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Accurate signal assignments can be challenging for congested solid-state NMR (ssNMR) spectra. We describe an
automatic sequential assignment program (ASAP) to partially overcome this challenge. ASAP takes three input
files: the residue type assignments (RTAs) determined from the better-resolved NCACX spectrum, the full peak
list of the NCOCX spectrum, and the protein sequence. It integrates our auto-residue type assignment strategy

(ARTIST) with the Monte Carlo simulated annealing (MCSA) algorithm to overcome the hurdle for accurate
signal assignments caused by incomplete side-chain resonances and spectral congestion. Combined, ASAP
demonstrates robust performance and accelerates signal assignments of large proteins (>200 residues) that lack

crystalline order.

1. Introduction

Solid state NMR (ssNMR) is the ideal structural biology technique to
characterize insoluble biomolecular aggregates that lack the perfect
structural order [1-7]. The assignment of resonance signals, called
chemical shifts (CSs), to specific sites in the molecule, is the pre-requisite
to extract site-specific structural information. Recent advancements in
spectroscopic techniques lead to samples of increasing sizes solved by
ssNMR, for example, the 41 kDa DsbA/DsbB [8], or the 72 kDa trypto-
phan synthase [9]. We note the samples used in these works are either
micro or nanocrystalline quality, which produce spectra of extraordi-
narily sharp lines (0.3 ppm or better). Assignments of such well-resolved
spectra can be readily completed manually or by auto-assignment pro-
grams such as FLYA [10] or ssPINE [11]. However, in most ssNMR
studies of non-crystalline samples, the linewidth can be twice or triple of
that observed with crystalline samples, which can lead to serious spec-
tral congestion. Hence, it is challenging to make signal assignments with
large proteins (>150 residues) that lack crystalline order, which seri-
ously cripples the application of ssNMR.

The typical workflow of ssNMR studies starts with the acquisition of
multidimensional spectra, which disperse congested resonance signals
and reveal intra and inter-residue correlations. The fundamentals are
depicted in Fig. 1A and B, in terms of the 13C detected 3D NMR exper-
iments. Briefly, after the polarization signals on nuclei X evolve for a
period at their respective CSs (1st CS labeling period), they are trans-
ferred to nearby Y nuclei to evolve at the CSs of Y sites (2nd CS labeling
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period). Then the polarizations are transferred nearby Z sites for direct
detection. Thus, similar CSs of Z nuclei are dispersed along their distinct
CSs of X and Y nuclei to achieve higher resolution. As shown in Fig. 1B,
the NCACX experiment channels the polarization from amide nitrogen
(X) to c-alpha (Y), and then to other carbons (Zs) in the same residue, to
disperses the CSs of carbons (Zs) along the CSs of c-alpha (Y) and amide
nitrogen (X), gathering the intra-residue correlation. Meanwhile, the
inter-residue correlation is revealed by NCOCX by the polarization
transfer from amide nitrogen (X) to carboxylic carbon (Y) and other
carbons (Zs) in the preceding residue. 3D or 4D experiments such as
CANCO/CANCX or CONCA/CONCX'? may further improve the resolu-
tion, shown in Fig. 1B. They can provide critical additional information
to facilitate signal assignments and disperse congested signals. These
experiments work particularly well for crystalline or polycrystalline
samples [12]. However, for typical ssNMR samples that lack structural
order and with broad linewidth, [13,14] fewer residues show up in these
spectra due to the weaker signal-to-noise ratio (SNR) of double hetero-
nuclear polarization transfer.

After acquiring the spectra, the first step of signal assignments is to
group resonances from the same residue together, and identify their
residue types, referred to as the residue type assignments (RTAs). Then
the polarization transfer pathways encoded in RTAs in different spectra
are matched to the connections specified by the protein sequence, to
complete the sequential assignment. Various auto-assignment programs
or strategies exist, [11,15-37] which usually determine RTAs by the
characteristic CSs of amino acids [38]. However, this can be quite
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challenging for congested ssNMR spectral with broad resonances.

Despite the help of multidimensional NMR experiments, signal
broadening (>0.5 ppm) due to anisotropic interactions in non-
crystalline solid samples still leads to poor spectral resolution, even
with advanced magic angle spinning and decoupling pulse sequences
[39]. Because the CSs dispersion of c-alpha is 2-3 times wider than those
of the carboxylic sites, frequently the 3D NCOCX spectrum of a sample
may become too congested for accurate RTAs, even when its 3D NCACX
still displays sufficient spectral resolution. An example is shown in
Fig. 1D and E by the 2D planes extracted from the 3D NCACX and
NCOCX spectra of the tubular assembly formed by the 237-residue Rous
sarcoma virus (RSV) capsid protein (CA) [13]. In addition, limited
sidechain resonances makes the determination of RTAs by characteristic
CS patterns unreliable. While more sidechain resonances may be
induced by longer mixing time, it also incurs extra line broadening, and
additional sidechain resonances in the 30-40 ppm regions will also
exacerbate the signal congestion. As it provides indispensable inter-
residue correlations, assignment of the over-congested NCOCX spectra
usually becomes the bottleneck for a ssNMR project.

When reliable RTAs from different spectra can be obtained, to
accelerate the sequential assignment, Tycko’s group created the
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MCAssign program to automatically determine their sequential alloca-
tions [32,37]. It utilizes the Monte Carlo simulated Annealing (MCSA)
algorithm to randomly shuffle RTAs to match their polarization transfer
pathways with the protein sequence. Given the same set of input RTAs,
the program often finds different sequential allocations with comparable
final scores. To differentiate them, based on the MCAssign program,
Hong’s group developed a variant called NSGA-II [36]. It utilizes the
non-dominated sorting genetic algorithm with an additional bias that
increases the weight of RTAs forming good connections with their
neighbors. We refer to both methods as the standard MCSA, as they
employ the same MCSA process to determine the sequential allocations
of given RTAs. These methods greatly accelerated the sequential
assignment for ssNMR projects.

However, both MCAssign and NSGA-II demand accurate RTAs from
all spectra. For large proteins, [13,14] while it may be possible to
determine RTAs fairly quickly and accurately in NCACX, the NCOCX
spectra are usually too congested to make accurate RTAs. Moreover, the
performance of MCAssign quickly deteriorates with ambiguous RTAs,
even with decent spectral resolution (~0.6 ppm full width half
maximum (FWHM)) for proteins approaching 150 residues [40]. The
RTAs have to be carefully revised repetitively to maximize the number
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Fig. 1. 3D experiments setup and their resolution disparity. (A). Schematic 3D pulse sequence setup. (B). Polarization transfer pathways of 3D NCACX, NCOCX,
CANCO/CX and CONCA/CX. (C) Illustration of the RTA complexity caused by coincidental alignment of resonances from different residues. Signals from a L (circles),
R (triangles), and K (diamonds) are plotted together. (D) The most congested 2D plane extracted from 3D NCACX and NCOCX (E) of the tubular assembly of uniform

13¢, 15N labeled RSV CA.
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of sequentially assigned residues, which is quite challenging and prob-
lematic with a congested NCOCX spectrum for multiple reasons that will
be discussed in this work. The assignment process can still take years,
even for a well-trained researcher with the assistance of these state-of-
the-art auto-assignment programs. Hence, ssNMR usually becomes the
last resort for structural characterization of large proteins.

Here we introduce an auto-sequential assignment program (ASAP)
that overcomes some of the challenges limiting the capability of ssNMR.
ASAP integrates an innovative Automatic Residue Type Identification
STrategy (ARTIST) with MCSA. It only needs the protein sequence, the
peak list from the NCOCX spectrum, and the RTAs from the NCACX
spectrum of a sample, which is more likely to be determined with con-
fidence and less ambiguity due to its higher spectral resolution than
NCOCX, to enable thorough sampling of all possible configurations of
resonances that maximize the signal assignments. With ASAP, proteins
of 250 residues with broad NMR lines that do not provide useful infor-
mation from higher dimensional spectral such as CANCX and CONCX
spectra can be assigned in days. It demonstrates superior effectiveness,
accuracy, robustness against ambiguous RTAs, tested by multiple pro-
teins [13,41,42]. ASAP is designed to work with the 13¢ detected NCACX
and NCOCX spectra, but it can be modified to assign other spectra with
different polarization transfer pathways and detection methods
[43-46]. The program is coded in python, [47] which allows easy re-
visions and improvements by other users.

2. Methods
2.1. Introduction of standard MCSA algorithm and its limitations

To understand the strength of ASAP, the limitations of the standard
MCSA should be analyzed first. Accurate RTAs from multiple spectra are
required by MCAssign and NSGA-II, including NCACX and NCOCX
[11,40]. The RTAs in the NCACX and NCOCX spectra are identified as
the residue type associated with each c-alpha and carboxylic site in the
polarization transform pathway, respectively. Ambiguity in an RTA refer
to the assignment of a group of signals as more than one possible residue
types.

Despite their differences, both methods rely on the MCSA algorithm
to sample millions of random allocations of RTAs in given spectra to
determine their sequential allocations. Specifically, each MC attempt
starts with the selection of a residue position randomly in the protein
sequence. Assume that current MC attempt picks the residue position
kres. Next, the program takes turns from the k input spectra to randomly
select an RTA of matching residue type to replace the existing RTA
occupying kres position from the same spectrum. For convenience of our
discussion, assume that an RTA is selected from the NCACX spectrum.
The program inspects the agreement of the 3C CSs between the new
RTA from NCACX, and those residing kres position from other spectra
(NCOCX, CANCX and CONCX if they are available) to determine their
compatibility. Then its '°N resonance is also compared with that of the
RTA from the NCOCX spectrum seated at residue position kres-1, to
count the total number of good (n,), bad (n) and edge (n.) connections.
An edge connection refers to the situation that a residue position is
occupied by a null assignment. The same evaluation is repeated for the
RTA from NCACX currently residing kres position. The change of the
score between the old and new configurations is then computed:

S'(Ang, Any, An,, An,) = W' Ang, — whAny, — whAn, +w),An, (€D)

The superscript denotes that the parameters are pertinent to the i-th
annealing step. An,, An,, An, and An, are the changes of connection
numbers and used RTAs. Their coefficients W} at annealing step i are set
by:

ML @
nstep

i = scale

) Wi — Wi
Wi = wjo + scale x 2 7o
ns
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here nstep is the total number of annealing steps in the entire MCSA
process, with the annealing slope set by scale. Typically, their initial
values wjy are set to zero. The score determines the acceptance of the
new configuration by the Metropolis criterion:

exp(S'(Ang, Any, An,, An,)) > rand(0, 1) 3)

where rand(0,1) is a random number between 0 and 1. The score
function imparts a growing penalty as the annealing progresses, to guide
the MCSA process towards the maximization of n, and n,, minimizing n,
and n,. However, this setup may limit the efficiency, accuracy of the
program, as well as the resilience against ambiguous RTAs in input, as
analyzed below.

A resonance signal in a 3D spectrum contains three coordinates in the

frequency space: (fx, fys fz> , where f, and f, are the frequencies along the

first two indirect dimensions, and f; is the frequency along the direct
detection dimension, shown in Fig. 1A. Assume that residue kres in a
protein comprises N5 carbon sites. The signal of its i-th carbon is

designated by (f"m kres k’“) in the 3D NCACX spectrum. The super-

azi
script kres denotes the re51due that the signal is associated with. The first
subscript a denotes that the signal is from NCACX. The last subscript i
denotes that the resonance is from the i-th carbon along the directly
detected dimension, with i = 1,... Ny For convenience of discussion,
we refer to the carboxylic carbon as i = 1, c-alpha as i = 2, and c-beta as
i = 3, etc. Following this notation, the signal for the i-th carbon in residue

kres in the 3D NCOCX spectrum is ( s S l’,‘;:"‘), where the first

bxi
subscript b denotes that the signal is from the NCOCX spectrum.
Obviously, when two different carbon sites i and j of residue kres both
produce signals in NCACX, their indirect dimensions must align within
their uncertainties:

e i <oy (arty) @
e =i < (o) + (art)’ ®)

here, (Af"’“ Afke, Afk’“) and (Afkr“ Affes, A "I‘z’fs) are their respective

uncertainties, due to the non-zero resonance linewidth. In ssNMR
spectra, this uncertainty is typically ~ 1/2FWHM. Overlapping of two
nearby resonances can shift their exact locations, and the shift is
accounted for by their respective 1/2 FWHM. Hence, Eqs. 4 & 5 are still
applicable to signals in the presence of overlapping. If more than 2
resonances overlap, it is possible that the shift of peak positions goes
beyond their respective 2 FWHM.

Likewise, when these two sites produce signals in NCOCX, their in-
direct dimensions must align within their uncertainties:

kres kres
ke — pi

</ (o) + (arte) ©

e s < (o) + (ari) @
Note that their x-coordinates f&; and f£; in NCOCX are the '°N fre-

quencies of the next residue kres + 1 in the protein, as shown by Fig. 1B.
Hence, the inter-residue correlation requires the match of '°N
frequencies:

kreHr] fkrz\ \/(Afi;eﬁl) (Aji;e:) (8)

We dropped the last subscript in Eq. (8), as the frequencies of indirect
dimensions are shared by all carbon sites in the same residue, in either
NCACX or NCOCX. Meanwhile, if a specific carbon site i in residue kres
produces resonances in both NCACX and NCOCX, the frequencies along
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the direct detection dimensions should match:

e — e | < (ar) + (afke)? ©

Moreover, its frequency along the second indirect dimension in 3D
NCOCX, should match with the carboxylic carbon’s frequency of the
same residue detected along the direct detection dimension in 3D
NCACX, which is the z-coordinate of carbon site i = 1 according to our
site notation convention:

azl byi

e —pie| < (o + (i)’ a0
The above equations are the necessary conditions for resonances
associated with the same site in the same residues. Usually, Egs. (4-7)
are used together with the characteristic CSs of side-chains to identify
RTAs in NCOCX and NCACX. With good spectral resolution, the polar-
ization mixing period could be extended to induce resonances of more
side-chain carbons, so the residue type can be distinguished with a
greater confidence. However, this strategy is not always applicable to
ssNMR spectra with broad resonances (FWHM > 0.5 ppm). Extending
the polarization mixing time also induces extra line-broadening, which
will exacerbate the signal congestion. Additionally, a longer mixing time
will not necessarily produce resonances from more side-chain sites, due
to variations of local disorder or dynamics. The in-commutable Hamil-
tonians of interactions employed to mediate the polarization transfer
may also limit the intensity of polarization transferred to a distanced
site, referred to as the dipolar truncation problem [39,48,49]. Conse-
quently, it is usually inevitable to end up with incomplete side-chain
resonances. As the protein size increases, the narrower CS dispersion
along the carboxylic dimension will lead to more congested signals in
the NCOCX spectrum, which will incur coincidental alignments of res-
onances from different residues that satisfy Egs. (6) and (7). This is why
auto-assignment programs depending on the characteristic CSs of side-
chain would encounter difficulty with congested ssNMR spectra,
[11,25,50,51] as there are too many possibilities to isolate the reso-
nances into different sets of RTAs, while all satisfy the alignment
requirement of frequencies along their indirect dimensions.

To illustrate this challenge, Fig. 1C plots the random coil CSs of
aliphatic sites of a K, L and R with coincidental alignment of their fre-
quencies along indirect dimensions. Real scenarios would probably be
more challenging with incomplete side-chain signals and overlapping
resonances. Even with well resolved signals, they could be grouped into
multiple different K, L, and R residues, and maybe also D, E, N, or Q
assignments. Therefore, when multiple congested regions are present,
the total variations of possible RTAs in a NCOCX spectrum could be
numerous. Meanwhile, the usage of individual resonances must be
tracked to ensure that they are used within the degeneracy values. This
is what we refer to as the signal entanglement issue. When using
MCAssign or NGSA-II to determine sequential assignments, sorting
congested signals in the NCOCX spectrum into different RTA combina-
tions is not incorporated into the random sampling of the MCSA algo-
rithm, which obviously adds to the difficulty to achieve accurate
sequential assignment.

Moreover, there are three different types of local minima that can
cause erroneous sequential allocations for MCAssign or NGSA-II, even
with accurate RTAs from all spectra. First of all, coincidental match of
I5N resonances of two residues in either or both of their signals in
NCACX and NCOCX spectra would allow one residue position to be
occupied by the RTAs of the other residue, but the reverse is not
applicable. We refer to this scenario as the type 1 local minimum. Spe-
cifically, let’s assume that the °N frequencies of of residue kres in
NCACX and NCOCX are very close to those of residue jres, so that the
corresponding RTAs of kres satisfy Eq. (8) with the neighbors of jres and
can be allocated to residue position jres by a MC move. Meanwhile, at
least one of the RTAs of residue jres cannot be allocated to residue kres
due to their different '°N frequencies. Thus, a MC move to misallocate
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RTAs of kres will probably be allowed, due to the positive score ac-
cording to Eq. (1). If it happens, at least one of the displaced RTAs of jres
will not find a position that satisfy Eq. (8), and decreases the total
number of ng. The misplaced RTAs will be corrected eventually, if the
system undergoes thorough sampling. Unfortunately, there is no clear
instructions for thorough sampling or even how to optimize the
annealing setup. As we will show, insufficient sampling will trap RTAs in
such kind of type 1 local minima.

Furthermore, when signals of two residues in both spectra possess
sufficiently close '°N resonances, each can occupy the other residue
position and satisfy Eq. (8) equally well with all neighbors. Such erro-
neous allocations will not decrease the total number of n,, and can never
be eliminated by the MCSA algorithm, due to the equal scores. There is
no mechanism in NGSA-II or MCAssign to detect their likely presence. If
their secondary shifts differ significantly, it will lead to a different sec-
ondary structure. We refer to this scenario as the type 2 local minimum.
If their secondary shifts are sufficiently close, such a swap will not result
in a different structure prediction. We refer to this scenario as the type 3
local minimum, which can be safely ignored.

We note that these local minima may also be created by mistaken
RTAs as well, the possibility of which cannot be excluded with a con-
gested NCOCX spectrum.

As we will show, ASAP utilizes ARTIST to incorporate the sampling
of all possible combinations of RTAs in the congested NCOCX spectrum
into the MCSA algorithm, in addition to the sampling of all their possible
sequential allocations, to achieve the optimized signal assignments
result. ASAP also provides intelligent guidance to optimize the anneal-
ing setup for thorough sampling and eradicate erroneous assignments
caused by type 1 local minima. ASAP cannot differentiate erroneous
assignments caused by type 2 local minima if only NCACX and NCOCX
are provided, as they are indistinguishable to the MCSA algorithm.
Instead, a list of RTAs implicated in type 2 local minima will be provided
by ASAP. This knowledge can be useful to design additional experiments
with selective labeled samples to suppress or remove their influence.

2.2. Unravel the signal entanglement and suppress erroneous RTAs by
coincidental alignments by ARTIST

The flowchart of ASAP is shown by Fig. 2. The front end of ASAP is
ARTIST. Its function is to group individual resonances in NCOCX into
matched RTAs based on reference RTAs determined in the better
resolved NCACX, exploiting the CS dispersion disparity between 3D
NCACX and NCOCX spectra. As shown in Fig. 1D and E, owing to the
larger c-alpha CS dispersion, even the most congested regions in NCACX
still demonstrate reasonable resolution for reliable RTAs, in contrast to
the seriously overlapping resonances in NCOCX. Hence, the RTAs
determined in NCACX carry a much higher confidence with lower
ambiguity.

ARTIST designs two additional tests for NCOCX signals beyond the
typical alignment of indirect dimension frequencies. Combined, they
leverage this superior resolution in NCACX to eliminate some of the
erroneous RTAs caused by coincidental alignment of signals along their
indirect dimensions, which would be inevitable if RTAs are determined
based on the characteristic CSs of amino acids.

Specifically, given a reference RTA of residue kres in NCACX, with

signals designated by ( kres  fhres k’”)7 j = 1, Nipes. The first test by

aj Jayj 2/ az

ARTIST is to make use of the CS of its carboxylic carbon fXés, if it is

azl ?

resolved. It searches through all resonances (fbxi, Soyis szi) in NCOCX,

and select those with their second indirect dimension fiy; aligned to fX7¢s

according to Eq. (10). If ,’l‘z’? is not resolved due to spectral congestion in

NCACX, this test will be skipped for this reference RTA. On the other

hand, if its f<¢ is resolved, but no match is found among all NCOCX

resonances, we declare that this reference RTA does not have a matched
RTA in NCOCX.
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Input 2:
Protein sequence

Input 3:
Peak list from NCOCX
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Fig. 2. The general workflow of the ASAP program.

Those resonances surviving the first test will be subjected to the
second test, designed to address the incomplete side-chain profile in
ssNMR spectra. We introduce a tunable parameter Np,gndqte to demand
the number of non-carboxylic carbons signals co-present in both NCACX
and NCOCX spectra, counting from c-alpha (j = 2). The fy,; of those
resonances in NCOCX that passed the first test will be compared with
fgj?s of every non-carboxylic carbon specified by Nmandate in the reference
RTA, according to Eq. (9). If the number of non-carboxylic carbons
present in the reference RTA is less than Npgndate, only those present will
be used for the second test. If any of the mandate non-carboxylic carbons
in the reference RTA fails to find a match in the NCOCX signals surviving
the first test, we declare that this reference RTA does not have a matched
RTA in NCOCX.

Despite the uncertainty of side-chain resonances in ssNMR spectra,
with an appropriate polarization mixing time, it is achievable that a
limited number of sites in most of residues would contribute signals in
both NCACX and NCOCX. Therefore, it is reasonable for Nygndate to be
small, so most of residues qualify for the second test. For instance, by
setting it to 2, the second test would require the co-presence of two
carbon sites (typically c-alpha and c-beta resonances) in both spectra,
which is plausible without a long mixing time to incur extra line
broadening. Hence, the second test further filters those resonances that
passed the first test by coincidence, while at least partially overcomes
the challenges caused by the incomplete side-chain resonances in ssSNMR
spectra.

Finally, all signals passing test 2 will be divided into different sets. In

each set, each of the mandate sites in the reference RTA should have a
matched resonance. Resonances in the same set will be subjected to the
final test, according to Egs. (6) and (7), to ensure their frequencies along
the indirect dimensions are aligned. If test 3 is successful, signals in this
set will be labeled as a matched NCOCX RTA and carry the same residue
type ambiguity as the reference RTA in NCACX. If test 3 fails for all
possible sets constructed by those resonances surviving test 2, we
declare that this reference RTA dos not have a matched RTA in NCOCX.

During these three tests, peak uncertainties along each dimension are
used to address the line broadening and possible resonance overlap, as
mentioned earlier. Hence, the match pairing tests should retain their
accuracy in the presence of peak shifts caused by overlaps between two
resonances. However, we note that it is possible for more serious peak
shift to take place by overlapping of more than two resonances, which
will not be accounted for, unless the uncertainty value is further relaxed
along the corresponding dimension associated with signal overlaps, or
the peak positions should be determined by some reliable algorithm to
deconvolute the overlaps.

We note that the ambiguity of the reference RTAs in NCACX will be
transferred to their matched RTAs in NCOCX. This strategy partially
avoids the negative effect caused by the resonance congestion in
NCOCX. Ideally, if each RTA in NCACX only finds one unique RTA in
NCOCX, the inferior spectral resolution of NCOCX then plays no ill-effect
in the RTA determination, and NCOCX 100 % inherits the spectral res-
olution from NCACX. With a congested NCOCX spectrum, usually an
RTA in NCACX finds multiple matched RTAs, reflecting the signal
congestion in NCOCX. Nonetheless, the inflation of possible
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combinations of RTAs would be much higher if the NCOCX spectrum
were assigned by purely the characteristic CSs of residues, as they will
only check the alignment of resonances in NCOCX along their indirect
dimensions according to Egs. (6) and (7), which is the third test in
ARTIST. In some auto assignment programs, [11,25,50,51] each
possible RTA combinations is assigned with some probability to reflect
the confidence of assignment, which depends on various factors, such as
the number of side-chain resonances. Considering the unpredictable
nature of side-chain resonances that depends on the local structural
topology and dynamics in ssNMR, ARTIST does not discriminate any
possibilities due to missing side-chain resonances and is more inclusive:
individual resonances in a congested regions can be employed in mul-
tiple RTA combinations, and all possible RTAs are accounted for as long
as they satisfy the three tests. Meanwhile, the criteria used by ARTIST
are necessary conditions that the correct RTAs should satisfy, except for
the assumption of Npgndare that depends on the experimental setup.
Therefore, the correct RTAs must be among the matched RTAs identified
by ARTIST, which guarantees the inclusion of correct RTAs in a con-
gested NCOCX spectrum, if the mandate sites of these residues all
contribute signals in both spectra, and the peak positions are accurately
determined.

ARTIST creates a registry to track the usage of individual resonances
in construction of all possible matched RTA pairs between NCACX and
NCOCX. The correct matched RTA should maximize the total number of
ng. It will be selected by the thorough sampling of MCSA in subsequent
sequential assignment, as will be explained next. Consequently, ARTIST
eliminates the workload to determine RTAs in congested NCOCX, and
the accuracy of RTAs entirely depends on the assignment of the better
resolved NCACX and the peak picking algorithm in NCOCX, which is
probably more manageable and realistic.

The identification of matched RTAs in NCOCX enables the system to
group each reference RTA in NCACX with each of its matched RTAs in
NCOCX as individual matched RTA pairs. If no matched RTA is found in
NCOCX, this RTA in NCACX is always paired with a null RTA.

After the identification of matched RTA pairs, ARTIST continues to
identify those implicated to incur type 2 local minima, recorded in file
Overlap. The program screens each matched RTA pair against every
other pair of the same residue type. Their '°N frequencies in the same
spectrum are compared respectively according to Egs. 4 and 6, with the
right side of equations changed to the arithmetic means of uncertainties
to ensure no possibility is excluded. Those matched pairs pass the test
will be subjected to additional comparison of their secondary shifts. If
their differences are larger than 0.5 ppm, these two matched RTA pairs
are considered as potential suspects to cause type 2 local minima in the
sequential assignment.

2.3. The advantage of allocation of matched RTA pairs by ASAP

The rearrangement of the input data as matched RTA pairs enables
the sequential assignment by MCSA to adopt a slightly different design,
to enhance the efficiency of sampling and suppress errors due to type 1
local minima.

Specifically, at each MC attempt, after a residue position kres is
chosen by a random selection, an RTA of the same residue type as kres is
selected randomly from NCACX. In addition, the program randomly
picks one of its matched RTAs in NCOCX to be its matched pair.
Together, they are to replace the existing matched RTA pair currently
occupying kres. The program allows a percentage of the MC attempts to
select a NCACX RTA to pair with a null assignment, or a pair of null
assignments, to replace the existing matched RTA pairs at kres. It is a key
strategy to remove erroneous allocated RTAs due to type 1 local minima,
to maximize ng and n,.

Allocating RTAs in matched pairs brings several advantages. Firstly,
it saves the computation to check the compatibility of RTAs from
different spectra located at residue kres, improving the efficiency. More
importantly, this pair-wise allocation of RTAs also increases the penalty
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to mistakenly allocate those RTAs with one coincidental match of 1°N
resonances with the neighbors, implicated in type 1 local minima. In
MCAssign or NGSA-II, as only one RTA from an individual spectrum is
allocated at each MC attempt, if it carries a coincidental match of >N
resonance with its neighbor, the move would probably be accepted ac-
cording to Eq. (8). Moreover, an RTA with a coincidental match of 15N
resonances could be mixed with the correct RTA from another spectrum.
By allocation of RTAs in matched pairs, it precludes such erroneous al-
locations if they have different 13C resonances. Therefore, allocating
RTAs in matched pairs eliminates a good fraction of misleading phase
space associated with type 1 local minima and essentially “smoothens”
the energy landscape for MCSA, compared to the rugged surface filled
with false local minima in MCAssign or NGSA-IIL. As we will show, ASAP
always eradicates bad assignments in its results. In contrast, bad as-
signments may survive in the standard MCSA assignments.
Fundamentally, allocation of RTAs in matched pairs improves the
probability to find their correct sequential positions to 20/Np. In

k
contrast, this probability scales with (ﬁ—i) in MCAssign or NGSA-II,

with k as the number of spectra, assuming a uniform amino acid
composition in the protein. Combined, ASAP is expected to demonstrate
improved efficiency and accuracy than the standard MCSA, which will
be shown in our tests by three different proteins.

2.4. Optimization of the annealing setup to ensure thorough sampling

To ensure the accuracy of the MCSA algorithm, the data structure of
individual resonances should be simultaneously optimized at two
different levels. At the base level, the MCSA algorithm should explore all
possible RTAs formed by individual signals. At the secondary level, the
MCSA algorithm should explore all possible sequential allocations of
RTAs.

MCAssign or NGSA-II does not incorporate the sampling of the phase
space of the base level in the MCSA process. For well-resolved spectra,
this is not an issue, since accurate RTAs can be obtained. Accurate signal
assignments by MCSA would only require sampling of the phase space of
the secondary data structure level. This is proved in our test with the
SrtC. When spectra become congested, the possibility to group the same
signals into different sets of RTAs quickly multiples, which leads to the
proliferation of local minima at the base level of RTAs. Successful signal
assignments by MCSA then demand sampling of the phase space of both
data structure levels. When using MCAssign and NGSA-II, users have to
manual revise RTAs, which is inefficient and susceptible to error. As
explained earlier, the treatment of RTAs from different spectra as in-
dependent inputs creates extra local minima and additional phase space,
which exacerbates the situation. Moreover, there is no intelligent in-
struction or guidance to ensure optimized annealing or thorough sam-
pling. Even given correct and unambiguous RTAs, as we will show, for
complicated systems like MLKL or RSV CA, MCAssign will face greater
challenge to make correct assignments.

At the end of each MC move in ASAP, the change of scores caused by
allocations of a new matched RTA pair is computed according to Eq. (1).
If it is accepted, the system updates the registry that tracks the usage of
the NCACX RTA in the matched pair, and individual NCOCX signals in
the matched NCOCX RTA. Thus, the sampling of the phase space in both
data structure levels is simultaneously incorporated in the MCSA pro-
cess, and the signal entanglement issue is unwounded in the congested
NCOCX spectrum. Therefore, given thorough sampling, the MCSA al-
gorithm in ASAP will find the optimal combinations of signals into the
RTA configurations that maximize ng and n,, minimizing n, and np, the
global minimum.

To achieve thorough sampling, the setup must have sufficient MC
moves to allow reallocations of matched RTA pairs with coincidental
matches of '°N resonances forming good connections with both neigh-
bors, which is essential to eradicate type 1 local minima to maximize ng
and n,. The most likely trajectory is to replace it by a pair of null
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assignments. It can be shown that the least number of MC attempts at
annealing step i for this to happen is:

3N2 s
Na(mg =2) = =pe ™0 an

here Ny is the number of residues in the protein. S{(-2,0,-2,—1)
corresponds to the score defined by Eq. (1). Meanwhile, the system
should prohibit reallocations of RTAs forming one good connections
with its neighbors towards the end of annealing. Similarly, it can be
shown that the least number of MC attempts at annealing step i for this to
happen is:

3N2 siio0on)

2

Nd(ng = l) :W’”e’

(12)
here Si(—1,0,0,—1) corresponds to the score defined by Eq. (1). Egs.
(11) and (12) can be used to guide the system setup for optimized
annealing. Detailed derivations are described in the supporting
information.

There is not a unique set of parameters to satisfy Eqs. (11) and (12),
as we will demonstrate. But we would like to propose a general guide-
line, which will be validated in our results section. Firstly, the coefficient
for bad connections w), should outweigh all the rest. A single bad
sequential assignment misplaces at least two pairs of RTAs from NCACX
and NCOCX. Hence, we set its value to be 2.5 times of wi, the coefficient
for good connections. As we will show, it eradicates assignments form-
ing bad connections. Meanwhile, w"1 is the main positive drive to
maximize the total sequential assignment, so we set it twice of wj, the
coefficient for used signals, which encourages the maximum usage of
signals. The least important is the edge connections, which would be
minimized naturally if most signals are sequentially allocated. There-
fore, we set w as half of w. The penalty from w} encourages continu-
ously distributed good connections, so it is preferred to be at least
nonzero.

To verify Egs. (11) and (12), two matrices neighbor t and occu-
pancy_step are created to track the dynamic migration of RTAs. Specif-
ically, neighbor t and occupancy.step are a npeak_nca x npeak_nca x nstep
and a npeak_nca X Ny x nstep 3D matrix. Here npeak_nca refers to the
number of RTAs in NCACX. At the i-th annealing step, assume that a MC
move is accepted to allocate an NCACX RTA j with its matched pair from
NCOCX to residue kres. At this time, its neighboring residue positions
kres +£1 are occupied by matched RTA pairs with their NCACX RTAs
identified as k and [, respectively. Here j, k, [ are the indexes of RTAs in
the input NCACX RTA file. Therefore, the correlation between the newly
allocated matched RTA pair and its neighbors can be registered by
adding 1 to the components at the [ and k-th columns, j-th row and i-th
stack in neighbor t. Likewise, this change of occupancy at kres residue
position can be registered by 1 increment to the entry at j-th column,
kres-th row and i-th stack stack in occupancy. step. Thus, neighbor. t tracks
the dynamic and correlated migration of RTAs, and occupancy. step re-
cords the dynamic residency of each residue position. To get a coarse-
grained view, the total dynamic migration of each RTA and occupancy
at each residue position along the annealing process are also computed
by summing all columns, and recorded in matrices instigator and occu-
pancy_sum. In case of parallel simulations, these matrices report their
averaged values. Therefore, they provide a direct visual confirmation of
Egs. (11) and (12), which will be shown in our results section.

We note that the optimal setup optimizes the possibility to achieve
thorough sampling but does not guarantee it. Practically, the direct
conformation of thorough sampling is to conduct a series of sequential
assignments, with optimized setup and progressively increasing n,, the
MC attempts per annealing step. As thorough sampling removes RTAs
trapped in type 1 local minima, ng and n, continue to grow until thor-
ough sampling is achieved. As we will show, for proteins ~ 150 residues
with spectral quality comparable to MLKL or SrtC, it requires n, = 50
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million. For proteins of ~ 250 residues with spectral resolution com-
parable to the RSV CA, it requires n, = 500 million. Hence, n; increases
with increasing spectral complexity, protein composition and size for a
single ASAP or MCSA simulation. Alternatively, the search for the global
minimum may be achieved via iterative parallel short simulations
instead of a single long simulation.

2.5. Iterative ASAP simulations for accelerated convergence towards the
global minimum and eliminations of local minima

The signal assignments result by a single MCSA simulation without
thorough sampling is certain to contain some mistakenly assigned RTAs
even in the absence of explicitly bad connections, due to the existence of
type 1 local minima. Meanwhile, the actual trajectories of MCSA simu-
lations differ due to the random shuffling of RTAs in the annealing
process. If n; is insufficient for thorough sampling, but most residues still
find their correct RTAs, and the RTAs trapped in local minima are mi-
norities. Among parallel MCSA simulations, consistently allocated RTAs
probably correspond those assigned correctly, and the positions of
erroneous allocated RTAs should vary. Therefore, instead of a long
simulation, correct assignment can be obtained by iterative rounds of
MCSA simulations with a less-than-optimal n;, each round comprising
multiple parallel simulations. The positions of consistently allocated
RTAs will be fixed in subsequent simulations. As will be shown in our
results section, accelerated convergence towards the global minimum
can be achieved.

It is difficult to provide a universal parametrization for this
approach. It depends on the details of the system, including the protein
sequence composition and spectral resolution. A general rule of thumb
is, a successful iterative MCSA simulation should keep removing RTAs
trapped in type 1 local minima, thus more correctly assigned RTAs are
expected in each subsequent round, and eventually plateau. On the
other hand, if n; is too low and the local minima are too populated, some
of the mistakenly assigned RTAs will coincidentally occupy the same
residue positions in all parallel simulations and be retained in subse-
quent iterations, which will lead to decreasing n, and n,, We will
demonstrate examples in our results sections, both positive and nega-
tive. Additionally, only those NCACX RTA paired with a valid NCOCX
RTA should be counted towards consistently allocated assignments
before the last iteration, because RTAs involved in edge connections are
more likely due to a coincidental match, and persist until the end of each
simulation.

Type 1 local minima are more populated in MCAssign or NGSA-II,
due to uncorrelated allocations of RTAs from different spectra. Itera-
tive parallel simulations will face a greater challenge, as shown by our
test with the level 2 ambiguity in the input data of the RSV CA by
MCAssign.

Compared to MCAssign, NGSA-II executes many parallel sequential
assignments by MCSA with an extra random weight factors to modulate
the score function, so more diverse solutions with comparable number of
good assignments can be identified. Essentially, this random variation
surveys different trajectories towards the global minimum. Hence,
NGSA-II is a variant of iterative MCAssign simulations with a controlled
selection mechanism between iterative generations. As expected, the
requirement of thorough sampling is relaxed, which exhibits improved
performance when tested on small proteins (100 residue or less) [36].
With increasing protein sizes and spectral congestion, under sampling
may still lead to erroneous results in iterative MCSA simulations, as we
will show with tests by level 2 ambiguity in the RSV CA data. In addition,
it demands accurate RTAs from all spectra and doesn’t incorporate
sampling of all possible RTAs in the congested NCOCX in the MCSA
process. Hence, all performance comparisons are tested against the
MCAssign program with a single simulation in this work.
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2.6. Overall workflow of ASAP, input and output files

The ASAP program is coded in python, and requires three input files,
shown in Fig. 2. Input 1 holds the RTAs in the 3D NCACX spectrum,
input 2 is the protein sequence, and input 3 contains the peak list in the
3D NCOCX spectrum, specified by in the program by NCACX filename,
protein_seq, and NCOCX filename, respectively, shown in Fig. 3C.

Input 1 and 3 adopt an identical format, as shown in Fig. 3A and B.
The first row holds two numbers, separated by a tab or space. The first
number denotes the number of RTAs in input 1 or individual resonances
in input 3. The second number denotes the number of CSs per entry in
input 1 or 3. The maximum allowed CSs is 7, which could specify up to 5
non-carboxylic carbon CSs. Starting from the second row, the CSs of
each entry are listed in the order of their 15N, c-alpha, carboxylic carbon,
and any additional carbons. Their CS uncertainties are listed at corre-
sponding columns after the last CS entry, estimated to be ~ ' FWHM of
the spectral linewidth. In input 3, if only three CSs of one resonance are
listed per row, they should be listed in the order of fyy;,fp.i.fsyi> where the
CS coordinate of the non-carboxylic site along the direct detected
dimension is entered as the second column. For both files, if the CS of a
particular site is unknown, that entry is filled by 1e6, with its uncertainty
set to 0.001. The last two columns of each row are the signal degeneracy
and its RTA. Here signal degeneracy refers to how many carbon sites
actually contribute signals to this resonance. At the beginning of an
ASAP simulation, the RTA column in input 3 is just a place holder. In
contrast, this field in input 1 describes its RTA in upper-cased single
letters. Ambiguous RTAs are accepted as consecutive upper-cased single
letters representing each possible assignment.

If the sequential allocation is known (definitely assigned), the RTA
column should be the upper-cased single letter for the residue type
followed by its numeric position in both files. Definitely assigned RTAs
and signals are exempted from match pairing by ARTIST, and their
sequential positions are fixed in subsequent sequential assignment.
Additionally, multiple resonances in NCOCX can be entered at a single
row in input 3, as long as they share the indirect dimension frequencies
and degeneracy values. Their common *°N and carboxylic carbon fre-
quencies should be entered only once at the same row at the first and
third columns, with the CSs of additional non-carboxylic carbons listed
after the carboxylic carbon entry. The program will parse them into

individual resonances (fb,ﬂ», foyis szi) .

To perform an ASAP simulation, all input files should be located in
the same data folder as the ASAP script. In addition to the three input
files, users are expected to specify the following parameters, directly at
the beginning section of the code, as shown in Fig. 3C:

1. NCACX filename: the file name of input 1, the RTAs in the NCACX
spectrum.

4
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. NCOCX filename: the file name of input 3, the peak list in the

NCOCX spectrum.

. protein_seq: the file name of input 2, comprising upper-cased

single letter abbreviations of the amino acid sequence.

. run_num: the number of parallel sequential assignment simula-

tions by ASAP.

. scale: the variable scale in Eq. (2), to control the annealing slope.
. nattempt: the MC attempts per annealing step in the MCSA

simulation, corresponds to n; in our discussion. For iterative
simulations with parallel jobs, the recommended value is 5
million for proteins with 150—250 residues.

final: a flag to control which kind of sequentially allocated RTAs
in parallel simulations will be labeled as definitely assigned sig-
nals in output files. If final = 0, only those NCACX RTAs paired
with a valid NCOCX matched RTA will be counted towards
consistently assigned signals. If final = 1, all consistently allo-
cated RTAs will be treated as definitely assigned signals. For
better accuracy, it should be set to zero for iterative simulations,
and revised to 1 for the final iteration.

. nstep: the number of total annealing steps in MCSA. The recom-

mended value is 40.

. wifto w4f: correspond to variables wjsto wyrin Eq. (2), to control

the penalty or bonus of ng np, n, and n,. The recommended
values for these coefficients are 20, 50, 10, and 5, respectively.
N_mandate: the number of mandatory non-carboxylic carbon sites
in the reference RTA to find a match in the second test of ARTIST.
It is recommended to be set to 2, so only the CSs of two non-
carboxylic carbon sites (typically c-alpha and c-beta) in the
reference NCACX RTA are required to be matched by signals in
NCOCX. All results in this work use N_mandate = 2.

disparity_ ncol: a positive number < 1. The multiplication of dis-
parity_ncol with the listed uncertainty of the >N CS in input 3 sets
the uncertainty Afl’j;fs in the final test according to Eq. 6. Usually,
signals of the same site in the same residue in different spectra
may exhibit some deviation, due to factors such as variations of
sample conditions during spectra acquisition, field calibrations.
This is captured by the uncertainty values listed in input 1 and 3,
used for the first two tests in ARTIST according to Egs. 9 and 10.
However, when testing if signals belong to the same residue in the
same spectrum, the alignment along their indirect dimensions
should have a much tighter tolerance, no more than 0.2 ppm, or
typically 0.1 ppm.

disparity_nco2: a positive number smaller < 1. The multiplication
of disparity nco2 with the listed uncertainty of the carboxylic
carbon CS in input file 3 sets the uncertainty A t’,‘;fs in the final test

according to Eq. 7. Just like disparity ncol, it modifies the toler-
ance of alignment of the second indirect dimension of resonances
belonging to the same residue in NCOCX.

Fig. 3. Input files for ASAP program. (A). A snapshot of input 1 file that supplies the RTAs in the 3D NCACX spectrum. (B). A snapshot of input 3 file that specifies the
individual resonances in the 3D NCOCX spectrum. (C). A snapshot of the ASAP script where users specify the values of 12 parameters introduced in our discussion.
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In practice, users only need to update the values for parameters listed
in 1 to 7, keeping the rest as recommended. Disparity ncol and dis-
parity_nco2 may be revised according to the spectral quality or users’
preferred rigor.

Before initiating an ASAP simulation, users are advised to use python
script Plot survivability based on Egs. (11) and (12) to set parameters
scale and nattempt, demonstrated in Fig. 4D. Alternatively, they can refer
their project parameters (protein size and amino acid composition,
spectral quality) to the examples in this work to set these parameters
properly. Optimized values of scale and nattempt should maximize the
number of effective annealing steps. In simple words, it should maximize
the annealing steps with nattempt > Ny(n, = 2). Meanwhile, there
should be a few annealing steps with nattempt < Nq(n; = 1).

The general workflow of ASAP is described by Fig. 2. The program
first uses ARTST to find the matched RTAs in NCOCX for each reference
RTA in NCACX. The results are summarized in the file NCO -
MatchSummary, as shown in Fig. S1, with details listed in file NCO -
MatchDetail. The number of matched RTAs for each RTA in NCACX is
stored in file knmatch_rd, which is used to generate the plot shown in
Fig. 4A by python script Plot nmatch.

After match pairing, ARTIST identifies those RTA matched pairs
implicated in type 2 local minima, and records the number in file
Overlap. Users can inspect the content, as plotted in Fig. S2.

Next, the program proceeds to determine the sequential allocations
of these matched RTA pairs by the MCSA algorithm as described above.
If the protein is small and ambiguity in RTAs is low, most of the RTAs
finds a unique matched RTA in NCOCX, with low values in Overlap, users
may try a single MCSA simulation with a high nattempt. However, most
of ssNMR projects probably need iterative parallel simulations due to the
less-than-ideal spectral quality. The progress of the ASAP simulation is
recorded in file runrecord. When each parallel simulation ends, the final
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values of ng,ny,ne, n, are recorded in file runsummary. Each parallel
simulation also updates the RTA columns of RTAs that are successfully
assigned, reported in NCACXbknum and NCOCXbknum, in the same
format as the input files, where num is the job index in the parallel
simulations. When all parallel simulations are completed, the program
identifies those RTAs being consistently allocated and generate another
pair of output files NCACX4nextrd and NCOCX4nextrd. In these files,
only the RTA columns of those consistently assigned RTAs are revised to
their allocated residue positions.

The consistently allocated RTAs of all parallel simulations can be
plotted together with the number of matched RTAs for each NCACX RTA
by python script Plot nmatch, as shown in Fig. 4A. The progress of ng,
np n,, n, along an MCSA simulation can be plotted by python script
Plot numbers, as shown in Fig. 4B. The dynamic occupancy at each res-
idue position can be visualized by python script Plot occupancy._sum, as
shown in Fig. 4C.

After all parallel simulations end, if a new iteration should be per-
formed, protein_seq, NCACX4nextrd and NCOCX4nextrd can be copied to
a new folder, together with the ASAP script. The names of NCACX4-
nextrd and NCOCX4nextrd should be revised as the new input 1 and 3 to
start the new iteration.

3. Results and discussion
3.1. Construction of input files

Three proteins are used to test the resilience of ASAP against
ambiguous RTAs vs MCAssign: the 237-residue RSV CA tubular assem-
bly, [13] and the catalytic domain of Bacillus anthracis sortase protein
SrtC (147 residues) and the N-terminal domain of the mixed-lineage
kinas domain-like protein MLKL (166 residues) [40].
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Fig. 4. Optimization of the ASAP setup. (A) Number of matched RTAs identified by ARTIST in NCOCX for each RTA in NCACX (red filled bars). The dark shaded
positions are RTAs consistently allocated to the same residue positions in all parallel simulations in run 6 in Table 1. (B) The progress of the total number of good (red
circles), bad (blue triangles), edge connections (green squares) and used RTAs (purple diamonds) along the annealing process. (C). The number of re-allocated
occupancies at each residue positions along the annealing process. The scale bar to the right denotes the re-allocation frequency. (D). The minimum number of
MC attempts to guarantee at least one successful move to remove a matched RTA pair forming two good connections (red tilted line) or one good connection (blue
tilted line), described by Egs. (11) and (12) respectively. The thin red horizontal line is the number of MC attempts at each annealing steps. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Specifically, the NCACX and NCOCX spectra of the RSV CA were
acquired at the 900 MHz field at National High Magnetic Field Labo-
ratory, with 50 ms and 150 ms DARR mixing [52]. They
exhibit ~ 0.6-0.75 ppm linewidth along the directly detected '3C
dimension, and 0.8-1 ppm along the '°N dimension, which justifies our
setting of 0.3 ppm CS uncertainties. 230 RTAs were determined by
multiple samples of different isotopic labeling patterns, including the
uniform !3C,'°N labeled sample, sparsely '°C labeled samples by
1—1,3—130 and 2-13C glycerol, and R and L selective residue 13C,lsN
labeled samples [13]. The frequencies of individual resonances were
determined by Poky in each spectrum [53]. They are used to construct
input 1 and 3 for ASAP simulations. The RTA columns of input 1 for
ASAP hold their experimentally determined RTAs, while the corre-
sponding field in input 3 is merely a place holder. Meanwhile, MCAssign
simulations use the experimentally determined RTAs in all input files.

The input files for tests on the 147-residue SrtC and 166-residue
MLKL are prepared based on their assignments deposited at Biological
Magnetic Resonance Bank (BMRB). The structure of these proteins were
solved by Robson et al. (PDB 2LN7, BMRB 18152) [41] and Su et al. (PDB
2MSV, BMRB 25135) [42]. They are smaller than the RSV CA, but still
considerably larger than the peptide samples for ssNMR. Specifically,
the input 1 file of SrtC contains 119 RTAs, for residues 7-21, 23-37,
43-53, 55-64, 75-114, 116-121, 125-131, and 133-147. The input 3
file of SrtC contains the signals from 116 residues, for residues 7-20,
22-36, 39, 43-52, 54-64, 75-113, 115-120, 125-130, 133-146. The
input 1 file of MLKL contains 148 RTAs, for residues 13-52, 54-65,
67-106, 109-134, 136-137, and 139-166. The input 3 file of MLKL
contains signals from 148 residues, for residues 13-51, 53-64, 66-106,
108-133, 135-136, 139-165. Hence, they are a good representation of
typical ssNMR data with signals missing from certain stretches.
Furthermore, the SrtC structure comprises mostly f-stand structure, and
that of the MLKL is dominated by a-helices. Therefore, they represent
proteins with different secondary structure compositions. For both
samples, we assume that their spectral linewidth is comparable to our
RSV CA sample ~ 0.6 ppm, with the uncertainties ~ 0.3 ppm. Only the
CSs of °N, carboxylic carbon, c-alpha and c-beta are used to construct
input files for ASAP simulations following the format specification as
described. The RTA columns of input 1 hold their experimentally
determined RTAs, while the corresponding field in input 3 is merely a
place holder. Meanwhile, MCAssign simulations use the experimentally
determined RTAs in all input files.

To test the resilience of ASAP simulations against ambiguous RTAs,
we adopt two levels of ambiguity in RTAs. At the first level, we adopt the
same type of ambiguity described by Tycko in his work [40]: E or Q are
assigned as EQ, W or H are assigned as HW, D or N are assigned as DN,
and F or Y are assigned as FY. Together, it amounts to 21.7 %, 32.8 %,
and 34.5 % RTAs in input 1 to be ambiguous for the RSV CA, SrtC and
MLKL, respectively. At the second level, all D, N, E and Q residues are
labeled as DENQ in the RTA columns.

3.2. Input data analysis and match pairing by ARTIST

We first test the match pairing function of ARTIST with the RSV CA
data. The number of matched RTAs identified in NCOCX for each
NCACX RTA is plotted in Fig. 4A. Briefly, 20 RTAs in NCACX fail to find
any match in NCOCX, they are colored yellow in NCACX_1CompareNCO
in supporting materials. They are residues missing mandatory reso-
nances in NCOCX, or those with CS deviations slightly beyond the
specified uncertainty that fail the first two tests, highlighted in red. They
reflect the robotic (or rigorous) aspect of ARTIST to identify matched
RTAs. In practice, human interventions can easily salvage such obvious
outliers.

There are additional 30 RTAs in experimentally determined lists with
fewer number of mandatory carbon signals in NCOCX than NCACX, or at
least one of their CS deviations beyond the specified values, colored in
orange in NCACX 1CompareNCO. They should not find a match in
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NCOCX. However, with disparity ncol and disparity nco2 set to 1, AR-
TIST still identifies at least one match for these entries, by mixing signals
in NCOCX that are experimentally assigned to other residues, but
nonetheless satisfy all three tests in ARTIST. Experimentally, these sig-
nals are assigned based on a holistic evaluation of additional side-chain
signals, either from the same spectrum of the uniform labeled sample, or
from those of other samples. This additional information is not provided
to ARTIST. It testifies the complexity induced by incomplete side-chains
and signal entanglement in ssNMR, and the ability of ARTIST to account
for all possible combinations. We also highlight four pairs of neigh-
boring NCACX and NCOCX assignments with bad connections. They
should not be sequentially assigned based on the large deviation of 1°N
frequencies. Therefore, if we count the remaining consecutively con-
nected experimental sequential assignments in input 1 and 3, the total
number of n, should be 150 residues. However, it may be possible to
achieve a higher n, by ASAP, as ARTIST is able to enumerate all possible
combinations of signals in NCOCX for each RTA in NCACX. On the other
hand, because simulations by MCAssign use actual experimentally
determined RTAs from both spectra as inputs, this analysis suggests that
the maximum total number of ng should be ~ 452 for MCAssign simu-
lations, since RTAs from NCACX and NCOCX are counted individually.

ARTIST also reports the number of matched RTA pairs that can be
assigned interchangeably due to overlapping °N frequencies in file
Overlap. The histogram of this statistics is plotted as the red bars in
Fig. S2A. Altogether, 51 NCACX RTAs and their matched NCOCX RTAs
find at least one matched RTA pair with overlapping '°N resonances,
with sufficiently different secondary shifts to potentially incur type 2
local minima. Among them, four matched RTA pairs are reported to
have 5 sets of RTA pairs that can be assigned interchangeably, corre-
sponding to A68, A84, A93 and A185.

3.3. Validating the optimization strategy for annealing setup

Following ARTIST’s match finding, ASAP proceeds to perform
sequential allocation by the MCSA algorithm. Our first task is to validate
Egs. (11) and (12) to optimize the MCSA setup. Following our guide-
lines, we set n, = 5 x 10°, wiy = 10, wor = 25, wyr = 2.5, and wyy = 5,
with scale = 1.0. Only c-alpha and c-beta resonances of the NCOCX
spectrum of the uniform !3C, 15N labeled RSV CA sample are included in
input 3. For better resolution to track the migration of matched RTA
pairs during the annealing process, a single MCSA simulation is per-
formed with nstep = 400. The progress of ng, ny, n. and n, is plotted in
Fig. 4B as red circles, blue triangles, green squares, and purple di-
amonds, respectively. Ny smoothly increases to 191 after about 150
annealing steps. It surpasses the estimated lower bound of 150 good
connections, proving the power of ARTIST to find all possible matched
RTAs in the congested NCOCX for given reference RTAs in NCACX, and
the ability of MCSA to unwind resonance entanglements to maximize n,.
Meanwhile, n,, drops to zero quickly, and n, stabilizes after the first 150
annealing steps. The fluctuation of n, gradually damps down to + 1
beyond annealing step 350.

To visualize the annealing progress, occupancy sum is plotted in
Fig. 4C. At the initial stage, every residue position exhibits high counts of
re-allocations in red. As the annealing progresses, the penalty to relocate
RTAs with good connections gradually increases, so those matched RTA
pairs making good connections with both neighbors permanently reside
at their positions, manifested as the fading red to blue and eventually to
blank, at about ~ 150 steps. It agrees well with the predicted values n, =
Nq(ng = 2) = 153 according to Eq. 11, shown in Fig. 4D. Beyond this
step, RTAs forming only one good connection with their neighbors can
still be re-allocated, but with decreasing frequency. This is evident from
the gradually fading blue intensity between annealing steps 300-350,
also consistent with the n, = N, (ng = 1) = 307 prediction by Eq. 12,
shown in Fig. 4D. There are some residue positions being frequently
accessed until the end of annealing. These are positions that cannot find
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a good assignment.

In summary, this test validates Eqgs. (11) and (12) as a crude
approximation to optimize the annealing setup for MCSA. In addition,
the re-allocation frequency of each RTA can also be visualized by script
Plot instigator, shown in Fig. S3. It shows which RTAs are seated prop-
erly. At each annealing step, the re-occupancy frequency at each residue
position in the protein can be plotted by script Plot occupancy. step, as
shown by Fig. S4A and B for annealing step 5 and 400, respectively.
Likewise, RTAs allocated to the preceding and next residue positions
(indexed by x coordinates) to the specified RTAs (indexed by the y co-
ordinate) can be visualized by plotting file neighbor by script Plot -
neighbor, as shown by Fig. S4C and D for annealing step 5 and 400,
respectively. They may be helpful to identify NCACX RTAs that need
revisions.

3.4. Validating thorough sampling and differentiation of the global
minimum and local minima

To validate the guideline for thorough sampling, we conduct four
series of ASAP runs with the same input data of the RSV CA tubular
assembly in the previous section, comprising run 1-4, 5-8, 10-11 and
12, respectively, shown in Table 1. All simulations are performed with
wir = 20, wor = 50, wyr =5, wye = 10, nstep = 40, with n; increased
from 0.5 x 10° to 500 x 10° to probe the progress of assigned RTAs
approaching thorough sampling. For different runs among each of the
first three series, the scale values are adjusted to modulate n, = N, (ng =
2) and n,
=2) and n, = Ny (ng = 1) values are computed according to Egs. (11)
and (12). The results reported in the table are the average of 10 simu-
lations, to average the randomness associated with MC simulations,
except the last run, as it took 48 h to complete a single simulation.

As shown in Table 1, in each series, the effective annealing range

Ng(ng = 1), to vary the effective annealing steps. The N, (ng

expands as the scale value decreases, indicated by n, = N, (ny = 2) and
ne = Ng(ng = 1). Accompanied with this trend, ng and n, improves. The
same trend is observed for runs in different series with similar annealing
ranges but larger n;. The maximum n, approaches a plateau ~ 191,
suggesting simulations in run series 3 is close to thorough sampling,
while series 1 and 2 are under sampled. We note the number of
consistently assigned RTAs continues to increase from series 1 to 3.
Within a series, simulations with more effective annealing steps produce
more consistently assigned RTAs. However, we note there are some
exceptions. Run 5 in series 2 produces fewer consistently assigned RTAs,
due to the threshold n, = N, (n; = 1) that goes beyond the last annealing
step. Furthermore, run 1 in series 1 with the most effective annealing
steps does not have the most consistently assigned RTAs, due to the
severity of under sampling. We will show in the next section that most of
the consistently assigned RTAs are allocated to their correct positions
(experimental assigned positions).

Therefore, to determine if thorough sampling is achieved, users

Table 1
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should execute ASAP simulations with increasing n, to maximize the
annealing steps n, > Nq(n, = 2), until the total number of n, stops
improving. To maximize RTAs allocated at their global minimum posi-
tions, the threshold step n, = Nq(ng = 1) should be sufficiently distant
from the last annealing step to maximize the effective annealing. Note
that the simulations in the previous section also achieved n, = 191. It
shows that thorough sampling can be achieved by different parameter
setups.

3.5. Alternative strategies to achieve thorough sampling by iterative ASAP
simulations

A single ASAP simulation with n, =5.0 x 10 and nstep = 40
takes ~ 29 min on a desktop with 12th gen Intel i5-12500. Therefore,
considerable time is needed to achieve thorough sampling for a large
protein. Converting the program to Fortran or C will probably reduce the
time by hundreds of folds, according to our experience simulating the
self-assembly of the HIV CA by MCSA [54-57]. Alternatively, thorough
sampling can be achieved by iterative ASAP simulations as discussed
earlier.

To prove this, iterative ASAP runs are performed with the identical
setup as run set 6 in Table 1 with the same RSV CA data, results shown in
Table 2. As iteration progresses, ng and n, improve quickly. At the end of
the third iteration, they produce comparable total number of ng and n, to
those obtained by ASAP with the maximum n, in Table 1. The number of
consistently allocated RTAs saturates at ~ 183. Moreover, the number of
correctly assigned RTAs quickly grows from 113 to 144, approaching the
maximum possible value. Hence, iterative ASAP runs are more favorable
than a single ASAP runs with a large n,, if done correctly.

The success of iterative ASAP is to strike a balance between
increasing the number of parallel simulations in each iteration and the
decreasing sampling n;. A less-than-optimal sampling would probably
produce some erroneous sequential allocations in each simulation.
However, if sufficient number of parallel simulations are performed, a
mistaken assignment due to a specific local minimum will not be
repeated in all parallel simulations, so consistently assigned RTAs
should correspond to those allocated correctly. However, as the protein
size and spectral congestion increases, local minima also proliferate. It is
possible for all parallel simulations experience one or more identical

Table 2

Thorough sampling achieved in 3 iterations, with n, = 5.0 x 10°,scale = 0.45.
Each run set are performed with 10 parallel simulations, with disparity_ncol and
disparity_nco2 set to 1.

Iteration ~ Mean STD Mean STD Consistently Correctly
ng ng ne ne assigned assigned

1 188.8 1.48 33.7 211 133 113

2 189.7 0.48 34.8 1.03 182 144

3 190 0 35 1.56 183 144

ASAP sequential assignments with different setups to test thorough sampling. All simulations end with n, = 0. Each run set are performed with 10 identical simulations
to average the randomness, except for run 12 with one simulation. All simulations are performed with disparity_ncol and disparity_nco2 set to 1.

Run index ne(millions) scale ny = Ng(ng =2) ny = Ng(ng =1) Mean ng Mean n, Consistently assigned
1 0.5 0.25 18 37 183.2 37.6 97

2 0.5 0.45 10 20 179.6 43.7 92

3 0.5 0.6 8 15 179.5 45.3 105
4 0.5 1.0 5 9 177.0 49.5 90

5 5 0.25 31 61 188.8 31.9 97

6 5 0.45 17 34 187.2 36.2 136
7 5 0.6 13 26 186.9 37.7 133
8 5 1.0 8 15 185.8 40.9 130
10 50 0.6 18 36 190.0 30.5 171
11 50 1.0 11 22 190.1 36.3 171
12 500 1.0 14 28 191 35 NAN

11
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local minima. Retaining such erroneously assigned RTAs for subsequent
iterations would lead to decreasing total number of n,. This observation
would alert users to increase either n;, or the number of parallel simu-
lations in each iteration. This does happen if we use NCACX4nextrd and
NCOCX4nextrd of run 1 in Table 1 with n, = 0.5 x 10° as input files to
seed subsequent ASAP simulations, where n; decreases to 181 in the
second round.

3.6. Robustness against ambiguous assignments in input

Previously, Tycko demonstrated that ambiguity in RTAs was
particularly detrimental for correct sequential assignments with
MCAssign, even for proteins of ~ 150 residues [40]. In our discussion,
we claimed that the matched RTA pairs by ARTIST can greatly suppress
local minima. To prove this, simulations are performed by MCAssign
[37] and ASAP to test the effect of ambiguous RTAs, tabulated in
Table 3.

The performance of ASAP against ambiguity in RTAs is first tested by
the NCACX RTAs and the NCOCX peak list of the 147-residue SrtC [41].
As shown by Table 3, run 1 is first performed to assign SrtC with un-
ambiguous RTAs in input 1, as a baseline reference. To compare with the
results obtained by MCAssign, run 2 is performed with level 1 ambigu-
ity, the same as in reference [40]. As shown in Table 3, all residues in the
input files for SrtC are assigned correctly and consistently. This is shown
by Fig. 5A, where the ASAP allocated positions for those consistently
assigned RTAs are plotted against the experimentally assigned positions.
In contrast, 2 were assigned mistakenly by MCAssign even in the absence
of any ambiguous inputs [40].

Similarly, run 3 and 4 are ASAP simulations with the unambiguous
and ambiguous RTAs in input 1 for MLKL, with 142 RTAs always
consistently assigned, as shown in Table 3. Among them, 7 and 15 pairs
of RTAs are placed to different positions than their experimentally
assigned positions, for simulations with unambiguous and ambiguous
inputs respectively. Specifically, with unambiguous input, the 7 erro-
neously assigned RTAs are those due to overlapping °N resonances
implicated in type 2 local minima, falling onto the grey bar highlighted
positions in Fig. 5B. This is an improvement in contrast to the 22
mistaken assignments by MCAssign [40]. In the presence ambiguity, 13
out of the 15 misplaced RTAs are those implicated in type 2 local
minima. The other 2 are those implicated in type 3 local minima (K78 vs
K122, 1128 vs L81). As shown in Fig. 5B, we note that adjacent residue
positions to these erroneous assignments are correctly assigned, indi-
cated by their distribution along the diagonal direction. It agrees with
our discussion that type 2 or 3 local minima are caused by RTAs with
completely interchangeable sequential allocations, so neighboring as-
signments are not disrupted.

Next, the performance of ASAP is compared against MCAssign with
the RSV CA data. We note that MCAssign program counts the RTAs in

Table 3
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NCACX and NCOCX individually, so n, in its results corresponds roughly
to twice of that in ASAP simulations. When n, = 5 x 10°, for MCAssign
simulations with level 1 ambiguity in input 1, the number of consistently
and correctly assigned RTAs decreases ~ 1/3 of those with unambiguous
RTAs, shown by run 5 and 6 in Table 3. When the ambiguity of RTAs is
increased to level 2, the consistently and correctly assigned RTAs
decreased further, shown by run 7. It implies the system is seriously
under sampled to remove the populated type 1 local minima caused by
ambiguous RTAs. When n; is increased to 50 x 10%, the number of
consistently and correctly assigned RTAs are both greatly improved for
simulations with unambiguous or level 1 ambiguity, shown by run 8 and
9 in Table 3. It indicates that sufficient sampling can effectively over-
come the local minima caused by level 1 ambiguity. However, the
consistently and correctly assigned RTAs stay roughly unchanged, even
with more sampling for simulations with level 2 ambiguity, shown by
run 10, suggesting that the system is still under sampled to overcome the
local minima with MCAssign. In addition, according to our analysis of
input experimental RTAs in the previous section, the maximum n, for
MCAssign should be ~ 452, or ~ 226 NCACX RTA.

In comparison, ASAP demonstrates a stronger resilience against both
levels of ambiguity. When n, = 5 x 10°, the decrease of consistently and
correctly assigned RTAs with both levels of ambiguity (run 11 and 12 in
Table 3) is much milder compared to results in the absence of ambiguity
(run 6 in Table 1). Moreover, when n, is increased to 50 x 10°, results for
simulations with both levels of ambiguity are greatly improved, shown
by run 13 and 14. Recall that our analysis of input data for ASAP sug-
gests that the maximum number n, is only ~ 150.

To inspect the consistently allocated RTAs, Fig. 5C plots the
sequentially allocated residue positions of consistently allocated RTAs
against their experimentally assigned positions. Specifically, in the
presence of level 2 ambiguity in input 1, there are 25 distinct RTAs
shifted from their experimentally determined positions. Among them,
18 are implicated in type 2 local minima, falling in the grey bar high-
lighted regions. Out of the remaining 7 shifted RTAs, 6 are signals
forming type 3 local minima with the experimentally assigned values,
listed in Table S1. The only exception is the T17 that is assigned to
residue position 227, seated alone with both neighbors occupied by null
assignments. Similar to our observations in Fig. 5B for MLKL results,
adjacent residue positions to these mistaken assignments are correctly
assigned, with signals distributed along the diagonal directions in
Fig. 5C. They confirm that these mistaken assignments are caused by
those RTAs with entirely overlapping '°N resonances. Thus, to simplify
our discussions, we will stop listing the IDs of these mistaken
assignments.

Note that while there are nearly always bad connections in all
MCAssign results, they are eradicated in all ASAP simulations. This is
due to the higher penalty to allocate matched RTA pairs with bad con-
nections. We can use Plot occupancy_sum to visualize the ill-effect caused

Comparison of resilience against ambiguous RTAs between MCAssign and ASAP. Each run set comprisel0 identical simulations to average the randomness, with

disparity ncol and disparity nco2 set to 1.

Run index Protein Algorithm n¢(millions) scale Ambiguity in input RTAs? Mean ng Mean n, Mean ny, Consistently assigned Correctly assigned
1 SrtC ASAP 50 0.7 0 111 8 0 111 111
2 SrtC ASAP 50 0.7 Level 1 111 8 0 111 111
3 MLKL ASAP 50 0.65 0 142 7 0 142 135
4 MLKL ASAP 50 0.65 Level 1 142 7 0 142 127
5 RSV CA MCAssign 5 1.0 0 414.3 14.3 1.3 121 120
6 RSV CA MCAssign 5 1.0 Level 1 402.4 25.9 1.1 79 78
7 RSV CA MCAssign 5 1.0 Level 2 396 30.2 0.6 56 54
8 RSV CA MCAssign 50 1.0 0 416.1 13.1 1.4 139 137
9 RSV CA MCAssign 50 1.0 Level 1 416.7 12.8 1.4 138 136
10 RSV CA MCAssign 50 1.0 Level 2 396 30.2 0.6 56 56
11 RSV CA ASAP 5 0.45 Level 1 185.0 38.1 0 113 92
12 RSV CA ASAP 5 0.45 Level 2 185.2 38.6 0 111 95
13 RSV CA ASAP 50 0.6 Level 1 189.3 34.4 0 144 115
14 RSV CA ASAP 50 0.6 Level 2 189 34.6 0 143 116
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Fig. 5. Resilience against ambiguity in RTAs in ASAP simulations. Allocated positions of consistently assigned RTAs are plotted against their experimentally assigned
positions. (A). Allocated positions for consistently assigned RTAs of SrtC data with zero ambiguity (run 1 in Table 3, red empty squares) vs level 1 ambiguity in input
1 (run 2 in Table 3, blue solid squares). (B). Allocated positions for consistently assigned RTAs of MLKL data with zero ambiguity (run 3 in Table 3, red empty
diamonds) vs level 1 ambiguity in input 1 (run 4 in Table 3, blue solid diamonds). (C). Allocated positions for consistently assigned RTAs of the RSV CA with zero
ambiguity (run 10 in Table 1, red empty diamonds) vs level 2 ambiguity in input 1 (run 14 in Table 3, blue solid diamonds). Grey bars are RTAs implicated with
overlapping '°N resonances to incur type 2 local minima. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)

by ambiguous RTAs in input 1, which leads to more shuffling in the
annealing process. They are shown by Fig. S5A for run 10 in Table 1 and
Fig. S5B for its counterpart run 14 in Table 3.

In summary, our results confirmed that consistently allocated RTAs
may be considered as those assigned to their global minimum locations
if thorough sampling can be guaranteed, except for those implicated in
type 2 and 3 local minima. To correct erroneous assignments caused by
type 2 local minima, additional restrains are needed from experiments
such as CANCX or CONCX spectra, if SNR allows. For proteins with
highly repetitive stretches of sequences, frequency selective dipolar
dephasing experiments can be performed with selective residue labeled
samples to resolve the ambiguity [58]. Owing to the correlation estab-
lished by ARTIST for input RTAs, ASAP demonstrates a stronger resil-
ience against ambiguity in input RTAs.

3.7. Capability to work with the full NCOCX peak list

In all prior tests, only c-alpha and c-beta resonances in NCOCX
spectra are included in input 3. This is justifiable when the NCOCX
spectra are recorded with a short DARR mixing time. To demonstrate the
full capability of ASAP, simulations are performed to test ASAP with
input 3 comprising only c-alpha and c-beta resonances vs the full NCOCX
peak list of the RSV CA acquired with 150 ms DARR mixing.

To make the test more challenging, the full NCOCX peak list contains
more resonances than those obtained by Poky peak picking. Specifically,
if the resonance of a non-mandatory side-chain site is present in NCACX
but absent in the NCOCX spectrum, a fictitious resonance (fyx, fyy, fz) is
added to input 3, with f;, obtained by randomly shifting (< Afa, ) its fa,
frequency in NCACX, and f;, and f;, as the common indirect frequencies
identified for the c-alpha and c-beta in NCOCX. Thus, the number of
individual signals in input 3 increases from 414 to 627. Because only c-
alpha and c-beta resonances are used to identify matched RTAs by AR-
TIST, it maximizes the interferences from extra side-chain resonances in

NCOCX. All runs are performed with 10 parallel simulations to average
out the randomness factors.

In addition, all tests in prior sections are performed with dis-
parity_.ncol and disparity nco2 set to 1, so the full uncertainty values
listed in input 3 are used by ARTIST to check resonances alignment
along their indirect dimensions. To help cope with the full NCOCX peak
list, tests are also performed with both parameters set to 0.33. It requires
the frequencies of the indirect dimensions to match within 0.1 ppm in
NCOCX, for them to pass the final test in ARTIST. This is the standard
used in manual assignment, and should help to disqualify interference of
resonances belonging to different residues.

The results are shown in Table 4 and Fig. 6. As shown in Fig. 6A,
introduction of extra side-chain peaks in input 3 does lead to slightly
inflated matched RTAs, due to the coincidental matches to mandatory
resonances by other side-chain carbons. However, with disparity ncol
and disparity nco2 set to 0.33, when all RTAs in NCACX are unambigu-
ously determined, the results are not impacted by the extra side-chain
peaks, indicated by similar ng, n. and consistently assigned RTAs, as
shown by the statistics of run 1 vs run 2 in Table 4. They also find
comparable correctly assigned RTAs among the consistently assigned
RTAs, shown in Fig. 6D. Majority of those shifted assignments are those
implicated in type 2 local minima, indicated by the grey bars. Those fall
in the blank regions are RTAs with overlapping '°N and 3C resonances,
implicated in type 3 local minima. Again, due to the interchangeability
of their sequential allocations, we note that assignments of adjacent
residues are not affected, as their signals nearly always fall along the
diagonal in Fig. 6D. Similar patterns are observed in the following two
tests.

To investigate ASAP’s ability to resist ambiguity in input 1 with the
full NCOCX peak list, additional tests are performed with level 1 am-
biguity in input 1, with input 3 comprising just c-alpha and c-beta res-
onances (run 5), or the full peak list from NCOCX (run 6), respectively.
Level 1 ambiguity further increases the coincidentally matched RTAs

Table 4
Capability of ASAP to work with the full NCOCX peak list. All runs comprise 10 parallel simulations to average randomness, with n, = 5 million, scale = 0.45.
Runindex  signalsintNCOCX disparity_ncol disparity nco2 ~ Ambiguity in input RTAs ~ Meann, Meann, Consistently assigned  Correctly assigned
1 c-alpha and c-beta 0.33 0 188.0 34.0 142 116
2 Full peak list 0.33 0 188.6 35.2 141 121
3 Full peak list 1.0 0 186.5 37.0 123 94
4 Full peak list with absolute R and L.~ 0.33 0 190.2 33.6 156 133
5 c-alpha and c-beta 0.33 Level 1 185.1 38.0 122 108
6 Full peak list 0.33 Level 1 186.4 36.6 126 95
7 Full peak list 1.0 Level 1 186.3 37.3 114 91
8 Full peak list with absolute Rand L.~ 0.33 Level 1 188.3 35.0 137 119
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identified in NCOCX, shown in Fig. 6B. The quality of sequential as-
signments for both run 5 and 6 also is decreased, shown in Table 4.
Specifically, compared to run 5, run 6 produces slightly fewer consis-
tently and correctly assigned RTAs. As shown in Fig. 6E, the consistently
assigned RTAs but shifted from their experimentally determined posi-
tions are mostly those implicated in type 2 local minima, falling in the
grey bar highlighted positions. Additionally, there are 5 pairs corre-
sponding to those implicated in type 3 local minima, outside the grey bar
highlighted regions for type 2 local minima.

Simulations are also performed with full uncertainty values in input
3 with disparity ncol and disparity nco2 set to 1, with the full NCOCX
peak list, for zero ambiguity (run 3) and level 1 ambiguity in input 1 (run
7). They produce fewer consistently assigned RTAs compared to simu-
lations with disparity ncol and disparity nco2 set to 0.33, proving the
interference adding extra side-chain resonances, and the ability of the
program to suppress this interference by a tighter tolerance in the final
test of ARTIST. Moreover, we note that run 3, 6 and 7 produce compa-
rable number of correct assigned RTAs. It suggests the mistakenly
assigned RTAs are predominantly due to the side-chain interferences,
not the ambiguity in input 1.

With the full NCOCX peak list, in addition to the standard approach
of increasing n; or iterative simulations, the results of ASAP can be
further improved by strengthening the correlations of resonances in
input 1 and 3. Specifically, in experiments, selective residue labeled
samples can help us unambiguously correlate signals from the same
residue across spectra, as shown in our prior work [13]. Run 4 and 8 are
performed, with zero or level 1 ambiguity in input 1 respectively. In
both runs, we simulate this situation that all signals of R and L residues
can be unambiguously resolved and correlated in both spectra, by

14

imposing identical c-alpha and c-beta frequencies for f,, and f;, for these
residues in input 1 and input 3, with their uncertainty set to 0.001 ppm.
As shown by Fig. 6C, it suppresses coincidentally matched RTAs in
NCOCX not only for these residues, but also for 10 other residues, as the
side-chain resonances of these R and L residues could be used to match
the mandatory carbons of other residues. Indeed, both runs produce
improved results, with better ng, n. and consistently assigned RTAs.
More importantly, the number of correctly allocated RTAs are greatly
improved, by nearly 30 compared to their reference runs (run 3 and run
5). Hence, if a residue exhibits distinct and well-resolved CS signals in
both NCACX and NCOCX spectra, such as A, S, T, I, P, V or G, we should
impose identical f,; and fp, for their c-alpha and c-beta resonances in
input 1 and input 3, and remove non mandatory side-chain resonances
in input 3 to prevent coincidental matching to other residues. This
strategy will further improve the performance of ASAP.

3.8. Limitations and incorporation of additional spectral assignments into
ASAP

ASAP cannot differentiate those RTA pairs implicated in type 2 or 3
local minima that can be assigned interchangeably due to their similar
15N resonances, with only NCACX and NCOCX spectra. They may cause
fluctuations of consistently and correctly assigned RTAs in the simula-
tions with the same or similar setup, shown by the differences between
run 11 in Table 3 vs run 7 in Table 4. However, if their adjacent residues
exhibit distinct resonances, incorporation of correlations revealed by
CANCX or CONCX will eliminate these type 2 or 3 local minima. Current
version of ASAP does not automate the inclusion of this correlation, and
must be implemented manually by adjusting the amide '°N CS
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uncertainties of corresponding RTAs in input 1 and 3 that are correlated
in CANCX or CONCX, so that they are the only pair to satisfy Eq. 8. This
process can be accelerated by ARTIST to find matched RTAs in these
spectra against the reference NCACX RTA. The damage of these errors is
probably localized, as we showed, assignments of adjacent residue are
not perturbed by these errors.

The more challenging limitation is to accurately determine the peak
positions in the presence of severe resonance overlap, as it directly im-
pacts the accuracy of ARTIST and ASAP. While smaller disparity ncol
and disparity_nco2 help to suppress coincidental matches, it weakens the
ability to account for peak shifting caused by resonance overlap along
the two indirect dimensions. Hence, separating congested resonances in
NCOCX along the two indirect dimensions entirely depends on the ac-
curate peak deconvolution algorithm of other programs such as Poky
[53].

ASAP is designed for '3C detected spectra NCACX and NCOCX.
However, it can be easily adapted for inputs derived from other multi-
dimensional spectra, or recorded with proton detection, by replacing
corresponding entries along their indirect and direct dimensions.

3.9. Data availability

The ASAP source code with all input and output files are provided as
the zip file in supporting materials for simulations in Table 4. Brief in-
structions are provided for the plotting scripts in supporting materials,
as well as NCACX_1CompareNCO that tabulates the original RSV CA
input files. Please contact Bo Chen at bo.chen@ucf.edu if you need
additional help.

4. Conclusion

In conclusion, we demonstrate that ASAP is a robust sequential
assignment program for congested multidimensional NMR spectra.
Compared to other popular auto-assignment programs for ssNMR such
as FLYA or ssPINE that require a plethora of multidimensional spectra,
[10,11] some of which such as CANCX and CONCX may be challenging
to obtain for noncrystalline samples, ASAP only need 3DNCACX and
NCOCX spectra. It largely eliminates the laborious efforts in sequential
assignments of congested NCOCX spectra, so long as the accuracy of
peak picking in NCOCX and RTAs in the better resolved NCACX spec-
trum can be guaranteed. With ASAP, the sequential assignments of large
proteins that lack premium spectral resolution for ssNMR can be reduced
to days. It relieved the resolution cap for assignment capped by the more
congested NCOCX spectrum to the NCACX spectrum.
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