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I. Introduction 
     An open issue remains in neuroscience regarding the 
capability to wirelessly stimulate specific local regions in 
central and peripheral nervous networks (CNS and PNS) in a 
controlled manner without using invasive procedures such as 
surgically implanted electrodes or genetic modification [1, 2]. 
One promising solution is to use MagnetoElectric 
NanoParticles (MENPs)  [1, 3, 4].  MENPs, made of materials 
exhibiting strong coupling between magnetic and electric 
fields, display a relatively strong magnetoelectric (ME) effect, 
thus allowing for a local conversion of a magnetic field into 
dipole electric fields [5, 6].  As a result, if placed on the cellular 
membrane, MENPs can serve as wireless alternating current 
(a.c.) nanoelectrodes which are controlled via application of an 
a.c. magnetic field [4]. Given each MENP is a finite-size 
electric dipole with a characteristic size on the order of the 
membrane thickness, the electric field by each pole of the dipole 
can be sufficiently strong to significantly affect the local 
membrane potential in the immediate vicinity of the pole.  
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Obviously, the nanoparticles would not produce significant 
effects if they were not placed directly on the dielectric 
membrane and instead are located in either intracellular or 
extracellular spaces. With the two spaces being conductive, the 
electric field generated in any point within the spaces would be 
screened out by free moving ions [7-11].  Thereby, given an 
adequate density of MENPs on the membrane surface in a local 
region, the simultaneously accumulated energy of the 
nanoparticles in the region can be large enough to induce a local 
action potential. In other words, by generating local action 
potentials deep in the brain via application of magnetic fields, 
MENPs offer a wireless alternative to existing local deep-brain 
stimulation (DBS) approaches that use surgically implanted 
electrodes.  Ideally, since their spatial resolution is limited only 
by the nanoparticle size and the ability to control spatiotemporal 
patterns of the remotely applied magnetic field, MENPs could 
wirelessly activate action potentials on demand in a single 
neuron [12-15]. Also, in contrast with transcranial magnetic 
stimulation (TMS) systems, MENPs don’t need relatively large 
brain volumes and rapidly changing (<<1msec) high magnetic 
fields (~1T) to generate sufficiently strong eddy currents [16]. 
Instead, the required local stimulation control is achieved by 
application of relatively small fields (<<1T) in a wide frequency 
range [12]. This fundamental difference is due to the fact that 
MENPs, when placed on the membrane, become an integral 
component of the neuron, which in turn provides this novel 
wireless and non-invasive control of local activity of the 
associated neural circuits. However, to fully take advantage of 
this important MENPs-based external control it is critical to 
understand the complex electric-field interaction between 
MENPs and neural circuits. It is worth noting that the MENPs’ 
magnetoelectric effect enables a two-way interaction with the 
circuits: (i) applying external magnetic fields to control local 
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intrinsic electric fields, thus providing local modulation of 
neural activity in the nanoparticles’ vicinity and (ii) converting 
local electric fields due to local neural activity into the 
nanoparticles’ magnetization change, which in turn can be 
detected via external magnetometers, thus enabling a one-of-a-
kind mechanism to wirelessly record local neural activity [17], 
breaking the current stalemate in the field of neural recording 
due to the inverse mathematics problem 
[https://doi.org/10.1186/1743-0003-5-25]. 
     Again, for this two-way interface to work, it is difficult to 
underscore the importance of ensuring the nanoparticles are 
brought into direct contact with the neuronal membrane. 
Otherwise, the local electric field induced or sensed by the 
nanoparticles undergoes an overwhelming screening by free 
ions in the conductive microenvironment, thus rendering 
MENPs largely ineffective. The characteristic screening scale, 
known as the Debye length [18], plays a crucial role in 
determining the extent to which charged particles can interact 
with and penetrate biological membranes [19] . This length scale 
arises from the balance between the thermal energy of ions and 
their electrostatic interactions with the surrounding medium.. 
Classic works by Alberts et al. [18], Hille [19], Hodgkin and 
Huxley [20], and Neher and Sakmann [21] provide foundational 
insights into the concept of the Debye length and its 
implications for electrostatic interactions at biological 
interfaces. 
     There have been several research efforts on modeling 
diverse neurons using either biophysically detailed or point 
neuron models [22-24]. These studies focus on the neocortex, a 
crucial region of the mammalian brain responsible for functions 
such as perception, memory, intelligence, and consciousness 
[25]. Moreover, such modeling efforts have been instrumental 
in discussing various diseases, [26] and shedding light on the 
mechanisms underlying neuronal activity and computations 
[27]. With MENPs showing promising potential for biomedical 
applications, including improving the effectiveness of cancer 
treatments, enhancing imaging techniques, and developing new 
therapies for neurological diseases [4, 28-31], modeling 
MENPs as a circuit can provide a useful framework for 
understanding the behavior of these nanoparticles and 
predicting their properties. Specifically, the circuit model can 
help describe the complex interplay between magnetic and 
electric fields in these nanoparticles. 

One approach to quantify the MENPs-neuron circuit 
interaction is to create a circuit model that describes the 
interplay between the nanoparticles’ magnetic and electric 
fields in actual neural systems. Such a circuit model can help 
gain insight into the nanoparticles-based effects on neural 
circuits depending on the nanoparticles’ size, shape, and 
composition as well as the strength and frequency of the applied 
magnetic and generated electric fields. In turn, the model can 
help predict the nanoparticles’ effects on and, reciprocally, 
response to different stimuli in actual neural systems.  
 

II. Equivalent Circuit Model to Simulate 
Nanoparticles’ Effects on the Nervous System 

In this study, the effects of magnetic and electric fields are 
represented through effective currents and voltages, with each 

MENP modeled as a circuit element with specific electrical 
properties. An analog circuit is created based on the MENP-
neuron interaction. In order to lay down a solid foundation for 
the model, we will first explain the Hodgkin-Huxley (HH) 
model and its associated equations. Then, a single-MENP 
circuit is proposed, with the circuit later expanded to include 
thousands of MENPs. Finally, a theory regarding the effect of 
MENPs on neurons will be presented, and two circuit models 
based on the theory will be discussed. 

A. Hodgkin-Huxley model 
     Neurons are classified as electrically excitable cells that use 
electrochemical signaling to process and transmit information 
[32]. The communication between neurons is made possible 
through synapses, which transmit electrochemical signals from 
one neuron to another in the form of neurotransmitters, thereby 
establishing a series of connections among neurons in neuronal 
networks [33]. For successful chemical synaptic transmission 
in biological neurons, various processes are crucial [34, 35]. A 
high-level illustration of initiation, propagation and termination 
of a collective neural activation known as an Action Potential 
(AP) is shown in Fig. 1a. The traditional representation of the 
microstructure of a single neuron, with all the conventional 
terminology used to define all the key neuron’s parts, is shown 
in Fig. 1b. The dynamic of the membrane potential during the 
three AP states, besides the main rest state, including 
depolarization, repolarization and hyperpolarization, 
respectively, is shown in Fig. 1c. 
     Biophysical models of neurons and synapses refer to 
mathematical models that aim to describe the physical 
properties and behavior of neurons and synapses based on 
biophysical principles [36]. These models take into account the 
cellular and molecular mechanisms underlying the generation 
and transmission of electrical signals in the nervous system and 
are essential for understanding the complex dynamics of neural 
circuits [20]. Hodgkin and Huxley developed the first 
biophysical model of action potential generation in neurons, 
based on their experiments with the giant axons of squid [20]. 
The Hodgkin-Huxley (HH) model describes the electrical 
behavior of neurons and is based on ion channel activation and 
inactivation principles [37]. The conductive cytoplasm that 
makes up the ionic fluids can be found inside and outside the 
dielectric membrane. The dielectric membrane separates the 
two conductive domains known as the intracellular (cytosol) 
and extracellular spaces, respectively.  In other words, the axon 
membrane acts as a barrier between the two fluids (conductors) 
inside and outside the cell membrane. The capacitor is the 
representation of the charge storage capacity that is created 
when an insulator is placed between two conductors. The region 
of the axon membrane that does not contain ion channels can 
be thought of as a capacitor (Cm). The lipid bilayer, the 
membrane protein, and the ion channels make up the 
components that make up the axon membrane of the neuron 
(Fig.1). 
According to this model, two nonlinear conductances, denoted 
by the symbol gNa and gK, are used to represent the sodium and 
potassium ion channels, respectively. Other ion channels are 
described as having a linear conductance (gL) [38]. Therefore, 
the model is made up of three major ion channels including 
sodium (Na+), potassium (K+), and leak (L) channels, 
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respectively, each with its own conductance (gNa, gK, and gL) 
and reversal potential (ENa, EK, and EL). Furthermore, the model 
introduces three variables called “gating” variables m, n and h, 
respectively, to describe the probability of each channel to be 
open at a given time. The sodium channel is controlled by the 
combined action of m and h, the potassium channel is controlled 
by n. The following voltage-current equations are derived from 
a mathematical analysis of the RC equivalent circuit (Fig.2 (a)). 
 

 

 
 

 
 
Fig.1.    (a) Schematic of initiation, propagation, and termination of a collective 
neuronal firing event. (b) Labeled diagram of a stereotypical neuron. (c) 
Membrane potential profile initiated by an action potential. 
 
          The equations governing the behavior of the HH model 
are shown below [20]: 
 

𝐶𝐶𝑚𝑚 �
𝑑𝑑𝑑𝑑(𝑡𝑡, 𝑥𝑥)
𝑑𝑑𝑑𝑑

� = 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡, 𝑥𝑥) − 𝑔𝑔𝑁𝑁𝑁𝑁(𝑉𝑉 − 𝑉𝑉𝑁𝑁𝑁𝑁)

− 𝑔𝑔𝐾𝐾(𝑉𝑉 − 𝑉𝑉𝐾𝐾) − 𝑔𝑔𝐿𝐿(𝑉𝑉 − 𝑉𝑉𝐿𝐿)

+
1

(2𝑟𝑟𝑖𝑖𝑖𝑖)𝜕𝜕2𝑉𝑉(𝑡𝑡)/𝜕𝜕2𝑥𝑥
 

(1) 

𝑔𝑔𝑁𝑁𝑁𝑁 = 𝑔𝑔𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚3ℎ,𝑔𝑔𝐾𝐾 = 𝑔𝑔𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑛𝑛4,𝑔𝑔𝐿𝐿 = 𝑔𝑔𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 , (2) 

 
where Iext(t,x) is the external current input to the neuron, and Cm 
is the membrane capacitance. The maximum values of 
potassium, sodium, and leaky conductances are denoted by 
gKMax, gNaMax, and gLMax, respectively. Their typically measured 
values would be 36, 120, and 0.3 Ohm-1 cm-2, respectively [20]. 
The reversal potentials for the sodium, potassium, and leak 
channels are ENa = 115 mV, EK = -12 mV, and EL = 10.6 mV, 
respectively. 

For practical purposes, these equations are best written in the 
form: V = E-Er, VNa = ENa -Er, VK=EK-Er, VL=Ei-Er. Here, Er is 
the absolute value of the resting potential. V, VNa, VK and VL 
are then directly measured as displacements from the resting 
potential.  The last term in Eq. (1) is the rate of charge along 
the inside surface of the membrane in the direction of the 
current. It only depends on time, t, rather than location, x, so the 
quadratic partial differential term is equal to zero. Therefore, 
Eq. (1) can be rewritten as: 
 

𝐶𝐶𝑚𝑚 �
𝑑𝑑𝑑𝑑(𝑡𝑡, 𝑥𝑥)
𝑑𝑑𝑑𝑑

� = 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡, 𝑥𝑥) − 𝑔𝑔𝑁𝑁𝑁𝑁(𝑉𝑉 − 𝑉𝑉𝑁𝑁𝑁𝑁)

− 𝑔𝑔𝐾𝐾(𝑉𝑉 − 𝑉𝑉𝐾𝐾) − 𝑔𝑔𝐿𝐿(𝑉𝑉 − 𝑉𝑉𝐿𝐿)
= 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡, 𝑥𝑥) − 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡, 𝑥𝑥) 

(3) 

And the gating variables (m, h, and n) are governed by the 
following equations [20]: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛼𝛼𝑚𝑚(1 −𝑚𝑚) − 𝛽𝛽𝑚𝑚𝑚𝑚 

𝛼𝛼𝑚𝑚 = �0.1(𝑉𝑉 + 25)�/(exp(𝑉𝑉+25)
10

) − 1), 
𝛽𝛽𝑚𝑚 = 4𝑒𝑒𝑒𝑒𝑒𝑒(𝑉𝑉/18), 

(4) 

𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

= 𝛼𝛼ℎ(1 − ℎ) − 𝛽𝛽ℎℎ 

𝛼𝛼ℎ = 0.07𝑒𝑒𝑒𝑒𝑒𝑒(𝑉𝑉/20), 𝛽𝛽ℎ = 1
1+𝑒𝑒𝑒𝑒𝑒𝑒�(𝑉𝑉+35)/10�

, 

(5) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛼𝛼𝑛𝑛(1 − 𝑛𝑛) − 𝛽𝛽𝑛𝑛𝑛𝑛 

𝛼𝛼𝑛𝑛 = �0.01(𝑉𝑉 + 10)�/((exp(𝑉𝑉+10)
10

) − 1)), 
𝛽𝛽𝑁𝑁 = 0.125𝑒𝑒𝑒𝑒𝑒𝑒(𝑉𝑉/80) 

(6) 

 
The transition rate α describes how quickly ion channels change 
from closed to open. The transition rate β indicates how quickly 
ion channels change from open to closed. α and β are rate 
constants that change with voltage but not with time and have 
dimensions of [time]-1. The above defined variables n, m, and h 
are dimensionless variables which vary between 0 and 1 [20]. 
     It was found that increasing the conductance of the sodium 
channel would raise the membrane potential, which would 
cause the first spike in the action potential [39]. In addition, Eq. 
(3) shows that (V-VNa) is a negative number, so if Iext stays the 
same and the conductance goes up, Cm (dv/dt) will go up as 
well. The m and h gates of the sodium channel control how 
much sodium moves through the channel. At first, m = 0, so the 
conductance of the sodium channel is zero, and dm/dt = αm. 
This means that after the first spike of the action potential, m 
will go up until it equals 1. At that point, dm/dt = βm, and the 
sodium channel's conductance will go down. This means that 
the membrane potential will also go down. In the same way, one 
can look at how the potassium channel affects how the action 
potential is made. If the potassium channel's conductance went 
up, the membrane potential would go down. Also, Eq. (3) 

(b) 

(c) 

(a) 
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shows that (V - VK) is a positive number, so if Iext stays the same 
and (V-VK) goes up, Cm (dv/dt) will go down. The channel gate 
n controls how much the potassium channel lets ions pass 
through it. Based on [39], at first, n = 0, so the potassium 
channel conductance is also 0. Since dn/dt = αn, n will go up 
after the first spike of the action potential until it reaches 0.7. 
At that point, βn will be more important than αn, so n will go 
down. This will cause the conductance of the potassium channel 
to go down, which will cause the membrane potential to go up. 
The refractory period in the generated action potential is caused 
by this increase. 
    Due to the complexity of the HH model, various other models 
that aim to simplify the neuron action potential have been 
proposed such as memristive HH(MHH) [39]. A memristor is 
any two-terminal device whose instantaneous current and 
voltage should follow Ohm's law, which changes depending on 
the state of the device [40] and its I–V characteristic should 
meet three conditions, (i) the zero crossing property, (ii) the 
pinched hysteresis loop, and (iii) the frequency-dependent 
pinched hysteresis property [41]. Based on Chua's 
interpretation of the HH model [41] and the [39], Fig. 2(b) 
could show the simplified neuron model and the MHH circuit 
model, since the sodium and potassium channels have been 
shown to be generic memristors which can remember and 
change its resistance based on the charge that passes through it 
[42]. The MHH model includes two additional memristive 
variables that represent the state of a memristive device that 
modulates sodium and potassium channel conductance. The 
conductance, or ability to allow ions to pass through, of sodium 
and potassium channels is modulated by the membrane 
potential and the history of ion flow (channel activation and 
inactivation )[43]. The conductance of these channels changes 
as the membrane potential changes, forming a relationship 
between the charge (ion flow) and the flux linkage (membrane 
potential). 
 

 
Fig. 2. Electrical circuit representing axon cell membrane (a) HH circuit model 
(b) MHH circuit model. 
  
The memristor equation can be used to explain the memristive 
behavior of sodium and potassium channels as below[44, 45]: 
 

M(q(t)) ×i(t)=V(t) (7) 
 

The voltage (V) in this equation represents the membrane 
potential, the current (i) the flow of ions, and M(q(t)) the 
memristance, which captures the relationship between charge 
and flux linkage. 

B.Modeling MENPs as Circuit Elements and their Effect 
on Neurons 
     In this study, in order to create a circuit model of MENPs, 
key circuit parameters are modified to take into account the 
contributions from the magnetostrictive and piezoelectric 
coupling in the nanoparticles when a magnetic field is applied. 
The magneto-elasto-electric equivalent circuit for such 
magnetoelectric composite nanoparticles is shown in Fig. 3.  
     The circuit includes a coupling factor (ɸm) that transforms 
the external magnetic field (H) into a mechanical voltage 
(ɸmH), and a transformer (ɸp) that represents the 
electromechanical coupling in the circuit. Mechanical and 
electric currents are denoted as I1 and I2, respectively, while 
applied magnetic field and induced voltage are represented by 
H and V’.  

The ME voltage coefficient, which is the ratio of an induced 
electric field to an applied magnetic field, is a crucial parameter 
for Direct-ME. Using Kirchhoff's voltage and current laws 
along with the equivalent circuit and transformer, the ME 
voltage coefficient αE(ω) obtained as a function of the A.C. 
magnetic-field frequency as below: 
 

𝛼𝛼𝐸𝐸(𝜔𝜔) =
𝜕𝜕𝜕𝜕′
𝜕𝜕𝜕𝜕

=
𝜑𝜑𝑚𝑚

�(𝑍𝑍𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙) + 𝐶𝐶𝑐𝑐
𝑍𝑍𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙

�𝜑𝜑𝑝𝑝 + � 𝑍𝑍𝑀𝑀
(𝑍𝑍𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙)𝜑𝜑𝑝𝑝

�
 

(8) 

𝑍𝑍𝑡𝑡ℎ = �
𝑍𝑍𝑚𝑚
𝜑𝜑𝑝𝑝2

−
1
𝑗𝑗𝑗𝑗𝑗𝑗

� 𝑙𝑙𝑙𝑙 (𝑍𝑍𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙) 
(9) 

𝑉𝑉𝑡𝑡ℎ = 𝐻𝐻 − �
𝑍𝑍𝑚𝑚
𝜑𝜑𝑝𝑝𝜑𝜑𝑚𝑚

×
𝑉𝑉′

𝑍𝑍𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙
� 

(10) 

𝐼𝐼𝑡𝑡ℎ =
𝑉𝑉𝑡𝑡ℎ
𝑍𝑍𝑡𝑡ℎ

 (11) 
 

 
 

  
Fig. 3. (a) Magnetoelectric equivalent circuit with added bioload as an 
impedance. (b) Norton’s equivalent circuit. (c) Thevenin’s equivalent circuit. 

     The frequency response is an intrinsic property of these 
nanoparticles. At resonant frequencies, e.g., in the gigahertz 
range, the magnetoelectric coefficient could be increased by 
order of magnitude. Therefore, this property can be taken into 
account to select a way to transmit/receive energy carried by 
magnetic fields. Indeed, magnetic fields at resonant frequencies 
could be useful as carriers of the energy, while neural activity 
at substantially lower frequencies modulating the 
transmitted/received signal. Therefore, The frequency of the 

(a) 

(c) (b) 
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applied magnetic field is a crucial parameter that governs the 
dynamics of the magnetoelectric effect, influencing the 
activation of neurons by modulating electric field variations 
across the neuronal membrane. The frequency of the magnetic 
field can affect the extent of MENPs' polarization and the 
generation of local electric fields across the membrane. This, in 
turn, modulates the activation of ion channels and influences 
the flow of ions across the membrane, ultimately impacting 
neuronal excitability and firing patterns. 
     To model the effect of thousands of MENPs on neurons, it 
is necessary to consider the collective behavior of the 
nanoparticles as they interact with all the neurons in the system. 
This can be done by combining a circuit analysis and a 
biophysical modeling. Firstly, the described equivalent circuit 
for a single MENP should be expanded into an equivalent 
circuit for a population of nanoparticles. This can be 
accomplished by viewing the nanoparticles as a series of 
parallel circuits, with each circuit representing a single 
nanoparticle. Again, it is noteworthy that this approximation 
holds true only if the nanoparticles are in direct contact with the 
(dielectric) membrane region. Otherwise, if they are in the 
conductive intracellular or extracellular spaces, i.e., not in 
direct contact with the dielectric membrane, their fields would 
be rapidly (within a millisecond time scale) screened out by free 
moving ions in the two coductive spaces, with a characteristic 
screening scale defined by the Debye length, known to be in the 
sub-1-nm range [7].  Also, obviously, no physical current can 
flow through the nanoparticles because they are dielectric. 
Therefore, this model would work best in the typical alternating 
current (a.c.) case. Fig. 4 shows an equivalent circuit for a 
population of nanoparticles. Using Kirchhoff's current law, the 
total effective current flowing through the population of 
nanoparticles can be calculated as follows: 
 

𝐼𝐼′𝑡𝑡ℎ = �𝐼𝐼𝑡𝑡ℎ𝑘𝑘

𝑛𝑛

𝑘𝑘=0

 
(12) 

Also, the Zth can be written as: 

𝑍𝑍′𝑡𝑡ℎ = 𝑍𝑍1𝑙𝑙𝑙𝑙𝑍𝑍2𝑙𝑙𝑙𝑙𝑍𝑍3 … … … . . 𝑙𝑙𝑙𝑙𝑍𝑍𝑛𝑛 (13) 

 

 
 (13) 

 

Fig. 4. (a) An equivalent circuit for the entire population of nanoparticles 
(b)Total Impedance (c) Total Effective current. 

Theory of MENPs Effect on Neurons and Proposed 
Circuits Models 
Neural activity is a complex process involving the interaction 
of numerous factors such as ion channels, neurotransmitter 
levels, and the properties of the synapses that connect neurons 
to other cells in the network. These factors ultimately control 
the excitability of neurons and the rate at which they fire. 
Dynamical analysis and synchronization transitions have been 
extensively studied on numerous neuron models, and it has 
been established that the modes of electrical activities can be 
altered by external forcing current [46-48]. This has resulted in 
the development of a number of methods for modulating 
neuronal activity, including the use of MENPs [3, 13]. 
     As mentioned above, MENPs are integrated into neural 
circuits to provide an external field control to locally activate 
neurons. When attached to the neuronal cell membrane, these 
nanoparticles act as magnetic-field-controlled electric dipoles, 
generating local a.c. electric fields across the membrane upon 
application of a.c. magnetic fields, resulting in neural firing [12, 
49]. When a magnetic field is applied across the membrane, the 
induced (due to the ME effect) internal electric field of the 
nanoparticle, i.e., the polarization (dipole moment per unit 
volume), leads to modifying the equilibrium state, in turn 
leading to moving ions across the membrane. In other words, 
MENPs become an integral part of the membrane, thus 
allowing to wirelessly control of the local membrane potential, 
in turn leading to local neural activation. This is based on the 
unique properties of MENPs, particularly their ability to act as 
magnetic-field-controlled electric dipoles.  With no MENPs in 
the system, the charge distribution around the membrane is 
determined by the energy equilibrium that takes into account 
chemical and physical forces.  In the equilibrium, there is a non-
zero voltage (membrane potential) formed across the 
membrane. Hence, this implies that the electric field generated 
across the membrane is an important factor that determines the 
force balance in the equilibrium.  When MENPs are positioned 
on the neuronal membrane and subjected to external magnetic 
fields, they generate additional local electric fields across the 
membrane.  In turn, these electric fields change the above force 
balance, thus modifying the equilibrium. In this respect, these 
nanoparticles become an integral part of the membrane. Indeed, 
in this arrangement, MENPs directly influence the activity of 
ion channels embedded in the membrane, thereby affecting 

(a) 

(b) 

(c) 
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neuronal excitability and signaling, which is the purpose of the 
membrane. Such local activation depends on the nanoparticles’ 
ME effect, the relative location with respect to the membrane 
surface and the nanoparticles’ density. It can be argued that for 
optimal results, a nanoparticle must be positioned at the 
membrane in a symmetrical position with respect to the 
membrane. For example, the position at which a MENP 
interfaces with the membrane so that its volume remains in the 
extracellular space is shown in Fig. 5a. In this case, the electric 
field due to the MENP’s dipole can be significantly higher 
because the dipole’s pole is right on the membrane. The actual 
field can be easily estimated from Coulomb’s law and depends 
on the ratio of the dipole length to the thickness of the 
membrane. For comparison, given the dipole length and the 
membrane thickness on the order of 30 and 10 nm, respectively, 
a factor of 10 increase could be expected compared to the field 
in the symmetric arrangement shown in Fig. 5b [50].  It is 
noteworthy that the relative position of the nanoparticle with 
respect to the membrane could be controlled via the 
nanoparticle’s surface functionalization [51-55]. There are bio-
reagents, e.g., antibodies, which can be used to assure a specific 
target location.   
 
     By the design, MENPs have an effect on opening ion 
channels to control flows of Na+ ions. When a neuron receives 
an electrical signal generated by MENPs in response to 
application of a magnetic field, local channels open (or close, 
depending on the applied magnetic field’s spatiotemporal 
pattern conditions), allowing mostly sodium ions to cross the 
membrane, leading the membrane’s local depolarization. This 
depolarization may result in activation (or inhibition) of an 
action potential, thus transmitting (or blocking) a signal to other 
neurons. Hence, MENPs represent a powerful tool to control 
inter-neuronal communication in neural networks.   
 
 

  
 

  
 
Fig. 5. (a) Illustration of an alternative arrangement when the nanoparticle is in 
extracellular space. (b) Illustration of a symmetric arrangement of a MENP with 
respect to the membrane. Depending on the permeability of the membrane, 
other arrangements are also possible. 
 
    In this study, two hypothetical cases are considered 
depending on the above two relative symmetry positions of 
MENPs with respect to the membrane surface. According to the 
first case, MENPs do not penetrate neurons but rather stick to 
the membrane surface and control channels to affect the firing 
rate. This is shown in Fig. 6 (a), where the MENPs remain in 
the extracellular space. Fig. 7 (a) depicts the proposed circuit 
model for this scenario, and the equation governing the model 
is the same as Eq. 3 with Iext’. As can be seen, the circuit 
includes MENPs as an external source which can increase the 
total external a.c. current. If the net external current caused by 
MENPs increases, it will increase the inward current through 
these channels. In turn, this will result in depolarization of the 
membrane potential, as it adds to the sodium current and 
counteracts the potassium current. 
     In the second case, MENPs cross the membrane, thus 
inducing a stronger electric field variation across the 
membrane. In turn, their magnetically controlled electric fields 
could significantly alter electrical properties of the membrane, 
thus leading to visible changes in the membrane potential and 
excitability of the neuron, potentially causing it to fire more 
easily and with greater frequency. The configuration with 
nanoparticles crossing the membrane is suggested because the 
field strength across the membrane in this case is approximately 
a factor of two larger, in turn leading to a more effective 
modulation process, compared to the other configuration under 
study. Fig. 6 (b) illustrates this mechanism, with the MENP 
entering the cell and forming channels.  Fig. 7 (b) shows the 
proposed circuit model for the second theory.  
     In the model, MENPs’ nonlinear conductance is denoted by 
the symbol g’th (= ր/ Zth, η is a constant) which is used to 
represent the MENPs channel. The voltage-current equations 
shown below are derived from a mathematical analysis of the 
equivalent circuit: 
 
 

(a) 

(b) 
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𝐶𝐶𝑚𝑚 �
𝑑𝑑𝑑𝑑(𝑡𝑡, 𝑥𝑥)
𝑑𝑑𝑑𝑑

� = 𝐼𝐼′𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡, 𝑥𝑥) − 𝑔𝑔𝑁𝑁𝑁𝑁(𝑉𝑉 − 𝑉𝑉𝑁𝑁𝑁𝑁)

− 𝑔𝑔𝐾𝐾(𝑉𝑉 − 𝑉𝑉𝐾𝐾) − 𝑔𝑔𝐿𝐿(𝑉𝑉 − 𝑉𝑉𝐿𝐿)
− 𝑔𝑔𝑡𝑡ℎ(𝑉𝑉 − 𝑉𝑉𝑡𝑡ℎ)
= 𝐼𝐼′𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡, 𝑥𝑥) − ∑𝐼𝐼𝑖𝑖(𝑡𝑡, 𝑥𝑥)
− 𝑰𝑰𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴(𝒕𝒕,𝒙𝒙) 

 

(14) 

𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖= ∑𝐼𝐼𝑖𝑖(𝑡𝑡, 𝑥𝑥) + ∑𝑔𝑔𝑖𝑖(𝑉𝑉 − 𝑉𝑉𝑖𝑖) (15) 
  

      As a result, the model consists of four major ion channels: 
sodium (Na+), potassium (K+), leak (L), and MENPs, in which 
g’th is MENPs conductance and its reversal potentials is Eth (Vth 
= Eth -Er, where Er is the absolute value of the resting potential). 
In the HH spiking model, the gate-controlled variables n, m, h, 
and δ determine the conductance value of each ion channel. 
Based on eq. 14, when the conductance of the MENPs channels 
increases, the term gth(V- Vth) will have a larger contribution to 
the equation. Depending on the value of Vth, if the equilibrium 
potential for MENPs ions is closer to the resting membrane 
potential (V), an increase in the conductance of the MENPs 
channels can further enhance depolarization, leading to 
increased excitability and potentially altering the firing 
properties of the neuron. 
     The effect of MENPs can be modeled as a memristive device 
in which the relationship between the charge passing through 
the MENPs and the resulting flux linkage can be modeled. The 
charge passing through the MENPs can be related to the 
magnetic field strength or other relevant parameters. The flux 
linkage can represent the resulting local electric fields 
generated by the MENPs, which in turn influence the behavior 
of ion channels. 
 

 
Fig. 6. (a) MENPs’ impact on neuron cell and (b) (imaginary) effect of 
generating current flow in the longitudinal direction. 
 

 

 
Fig.7.  MENPs memristive Hodgkin-Huxley (MMHH) Model circuit 
representation of the effect of MENPs on neuronal membrane. 
 

Furthermore, when MENPs are integrated into the 
memristor-like system, they bring an additional memory feature 
because of their magnetic anisotropy property. This magnetic 
anisotropy is due to the quantum-mechanical magneto-
crystalline anisotropy of the core material, due to the electron 
spin-orbit coupling in cobalt ferrite – the material used as the 
core in the most traditional core-shell configuration such as the 
CoFe2O4@BaTiO3. Cobalt ferrite has a magnetocrystalline 
anisotropy of approximately 106 J/m3, which in turn implies that 
if nanoparticles with a characteristic size of above 10 nm are 
magnetized, they remain magnetized for at least a few days, in 
other words, have a memory property. In turn, due to the 
magnetoelectric effect of this nanoparticle system, this memory 
property can be controlled via application of a magnetic field. 
Hence, this memory property can be finely tuned via control of 
nanoparticles’ intrinsic properties. In summary, the origin of the 
memristive-device-like property is two-fold: (1) sodium and 
potassium channel conductance and (2) the magneto-crystalline 
anisotropy of MENPs. 
 
     The most straightforward approach would be to assume a 
uniform distribution of nanoparticles over the membrane 
surface, at least in piecewise approximation.  The number of 
neurons necessary to depolarize the membrane and trigger 
firing depends on various factors, including nanoparticle 
density, neuronal sensitivity to external stimuli, and 
experimental conditions. Typically, a critical threshold of 
neuronal activation needs to be surpassed to initiate firing, but 
the precise number of neurons required can vary widely based 
on these factors. In turn, this threshold scales with the effective 
number of ion channels.  
    The density of ion channels, denoted as X/cm2, represents the 
number of ion channels present per unit area of the neuronal cell 
membrane. Ion channels play a crucial role in regulating the 
flow of ions, such as sodium, potassium, and calcium, across 
the cell membrane, thereby influencing neuronal excitability 
and signaling. The density of ion channels in neurons can vary 
depending on the specific type of ion channel, the neuronal 
population, and the region of the brain. It is challenging to 
provide a single specific number for ion channel density in 
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neurons as it can differ across various studies and neuronal 
subtypes. 
  It is also important to note that the density of MENPs, A, 
should be considered in relation to the density of ion channels, 
B, with the goal to gauge the magnitude of MENPs' effects on 
neuron activity. When MENPs' density is significantly smaller 
than the density of ion channels, i.e., A << B, the observed 
effect would be relatively weak. Conversely, when MENPs' 
density is comparable to or approximately equal to the density 
of ion channels, i.e., A~ B, the effect becomes more 
pronounced, leading to a more substantial modulation of neuron 
activity. A reasonable estimation for A and B to provide an 
adequate modulation level of neuronal activity could be in the 
range of 1×1011 to 1×109 ion channels per cm2 [56-62]. It is 
important to note that the specific values for A and B can vary 
depending on the neuron type, brain region, and experimental 
conditions. 
     Furthermore, in order to incorporate noise into the MMHH 
model, a set of differential equations can be used to describe 
how ion channels open and close in response to membrane 
potential in the presence of MENPs. A stochastic term can be 
added to the differential equations that describe how the gating 
variables, which control when the ion channels open and close, 
act to include noise in the model. This random term is shown 
by a random variable called ζ(t), which has the properties of 
white noise, which means that it has no mean and is delta-
correlated. The stochastic term allows the model to better 
capture the variability and randomness in real-world neuron 
behavior, which is important for understanding how the brain 
processes information and generates complex behaviors. 
The stochastic term would be added using the following 
equations: 
 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛼𝛼𝑋𝑋(1 − 𝑋𝑋) − 𝛽𝛽𝑋𝑋𝑋𝑋 + 𝜎𝜎′𝑋𝑋𝜁𝜁𝑋𝑋(t)  
(16) 

where X represents one of the gating variables (n, m, h, δ), α 
and β are functions that describe the opening and closing rates 
of the ion channel, σ’ is a function that describes the strength of 
the noise, and ξ(t) is the white noise term. The noise amplitudes 
can be chosen based on the amount of noise in the experimental 
data, or they can be estimated from the data using methods like 
maximum likelihood estimation [63] or Bayesian inference [43, 
64]. Adding noise to the model can account for the fact that 
neurons don't always act the same way and can explain things 
like stochastic resonance, where the presence of noise can 
change the response of a neuron to a weak signal. However, it 
can also make the model more complicated and make it harder 
to look at and understand the results. 
 
III. Conclusion 
 
This paper describes a novel physical neuron model that 
incorporates MENPs and calculates their effects to control 
neural activity via application of magnetic fields. The study 
emphasizes MENPs' ability to locally modulate neuron activity 
in a non-invasive and wireless manner. In turn, this has two 
major implications. First, MENPs’ properties, e.g., their 
magnetoelectric effect, saturation magnetization, size, shape, 
density and localization regions, and the applied magnetic 

field’s spatiotemporal profiles can be optimized to provide the 
required local modulation of neural activity in a wireless and 
non-invasive manner. Such analog circuits can be used to model 
both single-cell and collective effects in nervous systems.  
Second, the ability of MENPs to locally modulate neural 
activity has implications for the development of therapies for a 
variety of neurological disorders. Unlike the current DBS 
technology, MENPs approach does not use any surgically 
invasive electrodes. Unlike optogenetics - the current state of 
the art in research in the field of neuroscience – MENPs do not 
require genetic modification or surgery to introduce light 
activation, especially in the blue end of the optical spectrum 
[65].  In this study, a MENPs-based Memristive HH Model 
circuit has been developed that describes the effect of MENPs 
on neurons. In order to provide an insight into neuron's behavior 
in response to external stimuli such as an electric field generated 
by MENPs via application of a magnetic field, several key 
circuit equations are derived, and two analog circuit models are 
analyzed using the principles of ion channel activation and 
inactivation. 
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