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ABSTRACT: The indolizidine core of virosinine A has been synthesized by means of a microwave-promoted cascade reaction
featuring 5-exo-trig iminyl radical cyclization, thiyl radical elimination, and intramolecular imine alkylation. The resulting bicyclic
iminium ion underwent stereoselective reduction by Red-Al to deliver the target compound. DFT calculations suggested that both
the radical cyclization and thiyl radical elimination steps are reversible at high reaction temperatures.

The Securinega alkaloid Virosinine A (1, Scheme 1) was
isolated by Yue and co-workers in 2015 from the Chinese
medicinal plant Flueggea virosa.! Its novel bridged tetracyclic
ring system is related to the skeleton of conventional Secur-
inega alkaloids such as viroallosecurinine (2, Scheme 1).2
Indeed, Yue and co-workers speculated that 1 is derived from
2 via the pathway outlined in Scheme 1.! Although 1 is higher
in energy than 2 according to DFT calculations, the fact that 1
was obtained from the same source as 2 but in much smaller
quantities® is consistent with this proposal. Preliminary in-
vestigations of the bioactivity of 1 revealed modest anti-HIV
activity.!

Scheme 1. Virosinine A and Its Proposed Biosynthesis
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DFT calculations (M06-2X/6-31++G(d,p)):
1 is 14.2 kcal/mol higher in energy than 2

N IJ
viroallosecurinine (2) H
O

virosinine A (1)

We were intrigued by the novel structure of 1 and the op-
portunity to investigate its proposed biosynthesis. According-
ly, we initiated synthetic studies of this Securinega alkaloid.>*

Herein, we report construction of the indolizidine core of vi-
rosinine A. A stereoselective cascade reaction inspired by a
microwave-promoted iminyl radical cyclization developed in
our lab’ was central to this effort.

Our retrosynthesis of 1 is outlined in Scheme 2. We envi-
sioned generating virosinine A from tricyclic a-hydroxy ke-
tone 3 via an intramolecular Horner—Wadsworth—-Emmons
(HWE) reaction.® Disconnecting the bridged six-membered
ring of 3 using ring-closing metathesis (RCM) and removing
the resulting allyl group reveals indolizidinone 4 as a precur-
sor to the tricycle. We planned to construct 4 from acyclic O-
aryloxime 5 by enlisting a microwave-promoted iminyl radical
cascade reaction. An Evans syn glycolate aldol reaction be-
tween known intermediates 67 and 7% would be employed as
the key step to rapidly assemble 5.



Scheme 2. Retrosynthetic Analysis
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The proposed cascade cyclization is depicted in Scheme 3.
Based on our prior work,’ we reasoned that microwave irradia-
tion of O-aryloxime 5 would trigger N—O homolysis, 5-exo-
trig iminyl radical cyclization, and thiyl radical elimination.’
Cyclization via a chairlike Beckwith-Houk transition state'°
should furnish dihydropyrrole A as the major diastereomer.
Continued microwave irradiation would then induce intramo-
lecular alkylation and deliver bicyclic iminium ion B. Alt-
hough deprotonation of B could afford two regioisomeric
enamines, only C would undergo essentially irreversible tau-
tomerization reminiscent of an Amadori rearrangement'! to
generate indolizidinone 4. Models of 4 and its epimer at the
bridgehead carbon indicate that 4 is more stable due to its abil-
ity to adopt a conformation resembling a trans-fused bicyclic
system. DFT calculations (Gaussian 09, MO06-2X/6-
31++G(d,p)) confirm this observation. Thus, we hypothesized
that B, C, and its enamine regioisomer would all converge to
4.

Scheme 3. Proposed Cascade Cyclization
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The syn-substituted O-aryloximes 5a and Sb required to at-
tempt the proposed cascade cyclization were assembled as
shown in Scheme 4. An Evans aldol reaction between oxazoli-
dinone 6’ and aldehyde 7 furnished adduct 8 in good yield as
a single detectable diastereomer. Conversion of this intermedi-
ate into a Weinreb amide and subsequent TBS protection de-

livered 9 in acceptable yield over two steps. Addition of 4-
chlorobutylmagnesium bromide to 9 afforded ketone 10.!
PMB ether cleavage was followed by condensation with either
PhONH;-HCI or +-BuPhONH; HCI, generating O-aryloximes
5a and Sb respectively.

Scheme 4. Synthesis of Cascade Cyclization Substrates
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The cascade transformation was then investigated with sub-
strates 5a and 5b. Both O-aryloximes cyclized when subjected
to microwave irradiation, but reactions involving Sb were
cleaner and could be performed at a lower temperature (100
°C vs 120 °C). We tentatively attribute these results to the
lower N-O BDE of 5b compared to that of 5a.>® Excitingly,
the radical cyclization, thiyl radical elimination, and intramo-
lecular alkylation proceeded as anticipated. However, the re-
sulting bicyclic iminium ion 11 did not undergo deprotonation
to furnish an enamine (Scheme 5). Compound 11 was relative-
ly unstable, so we reduced it immediately with NaBH4. This
afforded indolizidine 12a in good yield as a single detectable
diastereomer. Unfortunately, spectroscopic studies (vide infra)
revealed that the vinyl-bearing stereocenter did not possess the
expected configuration.

Scheme 5. Cascade Cyclization Reaction

“ OH  Phs 100°C OH
N (W)
| —_— N|+ 1OTBS
p,N OTBS MeOH {
p-tBuPhO 25h e
1"
THF, 0 °C stereochem/stry
30 min
54-60% from 5b 123
Red-Al 'j
THF, -78t0 0 °C Stereochem/stry
15 min
49-54% from 5b 12b

The two hydroxyl-bearing stereocenters of indolizidine 12
will be destroyed at later stages of the synthesis, and both en-
antiomers of N-acyl oxazolidinone 6 are readily available.
Thus, accessing 1 merely requires installing the correct rela-
tive configuration of the two new stereocenters (i.e., bridge-



head carbon and vinyl-bearing carbon) in the cascade cycliza-
tion—reduction sequence. Accordingly, we focused on invert-
ing the stereoselectivity of the reduction. Fortunately, sodium
bis(2-methoxyethoxy)aluminum hydride (Red-Al) furnished
the desired indolizidine 12b as a single detectable diastere-
omer (Scheme 5). Although the absolute configuration of the
two key stereocenters in 12b is opposite that required to con-
struct 1, commencing the synthesis with the enantiomer of 6
will rectify this issue.

The relative stereochemistry of 12a and 12b was determined
by analyzing the coupling between their methine hydrogens,
which are labeled as H,—Hq in Figure 1. Vicinal hydrogens on
five-membered rings frequently exhibit larger coupling con-
stants in a cis relationship (J = 8 Hz) than in a trans relation-
ship (J = 0-4 Hz)."® Thus, the small J,;, value for 12a indicates
the trans relationship of H, and Hy, in this compound. In con-
trast, the large J., value for 12b is diagnostic for a cis orienta-
tion. The differing H,—H, relative stereochemistry in these
compounds is manifested in the appearance of the Hy, signal in
each '"H NMR spectrum (i.e., app t with small J values in 12a
versus dd in 12b, Figure 1). NOE experiments agreed with our
coupling-based structural assignments of 12a and 12b, alt-
hough overlapping peaks in the 'H NMR spectra limited the
number of unambiguous correlations that could be observed.
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Figure 1. Relative stereochemistry of 12a and 12b. Blue
and red arrows represent NOE correlations across the top
and bottom faces of the ring systems, respectively.

The differing stereochemical outcomes of reductions of
iminium ion 11 with NaBHjy versus Red-Al are consistent with
classical studies of reductions of cyclic ketones and iminium
ions.!* NaBHy is a small reagent that attacks cyclohexanones
primarily from the axial direction to minimize torsional strain
in the transition state. In contrast, large reagents such as Red-
Al substantially increase the steric strain associated with axial
attack, thereby favoring equatorial attack instead.!**® Reduc-
tions of cyclohexyl iminium ions follow similar trends to cy-
clic ketone reductions.'* Figure 2 depicts the application of
these principles to the reductions of 11. The undesired indoliz-
idine 12a is obtained from axial-type attack on 11 by NaBHa4,

whereas the desired indolizidine 12b is produced via equatori-
al-type attack on 11 by Red-Al.
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Figure 2. Rationale for stereoselective reductions of 11.

The formation of iminium 11 with the adjacent OTBS and
vinyl groups in a cis arrangement indicated that the iminyl
radical cyclization step did not proceed through the chairlike
Beckwith—-Houk transition state shown in Scheme 3. In an
effort to determine the impact of substrate stereochemistry on
the outcome of the radical cyclization, we synthesized anti-
substituted O-aryloxime 17 (Scheme 6). The key step in this
endeavor was an anti glycolate aldol reaction of aldehyde 7
with oxapyrone 13.'° The resulting adduct 14 was then trans-
formed into TBS-protected Weinreb amide 15. SnCls-
mediated cleavage of the chiral auxiliary was best accom-
plished prior to Grignard addition, as inverting the order of
these reactions led to lower yields. Condensation of the result-
ing ketone 16 with +-BuPhONH,-HCI furnished O-aryloxime
17. Attempts to obtain 17 via inversion of syn O-aryloxime Sb
or its ketone precursor were plagued by silyl migration.

Scheme 6. Synthesis of anti O-Aryloxime 17
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Unfortunately, microwave irradiation of 17 afforded a com-
plex mixture of compounds. While the mass of the desired
product was detected in this mixture, we were unable to isolate
its individual components. 'H NMR spectra of the mixture
suggested the presence of multiple related compounds. Thus,
we tentatively conclude that the radical cyclization of 17 was
less selective than that of its diastereomer Sb. It appears that
the stereochemistry of the substrate strongly influences the
outcome of the iminyl radical cascade cyclization.

We performed DFT calculations in an attempt to uncover
the factors responsible for the unexpected stereoselectivity of



the radical cyclization. We suspected that the high reaction
temperature could render the cyclization step reversible. In
fact, DFT calculations suggested that both the 5-exo radical
cyclization and the subsequent thiyl radical elimination are
reversible at elevated temperatures.!® We then surmised that
the irreversible imine alkylation might be under Curtin—
Hammett control and therefore functioning as the stereochem-
istry-determining step. Unfortunately, the calculations were
inconclusive regarding this point. Our previous efforts to ra-
tionalize the stereoselectivity of 5-exo-trig iminyl radical cy-
clizations using DFT calculations were also plagued by prob-
lems.® The origin of these difficulties remains uncertain.
Nonetheless, it is possible that the stereoselectivity of the cas-
cade cyclization might be governed by a combination of kinet-
ic and thermodynamic factors. A complicated mechanistic
scenario of this type would presumably be difficult to study
computationally.

In conclusion, we have developed a cascade cyclization that
provides access to the indolizidine core of virosinine A. The
process is initiated by microwave-promoted N—O homolysis of
an O-aryloxime, and it features a 5-exo-trig iminyl radical
cyclization followed by thiyl radical elimination and intramo-
lecular imine alkylation. Stereoselective reduction of the re-
sulting bicyclic iminium ion by Red-Al furnishes the indoliz-
idine. DFT calculations indicated that the irreversible alkyla-
tion step is preceded by radical cyclization and thiyl radical
elimination steps that are reversible under the high-
temperature reaction conditions. The transformation of in-
dolizidine 12b into virosinine A is in progress.
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