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Abstract

The shift from traditional internal combustion engine vehicles (ICEVs) to electric vehicles (EVs) has
raised concerns about displacement of automotive manufacturing labor. Prior studies have mixed
findings, and have been hindered by a lack of shop floor-level data on the labor hours required for
ICEV and EV manufacturing. We collect detailed data from leading automotive manufacturers on
the production process steps and labor inputs required to build key ICEV and battery electric vehicle
(BEV) powertrain components. Our novel data set covers 252 process steps, with data on a further
78 process steps from the existing literature. We build a production process model that estimates
the labor hours required to produce ICEV and BEV powertrain components at different production
volumes and labor efficiency levels. We find that, accounting for production and assembly of battery
packs, the labor intensity required for the manufacturing of BEV powertrain components is larger
than for ICEV powertrain components. This difference in labor intensity holds even when comparing
the highest-efficiency estimates for BEV production with the lowest efficiency-estimates for ICEVs.
This finding depends on our shop-floor operations modeling approach and could not be derived
from recent approaches focusing on part counts. Our results imply that vehicle electrification could
lead to more automotive manufacturing jobs, at least in the short- to medium-term. While there
are potential jobs to support transitions for incumbent automotive workers, the feasibility of these
transitions will depend on geographic co-location of new battery production capacity with current
ICEV production sites, and on matching between the skills of the automotive workforce and the

demands of new EV jobs.

1 Introduction

Motivated by decarbonizing the global energy system and achieving and air quality benefits, personal

transportation is undergoing the largest transition in over a century with global sales of electrified



vehicles projected to outpace those of conventional internal combustion engine vehicles (ICEVs)
by as early as 2030 [1, 2, 3, 4, 5, 6]. In the U.S., the White House joined with the Big Three U.S.
automakers and the United Auto Workers (UAW) to announce plans for 40-50% of U.S. vehicle
sales to be electrified by 2030 [7]. Internationally, more than 20 countries have electrification targets
or internal combustion engine bans in place to accelerate the phase-out of ICEVs [8]. And many
original equipment manufacturers (OEMs) have announced plans to solely produce electric vehicles
(EVs), phasing out new production of conventional ICEVs within the next 10 - 15 years [8].

While certain policy incentives for the growth of EVs are motivated by addressing the Sustainable
Development Goals (SDGs) of climate action and responsible production [9, 10], some authors have
raised concerns that the transition may negatively impact the SDGs of reduced inequalities and
decent work [11, 12, 13], particularly with respect to manufacturing labor. Recent studies have
suggested that EV production will lead to manufacturing job loss because EVs have fewer parts
than ICEVs in final assembly [14, 15, 16]. Others have countered this conclusion, arguing that
EVs require additional steps in the production of batteries and power electronics that will require
a comparable amount of labor as ICEVs [17]. Understanding the labor implications of the shift
to EVs is critical to supporting the SDG objective “leave no one behind” [18, 19]. The perceived
implications of EVs for automotive employment have become especially salient in the United States,
as the United Auto Workers launched a nationwide strike on September 15, 2023, partly motivated
by concerns over the future employment of incumbent ICEV production workers [20]. Understanding
the manufacturing workforce impact of the EV transition, and under what conditions, is vital to
addressing these concerns and achieving political buy-in from specifically affected groups.

Consideration of the impact of EVs on manufacturing labor is heightened by the role the
manufacturing sector has played in employment and wages around the world. Approximately 14
million workers are involved in vehicle and parts manufacturing globally [21, 22]. In many countries,
automotive manufacturing has provided relatively high wages that have helped to reduce income
inequalities. For example, in the U.S., automotive manufacturing historically provided well-paying
jobs that supported the rise of the middle class [23, 24] and still to this day has average hourly earnings
that are higher than the national average wage [25] and employs a disproportionate share of workers
with only a high school degree compared to other sectors [26]. Moreover, automotive manufacturing
is highly geographically concentrated, and plays an outsize economic role in the communities where
it is located, meaning that regional industry disruptions can have a disproportionate impact. In
2022, just over half of all U.S. motor vehicle parts manufacturing jobs were located in four states
(Michigan, Ohio, Indiana, Kentucky),! and automotive industry employment accounted for 17.4
percent of manufacturing jobs in those states [25]. While other elements of the automotive value
chain, such as repair and maintenance, are also likely to be affected by electrification and to matter
for long-range workforce outcomes [27], they do not share the geographic characteristics or the
degree of political organization of potentially threatened production workers.

As the automotive industry electrifies its vehicles, it is likely to affect both labor demand and the

1 Just four metropolitan statistical areas account for 18 percent of employment in the industry



nature of employment in the automotive and parts sectors [28]. The industry will need to restructure
production from a historically mechanical production process characterized by machining and
assembly steps necessary to manufacture ICEV powertrain components to a more electrochemical
production process for manufacturing battery cells and power electronics in EVs [29, 30]. This
large-scale restructuring could significantly affect the number as well as the types of workers that
are needed on the shop floor.

Employment effects of technology changes can be decomposed into three effects: (1) changes in
output demand (e.g., if consumer demand for vehicles decreases or increases in response to the shift
to EVs), (2) changes in production costs (e.g., if production costs increase, this could put downward
pressure on the sales of vehicles), and (3) changes in labor intensity between the technologies (e.g., if
the number of employees required for EVs is more or less than that of ICEVs for the same quantity
of vehicles produced) [31]. We focus on the latter in this paper, investigating the labor intensity of
EVs in contrast to ICEVs. Recent analyses of policies encouraging EVs have recognized that EV
production may have different labor intensity than ICEV production [28]. However, examination of
the potential differences in labor intensity between these technologies has been hindered by a lack
of detailed data of manufacturing labor requirements for EV production.

In this research, we investigate the comparative labor intensity required in the manufacture
of ICEV and battery electric vehicle (BEV) powertrains through production and operations data
collected from the shop floors of leading automotive OEMs and suppliers and battery manufacturers.?
We collect detailed operations and production information (e.g., cycle times, batch sizes, yield rates,
material usage, machine prices) from manufacturing firms for 252 production steps necessary to
produce key ICEV and BEV powertrain components.®> We then combine this data with information
on a further 78 production process steps from existing literature. These data are provided as inputs
to a process-based cost model (PBCM), an engineering operations model that is used to inform
manufacturers of the implications of different technologies on production inputs including labor.

Our results do not support that BEV powertrains require less manufacturing labor per unit
than ICEV powertrains. In contrast, we find that more labor is required to manufacture BEV
powertrain components than those of ICEVs, when including battery manufacturing using current
battery chemistries. Our collection and synthesis of vehicle manufacturing data from industry and
public sources offers a novel comparative assessment of the labor hours needed for ICEV versus
BEV powertrain designs and suggests that BEVs may lead to more demand for labor in powertrain
manufacturing, at least in the short- to medium-term. This finding suggests that there could be
enough labor demand to employ incumbent production workers whose current ICEV tasks would be

eliminated in EV production, and gives potential scope for firm and policy decisions (such as the

2We concentrate on modeling those electric vehicle components specific to BEVs. Our results and insights,
therefore, are confined to BEVs. However, other studies referenced throughout this work may be more general in their
vehicle focus. For those studies that are not specifically BEV-focused, we use the terms electric or electrified vehicles
to distinguish their vehicle categorization choice.

3We restrict our focus to the powertrain, the automotive system responsible for generating the kinetic power to
move the vehicle forward, because electrified powertrain components will be more dissimilar from their conventional
counterparts than in any other automotive system.



co-location of battery production with existing automotive communities) to encourage new jobs to
be filled by ICEV workers. While disrupted ICEV workers could potentially find new employment
in other industries and occupations, a large point mass of unemployed ICEV workers may face
significant frictions within the labor market (especially in communities where the automotive
industry is a disproportionately large employer), giving a greater significance to the possibility of a
compensating point mass of demand from BEV production.

We structure this paper in 5 following sections. Section 2 provides industry and technical
background and places our work in the context of prior research on workforce implications of EV
transition. Section 3 describes our methodology in detail and compares the strengths and limitations
of our operations-based approach against the aggregate methods used to-date in the literature.
Section 4 describes the rich shop-floor level data we collected and integrated with existing datasets
from the literature, noting the coverage of the technical possibilities space within our data sources.
Section 5 provides the results of our model, including sensitivity analysis using the novel data we
collected from industry compared with public data sources. We discuss the potential drivers of
differences in labor intensity of ICEV and EV production, including batteries. Section 6 offers
conclusions and policy implications. We frame our implications both in terms of insights from
our work identifying levers that may be significant for ICEV to EV workforce transition outcomes,
and in terms of the empirical gaps highlighted by our work that will require further or potentially

recurring study as the technology landscape evolves.

2 Background

Previous studies and industry statements on the employment implications of the transition to EVs
have been mixed, with some indicating that BEV manufacturing is less labor intensive than ICEV
manufacturing, and others supporting that they are comparable. There are few peer-reviewed
studies addressing the question; many of the existing studies of the labor implications of EVs have
been industry reports or commissioned analyses done in collaboration with the auto industry. This
is likely due in part to the proprietary nature of manufacturing process and labor data. We review
both peer-reviewed and industry reports as well as industry statements of the labor implications of
EVs below.

Multiple industry and commissioned analyses have concluded that BEVs will have reduced labor
requirements based upon the argument that BEVs contain a fewer number of parts. Germany’s
Friedrich Ebert Stiftung finds that an ICEV powertrain contains 1,400 components versus the 200
in an EV [32]. A teardown by the UBS Evidence Lab of the Volkswagen Golf (ICEV) and the
Chevrolet Bolt (BEV) models counts 167 moving and wearing parts in the Golf’s powertrain versus
35 in the Bolt [33]. The UAW, in just one example of supporting this prevalent argument’s logic,
states that “This simplicity could reduce the amount of labor, and thus jobs, associated with vehicle
production” [34]. The soundness of this part-count argument alone, however, depends on how and

which components are counted in each vehicle. It also ignores the nuance that unique components



have different numbers and types of manufacturing steps and require different quantities of workers
with varying skillsets. Indeed, it is not the number of parts but rather the process steps, and their
cycle times and labor hours per part, that determine the labor hour content of a final assembled
component.

Many industry statements and studies, in support of the part-count argument, have asserted that
producing BEVs will require less labor than producing ICEVs. Ford’s president of global operations
announced that “Electric vehicles will mean auto factories can have .. .30 percent fewer labor hours
per car” [14, 35]. Bosch finds that “ten employees are needed to build a diesel system, three for a
gasoline system, and only one for an electric vehicle” [36]. At least in the case of Herrmann et al.
[16], the authors determine higher labor requirements in ICEV manufacturing but do not account for
the production of EV battery cells; we argue that in an apples-to-apples comparison of automotive
manufacturing requirements a full accounting of all critical powertrain components is necessary.

At the same time, not all analysts have agreed that EV labor content will be lower. Ward’s
Automotive industry analyst John McElroy asserts that “the claim that all electric cars are much
easier to build just isn’t true” because “[EVs| require other assembly steps that piston engines
don’t.” However, McElroy concedes that “EVs will eliminate a lot of factory jobs” because “The
engineering skills needed to design [battery packs|, the materials and the manufacturing processes
used to make them, are completely different. Companies that are adept at making crankshafts,
pistons, spark plugs, radiators and so many other traditional components have no role to play in
an electric world” [37]. Relatedly, in its comparison of the ICEV versus BEV powertrain, UBS
Evidence Lab finds that BEVs contain 6 to 10 times more embedded semiconductor content [33].
Growth in the demand for these electronic technologies, which are extensively used in batteries,
electric motors, and power electronics, are introducing new processes and techniques previously
unknown to automotive manufacturing.

In support of comparable requirements, two studies based on current and past employment
of workers in BEV and ICEV supply chains find that labor intensity is comparable across the
technologies: Onat et al. conduct an economic input-output lifecycle assessment and find that the
manufacturing employment hours required per vehicle per lifetime mile driven is similar across
BEVs and ICEVs [38]. And, a study by the Boston Consulting Group examines labor content
in the production activities of OEMs and Tier 1 suppliers and find that “the labor requirements
for assembling BEVs and ICEVs are comparable” [17]. Specifically, they finds that “current BEV
labor requirements are about 1% less than those for ICEVs.” They also conclude that “the value
added in automotive manufacturing will shift from OEMs to tier one suppliers, particularly battery
cell makers” because OEM manufacturers are expected to focus more on final assembly and shift
component manufacture to their suppliers.

Several additional studies examine employment projections due to vehicle electrification for
particular regions, such as the U.S. [23, 39, 40, 41], Germany [15, 16, 42], Europe [43], and Thailand
[44]. While these studies project employment changes, their findings are not based on labor intensity

but rather anticipated plant closures of ICEV-specific component facilities without the opening of



new plants or transition of existing plants to BEV component production. Among these studies,
Bauer et al. also examines labor intensity in terms of the number of workers required to produce
powertrain components in Germany and finds that BEVs are less labor intensive than ICEVs [42].
However, this study does not account for battery cell manufacturing, which is responsible for the
largest share of labor in a BEV powertrain, because of the lack of cell production currently in
Germany. In contrast, we focus on the labor intensity of all major BEV powertrain components,

including battery cells, in comparison to ICEV powertrain components.

3 Methods

3.1 Modeling labor implications of technology using process-based cost modeling

Technical cost modeling methods were developed to explore the economic implications of emerging
technologies and evaluate how new technologies, concepts, and materials affect production costs
prior to large-scale investment [45, 46, 47]. Process-based cost modeling—one class of this genre of
models—evaluates the economics of manufacturing operations and the implications of alternative
manufacturing decisions, including alternative products with different types of embedded technologies,
by simulating each step of the production process and the interaction across these steps for a given
product design [48, 49, 50, 51].

Process-based cost models (PBCMs) are well-suited for accounting for the influence of technology
choices on production step-level variables in manufacturing, including labor intensity. This modeling
approach offers a forward-looking perspective for how emerging technologies may affect production
costs and demand for inputs, including labor. A major strength of the PBCM approach is the
flexibility to account for different technical scenarios that may affect outcomes for labor, thereby
providing an important source of sensitivity analysis. Because the PBCM is a structural model that
builds a simulation of production from first operational principles, we can identify the drivers of
outcomes in a transparent and mechanistic way (e.g. the sensitivity of input demands to changing
operational parameters such as batch size). We can thus also trace how different data sources
(e.g. for parameter inputs to production) imply different outcomes for workers. Compared with
aggregate methods, or with reduced-form modeling approaches such as scaling factors on battery
labor, the disaggregation enabled by the PBCM approach makes it possible to isolate competing
factors such as reduced parts count versus labor intensity of new tasks, and to evaluate how they
interact (as we show in our results section). PBCMs require extensive and sensitive operations data,
much of which is not publicly available (though often parallels exist with data typically collected by
firms): we detail the collection of this data in the following section. PBCMs are also not general
equilibrium models: they relate operational parameters to input requirements at scale, but do not
endogenize factors such as input price elasticity of supply or demand price elasticities that could
affect production volume and hence labor demand.

PBCMs have been extensively applied to evaluate material, design, labor, process, and location

decisions in contexts ranging from semiconductor chip design [50, 52] to additive manufacturing [53].



With regard to automotive manufacturing, these models have been used to estimate the costs of
fabrication for batteries [54] and composite materials [55, 56, 57, 58, 59]; investigate the dynamics
of the magnesium market [60]; quantify product development efforts and lead-times [61]; examine
the cost impacts of learning improvements [62]; demonstrate the significance of location-specific
production differences [51]; and evaluate potential risks of decreased rare earth element availability
for automotive fleets [63, 64]. Most recently, Combemale et. al. applied a combination of process-
based cost models and a process-step level adaptation of the O*NET skills survey instrument to
quantify the labor hours and skills implications of emerging technologies [65].

We construct a PBCM to simulate the production process steps required to manufacture
automotive powertrain components and estimate their production consequences at varying production
volumes, using data at the individual machine level for each of the process steps. We use per-process
step inputs specific for each production stage of a particular component (e.g., batch size, cycle
time, yield rate, scrap rate, price of machine, energy consumption, floor space, fractional use of
labor). In addition to the per-process step-level modeling and data, we select plant-wide inputs for
all equipment and production lines, including annual operating days, downtime, number of shifts,
wages by occupation, price of energy, and discount rate [66]. The sources of the facility-wide and
per-process step input data are described in Section 4. We calculate the input (e.g., material, labor,
energy, equipment, building space) requirements for producing a pre-selected annual volume of
“good” units (i.e., output that is not rejected because of poor quality) in the simulated production
facility, accounting for downtimes and yield rates. Given these required inputs to achieve a number
of good units per year, we then calculate per unit production cost by multiplying the required

quantity of production inputs by the prices of their respective resources.

3.2 Model architecture and computation of labor requirements

Labor requirements are determined within the simulated production facility by accounting for the
annual effective production volume for each production step (¢;), defined as the total number of
parts produced at process step ¢ to achieve the target number of good units of output at the end of
the production process (q). The effective production volume of process step i is determined by the
yield of process step i and the effective production volume of the subsequent step in the process

flow, as shown in the following equation:

=2 vie{1,2,...,n) (1)

Yi

where ¢;+1 is the effective production volume of the subsequent step, y; is the yield rate of step i,
and n is the total number of process steps for a given unit’s production process.

Labor requirements are also influenced by the number of production lines that are needed to
complete process steps in parallel. The number of lines in a manufacturing facility is related to the
time required to complete the process step and the time available to meet the specified production
)

volume. Awailable line time ( is the time available over the course of a year at process step ¢ for



producing parts, while accounting for activities that may otherwise limit full availability, including

worker breaks and facility-wide and per-process step downtimes.
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where nSH represents the number of shifts per day, 3% the hours in a shift, B the hours for unpaid

breaks per shift, t*'B the hours for paid breaks per shift, th the hours for planned downtime per

shift for step 1, tZUD the hours for unplanned downtime per shift for step i, tOF the operating days per

year, t*'P the days for facility-wide planned downtime per year, and tYP the days for facility-wide

unplanned downtime per year.

Required line time (tiREQ) is the amount of time needed per year to produce the effective

production volume for process step ¢, and, by extension, the target number of good parts per year.
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where the cycle time ( is the runtime of a batch of products at process step ¢, the setup time

1
(t5ET) accounts for the time to load and unload the batch into and out of the machine, and the
batch size (n?AT) is the number of parts that are completed per cycle.

LB

The model calculates the annual number of laborers (u;

) (e.g., operators, technicians, supervi-

sors) needed at process step i for a given shift as:
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where qﬁ%B is the fractional use of labor, determined by multiplying the required number of workers

Vie S

(4)

for process step i by the fraction of the total time for process step i (i.e., cycle plus setup time) that
these workers must be present and active.* SII\JI% is the set of steps for which labor is non-dedicated
(i.e., workers can perform tasks for other process steps when not needed for process step i) and SI%E
is set of steps for which labor is dedicated (i.e., workers perform tasks for only process step 7). The
model accounts for downtime in this equation by calculating the number of lines required for each
process step, based on the downtime of that step’s equipment.

Finally, the labor intensity (tiLB) represents the number of worker-hours needed to produce a

good unit from process step 1.

4The value of the fractional use of labor may be greater than 1 in some cases if multiple workers are needed for
the same process step.
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Summing the labor intensities for all process steps for a given powertrain component (» ;" ; tLB)
determines the total worker-hours needed to produce each good unit of the powertrain component.

See the appendix for additional primary PBCM equations and their descriptions.

3.3 Treatment of uncertainty and inter-plant variation in the model

The process-based cost modeling technique improves our understanding of the labor impacts of
vehicle electrification through two key features: First, labor requirements for an annual volume of
“good” parts can be decomposed by component and process to determine the primary contributor(s)
to labor hours for overall production. Second, the model calculates labor intensity by accounting
for each component’s per-process step cycle times, setup times, batch size, use of labor, and yield
rate for the step. The labor intensity is representative of the number of worker-hours required to
produce a given product design (i.e., powertrain component) and allows us to empirically compare
the relative labor demand of producing different components.®? In addition, when calculating the
number of laborers required (Equation 4), the model also incorporates how per-process step yield
rates and downtimes will affect the overall labor required per “good” part produced.

Production operating conditions differ across manufacturing plants and different production
configurations such that there is variation in production parameters (e.g., yield rates) that affect
the labor efficiency of the plant. Additionally, some production inputs (e.g., downtime) may vary
across time such that there is uncertainty in their expected value in any given year. To capture
the uncertainties and inter-plant variation in individual production variables and the impact on
labor intensity, we run multiple scenarios with varying input values for each design. In addition to
each base input value for the model we specify alternate “most efficient” (i.e., highest total factor
productivity) and “least efficient” (i.e., lowest total factor productivity) values to be able to run
sensitivity analyses and account for the full range of plausible outcomes through the model.%

We run the model—based on discussions with industry—populated with data collected from
industry wherever possible, supplementing with data from public sources when industry data is
unavailable. We present results for annual production volumes of 100,000 units, which is the quantity
at which economies of scale are small in the per unit cost of each component.

We further use three techno-economic battery cost models from the literature to model the
production of the BEV battery pack and present their empirical results for base, most efficient,

and least efficient cases: A PBCM of prismatic pouch battery and pack designs constructed by

SWhile our analysis determines the direction of labor content change for manufacturing workers at constant
production volumes, we do not predict changes in overall workforce employment, which is appreciably affected by
changes in production volumes.

5We use base case to refer to an average representation of current industry practices and most efficient case
and least efficient case to refer to least and highest, respectively, labor hour, laborers required, and production cost
outcomes. This range of scenarios and their labeling is additionally expected to account for differences that exist at
the component-level between manufacturers (e.g., an engine block configured for V4 versus V8 designs).



Sakti et al. [54] and Versions 4.0 (2019) and 5.0 (2022) of the Battery Performance and Cost model
(BatPaC) developed at Argonne National Laboratory, a bottom-up cost and design model [67].7
We determine through sensitivity analyses of each of the three battery models that changes in the
labor intensity of battery cell production are small at production volumes higher than 100,000 packs

produced per year.®

3.4 Identifying modeling scope: Production component differences between
ICEVs and BEVs

The systems and components that make up an ICEV are, for the most part, similar to those
that comprise an BEV. The exterior, interior, and chassis systems—despite evolving innovations
in material design and electronic technologies—remain fundamentally comparable between the
two vehicle categories [69]. The most significant differences between the two vehicle categories
are concentrated in the powertrain, in which the mechanical components of an ICEV’s engine,
driveunit, and exhaust systems are substituted out in favor of an electric motor and various power
electronics powered by a battery pack. Single-speed transmission systems are also typically used
in BEVs instead of the multi-speed gearboxes used in ICEVs. The powertrain itself represents a
significant portion of a vehicle’s overall production cost: Munro & Associates estimates that an
ICEV powertrain represents approximately a quarter of its respective vehicle’s overall cost, while
the BEV powertrain represents greater than half of the vehicle cost [70]. For our comparative
analysis of vehicle manufacturing we focus solely on the powertrain—which contains the majority of
components that are unique to each vehicle type—rather than the entire vehicle. We also primarily
concentrate on the manufacturing efforts by OEMs and Tier 1 suppliers to produce and assemble
powertrain components [17, 42, 71].

We select those components located within the powertrains of both of these vehicle types for
our comparative analysis that most impact overall production cost and labor hour count. The
components examined in our analysis as well as the sources of data for these components (i.e.,
industry and/or public sources) are illustrated in Figure 1. We selected these components through

9

conversations with industry experts and reviewing automotive teardown studies.” We consider

the engine block, crankshaft, camshaft, cylinder head, transmission, exhaust system, driveunit,

"Within each of these models we specify the manufacture of a 60 kWh lithium nickel manganese cobalt oxide
(NMC) battery pack with prismatic cells. For the base case of each battery model we assume a prismatic cell capacity
of 67 Ah, a cell voltage of 4.07 V, 220 cells per 60 kWh NMC battery pack, and 300 production days per year, each
with three 8-hour shifts [67].

8Similarly, Mauler et al. demonstrate constant returns to scale for NMC cell production at annual production
volumes of 1.8 GWh [68], equivalent to 30,000 60-kWh packs.

9The literature sources that most inform our selection of components are as follows: Veloso catalogs those
components found in an ICEV by mass and approximates their production costs and worker requirements [72]; the
U.S. Environmental Protection Agency, FEV, and Munro & Associates specify the incremental direct manufacturing
costs for various ICEV components [73]; Hawkins et al. develop a transparent inventory of components found in the
Mercedes A-series (ICEV) and Nissan Leaf (BEV) and detail their respective masses, material compositions, and
environmental lifecycle impacts [74]; UBS provides a high-level teardown analysis of the Volkswagen Golf (ICEV) and
Chevrolet Bolt (BEV) [75]; and McKinsey & Company details the machines used in the production of ICEV and BEV
powertrain components [71].

10



and fuel injection systems as our principal ICEV components. The electric drive, representing
the electric motor plus inverter (i.e., most expensive power electronic device to produce), and the
lithium-ion battery pack constitute our model of the BEV powertrain. The electronic stability unit
for braking is contained in both systems. This set of components, while not exhaustive in terms
of containing all possible components found in powertrain designs, represents the lion’s share of
powertrain production costs and labor requirements.'?

With respect to the battery pack within the BEV powertrain, we choose to focus on a 60 kWh
design with a lithium nickel manganese cobalt oxide (NMC) cell chemistry and prismatic cells.!!
The capacity is selected because the average usable battery capacity across available BEV models at
the time of this writing is 60.3 kWh [76]. Lithium-ion batteries are expected to dominate the market
at least through 2035, while NMC is the most-commonly adopted cell chemistry by automakers [1].

Vehicle class Key powertrain components

Internal . . .
combustion Sl s CemBims EhELE: Driveunit Production data available from:
enﬁ'lnle [:] Industry shop floor data
\(/IeCIIECVT Crankshaft || Cylinder head || Transmission Fuel injection
C] Public sources
_________________ Braking o - B Industry shop floor data
and public sources

Battery
electric E-drive (includes e-motor, inverter) Battery pack

vehicle (BEV)

Figure 1: ICEV and BEV powertrain components are evaluated for their production
implications. These components are selected on the basis of their relative importance to overall
powertrain production cost and labor involvement. The data for modeling these components
originate from a combination of industry and public data sources.

YA few of these components (e.g., electronic stability for braking, fuel injection) are not the most cost- or labor-
influential components of the powertrain but are included in our sample set because their details were provided by
our industry partners. We do not claim to have captured the entire production processes of these components. For
example, we have not included metal fabrication steps (e.g., forging, casting) for a few components of the powertrain
system because these steps are completed by firms other than those we worked with; these omissions are not expected
to substantially affect results because of the largely automated nature of these select processes. We do not include an
estimate of the labor content of final powertrain assembly, although the magnitude of labor hours for these processes
between ICEVs and BEVs may be comparable [17]. However, we contend that our collection of components and
process steps represents the majority of production requirements and is balanced in terms of production stages between
ICEV and BEV components, thereby offering more than sufficient insights into comparative powertrain production
labor consequences.

'We tested alternative battery chemistries (e.g., LFP, LMO) within BatPaC but did not note any substantial
differences in the magnitude of manufacturing labor requirements.
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4 Data

Bottom-up data of automotive manufacturing processes (e.g., process flows, production costs and
requirements) are typically scarce when publicly available and inaccessible when developed by
industry stakeholders (e.g., OEMs, suppliers, consulting groups). Because of the competitive nature
of the industry in the race to produce and market the next best electrified vehicle, much of the
proprietary data that belongs to the manufacturers is held tightly and rarely publicly disclosed [77].
Determining the production requirements of each powertrain component is made further complicated
by the complex network of the industry’s structure, in which OEMs and suppliers are responsible for
manufacturing and assembling different parts of vehicle and, depending on the technology, vehicle,
and company, the same component may be produced by an OEM or by a supplier, and in some cases
ICEV and BEV components may be produced in the same facility.'> We collect process step-level
data for the manufacture of powertrain components so that we can explicitly disentangle which
production inputs, including labor, are specific to ICEV components and which are specific to BEV
components. This data is collected from industry sources, supplementing with data from public
sources when industry data is unavailable. We protect the proprietary nature of the industry data

by anonymizing all company names in the analysis.

4.1 Powertrain production input data: Industry sources

We collect novel data on shop floor production and operations from leading manufacturers for as
many of the primary components found in ICEV and BEV powertrain designs as possible. Our
sample comprises nine firms in total: Four automotive OEMs, three automotive suppliers, and
two battery manufacturers. These firms have globally-reaching operations and include several of
the largest firms in the industry by revenue as well as volume. The identifiers used to represent
these firms throughout this work are provided in Table 1. Data were collected through virtual
exchanges with company representatives as well as direct observation on the shop floors in five
production facilities. Battery manufacturing labor demand estimates were collected at a presentation
by manufacturing experts at the 2022 International Battery Seminar. We also engaged with the
UAW and multiple industry trade associations representing automotive manufacturers and include

some of their perspectives in this work.

20EMs (e.g., Ford, Toyota, BMW) produce some original equipment, but their business operations are primarily
focused on designing and assembling vehicles. Tier 1 suppliers (e.g., Bosch, Continental) supply components directly
to OEMs. Tier 2 suppliers (e.g., Intel and NVIDIA produce computer chips) have expertise in a specific domain
but don’t sell directly to OEMs and may instead support other non-automotive customers. Finally, Tier 3 suppliers
provide raw materials (e.g., metal, plastic) to OEMs, Tier 1, and Tier 2 firms. While Tier 1 and 2 suppliers are
generally responsible for component production, OEMs also produce various individual components in house for their
own operations; all of these components ultimately arrive at an assembly plant to be fabricated into a complete vehicle
[78].

12



Table 1: Identifiers for industry production data sources.

Provided process Provided
Code Source type step production higher-level
data? (Y/N) insights? (Y/N)
A Automaker Y Y
B Automaker N Y
C Automaker N Y
D Automaker N Y
E Auto supplier Y Y
F Auto supplier Y Y
G Auto supplier Y Y
H Battery manufacturer Y Y
I Battery manufacturer Y Y
J International Battery N Y

Seminar (IBS) experts

Details on the process steps and modeling input variables we collected from each firm are
displayed in Table 2.'® We do not provide the names of these firms or any other details that could
link their identities with the results shown throughout this work to respect the confidentiality
agreements we established. For those primary powertrain components for which we did not collect
industry data, we rely on component-specific manufacturing inputs collected in our previous effort

from the public literature. In sum, we collect details on 252 unique industry process steps.

Table 2: Production process steps and modeling input variables collected from confidential industry
sources (abbreviated version).

Component Combined process steps References

Transmission Deburring, drilling, cutting, Auto supplier E
lapping, rolling, straightening,
tempering, turning, washing,
laser welding, balancing, pre-

assembly, final assembly, testing

Driveunit Turning, marking, cutting, Auto supplier F
rolling, shot peening, lapping,
washing, laser cleaning, testing,

packing

Fuel injection Machining, washing, deburring, Auto supplier G
oiling, plastic injection, pre-
assembly, final assembly, inspec-

tion, pack out

Braking Machining, component assembly, Auto supplier G

final assembly

13A more complete version of Table 2 decomposed by individual process step and input variable is contained in the
appendix in Table 7.
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Electric motor, drive  Turning, hobbing, skiving, Auto supplier E
washing, grinding, deburring, Auto supplier F
milling, machining, balancing, Auto supplier G
pre-assembly, assembly, testing,

packing

Battery cells, pack Materials prep, coating, calen- Battery manufacturer H
daring, slitting, drying, canister, Battery manufacturer I
stacking, welding, enclosing, fill- IBS experts (J)
ing, formation, module assembly,

pack assembly

4.2 Powertrain production input data: Public sources

In the cases for which industry data is inaccessible for select components, we evaluate powertrain
manufacturing requirements by modeling production and operations input estimates collected for 78
production process steps from various public literature sources. We collect these modeling input
estimates from academic papers and dissertations and reports produced by government, industry,
and consulting affiliates. The sources of the collected input data are provided in abbreviated form in
Table 3. The sources of the financial and plant input parameter values for our PBCM are provided
in the appendix. For those modeling inputs where no information could be located from the public
domain, we provide our personal best estimates based on our experience with the automotive
industry and developing techno-economic models that simulate manufacturing operations. Our
modeling of data collected from the public literature, despite its general scarcity, reveals the extent
to which the labor impacts of vehicle electrification are publicly known and identifies some of those

areas in which future research efforts could focus and contribute.

Table 3: Production process steps and modeling input variables collected from public literature
sources (abbreviated version).

Component Combined process steps References

Engine block Casting, grinding, drilling, milling Nof 1999 [79], Veloso 2001 [72], Euro.
Alum. Assoc. 2002 [80], Omar 2011 [81],
DOE 2011 [82], Hawkins et al. 2013 [74],
Laureijs et al. 2017 [53], Salonitis et al.
2019 [83], Burd 2019 [84], McKinsey 2021

[71]
Crankshaft Forging, grinding, honing, drilling, Nof 1999 [79], Veloso 2001 [72], Omar
milling, turning 2011 [81], DOE 2011 [82], Hawkins et al.

2013 [74], Mandwe 2013 [85], Laureijs et
al. 2017 [53], Burd 2019 [84], Pal and
Saini 2021 [86], McKinsey 2021 [71]
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Camshaft

Forging, grinding, drilling, milling, turn-

ing

Nallicherri et al. 1990 [87], Nof 1999
[79], Veloso 2001 [72], Omar 2011 [81],
DOE 2011 [82], Hawkins et al. 2013 [74],
Laureijs et al. 2017 [53], Burd 2019 [84],
McKinsey 2021 [71]

Cylinder head

Casting, grinding, honing, drilling,

milling

Nof 1999 [79], Veloso 2001 [72], Omar
2011 [81], DOE 2011 [82], Hawkins et al.
2013 [74], Laureijs et al. 2017 [53], Burd
2019 [84], McKinsey 2021 [71]

Transmission

Housing: Casting, drilling, milling; shaft:
forging, turning, impregnation, coating,
punching, drilling, milling, surface hard-
ening; planet carrier: drilling, milling;

gear wheels: forging, surface hardening

Nof 1999 [79], Veloso 2001 [72], Nabekura
et al. 2006 [88], Omar 2011 [81], DOE
2011 [82], Hawkins et al. 2013 [74], Lau-
reijs et al. 2017 [53], Burd 2019 [84],
McKinsey 2021 [71]

Exhaust system

Intake manifold: Turning, punching,
drilling, milling, laser cutting, grinding,
honing; exhaust manifold: forging, turn-
ing, laser cutting, surface hardening; tail
pipe: punching, grinding, honing, cut-

ting, surface hardening

Nof 1999 [79], Veloso 2001 [72], Omar
2011 [81], DOE 2011 [82], Hawkins et
al. 2013 [74], Laureijs et al. 2017 [53],
Abosrea et al. 2018 [89], Burd 2019 [84],
McKinsey 2021 [71]

Electric motor, drive

Housing: Casting, turning, drilling,
milling; rotor: Turning, impregnation,
coating; stator: Winding, punching, lam-
inating; rotor-shaft: forging, turning,
drilling, milling, laser cutting, grinding,

honing

Nof 1999 [79], Veloso 2001 [72], Omar
2011 [81], DOE 2011 [82], Hawkins et
al. 2013 [74], Rao 2014 [90], Nordelof et
al. 2016 [91], Laureijs et al. 2017 [53],
Burd 2019 [84], Grunditz et al. 2020 [92],
McKinsey 2021 [71]

Power electronics (inverter)

Turning, punching, drilling, milling,

grinding, honing

Nof 1999 [79], Veloso 2001 [72], Omar
2011 [81], DOE 2011 [82], Bryan &
Forsyth 2012 [93], Hawkins et al. 2013
[74], Laureijs et al. 2017 [53], Domingues-
Olavarria et al. 2017 [94], Burd 2019 [84],
McKinsey 2021 [71]

Battery cells, pack

Receiving, materials prep, coating, sol-
vent recovery, calendering, materials han-
dling, slitting, drying, control lab, cell
winding, canister, stacking, welding, en-
closing, filling, dry room, formation, test-
ing, sealing, module assembly, pack as-

sembly & testing, scrap recycle, shipping

Sakti et al. 2015 [54]
BatPaC (2019) [67]
BatPaC (2022) [67]
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5 Results and discussion

5.1 Modeling with industry data: Comparing powertrain labor demand require-
ments

We model the labor requirements of our selection of powertrain components at annual production
volumes of 100,000 units for multiple plausible scenarios. We use industry data collected from
multiple automotive manufacturing firms for this analysis, supplemented by modeling estimates using
input values from public sources for any components not collected through our industry partnerships.
Figure 2 compares these labor demand differences, presented by powertrain type and scenario. The
set of ICEV components we selected requires 4-11 worker hours per powertrain, depending on the
scenario, while the BEV powertrain components require 15-24 hours. Our modeling of collected
data suggests that BEV powertrains require more worker-hours in all scenarios, and largely because

of battery pack manufacturing requirements.
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Figure 2: Comparison of ICEV and BEV powertrain labor intensity based on data
collected from industry wherever possible, supplementing with data from public sources when
industry data is unavailable.

5.2 Comparing modeling results between industry shop floor and public data
sources

We build upon the previous section and assess the labor demand required for each powertrain design,

exclusively using public data sources and the three public battery cost models, each evaluated for
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base, most efficient, and least efficient scenarios. The set of ICEV components we selected requires
4-11 worker hours per powertrain, as shown in Figure 3, depending on the scenario. The BEV
powertrain components require 2-4 hours for the combined electric motor and inverter and 5-22 hours
for the battery pack, depending on the battery model we employ. Determining which powertrain
requires greater labor demand depends, then, on which battery cost model from the literature most
accurately represents current labor demands. The Sakti model, which may reflect earlier battery
manufacturing setups that were less automated than those of current facilities, suggests that BEV
powertrains are far more labor intensive. Both versions of the BatPaC model suggest that the labor

demands between the two powertrain types are roughly equivalent.
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Figure 3: Comparison of ICEV and BEV powertrain labor intensity based on data collected
exclusively from public sources and public models.

Figure 4 compares the aggregate labor hour comparisons between the two powertrain types
and between data sources. The differences in ICEV labor demand estimates between only public
sources versus public sources and industry shop floor data are nuanced: The estimate based on
industry shop floor data includes more components (e.g., data for the driveunit is only available
from industry shop floor data collection), but the magnitude of its aggregate ICEV labor demand is
slightly less than the estimate based on public sources.

The differences between the two data sources for BEV labor demand, meanwhile, are more stark:

Labor hours for the electric drive are less using industry data than public sources. Labor hours for
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the battery pack, though, are higher using industry data than public sources. We find that public
sources commonly assume idealized manufacturing processes and conditions, while industry sources
more closely reflect the reality of current-day limitations and on-the-ground actualities, such as
the extent to which automation can be effectively implemented on shop floors. The differences in

uncertainty between most efficient and least efficient are reduced using industry data estimates.
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Figure 4: Stacked bar comparison of labor intensity between ICEV and BEV powertrains as well as
between data sources.

5.3 [Evaluating the influential role of BEV battery manufacturing

We provide an in-depth discussion of battery pack manufacturing requirements in this section
because of this component’s dominant role in BEV powertrain manufacturing.

We collect from two battery manufacturers—one which manufactures cells on a pilot line and is
in the process of scaling its operations (Firm H), and one which is responsible for all process steps at
scale from cell manufacturing to pack assembly (Firm I)—estimates of their per battery pack worker

labor hour requirements. We illustrate their estimates alongside estimates from the three public
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battery models in Figure 5. Data from the pilot line of Firm H (not pictured) indicate that its cell
manufacturing operations require considerably more labor demand—estimated at over 200 worker
labor hours for a 60 kWh system—than the estimates from the literature. However, the company
predicts that their efficiency and throughput would improve at scale and require approximately
17 hours per pack, which is similar to the combined cell manufacturing and assembly estimates
suggested by the Sakti battery model.

Firm I estimates that their cell manufacturing processes require 12 worker labor hours for an
approximately 60 kWh pack. While this manufacturer did not provide quantitative estimates of their
pack and module assembly processes, they claim that assembly requires greater labor involvement
than cell manufacturing because of assembly operations’ reduced reliance on automated equipment.
In a visit to one battery manufacturing facility, we confirmed firsthand the large number of workers
and worker involvement required in the pack and module assembly processes. To represent Firm I’s
assembly processes, we have conservatively estimated these processes equivalent to that of their cell
manufacturing processes—35 worker labor hours—thereby bringing their total labor hour count to
24 hours per pack.

Lastly, a panel of manufacturing experts at the 2022 International Battery Seminar (IBS)
responsible for the completed and ongoing development of gigafactories of many of the largest
battery manufacturers in the industry agreed that these plants require approximately 150 workers
per GWh of capacity, while in a heavily automated situation, 100 workers per GWh may be possible.
Using back-of-the envelope estimates of production and pack design'4, these plants would require
approximately 22 worker labor hours per GWh of production for the base case and 14 hours for the

more automated case.

14We assume a cell capacity of 67 Ah, a cell voltage of 4.07 V, 220 cells per 60 kWh NMC battery pack, 300
production days per year, and three 8-hour shifts per day [67].
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Figure 5: Comparison of battery pack manufacturing labor intensity for industry and
public battery model at scale production estimates. Orange colors represent module-pack
assembly steps, green colors represent cell manufacturing steps, and the grey color represents an
unclear division of steps between module-pack assembly and cell manufacturing.

While the IBS experts did not indicate whether these estimates include all production steps (i.e.,
cell manufacturing through module and pack assembly), the magnitude of their more automated
estimate is on par with the least efficient case of BatPaC (2019), while their base case estimate
is higher than either of the least efficient case outcomes of the two versions of BatPaC. These
industry results suggest that BatPaC tends to underestimate labor hours, although the model’s
cost estimates are similar to current industry averages; researchers should be cautioned when using
BatPaC to assess labor demands from battery production.'® Furthermore, the Sakti model, which
uses a PBCM architecture, is line with industry estimates. The BatPaC model, meanwhile, relies
on a scaling approach to estimating labor demand, which may not accurately estimate current plant
requirements.

The magnitude of the worker labor requirement of battery packs matters because of the sheer
number of new giga-scale battery manufacturing plants scheduled to come online within the next
few years. We take the case of the U.S. in the remainder of this work to explain the potential labor

implications for its automotive manufacturing industry, although the topic of production onshoring

5The BatPaC manual states that “The main goal of the BatPaC model is to estimate the unit cost. In estimating
some of the items, costs are determined as percentages of other costs rather than directly estimating the capital or
labor required. Thus, although the total unit cost is our best estimate, the total plant investment and the number of
laborers required per shift are probably underestimated by 10 to 20%.” [67].
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is of equal concern to major national players in Europe and Asia. The Department of Energy reports
that 13 new plants, most of which are being planned as joint ventures between automakers and
battery manufacturers, will be operational in the U.S. within five years [95]. This estimate may
not capture the full extent of the battery plants under development in the U.S. and across North
America [96]. Battery labor requirements are directly and strongly related to anticipated overall
BEV manufacturing demands because of the dominant contribution of battery manufacturing to
powertrain worker labor hours.

The global battery supply chain is in its infancy and still learning how to improve efficiencies and
yield rates. Manufacturers look to automation less to reduce labor costs and more to improve product
yields, quality, and consistency [97]. It is probable that as its plants scale and implement greater
levels of automation technologies they will drive down per unit worker labor hours requirements,
as evident in the differences between Firm H’s pilot line and scaled estimates [68]. Sharma et al.
review existing battery module assembly processes and find that, with the exception of some manual
assembly requirements, they are highly amenable to automation [98]. However, the IBS experts’
automated scenario represents a plausible floor to the extent to which labor hours can be reduced.
Workers will likely remain indispensable for many critical functions of battery plants, including
equipment operation and quality inspections.

In Figure 6 we decompose each of the three public battery models into their respective labor
requirements by individual process step. Each battery model contains 25-31 unique process steps,
ranging from cell production to pack assembly. Several steps (e.g., control lab, formation) contribute
more significantly to the overall labor hour count than other steps. The horizontal black lines in
each column represent the division in the manufacturing process flow between those steps specific
to cell production (below the line) and those steps specific to module and pack assembly (above the

line).
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Figure 6: Labor intensity comparison by production process step between three public battery
models.

Although the calculated total number of labor hours exhibits variation across the three models,
each agrees that a greater percentage of labor hours are contained in cell manufacturing rather
than module and pack assembly processes. While these three models share assumptions and are
structurally similar, the magnitude of labor hour estimates from the Sakti model is larger than
the estimates of both of the BatPaC models. We postulate that the more current BatPaC models
rely on input values more parameterized to present-day manufacturing conditions and include more
robust linkages between cell chemistry selections and the manufacturing processes to develop and
connect cells into their pack architectures. We present the results of all three models to illustrate
the range of possibilities suggested by the present literature.

The division between the labor content involved in cell manufacturing versus module and pack
assembly steps is important for determining the share of value in the battery supply chain available
to the national economy. 77% of the battery cells and 91% of the battery packs supplied to the
U.S. BEV market as of 2020 originated from domestic sources [99]. However, the large share of
domestic production is due to a single player—the Tesla-Panasonic venture—which accounted for
88% of U.S. pack production capacity in 2020 [99]. Tesla, to date, has handled its battery module
and pack assembly domestically and purchased its cells from Panasonic and other nationally- and
internationally-located suppliers [100]. The question for the large number of battery plants coming
online and contributing to the national manufacturing strategy is whether they will follow the Tesla
model by purchasing cells from suppliers and having their workers assemble these cells into modules

and packs, or perform all process steps in house and capture most of the available worker labor
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hours in the emerging battery production value chain. These firms have not disclosed the exact
process steps that will be performed within their U.S. facilities, but their decisions will almost

certainly be made on the basis of internal profitability forecasts.

5.4 Comparative analysis of labor hours for ICEV and BEV powertrains

Finally, we compare in Figure 7 the labor demand estimates of ICEV versus BEV powertrain
manufacturing based on industry data supplemented by modeling of literature inputs. In the case
of the BEV powertrain labor hours estimate, the least efficient case assumes the data provided for
at-scale manufacturing of batteries by Firm I, the base case assumes the base case data provided for
at-scale manufacturing by IBS, and the most efficient case assumes the IBS automated estimate.
With this industry data, the BEV powertrain, in all possible scenarios, requires more labor hours

than its counterpart, largely because of the high labor content of battery pack manufacturing.
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Figure 7: Industry data suggests that BEV powertrain manufacturing will require more
labor hours than ICEVs under all expected scenarios. Note: In the figure, stacked outputs
represent labor hours required for manufacturing of the full powertrain. In the case of the BEV
powertrain labor hours estimate, we label the sources of battery data for each scenario on the plot.
The least efficient case assumes the data provided for at-scale manufacturing of batteries by Firm I,
the base case assumes the base case data provided for at-scale manufacturing by IBS, and the most
efficient case assumes the IBS automated estimate.
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5.5 Implications for labor demand and employment

The results in Section 5.4 show that BEV powertrains do not have lower labor intensity than
conventional ICEV powertrains in terms of the labor-hours of manufacturing workers demanded
per unit. In fact, the results show that—accounting for variation of operating conditions across
plants—the labor intensity of BEV powertrains ranges from a slight increase relative to ICEV
powertrains to more than double the labor intensity of ICEV powertrains. These results run counter
to analyses predicting that BEVs would have reduced labor intensity because they have fewer
parts than ICEVs [15, 16]. They instead support the proposition that BEVs contain additional
manufacturing content embedded in the batteries and electronic components that requires comparable
levels of labor as ICEVs. While our analysis includes components such as the electric drive (motor
plus inverter), we find that the very large majority (71.4 to 84.6 percent per Figure 2) of estimated
labor hours required for the production of BEV-specific components are used in battery production.
This finding implies that battery production is the major driver of new labor demand and employment
from BEVs. If so, we would expect that the feasibility of transitioning disrupted ICEV workers
into BEV production roles at scale will depend on the match between their skills and those needed
for BEV production, and on the co-location of battery production with existing ICEV powertrain
capacity.

It is possible that future learning in BEV powertrain component manufacturing may reduce
labor intensity over time [101]. Prior research has shown that labor efficiency increases through
learning-by-doing as manufacturers gain experience producing more units of their products over
time [102, 103, 104, 47]. That said, our data includes manufacturers that have produced over a
million units of BEV powertrain components, so we do not expect further reductions in labor hours
from this type of learning will be large enough to overturn the conclusions of the analysis in the
near term.

Our analysis in this paper is focused on labor intensity and we did not examine other factors
affecting labor demand such as potential changes in consumer vehicle demand. Our results imply
that, if demand for new vehicles remains unchanged by the technological shift to BEVs, labor demand
for automotive manufacturing workers would not decrease but may instead increase. However, if
vehicle demand decreases significantly, reduced demand for automotive manufacturing workers is
possible even if labor intensity increases.

Despite BEV powertrains having greater labor hour requirements, the shift to BEVs could still
lead to job losses in the industry and in particular regions depending on labor supply and the
location of manufacturing facilities. For example, countries that have manufacturing facilities that
currently produce ICEV-specific components and do not have the equivalent production of battery
cell manufacturing for EVs could increasingly see a drop in automotive manufacturing employment
while other countries that have battery cell manufacturing see an increase [105, 106]. We also note
that so long as BEV manufacturing remains similarly labor intensive to ICEV production (provided
also that workers are paid a comparable wage), BEV production may continue to face significant

cost competition on wages from offshore production. Furthermore, high labor intensity may pose
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a challenge for BEVs to become more cost competitive with incumbent ICEV production even

domestically.

6 Conclusions and policy implications

Transportation represents 15% of global greenhouse gas emissions and 23% of energy-related COs
emissions [107], and vehicle electrification is widely regarded as a critical means to improve the
environmental sustainability of the sector [108]. At the same time, the implications of vehicle
electrification for economic sustainability have been uncertain, with some questioning whether it
will negatively impact manufacturing labor demand and hurt the sustainability goals of decent work
and reduced inequalities.

Leveraging process step-level production inputs (e.g., cycle times, yields, labor requirements) for
ICEV versus BEV powertrains, we find that vehicle electrification leads to more labor intensity in
terms of manufacturing worker-hours per vehicle produced, at least in the short- to medium-term.
This finding suggests that BEV powertrain manufacturing has the scale of labor demand to absorb
potentially displaced ICEV production workers. It also highlights that battery manufacturing
specifically is a major driver of these employment opportunities, and that policies seeking to
establish a workforce transition pipeline should focus on this segment of the supply chain (and
attendant risks). In the long run, ICEV workers disrupted by the transition to BEVs may find
employment other than in electric vehicle production, but the high geographic concentration of
ICEV employment and potentially large scale of disruption may present significant shorter-term
hardship if a supply mass of disrupted workers does not have a compensating mass of new demand.

Employment demand is a necessary but not sufficient condition, for a rapid transition however:
Whether an ICEV production workforce transition into BEVs is feasible and wage-sustaining for
affected individuals may also depend on (1) the skill content of battery production in comparison
with ICEV production (i.e., whether ICEV workers can perform the jobs created in BEV powertrain
manufacturing), (2) the wage level of new versus old jobs, and (3) the co-location of EV production
with existing automotive manufacturing communities (and most generally for US jobs overall, the
onshore production of EV components including batteries).

All three of these dimensions can be affected by policy decisions, such as public investment in
training programs (and which skills to emphasize in training) and incentives for onshore manu-
facturing and, especially, geographic co-location with ICEV production. Focusing specifically on
batteries as a driver of EV manufacturing labor hours, much expected capacity embedded in battery
site announcements is not in traditional automotive communities (see [109]). Battery production is
also in a critical window of process design that may affect the skills needed and the structure of
jobs, and hence the wages offered to workers: Wage-sustaining transitions will depend on policy
incentives for creating middle- and high-wage working conditions in new jobs.

We collect process step-level production data from manufacturing firms across the industry.

Using the industry data supplemented with information in the literature, under all scenarios there are
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more labor hours required to produce each unit of a BEV powertrain than an ICEV powertrain. We
further find that using process step-level estimates of production requirements (including labor) in
some publicly available models of BEV production underestimates the labor hours required compared
to industry shop-floor data. This finding is relevant to future work — as battery chemistries and
production processes change, future models of labor demand that rely on aggregate methods to
interpret the consequences for worker hours may have similar errors. Rather, operations-focused
empirical work of the kind in this paper will be necessary inform how we evaluate the potential
threats and opportunities for workers presented by these changes.

This paper quantifies the impact of vehicle electrification on manufacturing labor, with a focus
on the production of components by OEMs and Tier 1 suppliers that will be most affected by the
transition to BEVs. We did not consider other electrified vehicle types such as hybrid electric
vehicles (HEVs) or plug-in electric vehicles (PEVs). We hypothesize that these vehicles, due to
being more similar to ICEVs, would not have as large of increases in labor requirements, but
correspondingly also a smaller share of workers affected. We also expect, based on other research,
that the majority of vehicles will be BEVs in the future [108]. Beyond the manufacturing phase,
vehicle electrification will assuredly have impacts on labor in the vehicle use and services phases as
well as upstream labor impacts in the supply chain (such as in extraction, mining, and refining).
These additional labor impacts beyond manufacturing are important for further study, but beyond
the scope of this research, which focuses on manufacturing as a highly socially and economically

salient focus for workforce impacts that may color or delay successful energy transition.
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collected from industry firms are not included for confidentiality purposes.

Acknowledgements

This research was supported by funding from the National Science Foundation’s Science of Science
and Innovation Policy (SciSIP) grant. The authors are grateful for the incredible individuals across
the automotive companies, Motor & Equipment Manufacturers Association (MEMA), and United
Auto Workers Union (UAW) that provided critical data and insights.

A Appendices

A.1 Additional PBCM architecture details and equations

This section extends the presentation of PBCM equations described earlier in Section 3.2 and is
based on the PBCM descriptive framework presented by Michalek and Fuchs [66].
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The model calculates the number of lines (or stations) required (nFN) to achieve the effective

production volume for process step 7 as:
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where Sf;g is the set of steps with non-dedicated lines and SgQ is the set of steps with dedicated

lines.

A.1.1 Calculating resource usage

The annual material consumption (units: kg/yr) for each material k in process step i is calculated

as:

MA mi
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where m;j is the mass of material k£ (kg) per unit in the final product introduced in process step i

and s;; is the scrap rate for the material k£ introduced at process step 1.

The annual energy consumption (units: kWh/yr) for energy type k in process step 4, assuming that

the equipment at step ¢ consumes wif}cUN (kW) of energy type k per unit time when the machine is

running and w%,?L (kW) of energy type k per unit time when the machine is idle, is:

EG _ CYC, RUN SET,, IDL
W = JBAT (6w 7 w ) (8)
i

The number of machines (or primary equipment) required for process step i is:

E
u; Q= n{-“N (9)
The number of tools required for step 1 is:
/REQ
TL ' TPL
u; = ;AVL n; (10)
i
where n;fPL is the number of tools required for process step i.

A.1.2 Calculating costs of resource usage

Using the above-calculated input requirements, the annual material cost can be computed as:

n

CMA — Z Z p}XIAU%A (11)

i=1 ke M
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where M is the set of materials and pM* is the price of material k ($/kg).
The annual labor cost is:
n
B _ ZPLBU%B (tOPnSH (tSH _ tUB)) (12)
i=1
where p"B is the wage for line or operator labor ($/hr).
The annual energy cost is:
n
EG, EG
= Z Zpk Wik (13)
i=1 ke&
where £ is the set of types of energy consumed and pEG is the price of energy type k.

The annualized primary equipment cost is:

E Bq BQ_r(1+ r)i
CcEQ — Z Q, ul Q —_ (14)
14+7r)t —1
where pEQ is the purchase price of primary equipment for process step ¢, r is the discount rate, and

t;.EQ is the life of primary equipment for process step i (years).

Additional annualized auziliary equipment costs are estimated as a percentage of primary equipment

capital investment in the absence of detailed data:

where ¢*X is the price of auxiliary equipment as a percentage of primary equipment capital cost.

Annualized tooling cost is:

TL

r 1—i—r
ZPTL TL )t

)tTL i 1 (16)

where p;fL is the purchase price for tooling of process step ¢ and t;FL is the life of tooling for process

step i (years).
Annualized building cost is:
r(1+4r)
o= ZA . )

tBL

where pBl is the price of building per unit area ($/m?), is building life (years), A; is the area of

floor space required per line (m?).

Annual maintenance cost is:
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n
CMT — pMT <tMTnSH (tSH _ tUB) + ZﬁV[T) (18)
i=1

where pMT is the wage for technician and maintenance labor ($/hr) and tMT

that shuts the facility down.

is a maintenance day

Annual overhead cost (e.g., administration, supplies, taxes) may be estimated as a percentage of

other fixed costs in the absence of more detailed information:

COH — ¢OH (CEQ + CAX + CTL + CBL + CMT) (19)
where ¢OH is the overhead cost as a percentage of other fixed costs.

Total annual cost is the sum of the annual and annualized costs presented earlier and represents the

total investment by a firm for the production of all parts (including “good” and rejected parts):
C = CMA + CLB + CEG + CEQ + CAX + CTL + CBL + CMT + COH (20)

Total unit cost, then, is calculated as the total annual cost divided by the number of good parts

produced per year, ¢ (i.e., annual production volume):
c=— (21)

A.2 Comparing literature cost estimates to outputs of the PBCM populated
with public manufacturing inputs

We compare in Figure 8 literature cost estimates (grey color) of the components identified earlier
in Section 3.4 to the production cost estimates produced by our PBCM populated with public
manufacturing inputs (orange color). Note that the y-axis scales are different between the three
panels. We present this preliminary comparison to gauge the general cost estimation differences
between our approach and that of others from the literature. The literature cost estimates represent
point estimates of the production cost of a particular component. For example, UBS presents the
cost of an electric motor as $800 without further explanation as to the electric motor’s design or
their methodology for arriving at this value [75]. The ranges in literature cost estimate values
are derived from the variety of literature sources we compile. The PBCM modeling outputs are
generated by the model described in Section 3.1 provided with the manufacturing inputs we collect
from the literature. We run the model with base, most efficient, and least efficient case values of

collected public inputs to produce a range of possible production costs.
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Figure 8: Literature cost estimates of key powertrain components are compared to the production
cost outputs of our PBCM populated with public manufacturing inputs. The differences between
these two data types highlight the uncertainty between estimates, while the areas of overlap
emphasize the similarities in modeling approaches. Note that the axes are different across each of
the panes.

The differences between literature cost estimates as well as compared to PBCM outputs can
be attributed to differences in the accounting of all production costs (e.g., we don’t include retail
markup costs in our estimates, although this may be built into the costs produced by other sources),
the accounting of all process steps (e.g., resource extraction and metallurgical processes typically
attributed to Tier 2 or 3 suppliers may not be included in estimates), modeling assumptions (e.g.,
discount rates, production volumes at which costs are reported), the outdated nature of select
data, or how components are named or counted (e.g., some firms produce electric motors while
others produce electric drive systems that comprise the electric motor, power electronics, and other
components). For example, the differences in the battery estimates presented in the rightmost
panel, which are all calibrated for battery packs with capacities of 60 kWh and NMC chemistry
designs, could be partially explained because our three battery models consider a larger set of design
combinations than those of the point cost estimates collected from the literature.

The overlapping areas between the two data sources on the plot, while limited, reflect the
degree of consensus between our cost modeling approach and the various approaches used by public

literature sources.
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A.3 Modeling with inputs from public sources: BEV powertrain may be more
expensive, primarily due to battery costs

We examine the production costs from our PBCM and from the three battery cost models, each
evaluated for base, most efficient, and least efficient case scenarios. The sum of the primary ICEV
powertrain components, shown in the blue colors in Figure 9, ranges in cost from $0.8-3.7 thousand,
depending on the scenario selected. The BEV powertrain components, meanwhile, cost $0.4-1.7
thousand for the combined electric motor and inverter and $6-12 thousand for the 60 kWh NMC
battery pack. Therefore, the BEV powertrain is far more expensive than the ICEV powertrain
because of the dominating cost of the battery pack. We further identify the most expensive ICEV
powertrain components to produce as the transmission, engine block, exhaust system, and cylinder

head, while the battery pack and electric motor are the most expensive for the BEV powertrain.

ICEV BEV (minus battery) BEV battery (60 kWh)
$12,000 1

Engine block
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»
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1
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Manufacturing unit cost ($)
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- Inverter
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Figure 9: Modeling with literature inputs indicates that the production cost of the BEV powertrain
may be more expensive than the ICEV powertrain, due to battery pack manufacturing. On the
ICEV side, the engine block and transmission are the most expensive powertrain components to
produce. Note that the axes are different across each of the panes.

We decompose the production costs across all powertrain components into their specific cost
categories (i.e., material, labor, energy, machines, auxiliary equipment, tooling, building space,
maintenance, and overhead) in Figure 10. Material and machine costs, followed by labor and overhead
costs, drive the costs of producing ICEV components. Material costs are far more influential for both
BEV non-battery and battery components, followed by machine costs. The considerable importance
of material costs for BEV production provides direction for continued research and innovation in
driving down BEV costs and achieving cost parity with ICEVs.
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Figure 10: Modeling with literature inputs indicates that material and machine costs are the

largest cost categories for ICEV powertrain production, while material is the largest cost for BEV
powertrain production.

While the cost of labor for BEV components is proportionally less than for ICEV components,
worker efficiency on the shop floor influences material costs indirectly through the yield and scrap rate
variables incorporated into the PBCM relationships. For instance, in manufacturing environments
with limited numbers of workers or with workers without adequate manufacturing training and
preparation, yield rates across the plant could decrease, and thereby increase material costs. The
labor aspect of BEV manufacturing, especially if provided through high wage jobs, will be an
important piece in overall production costs.

A.4 Modeling with industry data: Comparing powertrain production costs

Using collected industry data we model the per unit production cost of the selected powertrain
components at annual production volumes of 100,000 units for base, most efficient, and least efficient
case scenarios. Figure 11 compares these costs by vehicle type, with ICEV components shown in
blue colors (left) and BEV components in green (right). Depending on the scenario, we estimate
that the ICEV powertrain costs approximately $2 - 5.5 thousand to manufacture, and the BEV $7 -
8 thousand. The grey bars in the graphic represent industry teardown estimates that we use to
compare against our results.' We use collected industry data for modeling these results as much
as possible, but rely on the public literature to supplement any gaps in our representation of the
powertrain. For example, the battery pack costs are outputs of BatPaC (2022).

Munro & Associates estimates that 51% of the cost of an BEV is due to its powertrain, compared to 18% for an
ICEV [70]. We combine these percentages with the manufacturing costs of passenger vehicles approximated by Oliver
Wyman to produce our industry powertrain cost estimates [110].
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The BEV powertrain appears to be considerably more expensive to manufacture than its
counterpart, which is consistent with the higher purchase cost of BEVs over ICEVs for consumers.
BEV powertrain manufacturing costs are overwhelmingly driven by the battery, which itself is

primarily due to cell material costs [111].

ICEV BEV

$7,500 4 E-drive

Engine block
$5,000 4

Least efficient
o

$2,500 1 Most efficient

Manufacturing unit cost ($)
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efficient case efficient estimate efficient case efficient estimate

Driveunit

Figure 11: Modeling with industry data indicates that the production cost of the BEV powertrain
is more expensive than the ICEV powertrain, primarily due to battery pack manufacturing. These
modeled costs are largely aligned with those of industry teardown estimates.

BEV manufacturers have not yet converged on common designs for key components, potentially
explained by the large number of firms involved in the global manufacturing competition and the
relatively nascent nature of this industry. This heterogeneity can be seen in our results, for example
in the case of the manufacturing costs of the electric drive in Figure 12. We collect production
data for this component from four sources—three automotive suppliers and the public literature.
While the per unit cost range bands of each source share some overlapping areas with each other,
the base case costs differ from each other by up to several hundred dollars. Further, we illustrate
on the far right-hand side of the plot point cost estimates of this component collected from the
literature, which, too, exhibit large variations from each other. We can explain the largest difference
between the costs of Firm G and those of Firms E and F as a component classification difference:
Firm G produces an electric motor, while Firms E and F produce electric drives, which contain an
electric motor, inverter, and potentially other pieces. Therefore this difference is largely attributed
to the cost of the power electronics. However, as with the literature’s point cost estimates (generally
offered without explanation as to how these costs are calculated), the same component produced by

different firms may have sizeable configuration, cost, and performance differences.
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Figure 12: Even in producing the same component, manufacturers may differ in their designs and
costs. In the case of the electric drive, per unit costs of three industry sources and inputs from the
public literature differ from one another, as well as from point cost estimates collected from the

literature (right-hand side).

The PBCM approach allows us to investigate some of these differences by cost category. Figure 13

represents each of these four electric drives and motors modeled at annual production volumes of
100,000 units. Modeling inputs collected from the literature (rightmost pane) indicate that material
is the largest cost driver, while the costs of Firm E (leftmost pane) are largely due to labor and the
costs of Firm F (second pane from the left) to its machines. These differences further underscore

the heterogeneity between powertrain components and their respective production techniques.
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Figure 13: The breakdown of costs by categories of these electric drives and motors underscores the

differences in approaches and techniques by manufacturers.
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A.5 Sources of public literature and industry modeling input data

Table 4: Plant-wide input parameters used in the process-based cost model.

Scenario
Parameter Units Least Base Most
efficient efficient
Number of shifts shifts/day 2 2 2
Time per shift hrs/day 8 8 8
Time with unpaid breaks per shift  hrs/shift 0.55 0.5 0.45
Time with paid breaks per shift hrs/shift 0.55 0.5 0.45
Operating days per year days/yr 211.5 235 258.5
Facility-wide planned downtime days /vt 33 3 o7
and maintenance
Facility-wide unplanned downtime  days/yr 3.3 3 2.7

Sources: [54, 66, 112, 113]
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Table 5: Financial model input parameters used in the process-based cost model.

Scenario
Parameter Units Least efficient Base Most efficient Source(s)
Price of aluminum $/kg 2.53 2.17 1.77 [90, 114]
Price of copper $/kg 6.59 6.17 4.96 [90, 114]
Price of steel $/kg 0.83 0.60 0.46 [90, 114]
Price of iron, ferrous $/kg 0.03 0.03 0.02 [114]
Price of iron, ore $/kg 0.12 0.10 0.08 [114]
Price of iron, scrap $/kg 0.36 0.27 0.22 [114]
Price of lead $ /kg 2.52 2.20 1.98 [114]
Price of lithium $/kg 17.00 12.70 8.00 [114]
Price of nickel $ /kg 14.00 13.11 9.59 [114]
Price of tin $/kg 20.66 19.14 17.42 [114]
Price of electric steel $/kg 2.00 2.00 2.00 [90, 114]
Wage for line or oper-  $/hr 23.83 20.42 17.00 Industry
ator labor
Wage for technician  $/hr 33.54 31.27 28.99 Industry
and maintenance labor
Price of electricity $/kWh 0.08 0.07 0.06 [66]
Price of building per m? 1,500 1,500 1,500 [66]
unit area
Equipment life (or re-  yrs 15 20 25 [66]
covery period)
Tooling life (or recov-  yrs 5 5 5 [66]
ery period)
Building life (or recov-  yrs 15 20 30 [66]
ery period)
Discount rate % 20 15 10 [54, 66, 112, 115]
Price of auxiliary % 10 10 10 [66]
equipment as a per-
cent of equipment
capital cost
Overhead cost as a % 35 32.5 30 [66]

percent of other fixed

costs
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Table 6: Cost estimates by component collected from the public literature and visualized in Figure 8.

Component Source
Engine block [73, 82, 116]
Crankshaft [73, 82]
Camshafts [82, 87]
Cylinder head [73, 82, 116]
Transmission [82, 117]
Exhaust system [73, 75, 82, 118]
Electric motor, drive  [69, 75, 92, 117, 119, 120, 121, 122]
Inverter [75, 92]
Battery pack [75]
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