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Highlights
The reliability and methodology of ge-
nome-scale metabolic models (GEMs)
of Chinese hamster ovary (CHO) cells
have advanced.

CHO-GEMs have aided in cell line and
process development, thus impacting
on biomanufacturing efficiency.

An integrative model structure can
incorporate multiple layers and capture
condition-specific cell regulation.

Integration of CHO-GEMs with artificial
Genome-scale metabolic models (GEMs) of Chinese hamster ovary (CHO) cells
are valuable for gaining mechanistic understanding of mammalian cell metabo-
lism and cultures. We provide a comprehensive overview of past and present
developments of CHO-GEMs and in silicomethods within the flux balance anal-
ysis (FBA) framework, focusing on their practical utility in rational cell line devel-
opment and bioprocess improvements. There are many opportunities for further
augmenting themodel coverage and establishing integrativemodels that account
for different cellular processes and data for future applications. With supportive
collaborative efforts by the research community, we envisage that CHO-GEMs
will be crucial for the increasingly digitized and dynamically controlled
bioprocessing pipelines, especially because they can be successfully deployed
in conjunction with artificial intelligence (AI) and systems engineering algorithms.
intelligence (AI) and advanced algorithms
will enable autonomous bioreactor man-
agement for digital biomanufacturing.
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Unleashing the potential: refining biomanufacturing with GEMs of CHO cells
CHO cells have been the dominant host for producing recombinant therapeutic proteins
(RTPs; see Glossary) in biomanufacturing [1]. Given their proficiency in generating human-
compatible glycosylation patterns and continuous progress in both cell line and bioprocess
development, they have been very valuable for enhancing the production of RTPs [2]. These
improvements have relied on empirical methods that demand extensive time and resources.
However, the complex and non-linear nature of biological systems pose a significant challenge,
impeding the development of precise control systems that are essential for consistent product
quality and intensified productivity. In response, the biopharmaceutical industry is pivoting
from these empirical methods to a new era of process digitalization and automation. This
paradigm shift aims to forge a more streamlined, reliable, and cost-efficient bioprocessing
platform to reduce deviations and accelerate the manufacturing of high-quality RTPs [3].
A comprehensive mechanistic understanding of cellular characteristics and their dynamic
behaviors during cell culture will help the industry to achieve a practical digital representation
of bioprocesses.

A key research milestone in the cell culture field was the sequencing of the CHO cell genome [4]
which provided a valuable resource of the myriad genetic elements associated with culture phe-
notypes, including transfection efficiency, genetic stability, growth rates, and productivity. These
data also enabled the reconstruction of GEMs which mathematically link genotype with pheno-
type. These CHO-GEMs can act as digital replica of CHO cells, providing a lens through which
to interpret cellular behaviors and metabolic states in biomanufacturing [3]. However, despite
their great potential for the rational design of CHO cell lines and associated cell culture processes,
we continue to face challenges and limitations in terms of model reliability, method development,
and practical application. Hence, we present the evolution and current status of CHO-GEMs, and
explore their industrial or industrially relevant applications. We also propose future directions for
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Glossary
Biomass objective function (BOF): a
mathematical equation used in
constraint-based models to represent
the biomass components necessary to
meet the growth requirements of a cell.
Constraint-based methods:
computational techniques utilize
genetic, biochemical, and physiological
constraints to model, simulate, and
analyze biological systems; these are
especially applied to GEMs for studying
the behavior of metabolic networks
under various conditions.
Enzyme capacity: the kinetic
parameters, in terms ofmolecular weight
and turnover number of each enzyme
and the available intracellular protein
content, are obtained from publicly
available databases (e.g., BRENDA,
UNIPROT, and KEGG) and relevant
studies.
Gene set enrichment analysis: a
computational method used to determine
whether predefined sets of genes are
differentially expressed under different
biological states or conditions.
Genome-scale metabolic models
(GEMs): comprehensive mechanistic
and mathematical representations that
integrate information from the genome of
an organism to predict and analyze the
complex network of biochemical reac-
tions occurring in its metabolism.
Kinetome: the overall profile of kinetic
information such as kinetic parameters
(turnover number) and molecular
weights with gene-protein-reaction
(GPR) information.
Post-translational modifications
(PTMs): protein modifications occur
after protein synthesis. These modifica-
tions, including phosphorylation, glyco-
sylation, acetylation, methylation, and
ubiquitination, play vital roles in protein
maturation and functionality.
Recombinant therapeutic proteins
(RTPs): non-native proteins that are used
to treat various diseases and disorders
model enhancement, focusing on overcoming existing hurdles and moving towards a fully virtual
CHO cell system.

Mapping: decodingmammalian cell metabolismwithCHOgenome-basedmodels
The initial CHO-GEM, designated iCHO1766 [5], emerged from a synergistic collaboration within
the scientific community and was built from the CHO cell genome sequence unveiled in 2011 [6].
This model enabled subsequent advances where its applicability, quality, and reliability saw
continuous improvement. Furthermore, researchers have been able to further incorporate high-
throughput omics data (e.g., transcriptomics, proteomics, metabolomics) to model different
culture conditions using diverse in silico methods within the framework of FBA (Box 1). Conse-
quently, this comprehensive approach allowed a deeper mechanistic understanding of CHO
cell metabolism, paving the way for systematic optimization of cell cultures and pinpointing poten-
tial engineering targets.

Onward and upward of CHO-GEMs: model applicability and quality in focus
The iCHO1766 reconstruction provided a genetic and metabolic backbone for deriving cell
line-specific models (Figure 1). For example, iCHO1766 has been tailored using relevant exper-
imental and omics data to reflect the metabolism of parental CHO cell lines such as CHO-K1,
-S, and -DG44, thereby predicting their growth phenotype, auxotrophy, and potential produc-
tivity upon various biochemical treatments [5]. Similarly, a GEM for a CHO-K1-derived producer
cell (i.e., CHO-SH87) was generated with the necessary amino acid composition for antibody syn-
thesis and served as a scaffold for combining multi-omics profiles (e.g., transcriptomics, metabolo-
mics, lipidomics, and glycomics). This study elucidated the genomic rearrangements andmetabolic
adjustments occur in CHO cells following transgene integration [7]. Likewise, time-series transcrip-
tomic and exometabolomic data were used to refine parental and producer GEMs to understand
their metabolic behaviors under various culture conditions [8–10]. Recently, the cell line specificity
of CHO-GEMs was further assessed by exploring their compositional variations in biomass constit-
uents such as DNA, RNA, proteins, lipids, and other relevant components [11,12].

The quality of the CHO-GEMs has been persistently enhanced by refining genomic contents
(i.e., annotated sets of genes, reactions, and metabolic gaps) and extending the coverage by
including functional processes and regulatory elements based on the secretome and kinetome.
For instance, iCHO2048s captured the protein post-translational biosynthetic machinery and
secretory pathways spanning across multiple cellular organelles such as endoplasmic reticulum
(ER), the Golgi apparatus, and the endomembrane system onto the genome-scale metabolic net-
work, thus allowing the prediction of metabolic costs and bottlenecks linked with various RTPs
[13]. Comparably, iCHO2291 incorporated publicly available kinetic information such as the turn-
over numbers (kcat) and molecular weights of all the metabolic enzymes accounted for in the
CHO-GEM to estimate a more plausible internal flux distribution by properly allocating enzymatic
Box 1. Flux balance analysis (FBA)

FBA is the most basic constraint-basedmethod used for modeling which enables the representation of intracellular bio-
chemical and transport reactions, as well as the characterization of cell state, by using flux values with the steady-state
assumption [60]. The stoichiometric matrix (S) represents the relationships between the various metabolites (m) involved
in the reactions (n) of the system. Thus, the stoichiometric matrix captures the conversion of reactants into products in
each reaction. Each row corresponds to a metabolite, and each column corresponds to a reaction, with entries in the
matrix indicating the stoichiometric coefficients. The central idea of FBA is to optimize a cellular objective, often the produc-
tion of biomass or another cellular component (e.g., ATP), subject to the constraints imposed by the stoichiometric matrix
and other environmental conditions. The optimization problem is formulated as a linear programming problem that aims to
find a set of fluxes that maximize or minimize the objective function. For example, the FBA framework idealizes cellular
metabolism through the optimization of a specific metabolic objective, such as maximizing the growth rate, as with the
biomass objective function (BOF) [60].
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such as cancer, inflammation, and
genetic disorders. CHO cells are the
primary producers of RTPs, particularly
for monoclonal and bispecific antibodies
(mAbs and bsAbs, respectively).
Uptake rate objective function
(UOF): a mathematical equation that is
used to predict the optimal nutrient
uptake rates for cellular growth and
function.
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Figure 1. Development and improvement of Chinese hamster ovary (CHO) cell genome-scale metabolic models (GEMs) for deciphering metabolic
complexity. (A) The iCHO1766 model serves as a genetic and metabolic backbone for further deriving cell line- and product-specific models by incorporating
secretory pathways, enzyme capacity constraints, and a systematic gap-filling algorithm and combining omics datasets. (B) Various versions of reconstructed CHO-
GEMs are presented in chronological order, providing information on the model components for generic models (iCHO1766 [5], iCHO2291 [14], iCHO2048s [13],
iCHO2101 [15], and iCHO2441 [16]) and contextualized models (represented as CHO-K1 [7], CHO-DG44 [9], CHO-biomass [12], and CHO-parameters [8]).
Abbreviations: COPII, coat protein complex II; GAUGE, gap analysis using gene expression data; GPR, gene-protein-reaction association.

Trends in Biotechnology
costs and constraining the total enzyme capacity within the cells [14]. In parallel with the model
expansions, additional efforts improved the metabolic coverage of GEMs by augmenting the
lumped and multistep expression of biosynthetic pathways (e.g., lipid metabolism and glycan
biosynthesis) [14] and by resolving the gaps and dead-ends present within the CHO metabolic
network using various algorithms [15,16].

Forward with prediction fidelity: improving reliability of CHO-GEMs
One of the well-known challenges in implementing FBA of large-scale GEMs such as CHO cells
is the difficulty of reliably predicting their cell culture behavior and interpreting the metabolic activ-
ity based on the resultant intracellular flux distributions. These challenges stem from the complex-
ity and regulatory uncertainty in relating multiple inputs (e.g., glucose and amino acids) to multiple
outputs (e.g., biomass, toxic metabolites, antibody proteins, etc.), whereby numerous alternative
feasible solutions are possible for the same phenotype. This inherent limitation is due to the
underdetermined nature of the models, which contain more flux variables than metabolite bal-
ance equations, as well as the unknown regulation of metabolic enzymes. Thus, it is desirable
to narrow down the solution space and determine more plausible metabolic states [17], and
Trends in Biotechnology, Month 2024, Vol. xx, No. xx 3
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this can be achieved by imposing additional constraints and by using different objective functions
within the FBA framework [8].

Implementation of improved constraints, based on condition-dependent empirically derived
assumptions, has yielded better predictions on cellular phenotypes (e.g., growth and nutrient
uptake rates). For example, variations in measurements of nutrients and byproducts in cell cultures
were deduced by principal component analysis of 21 datasets of reactor experiments. There
were used to relax the constraints on their exchange rates (HybridFBA), thus effectively dealing
with the potential technical errors in analytical measurements [18]. In addition, the essentiality
of key nutritional components was predicted in three CHO cell lines (CHO-K1, -S, -DG44)
by minimizing their uptake rates (uptake rate objective function, UOF) instead of maximizing
the cell growth – which is routinely used as the objective function in FBA [19]. Experimentally
determined and computationally estimated non-growth-associated maintenance energy (i.e.,
maintenance ATP) was also parameterized in CHO-GEMs to reflect the conditional energy
requirements of producers and non-producers [20].

The reliability of intracellular flux predictions can be enhanced by FBA variants. Flux sampling can
capture a broader spectrum of flux distributions, including suboptimal states, without considering
any cellular objectives [16,21], while parsimonious FBA (pFBA) predicts the most plausible flux
distribution among multiple others based on the assumption that cells minimize their overall met-
abolic activity during resource utilization [22]. In carbon constraint FBA (ccFBA) [23] and nitrogen/
carbon constraints FBA (nccFBA) [16], the total amounts of carbon/nitrogen in the culture media
were added to the elemental balance constraints to remove unrealistic internal loops or futile
cycles, thus constraining the bounds of model-predicted flux to a more realistic range. Therefore,
the utilization of various carbon and nitrogen sources (glucose, lactate, amino acids) required for
cell growth and RTP production was better estimated, and could possibly identify desirable
media conditions for the enhanced antibody productivity. Notably, enzyme capacity-constrained
FBA (ecFBA) was applied to iCHO2291 by integrating kinetic parameters (the kinetome) to improve
its prediction fidelity, thus more realistically portraying resource allocation and regulatory processes
in CHO cell cultures [14]. This approach successfully demonstrated the reliability of flux predictions
in iCHO2291 by using 13C isotope-labeled measurements, and this enabled a flux-based under-
standing of lactate overflow metabolism which is rarely captured by conventional approaches.

Searching and navigating: leveraging CHO-GEMs in bioprocess development
With growing interest in utilizing CHO-GEMs for bioprocess development, their practical applica-
tions have primarily focused on upstream processes; only a limited number of studies have
explored their potential in cell line development. We review here how CHO-GEMs can guide
the systematic and rational development of both cell lines and culture processes (Figure 2). The
insights from these models are advancing our mechanistic understanding and proficiency in
bioprocessing.

Cell line development and engineering
The conventional procedure for CHO cell line development requires considerable time and
resource investments. Indeed, it involves multiple steps, ranging from screening and isolation of
cells to clone selection and characterization. Thus, we need methods for more affordable and effi-
cient development of high-yielding expression hosts; suchmethods can be based on GEM-guided
analysis to help understand the mechanisms underlying clonal variation, stability, productivity, and
product quality, as well as to identify cell engineering targets. To this end, recent studies have com-
bined enzyme assays [24] and time-series transcriptomics [10] with CHO-GEMs. In such studies, a
comparative flux analysis between high and low producers identified metabolic bottlenecks in the
4 Trends in Biotechnology, Month 2024, Vol. xx, No. xx
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Figure 2. Key applications of Chinese hamster ovary (CHO) cell genome-scale metabolic models (GEMs).
A phylogenetic tree is used to depict these publications where each box corresponds to a specific FBA method (upper
smaller segment), a GEM (lower larger segment), and research target(s) such as growth, productivity, product quality, and
toxic effects. The generic models are represented in yellow, while the cell line-specific models are depicted using different
colors: CHO-K1 (orange), CHO-S (green), and CHO-DG44 (blue). In the box with branching arm(s), research targets such
as growth, productivity, product quality, and toxic effects are indicated. Depending on the specific focus of each study,
the research targets are represented by larger circles. In addition, for cases involving improvements in media, instances of
target enhancements are denoted by blue circles, with the action(s) at the top of the box. The arrows above represent
an increase in the concentration of the mentioned component(s), whereas the arrows below indicate a decrease; the plus
sign (+) denotes the addition of new additives to the media. Abbreviations: AA, amino acid; ARA, arachidonate;
ASN, asparagine; ASP, aspartate; conc., concentration; C. griseus, Cricetulus griseus; ecFBA, enzyme capacity-
constrained flux balance analysis; ENM, essential nutrient minimization; FBA, flux balance analysis; FBAwMC, FBA with
molecular crowding; FVSEOF, flux variability scanning based on enforced objective flux; GLN, glutamine; GLU, glutamate;
LAMOS, linear algorithm for finding multiple optimal solutions; LEU, leucine; ML, machine learning; PEA, pathway
enrichment analysis; pFBA, parsimonious FBA; THR, threonine; VAL, valine. See [7,9,10,18,24–27,29,31,33–39,49].

Trends in Biotechnology
pentose phosphate pathway (PPP) and tricarboxylic acid (TCA) cycle, and also suggested possible
engineering strategies for enhanced growth and productivity. Similarly,metabolic connectivity infor-
mation derived from CHO-GEMs has been combined with multi-omics profiles for gene set
enrichment analysis to characterize various parental CHO cells including CHO-K1, -DG44 and
-DXB11. This analysis revealed variations in cell-cycle progression and protein processing induced
by the absence of the dihydrofolate reductase (DHFR) [25]. Another study demonstrated the utility
of CHO-GEM for engineering CHO-S cell-derived producers by computationally evaluating the
lethality of gene candidates for integration sites [26] and CRISPR/Cas9-based gene editing [27].
For next-generation cell line development and engineering, omics-based model-guided strain
design algorithms can be applied to systematically identify and prioritize context-specific targets
for genome editing [28].

Process development
CHO-GEM-based FBA was successfully demonstrated for process development in multiple
studies. Mechanistic insights into phenotypic responses from metabolic changes during cell cul-
tures were revealed under various environmental conditions, specifically changes in the nutritional
composition of the media, process parameters [e.g., dissolved oxygen (DO), temperature, pH,
Trends in Biotechnology, Month 2024, Vol. xx, No. xx 5
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aeration, etc.] and operational modes. For model-driven media development, phenotypic speci-
ficities and metabolic bottlenecks in CHO cells could be characterized to more systematically
develop strategies to improve their culture performance. For example, a flux scanning approach
was applied to shortlist candidate nutrients that may increase monoclonal antibody (mAb) pro-
ductivity, thus identifying 15 metabolites for a subsequent step in the design of experiment
(DoE) [29]. In addition, their combinations were further explored by incorporating dietary reactions
into the FBA framework, showing their optimal and synergistic sets, which await experimental
validation [30]. Another study aimed to predict optimal nutrient levels in the media. The UOF
approach was used to simulate the uptake rates of three essential amino acids (leucine, lysine,
and valine) and guide their supplementation strategies [31]. Similarly, the growth-inhibiting effects
of vital nutrients (e.g., arginine, glucose, lysine, phenylalanine, and valine) were quantified through
flux sensitivity analysis, suggesting subsequent basal media designs [32]. A data-driven
and CHO-GEM-guided systematic framework was recently developed to evaluate metabolic
bottlenecks, and identified insufficient nutrients and metabolic wastes in antitrypsin-producing
CHO-DG44 cells [33]. As part of the industrial applications of the framework for rational media
improvement, nutritional additives for basal media (i.e., coenzyme Q10) [34], feed media (i.e.,
glutamate and asparagine) [35], and dipeptide feed media (i.e., glutamine and asparagine) [36]
were targeted to debottleneck energy imbalance, byproduct accumulation, and excessive utiliza-
tion of TCA cycle intermediates, respectively. These interventions were validated for their ability to
increase cell growth and final titer. Concurrently, the physiological and metabolic effects of oper-
ating conditions were also explored using GEM-based approaches. For instance, considering the
balance between cell density and dilution rate, the cell-specific perfusion rate was parameterized
into the FBA framework to represent multiple metabolic phases (i.e., excessive nutrient, limited
nutrient, and maximized yield) during continuous CHO cell culture [37]. Interestingly, this ap-
proachwas further exploited to reduce the accumulation of unused nutrients or toxic byproducts,
thus indicating the requirements for potential perfusion media [38]. The impact of gas sparging,
one of the most important operating parameters, was also investigated by simulating the meta-
bolic response to sparging stress under fed-batch bioreactor cultures. It revealed that elevated
H2O2 turnover rates as a result of increased uptake of amino acids under higher sparging condi-
tions leads to oxidative stress which could be restored by manipulating redox homeostasis [39].

Driving: propelling CHO-GEMs towards digital bioprocessing
To date, a variety of CHO-GEMs and algorithmic innovations have facilitated practical implemen-
tation for cell line and bioprocess improvements. Looking ahead, we anticipate a shift towards
more digitized and dynamically managed culture processes. This evolution is expected to gener-
ate a wealth of high-throughput omics and real-time culture data, supported by state-of-the-art
analytical technologies ranging from next-generation sequencing to non-invasive optical sensors.
Despite these advances, the industrial application of CHO-GEMs is still at its nascent stages
because the current models do not fully capture condition-specific cellular regulations that affect
culture performance [40]. Thus, the community needs to (i) expand and refine the models by cov-
ering and integrating more regulatory elements spanning multiple layers and scales, and (ii) relate
them to key process variables by formulating the dependency of process parameters within the
GEM-FBA framework.

CHO-GEMs also need to more accurately emulate and decipher phenotypic responses to
genetic and environmental shifts during cell culture. For this, further expansions of the existing
CHO-GEMs will increase their comprehensiveness by including more metabolic and regulatory
mechanisms. In this regard, more contextualized models have been developed based on a variety
of omics datasets (e.g., genomics, transcriptomics, proteomics, and metabolomics) as outlined in
Table 1. In addition to the gene-protein-reaction (GPR) and their metabolic associations, the
6 Trends in Biotechnology, Month 2024, Vol. xx, No. xx
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Table 1. Examples of omic integration algorithms already used with CHO-GEMs for different cell linesa

Algorithm Input omic dataset Description Target cell line and Refs Method Refs

GIMME Transcriptome,
proteome

• Non-classifying method
• Determine active reactions above the transcriptome threshold
• Calculate the penalty score based on their expression deficit between
minimum flux and threshold
• Minimize the total sum of (flux) × (penalty score) to constrain
low-expression reactions with the estimated flux value

CHO-K1 [5,7,16] [55]

CHO-S [5,7,16]

CHO-DG44 [9]

CHO-SH-87 [7]

CHO-GS [10]

iMAT Transcriptome,
proteome

• Classify reactions into high and low expression with the transcriptome or
proteome threshold
• Determine active/inactive reactions by comparing expression levels and
possible fluxes based on MILP optimization
• Remove inactive reactions while retaining low-expression reactions which
are required for feasible solutions

CHO-S [56] [57]

mCADRE Transcriptome,
exometabolome

• Classify reactions into high and low expression using a transcriptome threshold
• Define high-expression reactions as conserved core reactions
• Remove unnecessary reactions that are unassociated with core reactions based
on reaction connectivity

CHO-S [56] [58]

CHO-DG44 [13]

CORDA Proteome,
exometabolome

• Classify reactions into high- and low-expression reactions based on proteome
abundancy
• Assign a zero-reaction cost to highly expressed reactions and a higher cost to
low-expression reactions
• Minimize the total sum of (flux) × (cost) to define inactive reactions with
flux-based threshold

CHO-K1 [16] [59]

CHO-S [16]

aAbbreviations: CORDA, cost optimization reaction dependency assessment; GIMME, gene inactivity moderated by metabolism and expression; iMAT, integrative metabolic
analysis tool; mCADRE, metabolic context-specificity assessed by deterministic reaction evaluation; MILP, mixed integer linear programming.
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models could integrate the mechanistic details of transcriptional regulation, protein secretion,
post-translational modifications (PTMs), and enzyme catalytic capacity (Figure 3). For exam-
ple, a detailed representation of transcription factors (TFs) and other pathway machinery (e.g.,
protein transport, unfolded protein response, chaperones) can be achieved by expanding the
scope of CHO-GEMs;meanwhile, logical and probabilistic integration of transcriptional interactions
and major features of protein synthesis, folding, trafficking, and eventual release were partially pre-
sented in the models [13,41]. Among the PTMs, N-linked glycosylation is an important process
connected to metabolism that affects the critical quality attributes (CQAs) of secreted RTPs
[42,43]. To modularize this regulatory component at the molecular scale, multistep glycosylation
of N-linked glycans in ER and the Golgi apparatus could be mechanistically described to relate
to the abundance of nucleotide sugar precursors and glycan profiles. A hybrid CHO-GEM and
glycosylation model can then link nutritional environment and critical process parameters (CPPs)
with product quality during production culture via nucleotide sugars [44] which are differentially
synthesized through cellular metabolism in a condition-dependent manner. Thus, adjustable and
actionable targets can be identified to maintain desirable glycoforms of RTPs [45]. At the reaction
scale, kinetic information (i.e., enzyme capacity constraints with kcat values) was incorporated into
the ecFBA to obtain more plausible metabolic states. However, the predictive accuracy of the
model largely depends on the CHO-specific kcat values, which can be further updated by resorting
to machine learning/deep learning algorithms on the basis of protein sequences and/or substrate
structures for a diverse array of enzymes, as similarly has been done in Escherichia coli [46] and
fungal species [47].

With advancedmultiple-layered and -scaledCHO-GEMs, condition-dependent cellular behaviors
can be better predicted for more reliable industrial applications by empirically or mechanistically
relating nutritional environment and CPPs (e.g., pH, temperature, DO levels, and agitation
rates) with model components (e.g., reaction and enzyme activity) through mathematical or
Trends in Biotechnology, Month 2024, Vol. xx, No. xx 7
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Figure 3. Multiple layers and scales of Chinese hamster ovary (CHO) cell genome-scale metabolic models
(GEMs) to capture condition-specific cellular regulation that affects culture performance. This figure illustrates
how to expand and enhance models by integrating regulatory components such as transcriptional regulation, enzyme
activity regulation, secretory pathways, and glycosylation networks within a CHO-GEM, beyond gene-protein-reaction
(GPR) associations. The concept of each content (in clockwise order starting from the upper left box) are introduced:
transcriptional regulation (blue), enzyme activity regulation (orange), secretory pathway (green), and glycosylation network
(yellow). In addition to the concepts, broken boxes illustrate how the relevant constraint and network can be incorporated
into a CHO-GEM. Transcriptional regulation (upper left): in response to a stimulus, transcription factors (TFs) are either
expressed or inhibited, leading to changed expression levels of subsequent genes associated with metabolic enzymes.
Probability calculation of gene expression under particular conditions, along with consequent enzyme expression levels, and
their formulation as reaction constraints facilitate the representation of regulatory mechanisms in metabolic models. Enzyme
activity regulation (upper right): enzyme activity (kinetome) determines the metabolic state of a cell, making it a prerequisite for
the construction of a precise GEM. However, the kinetome is rarely measured for mammalian cells. AI-driven kcat prediction
models utilize databases containing enzyme sequences and substrate structures to estimate enzyme activity based on an
organism or cellular compartment. Enzyme capacity constraints can then be integrated into model in combination with
compartment-specific enzyme allocation to construct an advanced CHO-GEM. Secretory pathway (lower right): translation and
glycosylation processes consume energy cofactors and proteins, and inclusion of these components is therefore necessary.
Secretory pathway-involved subsystems and their metabolic enzymes can be formulated into stepwise reactions [13] where
their consumption of energy, metabolites, and proteins can be added to the reaction formula. Glycosylation network (lower left):
the glycosylation pathway from the ER to the Golgi apparatus. Through advanced analyses of glycome, the glycosylation
patterns can be investigated, which facilitates the optimization of production processes for desired mAb quality. The N-linked gly-
can, which is determined by a sequence of interconnected pathways, can vary depending on intracellularmetabolism and the levels
of nucleotide sugar precursors and carbon sources. The CHO-GEM, expanded with a glycosylation network through a hybrid ap-
proach, can identify rerouted fluxes and possible PTM targets for a desiredN-glycosylated pattern. Abbreviations: AI, artificial intel-
ligence; CNN, convolutional neural network; COPII, coat protein complex II; ER, endoplasmic reticulum; GCN, graph convolutional
network; GPR, gene-protein-reaction; GalNAc, N-acetylgalactosamine; GlcNAc, N-acetylglucosamine; IgG, immunoglobulin G;
mAb, monoclonal antibody; NeuAc, N-acetylneuraminic acid; P, probability; P4HB, prolyl 4-hydroxylase β-polypeptide; PTM,
post-translational modification; SMILES, simplified molecular input line entry system.

Trends in Biotechnology
logical representations. When the specific mechanisms underlying the dynamics of nuanced
and fluctuating conditions in bioreactors are unclear, the FBA framework could be expanded
by effectively adopting machine learning approaches, thus better predicting cellular phenotypes
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or metabolite concentrations [48,49] and their future trajectories [50]. Recently, major operational
variables (e.g., pH and temperature) were parameterized into GEMs for microbial systems.
Specifically, the flux variables related to redox cofactor (e.g., NADH), proton transport, enzymatic
turnover rate (kcat), and maintenance energy were expressed as canonical functions of pH and
temperature, respectively, reflecting their dependency in E. coli [51] and Saccharomyces
cerevisiae [52]. Accordingly, the relevant formulations can be derived from multi-omics and
culture profiles of CHO cells under various pH and temperature conditions (Box 2), thereby guiding
experimental design for cell line engineering and improving process efficiency, adaptability, and
operability under dynamic environments for digital bioprocessing.
Box 2. Case study: integrating operational parameters and CHO-GEMs

GEMs poses can integrate operational parameters, such as pH and temperature, to mechanistically predict CHO cell growth,
productivity, and product quality (Figure I). InCHOcell culture, pH has been reported as a key parameter that affects cell growth,
viability, productivity, and product quality [61]. Mechanisms associated with pH can be illustrated asmultiple layers of advanced
GEM, specifically transcriptional regulation, post-translational modifications, and enzyme kinetics, and can be represented as
pH-dependent components. Especially regarding enzyme kinetics, pH acts as a critical parameter that drives structural defor-
mation. Thus, enzymatic activity can be represented as a function of environmental pH and the enzymatically optimal pH.

Combined with enzyme capacity-constrained flux balance analysis (ecFBA), pH-dependent kcat estimates enable the simulation
of cellular metabolic states under varying pH conditions. Moreover, adopting kinetic equations for acidic or basic metabolite
transportation rates between compartments, such as the cytoplasm, extracellular space, and organelles, will facilitate the calcu-
lation of compartment-specific pH and resultant enzymatic activity. Predicting kcat for mitochondria, ER, and the Golgi apparatus
will provide accurate predictions of fluxes related to cell proliferation and product quality which are prone to perturbations by cul-
ture phase or pH [62,63]. Similarly, temperature affects enzyme kinetics, thereby perturbing cellular systemswith respect to viable
cell density (VCD) and productivity [64]. However, the lack of mechanistic relationships between the temperature and the cellular
response hinders the integration of temperature into GEMs. Similarly to pH, enzyme kinetics can be formulated as a function of
temperature. Furthermore, the relationship between temperature- or pH-dependent effects and cell metabolism can be explored
by incorporating comparative analysis of multi-omics data obtained from high-throughput condition-varying cultures.
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Figure I. Detailed structure of pH and temperature integration into a GEM. The model of pH dynamics and
transport, which provides compartment-specific pH differences in a cell, is applicable to changes in enzymatic activity.
Temperature changes are used to calculate alterations in the enzyme activity. Experimental measurements made under
pH or temperature shifts can be utilized for comparative analysis to validate the integration process. Abbreviations:
conc., concentration; pHc, cytoplasmic pH; pHe, extracellular pH.
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Outstanding questions
Which advanced methodologies
can be integrated with CHO-GEMs to
enhance their predictive accuracy of
cellular behaviors under diverse condi-
tions, especially considering complex
biological phenomena?

Is it feasible to develop a universal
framework or set of guidelines for
the creation and application of GEMs
across various CHO cell lines in indus-
trial contexts?

How can we evolve CHO-GEMs
to more precisely simulate dynamic
cellular responses under fluctuating
bioprocessing conditions?

Which strategies can be used to
fuse CHO-GEMs with regulatory com-
ponents and process modifications,
aiming to achieve a more holistic repre-
sentation of biological interactions with
the cell culture environment?

Which innovative models or
methodologies hold potential to be
synergized with CHO-GEMs for fully
digitalizing bioprocesses?

What specific roles do academic and
industrial partnerships play in propelling
the advancement of biomanufacturing
via CHO-GEMs, and how can these
collaborations be further optimized?

HowcanCHO-GEMsbe used for differ-
ent modality cell lines, such as HEK293
for gene therapy?
Concluding remarks and future perspectives
Advances in CHO-GEMs and relevant analytical methods are already showing utility in several
practical applications including rational cell line and process development. Further capabilities
of these models will emerge following a sustained focus on augmenting model coverage and cre-
ating an integrative model structure with multiple layers, including additional cellular processes
other than metabolism (e.g., enzyme and transcriptional regulation).

As the field continues to grow and evolve, we foresee enhanced predictive prowess from GEMs
that will be catalyzed by sustained collaboration and dedication within the biomanufacturing
community such as the International Biomanufacturing Network (IBioNe) and the European
Society for Animal Cell Technology (ESACT). The community is envisaged to actively foster
education through organized courses and workshops to provide valuable insights into the
modeling of animal cell culture. This educational initiative not only contributes to academia
but meets the growing demand for both CHO-GEMs and FBA applications within the industry
(see Outstanding questions).

CHO-GEMs, renowned for their adaptability across various mammalian cell lines, are poised to
revolutionize fields beyond their current scope. From recombinant adeno-associated virus
(rAAV) production for gene therapy using HEK293 cells [53] to cultured meat production with
animal tissues [54], they are poised to propel applications in biopharmaceutical and food produc-
tion because such models mechanistically encode the processes involved in biomass and
macromolecule production. In addition, GEMs are pivotal in shaping the digital twins of
bioprocesses as instrumental tools for accurately tracking, forecasting, and navigating cellular
behaviors and metabolic states with timely monitored and digitalized culture data. Hence, we
envisage a future where GEMs, seamlessly integrated with data-driven AI models and sophisti-
cated control algorithms, autonomously orchestrate bioreactor runs and meticulously guide the
optimal culture trajectory. In this context, AI and machine learning strategies can be applied to
expand the adoption of GEMs across the biopharmaceutical industry for more innovative and
efficient RTP production [40]. This represents a profound culmination of scientific progress
and innovation towards fully digital biomanufacturing.
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