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Magnetoelectric nanoparticles (MENPs) convert magnetic fields into localized electric fields, using a core-shell nanostructure based
on a magnetostrictive core and piezoelectric shell. These nanoparticles can serve as biocompatible wireless nanotransducers for magnetic-
based brain stimulation. We examined the effects of changing the core-to-shell ratio in cobalt ferrite — barium titanate (CoFe204@BaTiO3)
MENPs on their magnetic properties, and then we tested their performance in stimulating neurons in vitro. The nanoparticles with the
highest anisotropy core and lowest core-to-shell ratio were the most effective at activating neurons.
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Three different core-shell ratio MENPs were fabricated and 5 0.05— _E
measured, labeled E98, E99, and E100, all using the same cores § E 3
(~20 nm) These nanoparticles had varying core-shell mass 2-0.5F —
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oriented and fixed to the substrate under a large, aligning “E =
magnetic field. They were then measured along the aligned -1.5H I-ll()l L1l |5 VIR VAN I R 1|0 L

. . R 0
magnetic field axis (parallel ||) and the transverse axis Applied Field H, (kOe)
(perpendicular 1). With the alignment set from the field  Fig 1. M-H loops of CoFe,0.@BaTiO; MENPS.
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E98 nanoparticles required the highest applied magnetic field
(>7,000 Oe) to reach saturation in the parallel orientation. E99
and E100 had a 20% and 40% decrease, respectively, in
saturation magnetization compared to E98. In all cases,
remanence of the parallel direction was always lower than that
of the perpendicular direction, and of the three, E99 maintained
the highest remanence in both directions, with only a 3.5%
difference. Coercivity of E99 in the parallel direction yielded
the highest value at 945 Oe but had a significant difference
between the orientations with a decrease of 50% to 470 Oe in
the perpendicular direction. E98 only had a 29% difference in
coercivity and increased from parallel to perpendicular instead.
E100 also showed a significant increase in coercivity going
from parallel (166 Oe) to perpendicular (548 Oe), with almost
a factor of three difference in coercivity.

From the M-H loops, E98 was the most anisotropic and had
the most consistent coercivity. In contrast, E99 and E100 were
relatively isotropic but had noticeably varying coercivity values,
with E100 having the smallest coercivity.

TABLE I
NANOPARTICLE MAGNETIC PROPERTIES

Particle and Coercivity Remanence Saturation
Orientation (Oe) (emu/g) (emu/g)
E98 1:5 Ratio
Perpendicular 356.57 0.77 1.28
Parallel 275.46 0.27
E99 1:7 Ratio
Perpendicular 470.15 0.86 1.03
Parallel 945.19 0.83
E100 1:9 Ratio
Perpendicular 547.68 0.64 0.77
Parallel 166.36 0.14

B. Neuron Stimulation

We cultured primary hippocampal cells of E18 Sprague
Dawley rats for experimentation. Cells were loaded with Cal-
520 to generate fluorescent images and coated with 10ug of
MENPs. After recording baseline activity, we applied a bipolar
square wave in ten 1 second pulses every other second with the
electromagnet to activate the particles. Nanoparticles E98 were
efficient at stimulating the neuron, generating four major firing
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Fig. 2. Fluorescent response from neurons exposed to three separate types
of CoFe204@BaTiO3 MENPs. The highlighted region represents the period
of applied magnetic stimulation field.

events as well as continual activity after the stimulation period
had ended. E99 and E100 only had one major firing event
during the stimulation period and sporadic post stimulation
activity.

III. DISCUSSION

Looking at the M-H loops of the nanoparticles alone, E98
MENPs exhibit the most unique behavior, demonstrating the
highest anisotropy of the three types and saturating the slowest.
In turn, the highest anisotropy correlates with the highest ME
effect, because both the anisotropy and the ME effect are
defined by the spin-orbit coupling. At the same time, E98 also
showed the highest efficacy of neuronal stimulation, which can
be explained by their high ME effect and the fact that the
applied magnetic field (1000 Oe) was significantly higher than
the coercivity of these nanoparticles. In contrast, the worst
performing nanoparticles in terms of stimulation, E100, had the
smallest anisotropy and thus the smallest ME effect. In
summary, this study shows a correlation between the magnetic
properties of MENPs and the wireless neural modulation
capability. Particularly, the stimulation efficacy strongly
depended on the ratio of the applied field to the coercivity of
the nanoparticles, thus indicating the possibility to use a MENP
as an On/Off switch for local stimulation. In the future, with
improved control over the magnetic field, this approach can one
day lead to a high-resolution, wireless neural interface.
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