Step 2.

Step 4. Use Theorem 2 to note that when the sequence {GN}, satisfies the assumption that for each
meM, X]N (0), j€ VI, are ii.d., the scaled global occupancy process q~ converge weakly to q described by the sys-
tem of ODEs in (3.7).

Step 5. By Steps 3 and 4, Theorem 3 holds.

In the proof scheme, observe that all that remains is to show Step 1, which is given here.

Proof of Theorem 3. For Step 1 described in the proof scheme, by Proposition 3, it is sufficient to show that for
any ¢* > 0and 0" > 0, there exists an Ng > 1 such that

P( sup AN(tH)/N=>e"| <&, VYN2=N,. (4.30)
tel0, T]

Fix an ¢ > 0, which will be chosen later. Let & (t) and .Z}(t) be the numbers of e-good and e-bad dispatchers in
the system G" at time ¢, respectively. We couple the evolution of the system G" with that of the system G'N by
the optimal coupling method. In system GN, let (xk m,1(5),m € M, € No) be the global weighted queue-length dis-
tribution of cluster k€ K and (x, m (1), m € /\/l l€Np) be the local queue-length distribution of the dispatcher
ie WY, ke K. Also, let (xk,m’ ,(t),m € M,l € Np) be the global weighted queue-length distribution of cluster k €
in system G'N. Denote pp/(t) = 3= ,c e ien, [ %0 m, 1 (8) — X%, ((B)]. At an arrival epoch ¢ >0, if a task arrives at an
e-good dispatcher i € WY, then

Z Z |2 (=) — x;f,\lm,l(t—ﬂ

meM leN,
Z Z| zml(t xlk\,[m,l(t_)l + Z lekml(t ) kal(t )l _€+p (t) (431)
meM IeN, meM leNy

Recall the uniform random variable U and ;7%/ ; defined in the description of the optimal coupling method. The
probability that the systems have a mismatch at such arrival epoch is bounded by

(ue 0 zzpmlbﬂzzmﬁf S-S

meMIeN, meM leNy meM IeNy meM leNy

- pﬁ,l| <L Z Z |xAi,m,l(t_) - x;cl,\in,l| < Ll(pkN(t) + 5)/ (432)

meM leNy meM leNy
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where the second inequality is from Lemma 9. At an arrival epoch ¢ > 0, if a task arrives at an e-bad dispatcher
i € WY, then with probability at most one, the systems have a mismatch. Because of the Poisson thinning property,
we can construct an independent unit-rate Poisson process (Z(t));s( so that AN(t) can be upper bounded by a ran-
dom time change of Z as the following; forall t € [0, T],

kek 1€WN

AN(H) < Z(Z Z A/ [Liers s—pLa(pp (5—) + &) + Lt sy - 11ds )

/ [Liers (s L1 (LAY (=) /N + &) + L e ¢ (5 - 11ds
k€/€ zeWN

_z< / (5 (s )L (LAN (5=)/N + £) + %, (5—) - 1]ds> (4.33)

where the second inequality is because of Lemma 8. By Proposition 2, we have that for any ¢’ > 0, there exists an
N(¢’) such that for all N > N(¢’),

<sup B > ¢ |wN|> % (4.34)

te[0, T]

Hence, by (4.33), (4.34), and Tonelli’s theorem, we have that for all N > N(¢’) and t € [0, T],

<w> <A / [ ( W(N)LAIES ) é>+@3ﬂ ds. (4.35)

Also, by the assumption that limy_,e w = (, there exists Ny such that w < 2C. Hence, we have that for all N >
max(N(¢”),Ng) and t € [0, T],

N t N(o_
g2 1) A/ Ly (20 A G LY s as) (4.36)
N 0 N
By applying Gronwall’s inequality to (4.36), we have
A™(t) :
E N < MLqe + 3Ce")t exp(2LL1 CAY). (4.37)

Because AN(t) is nonnegative, by Markov’s inequality and (4.37), we have

P( sup AN(t)/N = E*> < gl (L1e +3Ce" )t exp(2LL1CAYL), (4.38)
te[0, T]

and we can choose small-enough ¢ and ¢’ such that (4.30) holds. O

5. Proof of Interchange of Limits

5.1. Properties of the Limiting System of ODEs

First, we define the fixed point of the ODE (3.7). Recall 6y =, c \(Pk,mVm and G, ,(£) =3, s U”’g:'”‘qm, i(h). Let q* =
(q,,,1 € Ry,m € M, 1 € Ny) be a fixed point of the ODE (3.7) if for allm € M, €N,

~% d ~% Nd
* * * * mw (q — ) _(q )
= Ty p11) = AL 11— o) E e, G.1)
ex Ok Te1-1 — k1

with ¢q;, o =1, m € M. The next proposition shows some important properties of the fixed point q of the
ODE (3.7).
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Proposition 4. If there exists a fixed point q* of the ODE (3.7) such that for each m € M, 0 =1 and q,, iy 0, then for
each m € M, the sequence {qy, 1,1 € No} decreases doubly exponentially.

The proof of Proposition 4 is provided in Appendix F. The key observation used in the proof is that by (5.1), q;, ,
can be expressed in terms of g;, 1 and Do 12+ Thus, we can recursively characterize the values of ¢, b [>2,if we
know ¢, gand q;, |, m € M.

By Proposition 4, we know that if q* is a fixed pomt of the ODE (3.7) and for all m € M, gq; gy 0, then such q*
must be in S, so we only need to show that such q* exists. For the proof of the existence of such q*, we need a techni-
cal lemma, which will be used in (5.4).

Lemma 10. Consider a sequence {GN }N satisfying Condition 1. If {GN}y is proportionally sparse and in the subcritical
regime, then for any (a1, ..., anm) € [0, 1M with 3, m@m > 0, the following holds:

(Z amvmum> /\CZw <mg/\4arnpkmvm> <p<Ll (5.2)

memM ke

The proof of Lemma 10 is provided in Appendix G.

Proof of Theorem 4. We prove the existence of the fixed point first. From (5.1), we know that if (g;, ;,m € M) are
fixed, then all (q*m,l,me./\/l,l >2) are determined as well. Hence, q" can be the viewed as the function of
(4,1, m € M). Moreover, in the steady state, ), .\, 1 =AC, which implies that qj,, can be decided by the
values of 0,1, m € M\ {M}. Hence, we construct the sequence q(@) = (q,,,1(@),m € M, Te Np) as functions of the
vector o = (al, ..,apnm-1) € (0, 1)M ! as follows:

Gmo(@) =1, Vme M,

AC— ZmeM\{M}amvmum

Gm1(@) =ay,, me M\{M}, and gqm1=
OmMUM

_ o _ 5 Pl Gy (@) — @ @)
Mm(‘?m,l(a‘) - qm,l+1(a)) = /\C(Qm,lfl(a) - qm,l(a))g o I?k,lfl(a) — qk’](a)

Jg>1. (5.3)

Because for all m € M, g,,,1(c) should be in (0, 1), then & = (a1, ..., ap—1) must lie in the polyhedron P; defined as

follows:
AC — , Vot Ut
P; = {am € (max(O, € = Lwemygm Ot ),min(£,1)>, Vm<M-—1,
[ OmUm

and AC —opupy < Z AUl < AC}.

m<M-1

For all @ € Py, we have 1=g,,o(@)>gu1(@) >0, YVme M. Consider I = 2. By (5.3), we have that when
a,=0,me M\ {M},

Prmtr 1 — (‘7k,1(5))d

(0 = g2 (@) = AL(1 -0 7@
U ( q ,2(04)) « )keIC Ok 1_qk,1(a)

implying that g, »(@) < 0; whena,, =1, m € M\ {M},
U (1 —gm2(@)) =0,

implying that g, »(@) =1 > 0. When a,, = me M\ {M},

vu’

AC AC Prmwi 1 — (E]k,l(a))d
thm <0m Uy . 2(06)) <1 - Um“m)%; o 11— Qk,l(a) '
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implying that
~ —\\d
(@) = AC AL (1 AL ) P mwi 1 — (G 1 (@)
" OmUm  Un UmUm kel 6k 1- I?kll(a)
AT AL <1 AL ) P, mWk
OmUm  Um UmUm ke 6k

AC _/\_C (1 B AC ) Pk, mWk

OmUm Um OmUm kel Pk, mOm

L

vmum Umum Umum

Let r,,,1, m < M — 1 be the maximum number, which satisfies the following:

1. 1y < min()\—c,l),
4 UmlUm

2. Ja € Py with a, = 14,1 such that g, 2(@0) = 0.
Define P; C P; as the following;:

AC— Uy A
P} = {am € (max <rm,1, ¢ Zzsi‘f’lvm ] ),min(%,l)), VYm<M-1,
m“m m*“m

and AC —opup < Z A Oy < /\C}.

m<M-1

Again, by using (5.3), we get that when > _ a1, = AC— oy (e, gy 1 (@) = 1),
um(l —qm,2(@)) =0,
implying that gy, (@) = 1> 0; when ), _ @ity = AC (e, gu,1 (@) = 0),

P vl — (qk,l(a))d

0-— a))=Al(1-0 ———,
um(0 — gum,2(a)) = AL( )keIC b 1-G,,@)

implying that gu,2(@) < 0.
Let r1 be the minimum number that satisfies the following:
1. 1 < AC
2. There exists & € P} such that ), _ )/ @0ty =11 and g, 2(@) = 0.
Define P, C P C P; as the following:

AC — , Uy
P, := {am € (max (Vm,1, ¢ E’; Sf‘lvm ton >,min<v r; ,1)), Vm<M-1
m*“m m*m

and /\C —omuUpm < E QO < 11 0
m<M-1

Hence, for all @ € P, we have 1 = gy, 0(@) > i, 1(@0) > g,2(@) > 0, Ym € M. Continuing this process, we can define
a sequence {P; 2P, 2--} of polyhedra such that for all @ € P, we have 1=y, 0(@) > qm,1(@) > > gy (@)
>0, Ym € M. Thus, we can get decreasing sequences {q,,1(@)},cy,, 1 € M for some a. Because gq,,,; >0, Vm € M,
I € Ny, then Vm € M, 3x;, such that lim;_,. g, 1(@) = x},. Next, we need to show that x;, =0, Vm € M. By (F.2), we
have

d
> uttny, = ALY wk<Z : "';”k”mx;> - (5.4)

meM kek meM
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Clearly, x;, =0, Vm € M is a solution of (5.4). It must be the unique solution because by Lemma 10, for all
(x,me ./\/l) € [0,11™ with > omentXn >0,

-1 d
(Z vmumx:n> /\CZwk< pk’mvmx;> <1,
Ok
memM

meM kekC

implying that (5.4) does not hold. Now, let ¢, | = gu, (@), Ym € M,I € Ny.
Now, we are going to show the uniqueness. The proof of the uniqueness is based on a monotonicity property of
the system, which is stated in the following claim.

Claim1.Ifq < qforq,q €S, thenq(t,q) < q(t q) for all .

Proof. Consider any q < q € S. It is easy to construct two copies of the Nth systems with initial states {XN 0),j€
VN} and {X (0),j € VN} satlsfymg the following.

1. Forall]eVN N(0)<X (0). N

2. {X}'(0),j € VN} has the correspondmg global occupancy q"(0) = q € S; similarly, {X; (0),j € V"'} has §"(0) =
qes.

By a natural coupling, we have that for all je€ VN and t>0, XN(t) < X (t), implying that q"(t) < qN(¢).
Because systems are stable, then q"(t), gV (f) € S for all ¢ > 0. Moreover, by Theorem 2, the claim follows. [

We continue the proof of the uniqueness. Now, it is sufficient to show that lim;_,., q(f,q,) = q*, in which either
qo < q°or q, = q° component wise, because Claim 1 implies that

q(t,min(qy,q")) < q(t, q¢) < q(t, max(qy,q’), Vq,€S,t>0.
We will prove the case that if q, < q, then
13?0 q(t,qo) =q

The case that q, > q" is similar. Also, note that g, ;(c0), Vm € M,[>2 can be solved recursively by (5.1) when
Gm,1(00), ¥m € M are determined, so it is sufficient to show that g, 1(e0) = q;, ;, ¥m € M. By ODE (3.7), we have

ar Z Omm, 1) = Z OmUmGm, 1(t) +AC.
mem mem

Because q, < q", then q(¢, qo) <q(tq)=q". Observe that > .\ Omtng, 1 =AC. Hence, if for some me M,
9D mer@nin ¢

Gm,1(t) < g;, 1, then ﬁ > 0, which implies that
lim Z U, 1(t) = Z Umm,1(00) = AC.
fe0 memM mem

Because forallm € Mand t >0, gy,1(t) < q;, 1, thenlim;_ gu,1(t) = ¢, ; must hold forallm e M. O

Proof of Theorem 7. The result holds immediately from Proposition 4 and Theorem 4. O

5.2. Proof of Tightness and Interchange of Limits

Next, we are going to prove the tightness of the steady-state occupancy processes {q"(co)}y. Let 7} (c0) =
> me qu ,(e0) and qN (c0) = (ql (00),1 € Np). In order to show the tightness of {q" (o)}, it is sufficient to show that
the sequence is {q" (o)}, which is stated in the next proposition. For showing the tightness, we will bound the tail
of the expected global occupancy of the stationary state first.

Lemma 11. Let {GN}y be a sequence of proportionally sparse graphs satisfying Condition 1. There exists an Ny such that
forall N>Noand £ > 1,

I+p)/2 _ _
> Eaes) < 0 20 R o) 65)

Furthermore,

E7Y(c0)) < (lzp), Ve e N,. (5.6)
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The proof of Lemma 11 is similar to Rutten and Mukherjee (2022, lemma 3). We define a sequence LY Ymem, cen,
of Lyapunov functions and bound the drift of L)) ,, which enables us to bound the tail sum of 7; N(c0) starting from .
Given the Nth system state, X" = (X},j € V). Let QN /(X) be the set of servers of type m € M with queue length at
least I € Ny. For each m € M, we deﬁne a sequence of Lyapunov functions LN (X)) =3 1|Qm /(X)|, £ € Ny. The
complete proof is provided in Appendix H.

The next lemma from Mukherjee et al. (2018a) gives us the criterion for {;-tightness.

Lemma 12 (Mukherjee et al. 2018b, lemma 2). Let {X"} be a sequence of random variables in S’, where S’ = {x € [0, 1]
2x; < xi—1, VieNy, and Y x; < oo}. Then, the following are equivalent.
i. {XN} is tight with respect to the product topology, and for all & > 0,

lim 1@0 P <inN > g> =0. (5.7)
i>k
ii. {XNY is tight with respect to the £1-topology.

Proof of Theorem 5. Because for all [ € N, ﬁf\] € [0,1], then it is easy to check that {q"(c0)} is tight with respect to
the product topology. Hence, it is sufficient to show that for any ¢ > 0,

lim lim ]P’( E ﬁf’(oo) > e) =0. (5.8)
{—o00 N—oo 5t
By Markov’s inequality and Lemma 11, we have that for all N > N,
- 1 (1+p))2 . _ 1 (1+p)/2)f
E No)>e | <-E E <-—— = gEl (o) <2 2 5.9
<l>[,ql( ) ) <I>€q > 1=+ p) 200D < 7= 59)

which implies that (5.8) holds. By Lemma 12, the desired result holds. O

Proof of Theorem 6. By Theorem 5, {q"(co)}y is tight with respect to the £;-topology. Then, any subsequence has
a convergent further subsequence. Let {q"(c0)}, be such convergent subsequence, and assume qN(c0)—q".
Clearly, q" must be in the space S. Now, initiate the Nth system at its stationarity. Then, the system is in steady
state at any fixed finite time t > 0. That is, we have q"(t) ~ @™ (co) for all t€[0,T]. Also, by Theorem 3,

N"(t)—>q(t) Thus, for all t € [0, T], q(f) ~ q", which implies that q* is a stationary point of the limiting system. By
Theorem 4, we know that q* is unique. Therefore, the desired result holds. O

6. Numerical Results

In this section, we will present the simulation to validate the theoretical results. Using the insights from the theoreti-
cal results, we will also show that systems with carefully designed compatibility structure perform much better
than the classical, fully flexible systems. Throughout this section, we set the system parameters as follows: K = 2:
two clusters of dispatchers; M = 3: three types of servers; d = 2: the system follows the JSQ(2) policy; u = (1,5, 10),
where each 1, m =1, 2, 3, is the service rate of type m servers; A = 3, which is the arrival rate at each dispatcher is A;

02 05 03
Q= {0.5 0 0.5} , where each g,, ; is the probability that type m, m =1, 2, 3 server’s initial queue lengthis/, =1, 2, 3;
09 01 0

fraction of types of dispatchers: [w; w,]=[0.2 0.8]; fraction of types of servers: [v; v, v3]=[0.5 0.3 0.2];
and C = 1: the relationship between the number of dispatchers and that of servers in the system.

In the setting, the capacity sufficiency is satisfied, AC=3 < >\ Untty, = 4. The first experiment is to compare
the performance of the classical, fully flexible system with that of the system with carefully designed compatibility
structure.

6.1. Complete Bipartite vs. Designed Compatibility Structure
The complete bipartite is the case that the compatibility matrix p® = (pSL M € M,k € K) is a matrix with all elements
equal to one. From Lemma 1, we have that an Nth system under JSQ(d) is stable if and only if it satisfies the
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following:

-1
A
N _
pr=max (> D Mgemun | D > o <L
U£0 jel memM i€eWN Sg(um'/\fz{(f)): < cll )

S| =d

By Lemma 10, for the complete bipartite case, we have that

-1 d
li N> mUm A m ZO.5X1_1X3X 0.52>1,
NI_IBO A1/1(12/>\<4 (ﬂg\; Ul ) CZ Wi (ng\;/v > ( ) (0.5)

ke

which implies that for large-enough N, the system under JSQ(2) is unstable. The bottleneck here is that the type 1
servers with poor performance receive heavy workload 1\/?7 Proposition 1, if the capacity sufficiency is satisfied,
then there always exists a compatibility matrix p* € [0,1]°** making all large-enough systems stable under JSQ(2).

Checking the feasible region defined in Lemma 2, we get one of the appropriate matrices p' defined as p! =

0.05 0.6 1
01 07 1

servers by decreasing the fraction of the type 1 servers in the neighborhood of each dispatcher. For the experiment,
we set the number of servers n = 1,000 and consider two systems S1 and S2. 51 is a system with complete bipartite
graph structure; 52, generated by rG(p!) (Definition 3), is a system with compatibility matrix p'. We simulate the
evolution of each system 100 times and plot the mean sample path in Figure 1.

Figure 1 shows that the average queue length of type 1 servers in S1 almost monotonically increases as t
increases, which implies that the average queue length of type 1 servers in 51 is unbounded. However, in the sys-
tem S2, the average queue length of each type of servers is bounded. From this numerical result, we observe that
with an appropriately designed graph structure, the performance of the system can be improved. Although we
tried to plot the 95% confidence interval (CI) for each point t =0.5,1.0,1.5,2.0,2.5, the CI is narrow, and its size is
smaller than that of markers in the plot. One reasonable explanation for such a narrow Cl is that for large-enough
N, the scaled occupancy process gV is close to the fluid limit q. In other words, the error of the mean-field approxi-
mation is quite small, which can be of independent interest. With a similar heterogeneous setting, Allmeier and
Gast (2022) show that the error of the mean-field approximation is O(1/N).

]. The intuition for designing the compatibility matrix, like pl, is to lower the traffic intensity for type 1

6.2. Convergence of Global Occupancy States

In this experiment, we generate systems by IrG(p!) and simulate the evolution of systems with size n = 100, 500,
1,000. For each system, we also simulate 100 times and plot the mean trajectories of g}y ; and ¢l ,, m € {1,2,3} in
Figure 2. Also, we plot the evolution of g,,,1 and gy,,2, m =1, 2, 3, of the limit system. The simulation results show
that the evolution of the global occupancy of the Nth system converges to that of the limit system as N goes to infin-
ity. From the simulation result, we find that g, and especially, g)Y, decrease very fast when their initial values are

Figure 1. Complete Bipartite vs. Appropriate Designed Structure

Complete VS Structured

System 51 -9
System 52 -
Type 1 s

3.0 -
Type 2 > 4

toe ]!

Type 3 -

—
=

Average Queue Lengths




Downloaded from informs.org by [92.119.18.209] on 10 July 2024, at 12:33 . For personal use only, all rights reserved.

Zhao, Mukherjee, and Wu: Data Locality to Improve Heterogeneous Server Clusters
Stochastic Systems, Articles in Advance, pp. 1-44, © 2024 The Author(s) 27

Figure 2. The Simulated Trajectories of ‘7%,1 and ngj,zf m =1,2,3 Converging to the Solution of the System of ODEs as N
Increases

(a) (b) (c)
Trajectory of 4", Trajectory of ¢, Trajectory of ¢
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075 0.6
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— NS00
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0.475 4

067 0,450
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01.400

0.375
0.3 L 0.350 4

large. In other words, when the average queue length of type 1 servers is large, it will decrease very fast. The reason
is because of our designed compatibility matrix such that compared with other type servers, type 1 servers are sam-
pled much less often.

6.3. Uniqueness of the Fixed Point of the Limit System
From Theorem 4, we have that for all q € S, lim_,., q(t,q,) = q". In order to verify this, we use a simulation of the
evolution of q(t, q,) with different q, € S (i.e., consider the different Q mentioned). We also simulate the system

04 03 03 06 03 0.1
with Q1 = [0‘1 0.8 0.1} and Q; = |:O.8 0.1 0.1] . Figure 3 shows that with different q € S, limy—,cofm,1(t), m =1, 2, 3, are
03 06 0.1 07 02 0.1

the same. If g,,,1, m = 1, 2, 3 are fixed, then the values of all g,,,;, [ > 2, m = 1, 2, 3 are fixed as well by using (5.1).
Hence, Figure 3 verifies the uniqueness of the fixed point.

7. Conclusion

In this paper, we model a heterogeneous system as a bipartite graph and investigate how we can impose the data
locality to significantly improve the system performance even if the individual task assignment remains oblivious
to the service rates. We figure out that if the sequence of systems satisfies the capacity sufficiency, we can always

Figure 3. Multiple Trajectories of g,,,1, m = 1, 2, 3 in the Limit System Converging to the Fixed Point
(a) (b) (c)

Trajectory of g, Trajectory of g Trajectory of g3

g 5

5
o & =
j

02
a1

0.45 9 0.3 — 0.2 J——
== Q1 —+= (L ===l

.40 { Q2 02 @ ot @
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design an appropriate graph structure between dispatchers and servers such that the vanilla JSQ(d) policy achieves
maximal throughput and the tail of queue-length distribution decreases doubly exponentially. However, it is
worthwhile to mention that although we consider the data locality, which restricts the compatible servers for each
dispatcher, our work is not really to investigate the sparsest system. It is an interesting future research direction to
see what is the sparsest in which such a compatibility graph can achieve similar favorable properties, like the
double-exponential tail decay.

Appendix A. Proofs for Stability Results
The goal of this appendix is to prove Proposition 1. We start by proving Lemma 2, for which we need the next technical lemma.

This lemma will help us to upper bound the probability that a new task will be assigned to a specific subset of servers (in particu-
lar, (A.5)).

Lemma A.1. Consider the following optimization problem:

N /s N
max;( dz) s.t. ;xi =Cand x; € [0,D],
i= i=

where C and D are positive integers. Let k* = |C/D|. Then, the optimal value is k* (5 ) + (C 7de*>, if N > k*; otherwise, the optimal value is

N(B).

Proof. We will prove by contradictions. Suppose the maximizer {x; :i=1,...,N} contains some x7,x; € {1,...,D — 1} for some

j * k. Note that
d; < dz ) B ( Ndj ) ( Ndk ) !

where ¥; = min{x]*- +x;, D} and X = x7 + x; — X;; that is, the pair (x]f,x,*() gives a smaller value than the extremer pair (¥;,Xx). This
contradicts the assumption that {x; :i=1,...,N} is the maximizer. Therefore the maximizer {x;:i=1,...,N} must contain at
most one x; €{1,...,D —1}, with all the other x} being either zero or D. This completes the proof. O

Proof of Lemma 2. Suppose that (3.1) holds. Because M is finite, then there exists a p € (0,1) such that %Zke)c wf% < p forall
m € M. Fixany ¢ € ((), %) Recall 6V = | VY(i)|. By our model assumption and Condition 1, there exists N € Ny such that for
allme Mandje VY,

P WIN)(1 — ) < deg) (k,/) < pr nwi WIN)(1 +¢),  VkeK, (A1)
and forallK € Cand i€ WY,

Nop(1 — &) < 6Y < Nop(1+e). (A2)

A

T then there exists an N1 € Ny
MmeN U

Consider the Nth system. Consider any nonempty subset U C V of servers. If |U| < C(A, p) :=
such that forall N > (N, v Ny),

} A<|C(A,p)|)
> A TS :
T < NG
> Lgevytin | D - i o
(; e ) WY scUn AN : <6f\') [U minyen tm £ iewy (65)

= d

and for all i € WN, 6 goes to infinity as N — co uniformly by (A.2). Next, consider the case |U| > C(A, p). Denote a,, = |UN
VN|/|VN| for each m € M. Then,

4 B A(|UmN§j(i)|)
A d
DX Ygeyum | Y D TN S (Z LIV IamJum> D (A3)
jel meM ieWN Sg(un/\/ﬁj(i)): 6w(l) meM ke jeW}I:’ ( w(l))
IS|= d d
By (A.1), we have that for each k € IC,
STHUNANTO] =Y degh (k) < D [V | awprmwi WIN)(1+¢). (A.4)

€Wy jeu memM
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By Lemma A.1, (A.2), and (A .4),

(6kN(1 + &))
-1
(A3) < <Z I_lV,I;,]|amJum> AZ ( \‘Zme,\/t|V%|ampk,mka(N)(1 + E)J + 1> L

mem ek ON(1 —¢) <6kN(l — é))
d

1+ d - Zma UmQm ,m(l + 8) 1
< Cl(N) (1 — i) (Z Um“m”m) ACZ <wk \‘ Mék(l fkg) + N ’ (A5)

mem ke

where C;(N) only depends on N and goes to one as N — co. Let

K= {k cK: \‘Zma\/lvmampk,m(l + &)J > 1}

o(1—¢)
If K’ =0, then
1+e\? AC
(A.5) < C1(N) (1 — g) N e Om Qi
1+¢\? AC L+e\'
<Ci(N) (1 — g) QL pymineny o < P(l — g) . (A.6)

Consider the case K’ # 0. Then, we get

d -1
(AS) < Cl(N) (} i (Z) (Z Umllm”m) AC (Z Wy ZmEMZ(;‘:(O{ﬂfIZT(l + S) 4 %)

mem kekC
-1
T+e\’ l+e
<Ci(N) (1 i é,) (Z vmamum> AC (Z Wy Z'"eMgmoimpk’,m( * d)
—¢ meM kel k( - é)
T+6\? AC
+C1(N . A7
1(N) <1 — 6) NZmEMUmamum 7
By (3.1), we have that for all m € M and a,, € (0,1),
_ o wom\ 1+e 1+¢e) 1+
(O Vptt) AL (kZqu mpg;{" m) L p(l — ) 5 P,
ek
which implies that
Ul 1+¢ 1+
AC(ZwkZmEMé . Pk,m( )) < Zp <Z Umamum)~ (A8)
kel k( - 8) meM
Because K’ is nonempty, then we assume k' € Kisin K’ (i.e., e pfOm@mpPir, m(1 + €) = 0 (1 — €)). Hence,
AC < AC(L+¢) <M (A9)
sze/\/tvmamum N(Sk’ (1 - S)mmmeM Uy Nék’mmme/vl U
which implies that there exists N, € Ny such that forall N > N,
1 . N—ooo
AC < AC(L+e) <G(N)—0. (A.10)

NY et Om@mtty, — NOg (1 — €)minep ity

We choose ¢ such that (}%ﬁ)dlz—p < 1. By (A.8) and (A.10), we have that there exists a positive integer N3 > (N, v N1 v N;) such
that for all N3 € Ny,

-1
A 1+¢e\* 1+
Z Z Ljevyyttm Z Z NG < (1 — 8) (Cl(N)Tp+Cz(N)) <1. (A.11)
jel meM’ i€WN scUnNAN(i): w ()
IS|=d d

We choose ¢ such that (}%ﬁ)d HTP < 1. Now, because the subset U C V¥ is arbitrary, then for all N > N3, the Nth system is stable
under JSQ(d) policy. O
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Proof of Proposition 1. By Lemma 2, it is sufficient to show that there exists some p such that for each m € M,

AL w ’“”k LA (A.12)
kel

Let x,, k= %:/’” €[0,1], ke K, me M with 3~ _\x,, = 1. Now, we can formulate a linear optimization problem as the follow-

ing; the objective is min p, and the constraints are

/\CZ WiXk,m < POmlm, Vme M,

ke
> xem=1, VkeKk,
mem
Xem €0,1],  VkeK,me M. (A.13)

Next, we construct a specific solution x" = (x; ,, k € K,m € M) satisfying Constraints (A.13) with p; = AC/3 ", c v Umtm. Note that
_ min(pyviu1, Alw;)

pYemn ,and form > 2,

po < 1by (2.1). For convenience, we denote x; , = 0 for all k € K. First, consider k=1. Letx] ; =

v = min(povmum, /\CW](l - Zm’<m‘x;,M’))
Lm = ACwy .

Because ACw; < AC= py>- e pUmitim, then Z,%Mx;'m =1 and my := min{m € M : p Uy lty — X ACwy > 0} € M. Then, consider
k=2.Forallm <my,let x5, =0.Let

, in(P ey Uy — X7 4, Acwl,/\sz)
2,m; — /\sz

and let

, min(pg O, ACWa(1 =37, %5 )
Xy = 1w , m>my.
2

Again, because Al(wy +w2) SAC< P> e Wmthm, then 30 x5 =1 and my == min{m > my : pyvu ity — x5 ,ACwp >0} € M.
We can construct x; ,, m € M, k > 3 by following the steps of the construction of x; ,,, m € M. Hence, we get a specific solution
X satisfying (A.13) w1th po < 1. Therefore, min p is strictly less than one, and our desired result holds. O

Appendix B. Approximation of the Graph Structure for Large N Systems

Proof of Lemma 5. Consider any fixed m € M and fixed j € V,,. Also, fixany k € K and (M,, ..., M,) € ML

N
i€WN (2, .- ja)€setN(j) 51‘ O h=2 O
st €V, ..., j‘,ede

N N
o 5 S XX iy e mwkHUM,,Pk M,
L]
( )(d— 1)1

N N
Eijy, XX &

d
N i,ja < ) UM Pk M
sloay > A s ML e ®
ieWi" (o s ja)esetN(j) ( i ) (d o 1)' 15WN ( ) h=2
d

s.t. jzev;“v’lz,.“,jdeV}},}d d

d
Z é H UM, Pk, M), —dC Pk, m Wk oM, Pk, My, ) (B.2)

iew w2 O Ok 3 Ok
d
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First,
N N d
max Z S JzNX X iy H Z7M71Pk M,
€Wy ) ‘ Ny O; heo
(2, - ja) € set™(j) (d—1)!
st ja EV[I\\‘/'IZ ,,,,, jdEV}\'\/’[d d—
N N Ny N
< max Z é,‘ jz e X 5,‘/” B degw (l, Mz) Xeee X degw(z, Md)
Tiewy| N 5N 5N
(2, - - -, ja) € setN()) (d—l)' i (d—l)'
st €V, .. Ja€ VR, d— d—1
deng(i, Mz) X X degi{(i, Md) d UM, Pk, M,
+ max — H .
ieWN N O
k 67 h=2
d— 1)
d—1

For large-enough N,

N N . .
max gi,jz XX éi,jd _ deng(z,Mz) X X degﬁf(z,Md)

; > N N
W (e set™() o @d—-1)! ° @d@-1)
st eV, ... eV, d—1 ’ d—1 .

dd —1)

< maXx—————————max (degg(i, m))* 2

ieWy 65\] mem
d—1)
d—1

dd-1) i2
< N 21125]( géax (degw(z m))
mingee [ )@ 1)
“\d-1

d—2 N—ooo
< N, kyd(d — 1) N DBmem Onprn)” = (B.3)
(Nop™"

where cN(m, k) goes to one as N goes to infinity and only depends on k and m for each N. The last inequality comes from Condi-

A (o d+2)N

tion 1, Lemma 3, and - T 1. Similarly, we have

degw(z My) XX degw(z M,) 3 ﬁthpk M,

II?V?JV éf\] h=2 6k
(d—-1)!
d—1
< max ‘ ey degg(i, M) thpk M, ﬁ minfGWQ’ degz(i, My) _ 9m,Pr, M,
- jez \ Mgy (o) —d) s maxiewﬁzéf\’ Ok
N—ooo
<N@m,k,M,,...,My)—>0, (B.4)

where cN(m, k, My, ..., M) depends on m, k,M,,...,M,. By (B.3) and (B.4), we have

EN, X eee X EN d N—co
ma§ Z 1,12N ija H UMngk,Mh < Cll\’(m, k,My,...,My) — 0, (B.5)
Wy (2, .-, ja) €setN(j) ( 0; > d—1)! h=2

st j2€Vi,, .. ja€Viy, d—1
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where c?’(m, k,M,,...,My) depends onm,k,M,,...,My. By Lemma 3, we have

degy (k) _ . degy/(kj) _
s, max == = im min == = Wt
Then,
( oN oN
d— 1) mW, ( - ) m W
> S an Cpk HE IR — deg)'(k, J) + |deg) (k, J)—— a Pl
€Wy i €Wy k
< d > ( d >
N—oo
< N(m, k) —0, (B.6)
where c)'(m, k) only depends on m and k.
Consider (B.1).
oN
&N XX & ( ) 4y
N b2 ija M, Pk, M,
ORI D |

€Wy (o) ja)esetN(j) 6 (d _ 1), iewy h=2
st €V, ja€ Vi, d d

oN oy
Z CS ( ) Z 5%2 X X éf\]]d N (d - 1) ﬁUMhpk,Mh

&N
N ij N
iew (-, ja) e set™() 0; d—1) iew 0; w2 Ok
d st p€VNL, ... ju€ Vi d-1 ' d

5N
Z é ( - > Z éfY]z XX ESIM _ ﬁthpk,Mh

d 1
N
iewy (2 - - -, ja) €setN(j) 0; d—1) heo Ok
d st eV, ja€ Vi, d—1 '
(a)

S

ieny < d )

(Q N N Pk, mWk I\i;
S 6 (Tl’l, k/ MZ/ ce /Md)CZ (m/ k)dcé— O/ (B7)

where ¢ (m, k, My, .. Md) =70 and cN(m, k) =1 (a) is from (B.5), and (b) is from (B.6). Hence, (B.1) goes to zero as N — co.
Then,

N d
N 57 )2 Koo X 57 Jd d Pk, m Wk UMhpk,Mh
S Y SRR g
€Wy (2, - - - ja) €setN(j) i d—1) h=2
st L€VN,..., Ja€Viy, d
N—oo

Scé\](mlklel" ~/Md)%0/ (B.8)
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where Cdg‘](m,k, M, ...,My) only depends on m,k, M,, ..., M,. Because k € K and (M, ...,M,) € MT 1 are arbitrary and because
and M“! are finite sets, we have

N &y XX & Px, mwk < UM,PkM,
max max E,-,]. Z N —dC H J :
kel My, ..., My)em®? ieWN (2 - - ja)€setN()) bl -1 h=2
st p€Vi,,.. ja€ Vi, d ( - )
N—oo
<Nm)—>0, (B.9)

where M (1) only depends on m. Because ¢V (1m) does not depend onj € V¥, (4.9) holds. O

Proof of Lemma 6. Fix any m € M and j € V,,. Consider (4.10). When éi,j =1, by the definition (4.2) of set tN(-),

oN ? oN -1
| _ _oy| Vi
§ Xl e el el [(d 1’( 1)} * 2>~(2d_2)
> .
settN(j) < i )(d_1)| <6f\l>(d—l)' (6”) ((d—l)')z
d d d ’
Also, by Lemma 3, we have that for all k € L and i € W,
N1\ N -1 N -1\1 o -1
{(dl)!(l )] (2d2)!<' > [(dl)!maxiswiv<l ﬂ (2d2)!mmi€WkN<’ )
d | 2d -2 < d , 2d -2
65\] 2 65\] 2
((d-1)1 Min;epyy ((d-1)
d "\ d
N&e \ 1° No
(d—-1) i —(2d - 2)! od o
N _ _
SCl( ) (N6k>2
((@-1)?
d

where ¢1(N) only depends on N and goes to one as N — co. By Lemma 3, we have that for all k € K, max;cyyy degi\’ (k,7)
< co(N,m)|WN|py. ., where c2(N,m) only depends on N and m and goes to one as N — oo. Hence,
X EN, XX &Y

N N N
s wél]xé , X xé

Z Z oN oN
i€WN settN(j) ( i >(d—1)! ( ! )(d—l)!
d d
SN -1
)
B 2d -2
’ < ) ((d—1))?
Nog \1? Noy
{u_m( )] _<2d_z>!< )
<a(N)) _ degy (k) o A2
kek Ny 2
( . ) (@-1)

N&e \1° N
{(d—l)!( ﬂ —(2d—2)!< d 2)
<ai(N)e2N,m) S WY [ 1 -2/

. k ) N(S 2
e ( k) ((d— 1)1
d

7
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Let ¢3(N) = max;easc1(N)ea (N, m) with c3(N) Ny 1. Then, we have that for large-enough N,

N N N N N N
Eiy X &gy X xél]dcf,]XE ;X ><5

Zw ZN &N
ieWN sett ( )(d 1)' ( i )(d—l)!
d d
N&x \ 12 Nog
{m_m( )} _(Zd_m( )
d—1 24 -2
N&¢\ 2
< ) (@1
d
N(Sk 2 N‘Sk
[(dm( )} (2“)!( )
<23 W lpi d—1 24-2)

kA NG\ 2
< ( k) (@ 1)
d

Because limy—e. | WY | /N = Cwy and [(d - 1)!< i )]2 — (24 -2)! ( i 2) < C3x2*73 for some constant Cs, then by choosing C; appro-

< CS(N)Z |W[I<\]|pk,m

kek

(B.10)

priately, (4.10) holds for all large-enough N. We can get (4.11) in a similar way. O

Appendix C. Unique Solution of ODE (3.7)

Proof of Lemma 7. Recall that q(t,q,) is a solution of (3.7) given the initial point q"(0) = q,. For convenience, we denote
q(t, qp) as q(t) and write the ODE (3.7) as the following:

q(0)=q, q(t)=h(q(), (C1)
where for allm e M,
E?n,o(q) = 0/
Pk, m Wk @k,l—l)d - @k,z)d
e Ok le—l_le ’

Observe that under (C.2), if ,,1(t) = qy,,1:1(¢) for some m € M,l € Ny, t > 0, then Tim,1(q(t)) = 0 and 1, 11 (q(t)) < 0; if i, 1(f) = 0 for
some m € M,l € Ny, t >0, then 1,,, ;(q(t)) > 0. Hence, if q € S, then any solution of (C.1) and (C.2) remains within S. In order to
show the existence and the uniqueness, we use the Picard successive approximation method (Martin and Suhov 1999, theorem
1(i)). In the rest of the proof, we use the norm

Em,l(q) = _um(‘%n,l - ‘71n,1+1) + AC(qm,l—l - qm,l) I>1. (CZ)

|qm ll
llgll = sup su .,
1 me,a ZENFO) [+1
Foranyq,q’ € S,
[h(qll <K, [h(q)—h(q)l<Kallq—q'll, (C3)

where K := maxpe ity + AC and Ky := 2 maxyep ity + 2dAC. For £ >0, let qO(t) = q,, and by the Picard successive approxima-
tion method, let

t
() = 9 +/ h(q"V(s))ds, neN.
0

By induction, we have that q"”(t) is continuous w.r.t. t on [0, o) for all 7 and that

K Kn tn+1
a0~ a0l <2, Ynen ez
Hence, forallt >0, q(“’) =lim;—e q(”) exists uniformly for s € [0, t]. Also, by (C.3) and the dominated convergence theorem, the
following holds:

ot
A=) = qp + /0 B(q)(s))ds. (C4)
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Next, we show the uniqueness by contradiction. Assume that §* also satisfies

G = gy + / (G (s))ds.
0

Then, we have

q(H - q" () = /0 [h(@*(s)) —h(q""(s))lds

Similarly, we get

KlKg tn+1

1650~ a" Ol <

which implies that §*(t) = lim, e, q"(f) = q®. O

Appendix D. Proof of Proposition 2

Lemma D.1. If qN(0) weakly converges to q(0) = q™ € S, then for any ¢ > 0, 6 > 0, and T > 0, there exist £ € Ny and N, € Ny, depending
onq*, ¢, 0,and T, such that for all N > Ny,

IP’( sup sup gy, ,(t) > e) <0. (D.1)

te[0, T] meM

Proof. Fixany ¢ > 0 and 6 > 0. Because q™ € S, then there exists ¢; € Ny such thatsup, .\, g, ,, < €/4. By the weak convergence
qV(0) = g, there exists Nj € Ny such that for all N > Nj,

P (0) < £/2) < P(la"O) - a7 > e/4) <3, 02)

4CAT

Let ¢ = {1 +sup,,c [ |- Hence,

]P’( sup sup gy ,(t) > s)

te[0, T] meM

= P( sup sup qm [(t) ¢ sup qm 0 (0) < ‘('/2> + ]P(qm 0 (0) < ‘('/2) (DB)

tel0, T] meM
Because given sup,,. qm ,(0)<e/2 (e, forallme M, qm 4OV, N| < &/2|VN]), then if for some t € [0, T] and m € M, qm (D) >¢€
(i.e., qm, D] VN| > ¢|VN]), there must be at least inf,e | VN le(€—¢ 1) /2 tasks arr1v1ng in the system. By using the standard concen-
tration inequality for Poisson random variables (Habib et al. 1998, theorem 2.3(b)), we have

( sup sup qm () =e€ sup qm ,(0) < 8/2> <P(Po(W(N)A) > mf |VN|5(£’ 01)/2)

tel0, T] meM

(D.4)

2 —00
< P(Po(NCAT) > 2C(N)NCAT) < exp (— ((2C(N) — 1)NCAT) ) = 0,

2(NCAT + ((2C(N) — 1)NCAT)/3)

where Po(:) is a unit-rate Poisson random variable and C(N) is a positive constant only dependent on N that goes to one as N
goes to infinity. The second inequality comes from the assumption that W(N)/N — C and |VY|/N — v,,, ¥m € M. By (D.4),
there exists N, € N such that forall N > N,

(sup sup ), () 2 ¢| sup g1, (0) <e/2) < (D5)

tel0, T] meM
Let Ny = max(N1,N>). By (D.2), (D.3), and (D.5),

]P’( sup sup qp ,(t)> s) <o6. O

tel0, T] meM

Lemma D.2. Foreachm e Mandk e KC,

|E£](u)| UmPk,m |U|

e ENOVN 5 VY]

— 0as N — co. (D.6)
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Proof. Fix any € > 0. By Condition 1 and Lemma 3, there exists N(¢) € Ny such that for all N > N(e),

(1= pen WY UL < [EYUD] < (L+ )pen WY UL, YU SV, (D.7)
and
A=) poal WYLV < [ENOVO <0 +6) S prn WYIIVA]. (D3)
mem mem
Hence, for all N > N(e),
[EYDIIVN] Owpim
- - < max{gl(e, N)/ 82(51 N)}/ (D9)
uevy||IER(VMIIUL &
. _ (1=&)pi,m [WN| |V;Iy\i| UmPrk,m e _ (1+&)pe,m WY | |V£:f| OmPk,m : )
where ¢(¢,N) = (1”)2,,1:,»1?’*’/;'%]' AT akk and ey(g,N) = (175)2'”:\4”’”‘:'%,‘ T 6): . Again, by Condition 1 and Lemma 3,
ENU)||VN
. sup[[EXDLVEL b
N=eo | [ER (V)] U] Ok

Sl\l]im max{¢e1(e,N), e2(e, N)}

= max{

Because (D.10) holds for any ¢ > 0, we have

(1 - €)UmPk, m_ OmPk,m
(1 + €)6k Ok

(1 + &)vupr,m _ UmPr,m
(1 - S)6k Ok

7

} . (D.10)

EYDIVEL o
EYOVOIUL o

lim sup
N—oo UQV;}Z

< lim max{ ‘(l - g)vmpk,m _ OmPk,m

— =0. O D.11
€10 (1 + &)y ok }=0 (D.11)

(1—e)ox Ok

‘ (1 + f)UmPk, m Z7mpk, m

Proof of Proposition 2. Consider any fixed k € K. Also, fix €1 > 0 and ¢, > 0. By the triangle inequality, we have

]P’( sup {z‘ eWY D > RN 0 -, (0] > gl} > ezM(N)/K>

tel0, 7] meM IeNg

< ]P’( sup {ie Wi Z Z |J??Im,l(t) _ka,m,l(t)| > 51/4} > ezM(N)/(4K)>
t€[0,T] meM 0<I<(—1

+]P’< sup {i eWY: > N 2N, (> e /z} > szM(N)/(ZK))
tel0, T] meM 1=

+IP>< sup {i eWY D > 0> 51/4} > szM(N)/(4K)>
te[0, T] memM I

< IP’( sup {z’ WX Y 1& () =2, (D] > e1/<4f)} > szM(N)/(4fI<)>

0<I<(-1 t€[0, T] memM

+ ]P’( sup {z’ A DI AN B ()| /4} > e2M(N) /(41<)>
tel0, T] meM | It

+2P< sup {i eWy: Z ngm,,(t) > 51/4} > ezM(N)/(élK))A (D.12)
te[0, T] meM 1>
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37

By the triangle inequality and Markov’s inequality,

> P( sup
0<l<t—1 t€[0, T]
< > |P{ sup
0<I<t-1 t€[0, T]

+ ]P’( sup Z
te[0, T] me M

{zeWN Z [£N . z(t)*lec\,]m,l(m >£1/(4£’)}

meM
. |EX (W, ()]
xi,m,l(t) - |EkN(4VlN)|‘ > 81/(85)}

> &1/ (85)))

EY U (1)
AN ) k m,l
Xy, 1(8) — TE

> esM(N) /(451<)>

{ieW,IQ’:Z

memM

|EF (U, ()] W
IEkN(VN)I k m,l

{z‘ew}fzz

meM

> él/(SK)}‘>

4(K
<— E{ sup
gzM(N)OS;—l (te[o,ﬂ

o5 (Y
0<i<t-1 meM UV

4(K
< El| sup
e2M(N) 0<I<t—1 n%\:/l (tE[OI T]

EXU)| o, Ul
[ENOVN) o VY]

N1 TN
{zeWk : A,m,(t)—w‘>el/(8M€)}'>

[EY(VN)]
|E]I<V(u)| _ OUmPk,m | u|
[EY(VN)[ 6 VY]

{ieWkN.

EYWD] upin U]
ENOVN) o IV

> 61/(8£)>

+

> 6 /(8M€)>

g (
0<I<t—1 meM uevy

4¢K

- VYO nul ENU)]
N ézM(N)

WG TWE V)

E sup
0<I<(—1 meM UeVY

> 6 /(8M[)H

+

> 6 /(8M€)>

: (
0<I<t-1meM  \ UeV)

{iEWIIQI:

2.5l

0<I<l—1 meM

40°KM “u
= EM(N) o

VNG Ul BN
VY@ W)

> 51/(8M€)}‘

EN(U)| Umpk,m |u|
[EY(VN)] o [V

> & /(8M€)>.

By Lemma D.2, there exists N; € Ny such that forall N > Ny,

|EkN(u)| _vmpk,m |u|
[EY(VN[ o VR

sup sup <¢&1/(8MY),

meM ugv;\n’

implying

meM

{ie Wy Z 125, 1(E) —ka,m,l(t)| > 51/(45)}

> ]P’( sup > ezM(N)/(MK))
0<l<l-1 t€[0, T]

40°KM
sup {1’ € W,I(\’ :

- WUl EYU)]
B EZM(N) UeVN

WO TWE )
Similarly, we have that there exists N, € Ny such that N > N,
Z(J?i,m,l(t) - ka,m,l(t)) > 81/4}

P(sup {ieWkN:Z
te[0,T] meM | 1>t
N N
WUl W] ’> ,1/4}‘

< i su ie WN:
= EMN) o TG W)

> /(SM{’)} ‘

> &2M(N) /(41<)>

> &,M(N) /(451<)>

(D.13)

(D.14)

(D.15)

(D.16)
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By (D.12), (D.15), and (D.16), there exists N3 = max(N;,N») such that for all N > N3,

fiemts =3 la

meM leN,

{iEWkN:

{1’ € W,I(\’ : Z ngm,l(t) > 51/4}

memM 1>

N6 = 6] > 81} > ezM(N)/K>

P| sup
tel0, T]

- 8C2KM “
= e M(N) o

Wonul BN |
YO IW£’<VN>I'>1/4}

+2P < sup > ezM(N)/(4K)> .

te[0, T]

Fix any €3 > 0. By Definition 2, there exists Ny € Ng such that for all N > Ny,

{iEWkN:

By Lemma D.1, there exists N5 € Ny such that for all N > N,

62M(N)€3

Suj .
b 16£2KM

uevN

oo 1B |
WG W

1}»( sup {1’ eWY: >N ) 0> 51/4} > ezM(N)/(4K)> <&
te[0, T] meM Izt
Hence,
11»( sup {i eWy: > N 1N, 0 -2, (0] > 51} > ezM(N)/K> < e
t€[0, T] meM IeN

Because ¢3 > 0 are arbitrary, then the desired result holds. O

Appendix E. Bound the Mismatch

Proof of Lemma 9. Define a function Fln\j,z(') :S—[0,1]asforx = (x,,;,me M,leNp) €S,
5 L](Nx»n,l) (NZM\{m}me) (NZMZWlexm,l)
r=len=lr g r—rn d—r

(a)

Flr;z],l(x) =

Also, define a function f,,, ;(-) as forx € S,

r—ri d—r
fn1(x) = ZZ rm@%l)“( Z xm,l) <Z Z x’”r") :

r=1 r= M\{m} M I'zl+1

(D.17)

(D.18)

(D.19)

(D.20)

(E.1)

(E2)
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Note that forany0 <y <x<land1<k<d, x—(x— y)k < kxy < ky. Then, we have

Z Z |F ](X) —fm, 1(x)]

Let XN =N

i,m,l’

meM leNy

meM leN

(xm 1

meM leN

eyt (e () (S )

o r=ln= M Izl+l

M\{m}

r—ry d—r
(s ) (Ere ) )
M\{m} I'>1+1

diry(r — r)(d !
ZZZZ%%%ﬁ?M<EMXZZMNﬁ

o =11 M\ {1} M >+l

ridri(r—r)(d—r) d\?
<3 Sy (3)

meM IleNy r=1r
B d rdlr(r—r)d—r)
_ZZYW( ) —0as0. (E3)

r=1r=

the optlmal couphng, we have

P(Mis

me M,leNy) and xN = (x|, m € M,l € Ny). By (4.22) and (4.23), p)} (i) = F}} (k) and p,),(k) = F}} ,(xN). By

match) < Z Z |EN GN) = EN ()]
meM leNy
S ON IR G = G DD TIEN 06N = fu 6N
meM leN, meM IeN,
)N Ut &) = fu i) (E.4)
meM [eN,

Next, we are going to show that f(-) is Lipschitz continuous for x € S:

LetL = ZZr—l Zrl

D I

meM leN,

<22

meM leNy

r—r d—r
N \n ‘N ‘N
— (1) ( E xk,m,l) <Z Z xk,m,l’)

<22

meM [eN,

M\{m}

<D0

l(ﬁf\]) _fm,l(x;f\,”

errl'(r rl)'(d !

r=1r=

(&))" (Z xNz> <ZZ :mzf>dr

M\{m} iz

M\{m} M I'=l+1

ridlr(r—ry)d—r)
errll(r—rl)!(d 7)!

r=1r=

N
l m,l xk,m,l

(5 st 5 ) (3 #h -3 it

M\ () r>I+1 M I+l

ridlr(r—ry)d—r) ,
ZZrW' zml_xk{\]m,l)|

meM IeNy r=1r=
d r
_ rdlrn(r—ri)d—r), .N
- ;Z— rrl(r—r)id —r)! %3 =l (E5)

r1 dlri(r—r1)(d—r)

=17 ! (r—r)i(d—n)""

By (E.3), (E-4), and (E.5), we have that for large-enough N,

P(Mismatch) < LIIXN —x||;. (E.6)
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Appendix F. Doubly Exponential Decay

Proof of Proposition 4. Because q is a fixed point of (3.7), then we have

Pk, mWk (E]k,lfl) (qk 1)

um(Qm,l - qm,l+1) = /\C(Qm,l—l - q;n,l)

O D11~ i
Multiplying both sides by v,, and summing over m € M gives
S Ottt — Gun11) = A iy — G ). (F.1)
memM keK

Also, because g,,, ; 11‘;0 0, Vm € M, then for £ > 1, by adding ! > £, we have
Z UmUmGm, ¢ = /\CZ wk(Elk,[,l)d~ (FZ)

mem kek

From (F.2) and ), ,wi = 1, we have

Z OmUmm, ¢ < /\C(Elz_l)d/

meM

where §; ;| = maxexj k¢_1- Hence, forallme M,

AC .
q"f,[ < C *,
UmUm

where ¢*(m,{ —1) = (qzil)d*lmaxmE MAL/ (Oythy). Because we assume that gy, /1000 for all m € M, then we can choose a large-
enough ¢ such that c*(m, £ — 1) < 1. By definition, for each k € K,

Tre = Z mgk e < ¢ (m, €= 1)),
memM

which implies that §, < c*(m,{ — 1)17} ;and

B o G < (€= 1)) max AL/ (o) = (€ (m L~ DY,

m m

By induction, we obtain that for n € Ny,

G ean < (€ (m, €= D)7, < (@m0 - 1)"G,_,, (F.3)

where e(n) = Y"1 d'. (F.3) implies that {g,, 1,1 € No} decreases doubly exponentially. O

Remark F.1. Recall 4, , =3, s S 1. From Proposition 4, we know that {7, ;,/ € No} decreases doubly exponentially. In
fact, they do not decay further faster To see this, let ¢y = mingex ming,e g pk " € (0,1]. Then, g1 = Zﬁf 1v”’§: 2,1 2 C0Y e s Umlim, I-
It then follows from (F.2) that

d
nky]? ‘7k€>COZ vm”lmf—ACOZwk(‘h[ 1) 2 Aco (mm T 1> .
meM kekC

So,

d : dt
(Aco)™T 'min e 2 <(/\CO)" ' min [y 1) Zerz ((Aco)ﬁr}{gg E]k,0> ’
and hence, minkexq; , = (Aco)ﬁ.

Appendix G. Proof of Lemma 10

Proof of Lelmum‘e/l |10 Fix any (a1, ..., aum) € (0,1)™ with 3, @, > 0. Consider any sequence {UN} of subsets with UN € VN
and limy_e0

nl =g, forallme /\/l By Condition 1, we have that for all k € £ and m € M,

[Vl

|EY(UN N V)|

im = a0, (G.1)
Nero |EkN( m)| mYm-

Fix any ¢ > 0, which will be chosen later. Let & Jk .= {1’ eWy: Vl\/ggzlr;lvl lllsﬁ,h(lg;)‘)l } and J}‘ =WN\Z kN By (G.1), for all
large-enough N and i € ﬁk o ’
N —=26) " awtupim < [N N UN| SN(1+26) D awtmpim- (G.2)

mem mem
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Also, by Condition 1, for all large-enough N,
Nop(1 — €) < 6N < Nop(1 + ). (G.3)

Because the sequence {GN} is in the subcritical, then for large-enough N,

-1
A
22 ($ T te] ¥ A
jeuN meM’ iEWN s (UNAAN()) : <|N (1)|>

1S|=d d

(|uN m\fN(z)|)
> c’(N)( Z Nvmamum> Z Z

meM’ ke iewy (1) | (G4
d
N(l - ZE)ZmeM@»’mvak,m
1 AT k el p
> Nov,, oy, .
<m;4 ) ; <N6k(1 + e)>
d

where ¢’(N) is a constant only depending on N with ¢’(N) N:fol. Because the sequence {GN'} is proportionally sparse, then

|k

limpy_eo W = =1. Then, we have

-1
(1- ZE)ZmE A OmPk,m 4
Pz (Z Um“nsz,m) AC Z wk( (1 fé) ) . (G.5)

meM meM
Because (G.5) holds for all ¢ > 0, then

d
p= <Z Umampk,m> ACZ (M> .o (G~6)

meM meM

Appendix H. Proof of Lemma 11

Proof of Lemma 11. Given the system state X", when a task arrives at the system, by the Poisson thinning property, the proba-
bility that the task will be assigned to a server in the set QN (XN)is

1

P& , H.1

( (Qm 1 W(N) l% uc QI\;NN(I)) <Ng(1)> ( )
|U|=d d

where 5(Qm }) := the event that the new task will be assigned to Q%, ,(XN ). Fix any & > 0. Because the sequence {G"} is subcriti-
cal, then for large—enough N, we have that

be N PNIQL Ml _p
7= W(N) )\ N = AC

We consider the system state at event times t) =0 <t; <t <---<t; <---; for all j, t; can be an arrival or a potential departure
epoch. Define the drift ALY ,(XV) as

P(EQy,

q%’lum(l +¢). (H.2)

ALN

o, ((XN) = E(Ly, (XN (1)) — Ly o(XM) | XM (t) = X). (H.3)

m,

Again, by the Poisson thinning property, we have that for all large N,

= AW(N) Z |VN|“m IQN it
ALN (XN = P(E _ meM | Vm m,i
mel ) ;<AW<N>+zmeMlvm Qi) TN S TV S VT

< i Py, i1 (1 + €) _ o, it
T \ACH e Umtt AT H 3 e AUl

i=

N (1 + — . o
et e DA

=— H.4
AC+ Zme/vlvmum AC+ ZmeMvmum i= ( )
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By the definition of the steady state, E(ALY [XN (00)) = 0. Choosing ¢ such that (1 + ¢)p < (1 + p)/2 <1, we have

(1+p)/2
ZE(qm 1( )) = m ( T, 01 (HS)

Finally, summing over m € M, we get the desired result. O

Appendix I. Proof for the Sequence of Random Graphs

Proof of Theorem 8. First, to show that the sequence {GV},; satisfies Condition 1, consider any fixed k € L and m € M. Lete; i
be a Bernoulli random variable with probability py ,, for each i € WY and j € VY. Then, EN(k,m) = 26, YWV € s and by the
L.L.N., we have that

. EN(k,m)
N—eo [WN| x |[VN| ™

k,mr

which implies that Condition 1(a) holds. Next, we prove that Condition 1(b) holds. Based on the definition degw (i), we have
deg(i) = _jevi€ij, which is a binomial random variable Binomial(|V; ™|, pr.m)- By the Chernoff bound (Cheng and Yang 2005,
theorem 2. 4) it follows that fori € WV,

2
P(|deg (i) — E(degV ()| = x) <2 - al .
(Ideg,, (i) — E(deg,,(i)] > x) exP( e () +2x/3>
Let X(N) = p. o N¥4(In(N))"/*. Then, for some c; € (0, ),
P(|degl (i) — | VNI pom| = X(N)) < ¢1 exp(—c1pr, wNY2(In(N))? /,,) (L1)
W(N

for sufficiently large N. Also, by imy_e W(N) = wy, limy,0 =37 = C, and the union bound, we have that there exists c; € (0, )

such that for large-enough N,
P(Uicwy |degly () — |V} [Pl = X(N)) < cxwrEN exp(—cipinN"2(In(N)) /2 f0,,). (12)
Then, the RHS of (I.2) is summable over N. From the Borel-Cantelli lemma, we get that a.s., for all large-enough N,
|degyy (1) — [V pen] < X(N), i€ WY,
which implies that the following equation holds:

max; degN(i N
1< lim IEWN w ()< . |V",|Pk,m+X(N)

i =1, as.
N—co mmleWN deg (Z) N—eo |V7¢,]|Pk,m - X(N)

Thus, Condition 1(b) holds.
Now, we show that the sequence {GN},, is clustered proportionally sparse. Fix any k € K, i € WY, ¢ > 0, and U € VN. Let B;(U)
be the event that the dispatcher i is bad w.r.t. the set U: that is,

Monu  ENU)
B;(U) := w _ kK . 1.3
7( ) { N(i) EN(VN) 2 & ( )
Define o, := ! IVN”,l for each m € M. By the union bound, we have that
P(B;(U)) < IED<B,'(U) VD) NU| - Z [V N Ulpew| < €1 Z [Vl pims
meM meM

EkN(u) _ ZmEMampk,m
Ellc\](VN) vapk/m

< ¢, and ‘/\/ @ — Z |V 1Pk

<é&3 Z |V%|pk,m>

memM memM
P(WQ’(i)mUl S oIV nUlpw|ze Y |V kam>
memM meM
P( w(l) Z |VN|pk m| = €2 Z |V |pk m> (14)
mem mem

We will bound each term of the RHS of (I.4). By choosing ¢1, €, and ¢3 satisfying

S3ZmeMampk,m + flzmeMUmpk,m
(1= €3)> e mOmPr,m

+er<¢, (L5)
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we have that

N U EYW) Ny U S en@Pion , SmennPin _ EY (L)
N BV ) 2 oupin Vo BV

£3Zm€Mampk/ m+ €1 ZmEMvmpk,m (I 6)

< +ée <€
(1- 53)ZmEMUmpk,m

and

Ny@®)U  EYU) Ny OU S eu@nibPin , Smem@niPin _ EY (L)

Ny EXVN NG Xoupi Yo, BV
S €32 mem@mPh,m + €12 e OmPm 6> —e, (L7)
1+ 53)2m€/\/(vmpk,m

which implies that the first term is equal to zero with €1, €;, and e3. Using the Chernoff bound again, we can bound the second
term and the third term as follows; for some c3 € (0, ) and large-enough N,

JP( ey IVﬁIPk,m> <czexp (—C3N > vmpk,m> (L8)

mem mem

VNG U= D7 VAUl

mem
]ID <

Therefore, for large-enough N, we have

and

No@) = > VN pim

meM

= |V%|pk,m) <c3exp (_CSNZ UmPk,m)- (1.9)

mem memM

P(B:(U)) < 2c3 exp (—C3N > vmpk,m> (1.10)
mem
and
P(Uiewg'Bi(u)) < 2c3| WY lexp (—%NZ vmpk,m). (L11)
memM

Moreover, for some c, € (0, ) and large-enough N,

P( sup Uiy Bi(U) | < exp(—caN). (L12)
ucyN ¥

The RHS of (I.12) is summable over N, and the set K is finite; so, by the Borel Cantelli lemma, the sequence is clustered propor-
tionally sparse.

If p satisfies (3.1), by Lemma 2, there exists an Ny € Ny such that for all N > Ny, the queue-length process (XjN 1) vy under the
local JSQ(d) policy is ergodic, which implies that all assumptions of Theorem 6 hold. [
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