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Abstract—Traditional machine learning techniques are prone
to generating inaccurate predictions when confronted with shifts
in the distribution of data between the training and testing phases.
This vulnerability can lead to severe consequences, especially in
applications such as mobile healthcare. Uncertainty estimation
has the potential to mitigate this issue by assessing the reliability
of a model’s output. However, existing uncertainty estimation
techniques often require substantial computational resources
and memory, making them impractical for implementation on
microcontrollers (MCUs). This limitation hinders the feasibility
of many important on-device wearable event detection (WED)
applications, such as heart attack detection.

In this paper, we present UR2M, a novel Uncertainty and
Resource-aware event detection framework for MCUs. Specifically,
we (i) develop an uncertainty-aware WED based on evidential
theory for accurate event detection and reliable uncertainty
estimation; (ii) introduce a cascade ML framework to achieve
efficient model inference via early exits, by sharing shallower
model layers among different event models; (iii) optimize the
deployment of the model and MCU library for system efficiency.
We conducted extensive experiments and compared UR2M to
traditional uncertainty baselines using three wearable datasets.
Our results demonstrate that UR2M achieves up to 864 %
faster inference speed, 857% energy-saving for uncertainty
estimation, 55% memory saving on two popular MCUs, and
a 22% improvement in uncertainty quantification performance.
UR2M can be deployed on a wide range of MCUs, significantly
expanding real-time and reliable WED applications.

Index Terms—Uncertainty, Event Detection, Efficiency, Micro-
controllers

I. INTRODUCTION

With advancements in pervasive, low-power, and embedded
sensors, a range of human physiological signals can be collected
and continuously analyzed. Empowered by machine learning
(ML), especially deep learning (DL), these sensors provide great
opportunities for a plethora of wearable event detection (WED)
applications, such as the detection of stress levels [1], blood
pressure [2], or respiratory illnesses [3]. Recently, deploying
ML models directly on microcontrollers (MCUs) has attracted
tremendous attention due to their potential to improve user
privacy and computational latency in WED, especially under
unstable network conditions [4]. However, as shown in Figure 1,
designing and deploying efficient WED models on MCUs is
challenging due to their limited memory space and battery life,
especially in comparison to mobile phones [4].

Furthermore, many existing WED models prioritize enhanc-
ing classification accuracy while overlooking the importance
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Fig. 1: Memory and power comparison between a typical
mobile phone and microcontrollers.

of prediction reliability [5], which is crucial in fields like
health. Reliability is quantified as uncertainty, indicating the
trustworthiness of the classification results [6]. Factors such as
hardware differences, environmental variations, data collection
methods, and sensor degradation can lead to distribution shifts
between training and testing data (data uncertainty) or unseen
data (model uncertainty [7]), reducing the reliability of WED
models.

Several methods for quantifying uncertainty have been
investigated. Bayesian Neural Networks (BNNs), a prominent
approach for uncertainty estimation, quantify uncertainty by
estimating posteriors over model weights [8]. However, BNNs
entail substantial computational expenses [9]. Although approx-
imation techniques such as Monte Carlo dropout (MCDP) [10]
and deep ensembles [7] have been proposed, these methods
still require ensembling multiple models and various inference
steps, which introduce intensive computational and memory
demands, as well as increased latency. Recent research has also
introduced deterministic models that require only one forward
pass, making them more efficient but at the cost of lower
accuracy [11]. As a result, integrating reliable uncertainty could
pose additional complexities in the design and deployment of
trustworthy WED models on MCUs.

Lastly, existing works demonstrate inefficiency in supporting
multi-event detection on MCUs, as they typically employ
individual models for each event to ensure reusability across
different applications or use cases and to optimize efficiency
for each model [12]. However, wearable devices often require
the simultaneous detection of multiple events. For instance, a
single electroencephalography (EEG) input might be utilized
to concurrently detect the brain’s alpha wave (event 1) for a



guided-meditation application, and beta wave (event 2) for a
focus monitoring application. Additionally, executing multiple
inferences (encompassing both prediction and uncertainty esti-
mation) for varied events can be resource-intensive, potentially
rendering WED deployment on MCUs impracticable due to
memory constraints.

To address the aforementioned challenges, we propose an
efficient uncertainty estimation approach based on evidential
deep learning (EDL) and cascade learning. Specifically, (i) EDL
is designed to predict a distribution, parameterized by a vector,
instead of providing a point prediction through a single DL
model, which allows for the direct prediction of event detection
and its associated uncertainty via a single inference. (ii) For
each event (intra-event), we consider three models of varied
depths (i.e., shallow, medium, and deep); herein, deeper models
are stacked upon shallower ones, meaning the lower layers are
shared. A classifier layer (termed a “head”) is appended to each
model. This design adheres to the observation that some testing
samples, particularly those near the center of the training sample
distribution, do not require a full pass through the deep model
to ensure a reliable prediction [13]. Consequently, early exits
can be employed to enhance computational cost-effectiveness
and inference speed, with uncertainty chosen as the criterion
for an early exit to ensure the reliability of the prediction.
(iii) For multiple events (inter-event) using the same input, we
propose the sharing of all layers for feature extraction and
the training of individual classification layers (referred to as
“multi-heads”). As a result, our framework can be effortlessly
scaled to multiple events with minimal memory overhead, since
only the heads need to be added. Additionally, reusing shared
layers for different events reduces computation time and cost.

We further apply three techniques to improve the efficiency
of our approach during implementation. First, we implement
an architecture search to find the optimal model structure
automatically (e.g., number of model layers and size of
channels) for specific WED tasks based on recent success
models designed for MCUs [14]. Second, we conduct scalar
quantization of the model weights into 8-bit integers to decrease
the model size and further save memory. Third, to reduce the
memory consumption of the deep learning library, we remove
unnecessary components that are not utilized in our models.
Finally, we conduct comprehensive experiments with two MCU
platforms to demonstrate the effectiveness of the proposed
approach.

To summarize, we make the following contributions:

« We propose a cascade model architecture with intra-event
and inter-event layer sharing to enable efficient multi-event
detection. We also conduct efficient architecture search,
model compression, and library optimization to improve
system efficiency (§V-§VI).

« We propose a novel uncertainty-aware learning paradigm
based on evidential theory for efficient and reliable WED
uncertainty estimation on MCUs (§IV).

« We conduct extensive experiments on three popular
wearable datasets and implement our framework on
two off-the-shelf MCUs, including STM32F446ZE and

STM32H747F7, with limited SRAM memory (128KB
and 512KB, respectively). Our evaluation shows that the
proposed framework performs up to 864% better inference
speed and 857% energy saving compared to uncertainty
baselines. The approach also saves 55% of memory
compared with existing uncertainty estimation baselines
(§VII-§ VIII), enabling the deployment of WED models on
MCUs with limited memory (e.g., STM32F205VB with
64KB SRAM).

II. RELATED WORKS

This section briefly discusses the literature on machine
learning on MCUs, event detection on resource-constrained
devices, and efficient methods for uncertainty estimation.

Tiny machine learning on MCUs. Tiny Machine Learn-
ing [14] (TinyML) aims to execute deep learning models
locally on extremely resource-constrained devices such as
MCUs. Recent studies have concentrated on optimizing network
architectures considering constraints such as limited memory,
energy, FLOPs [4], and processor speed [15]. However, these
approaches focus solely on classification accuracy, treating them
as single-point predictions without considering uncertainty es-
timation. In contrast, we further include uncertainty estimation
of the desired predictions to enable a more reliable WED.

Event detection on resource-constrained devices. Recent
years have seen a surge in research focused on event detection
using wearables, exploring various sensing modalities including
image [16], audio [17], electrocardiogram (ECG) [18], and
others. However, most existing WED approaches only utilize
wearables for data collection, offloading processing tasks like
pre-processing, feature extraction, and ML modelling to cloud-
based GPUs (through WiFi) [3], [19], desktop GPUs [20],
mobile devices [1] or IoT devices [21]. This category of
approaches can lead to high latency during signal transmission
or raise privacy concerns. To address these challenges, our
focus is on comprehensive WED for on-MCU computation,
developing efficient and lightweight ML models suitable for
limited-resource environments.

Efficient uncertainty estimation. Some effort has been
devoted to achieving efficient uncertainty estimation, such as
regulating the neural network weights to simulate BNNs [22].
Another stream of studies focuses on expensive and not
deployable operations on MCUs like flow [23], spectral
normalization [24], and stochastic Convolutional layers [9].
Despite their success in improving computation efficiency,
their accuracy still either performs four times worse than
the state-of-the-art (SOTA) method of deep ensembles [7]
or require customized operators and libraries that are currently
unavailable on MCUs. As an alternative to using ensembles,
knowledge distillation [25] has been proposed as a means
of training a single model. However, knowledge distillation
typically requires out-of-distribution (OOD) data, which is
often difficult to obtain for real-world applications. Compared
to existing work, our study is the first to propose an efficient
model for uncertainty quantification on MCUs.
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Fig. 2: System overview.

III. UR2M SYSTEM OVERVIEW

UR2M includes two stages: model training (§IV-§V)
and deployment (§VI) as shown in Figure 2. During the
training stage, there are three objectives: (1) EDL for efficient
uncertainty quantification, (2) Cascade ML learning which
includes single-event (intra-event) detection via early exits, and
multi-event (inter-event) detection via feature sharing and multi-
heads. During the deployment stage, we first carry out (1)
multi-tenancy deployment [26], allowing multiple ML models
(referred to as “tenants”) to efficiently and dynamically share
the same memory space among intra-event models. We then
further focus on (2) optimizing the model and the MCU library.

In detail, wearable sensors first capture event streaming
signals. Features are then extracted for different signals, such
as Mel-frequency cepstral coefficients (MFCC) for the audio
signals. Following this, evidential modeling via EDL and one-
vs-all training (§IV) are applied to obtain reliable WED predic-
tions and estimate uncertainty. Within the EDL framework, we
specifically designed a cascade learning architecture (§V) for
single-event detection, which divides the network layers into
shallow, medium, and deep levels to enable intra-event sharing
(sharing shallower layers and inferring with early exits within
an event model) and process samples at different levels of
recognition difficulty. Further, we propose inter-event sharing
(sharing entire layers for feature extraction) for multi-event
detection. In addition to the modeling, we further carry out
efficiency improvements (§VI) via model architecture search
(during model training), quantization, uncertainty operator wrap-
up, and MCU library optimizations.

IV. EFFICIENT UNCERTAINTY QUANTIFICATION

In this Section, we propose a highly efficient EDL model
tailored for event detection on MCUs. This model is optimized
to adhere to the constraints of MCUs, employing distributions
to achieve accurate uncertainty quantification in real-time
scenarios through a single forward pass.

A. Evidential Deep Learning

For a given input 2%, EDL generates a Dirichlet distribution

Dir(at), where o' = [af,ad,...,a%] denotes the concentration

parameters of the distribution (dense distribution means high
evidence and low uncertainty) [22]. Being a conjugate prior to
the categorical distribution, the Dirichlet distribution enables
EDL to determine the belief mass b® = [b},b5,...,b%] correlating
directly with uncertainty. A higher belief mass indicates a
higher confidence in the prediction, whereas a lower belief

mass suggests the presence of uncertainty. Formally,
b'=(a' - 1)/5", (1)

where 5 = - ol is the Dirichlet strength. From o' and

b, we can further infer the categorical prediction y" and the
associated uncertainty u' as:

o o %

7 —argmcax[ /S, wi=1 Zb )

Before the training process, acknowledglng our initial state
of complete uncertainty about the outputs (i.e., uncertainty
is set to 1), we initialize ' with [1, 1, 1], corresponding to
b’ = [0,0, 0] according to Eq. 1 and Eq. 2. To refine the model,
we employ a loss function defined as:

mmﬁ =

ZC’E ol /S gty — X H(Dir(a))  (3)

where CE denotes the cross-entropy loss, and H represents
the entropy of a Dirichlet distribution parameterized by a’. The
first term of the loss function aims to maximize classification
accuracy, while the second term controls the output distribution
to avoid overconfidence. The hyperparameter A plays a crucial
role in balancing these two terms.

Finally, this procedure will lead to a predicted o for each
sample which is used to infer the categorical outcome and the
associated uncertainty (e.g., u =1 — >_ b?).

B. Efficient Evidential Modeling for Event Detection on MCUs

Implementing the EDL discussed in §1V-A for WED requires
deploying multiple models and performing a series of inferences
to detect various events, which significantly challenges the
limited computational resources of MCUs. To mitigate this,
we propose an efficient EDL modeling for WED, along with
related training and optimization techniques designed to infer
multiple events concurrently.



Efficient EDL Modeling for WED. WED is designed to
identify an event signal coming from a wearable device. In
ML/DL, this objective is defined as a binary classification task
over a given duration/period of sensor data. For each binary
classifier that detects classes of the event c, the outputs of EDL
include the binomial belief mass, which can be used to infer
the uncertainty of the WED prediction, i.e., how confident
it is to be classified as positive (i.e., an event happening) or
negative (i.e., an event not happening).

Given the binary nature of our EDL framework (positive vs
negative), we adopt a Beta distribution (a special case of the
Dirichlet distribution) to model the event probability. Specifi-
cally, a Beta distribution is characterized by two parameters
! and 3¢ such that

P(p. | 2*;0.) = Beta(pl, | o, )

_ 1 al—1¢1 _ \Bi-1

= Bl )’ (1—=p)7,

where P (pl | 2%;6.) denotes the probability distribution of

the event given the sensor sample x*, with both o, and S

being greater than zero. B(a!, 8¢) = T'(a’)T(BE) /T (ol + BL)

is the Beta function, I'(+) is the gamma function, and p! #

0. Applying the mapping rule in Eq. 2, the prediction and
uncertainty v for each sample 7 are derived via a NN:

“
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u' =2/(al + BY) (6)

where by represents the probability of a positive prediction
while by denotes that of a negative prediction.

One-versus-all classifiers. To obtain the parameters of
and (¢ in EDL across multiple events, we adopt the one-
versus-all (OVA) classifier, where each classifier distinguishes
a specific event from all others, leading to C' binary classifiers
(i.e., heads). Specifically, in multi-event WED, we split the
entire training dataset into C' independent datasets with binary
labels (i.e., event ¢ vs. non-event ¢ for ¢ € [1,C]). For each
event, we then develop a model to learn a set of mapping
functions h.(z*;0.), where z* represents the input signal, and
6. are the model weights. The outputs of the mapping functions
yield the parameters o’ and (3! in the Beta distribution,
computed as:

ak, B = he (2% 6.) %

From this, we can deduce binomial decisions, with bﬁ
denoting a positive prediction (i.e., event happening), and b,
representing a negative prediction (i.e., event not happening).
Subsequently, these mapping functions are optimized jointly
through an OVA training [27]. With this joint training of a
shared EDL model, there is no need to deploy separate models
on MCUs, thereby significantly reducing memory costs.

In contrast to traditional softmax-based deep learning ap-
proaches, which force the Neural Networks (NNs) to predict a
point estimation, we can replace the softmax layer of the neural
network with a ReLU layer (or an exponential function but
softplus is not available in the MCU library). This adjustment

ensures that the outputs remain non-negative, aligning with the
positive o and enabling the NNs to predict distributions for
each event task.

C. Uncertainty-aware training and optimization

Focusing on the training and optimization of the EDL
framework for the proposed multi-event WED, we draw
inspiration from Eq. 3 and propose using the binary cross
entropy and Beta loss for each binary classifier of event c as:

1 & -
min£ = > BOE (¢¢/Sye) = A-H (B (V) ®)

where 12 symbolizes the Beta distribution parameters
(at,3}), BCE is the binary cross-entropy loss, H represents
the entropy of a Beta distribution B parameterized by 1! and
A serves as a balancing weight between the cross-entropy loss
and entropy of the Beta loss. For all C' events, we collectively
optimize all binary classifiers [28], enabling the model to

perform inference with just a single forward pass.

V. CASCADE LEARNING

This section discusses designing efficient neural networks for
UR2M. We explore the benefits of the early-exit strategy and
architecture search method for single-event sharing on MCUs,
reducing computational and memory costs. We also examine
multiple-event sharing and detail the training pipeline using
cascade learning, with all search and training on the server.

A. Single-event Sharing

For many DL tasks, some input samples, referred to as
“easy” samples, can be effectively classified using shallower
layers of the representation. This indicates that these shallower
representations can identify “easy” samples, thus avoiding
extra computation, whereas more “difficult” samples require
processing through deeper layers [29]. However, unlike edge
GPUs, designing model sharing on MCUs is challenging given
the limited computing power, memory, and library support.

Using Early-exits to Share Shallower Layers. We propose
a nested architecture featuring three early exits (sub-networks),
which include shallow, medium, and deep models designed for
single-event (intra-event) sharing, as illustrated in Figure 2 for
MCUs. Each sub-network is designed using identical blocks
of neural network layers, inspired by efficient neural networks
for edge devices [30]. Existing early-exit methods usually rely
on accuracy as a criterion to prune model branches. However,
uncertainty can act as a crucial indicator for reliable prediction:
we propose using uncertainty as a metric to determine whether
to exit at each sub-network. As demonstrated in Figure 2,
uncertainty thresholds are applied at the output of both shallow
and medium models to facilitate early exits for data with low
uncertainty (i.e., reliable predictions), thereby saving on MCU
overheads.

Uncertainty-aware Architecture Search. To find efficient
neural networks that minimize MCU overhead, recent studies
have shown that the number of operations (OPS) and channel
sizes [14] are two crucial factors. Considering this, we propose



Algorithm 1: The Search and training of UR2M

Input: Channel L, OPS size O, DTRAIN DTEST
Output: Event prediction y and uncertainty «
Data: Training data DTRAIN
/* search single-—event model x/
1 best_backbone, best_score = False, 0
2 for i in L do

3 for j in O do
// Train candidate NNs backbone (b;;)

PJPJG*kHj(‘AfijVLi,()j)
accuracy < NN(DTHEAIN)
tradeoff <— accuracy/OPS
if tradeoff < best_score then
L best_NN, best_score = NN, tradeoff

9 return best NN

®w N A

/% train with cascade learning x/

10 for [ =0,1,2 do

// take each output as next exit’s input
1 | u, output <(b; (W), DTRAIN)
12 | DTRAIN + output
13 if converge then
14 | return W,

an effective yet straightforward architecture search method to
identify optimal neural networks for the early-exit models (i.e.,
shallow, medium, and deep models) in single-event sharing.

Specifically, we employ the Depthwise block as the OPS
to control model depth, as it serves as an ideal proxy for
managing model latency on MCUs [14]. The structure of
each block consists of 1x1 Convolutions, 3x3 Depthwise
Convolutions, and 1x1 Convolutions. We design each block
using a 2D convolutional layer to to effectively handle various
input types and extract the initial features. Subsequently, we
use a consistent padding strategy to control the depth of OPS,
ensuring that the output of each block matches its input. Lastly,
we incorporate a linear classifier in each block as the output
layer for single-event detection.

To define the model search space for efficient architectures
on edge devices, we configure channel sizes L (ranging
from 32 to 512) and OPS sizes O (3 to 7), drawing from
models like MobileNet [30], DSCNN [31] for mobile devices,
and MicroNets [14] for MCUs. This leads to 60 potential
configurations (N = L x O), each comprising three sub-
networks. Our objective is to identify the optimal configuration
N* that balances minimal OPS with maximal accuracy. As
outlined in Algorithm 1 (Lines 1-9), the search process involves
initially setting a best backbone and score (Line 1), iterating
through combinations of channel and OPS sizes (Lines 2-3), and
assessing candidate NNs based on accuracy and operational
space trade-offs (Lines 5-8), to ultimately select the most
efficient and accurate NN backbone (Line 9).

B. Multiple-event Sharing

For a C multi-event detection task, a common approach
is to develop individual models to ensure reusability across

different applications or use cases and to optimize efficiency
for each model [12]. These models can occupy C' times the
MCU memory and computation cost compared to a single-
event model. However, some singular events may share similar
characteristics, which can be captured by an identical network
for feature extraction. For example, EEG signals are often
used to detect alpha waves (event 1) and beta waves (event 2)
using two independent models, despite the fact that both waves
describe brain activities and can share certain information.

Using Heads to Share Entire Backbone. We propose our
multi-event detection models, which share three sub-networks
(i.e., shallow, medium, and deep) and consist of C'x 3 adaptive
classifiers (cf. Figure 2). Compared to multi-class classification,
our multi-event sharing framework allows for more flexibility
in single-event detection, which is especially preferred on
low-power MCUs to ensure efficiency and reusability across
multiple applications. Specifically, as illustrated in Figure 2,
for each shared shallow, medium, and deep backbone NNs, we
design C' independent classifiers to distinguish the C' events.
Each classifier is composed of an adaptive pooling layer and
a linear layer. The adaptive pooling layer aims to adjust the
different output sizes from the searched shallow, medium, and
deep sub-networks to match the input size of the classifiers. We
optimize all the classifiers in a multi-task learning paradigm.

Uncertainty-aware Cascade Learning. To train the afore-
mentioned shallow, medium, and deep models for MCUs,
we propose an uncertainty-aware cascade model inspired by
deep cascade learning for training our early-exit models. As
illustrated in Algorithm 1 (Lines 10-14), we employ three
optimizers for the three exits, with each exit representing one-
third of the model layers. Initially, we train the first one-third
of the layers in the searched backbone model and then utilize
its output to train the second exit. Finally, we optimize the
third exit.

During each exit, we apply a single-layer linear layer
(referred to as a head) for each event, which takes input maps
of the output dimensions of the early-exits. Each early exit
produces two outputs: the prediction and the uncertainty. We
optimize all sub-networks concurrently on the server.

Our design is supported by the MCU libraries of Tensorflow
Lite Micro (TFLM) in terms of multi-tenancy (e.g., enabling
model deployment in a cascade manner) and memory planner
(e.g., reusing the same operator’s memory). This coherence can
significantly reduce the overheads compared to the conventional
multi-event detection models. Overall, our approach aims to
optimize the performance of the models while accounting for
uncertainty and providing early exits for faster inference.

V1. IMPLEMENTATION
A. System Implementation

Hardware. The training stage of our system is implemented
and tested on a Linux server equipped with an Intel Xeon
Gold 5218 CPU and NVIDIA Quadro RTX 8000 GPU. The
shared backbone and multiple heads are pre-trained during
this stage. Afterwards, in the deployment stage, we deploy the
shared backbone and heads on two MCUs. The first one is
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the STM32F446ZE (or F446ZE), which has an ARM Cortex
M4 processor with 128 KB of SRAM and 512 KB of eFlash.
The other one is the STM32H747XI (or 747XI), featuring a
dual-core processor (ARM Cortex M4 and M7) with 1 MB of
SRAM and 2 MB of eFlash. Our evaluation only utilizes one
core (ARM Cortex M7) since MCUs are typically equipped
with only one CPU core. This setup limits the usage space of
SRAM and eFlash to 512 KB and 1 MB, respectively.

We developed and assessed our system’s training stage using
PyTorch 1.8, and tested various baselines on a Linux server.
The evidential uncertainty module is implemented with Python
and NumPy. We adopted TensorFlow Lite Micro (TFLM) [26]
for MCU deployment due to its portability, ease of use, and
support for numerous neural network layers and optimized
kernels. UR2M’s deployment stage and online optimization
scheme are developed in C++ on two MCUs (ARM Cortex M4
and M7). To deploy a PyTorch model on MCUs, we convert
it to TensorFlow Lite (TF Lite) using ONNX representation
and the TF Lite converter. The model is run on MCUs using
TFLM and Mbed OS. Additionally, the CMSIS-DSP software
library processes raw signals to generate model inputs (e.g.,
MECC features), and the CMSIS-NN kernels in TFLM facilitate
efficient neural network operations on MCUs.

Multi-tenancy Deployment. To facilitate multi-event sharing
on MCUs with limited memory, we develop a multi-tenancy
deployment for early-exit models using TFLM. UR2M utilizes
multiple model interpreters to allocate memory from a unified
space, ensuring efficient model operation. During evaluation,
this deployment strategy is applied to all baselines and the
UR2M model. For example, Deep Ensembles have five models,
potentially using 5x eFlash space. However, with optimization,
it only consumes 2x more SRAM (cf. §VIII-C) due to multi-
tenancy deployment.

B. Uncertainty Operator Implementation

To capture the uncertainty at inference time on MCUs,
we only use TFLM-supported operations. First, we utilize
a ReL.U operator to regulate the distribution of the output as
non-negatives. Then, based on these outputs, we follow Eq.6
to generate uncertainties. Specifically, calculating uncertainty
first requires the sum of reduced dimensions. Although the
reduced_sum operator is supported, it is not available for TFLM.
To solve this, we use a squeeze operator to reduce the output
dimensions, followed by a sum operator. Finally, we apply
a divide operator to generate the uncertainty. We wrap the
above-mentioned operators within the model and implement
them in the TFLM library to save the overhead of uncertainty

prediction. The overall uncertainty implementation is shown
in Figure 3a.

C. MCU Library Optimization

Unlike mobile devices’ memory architecture that employs
large off-chip main memory (e.g., DRAM), MCUs consist of
only small-sized on-chip memory (e.g., SRAM and eFlash) (cf.
Figure 1). To understand the memory requirements of our model
to fit in MCUs, we first compute the memory usage of UR2M.
For a searched shallow model with 8-bit int quantization, we
observe that TFLM requires 79 KB of SRAM and 203 KB of
eFlash, which falls within the tight memory budgets of many
MCUs, for example, 64 KB of SRAM and 128 KB of eFlash
of STM32F205VB as described in Figure 1. In particular,
on SRAM, the memory usage includes intermediate tensors
(30 KB), persistent buffers (3 KB), runtime overhead of the
TFLM interpreter (6 KB), and MBed OS and other libraries
(10 KB). Additionally, Figure 3b top shows the on-chip eFlash
architecture of an F446ZE MCU and how TFLM allocates
memory space to run a shallow model on an MCU.

Note that since we only conduct 8-bit post-quantization, we
only observe a maximum of 1% performance drop between the
pre-and post-quantization stages among all methods.

Given the limited memory space for searching the optimal
model parameters, we propose optimizing the TFLM library.
First, we removed all operation-related files that did not impact
our backbone. Then, we reordered the operations files based on
our backbone structure. As shown at the bottom of Figure 3b,
our MCU library significantly optimized the TFLM interpreter’s
runtime overhead, reducing it from 122 KB to 32 KB (3.8x
smaller). Moreover, the graph definition was reduced by 2
KB, from 8 KB to 6 KB, in the eFlash memory. After the
optimization, a total of 104 KB of memory is used, which
can now fit into the STM32F205VB and many other MCUs.
Overall, UR2M optimizes 49% of eFlash memory compared
to the baseline TFLM library.

Note that during the evaluation, we applied the same MCU
library optimization strategy to all baselines as well as the
UR2M model.

VII. EVALUATION SETTINGS

A. Evaluated Datasets

Our target application scenarios are focused on WED
applications. Specifically, we evaluate three wearable datasets,
including in-ear activity recognition [32], audio event keyword
spotting [33], and heart disorder event detection [34]. We
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experiment with these three datasets, each featuring different
data modalities that suit UR2M settings. For imbalanced
datasets, we use SMOTE [35] to upsample the training data.

In-ear Dataset. Oesense [32] contains an in-ear audio
dataset for activity recognition (including five events: “walk”,
“run”, “still”, “drink”, and “chew”) among 31 subjects. For
preprocessing, we first segment the original audio into one-
second segments and set the sampling rate at 4 kHz. Then, we
extract the 2-D MFCC features for each segment. 10 MFCC
features are then obtained from an audio frame with a length
of 80 ms and a stride of 40 ms, yielding an input dimension of
1x10x21. After preprocessing each event, we obtained 40,064
training samples (90%) and 4,452 test samples (10%) for all
five activities.

KWS Dataset. The Keywords Spotting (KWS) V2 [33]
dataset contains 105,829 utterances from 2,618 speakers. There
are 35 words split into 12 classes, including ten keyword
spotting classes and an unknown’ class (remaining 24 words).
For preprocessing, we first constrained all event samples to one
second by segmentation or zero-padding and set the sampling
rate at 16 kHz. Then we extracted MFCC features using 640
FFT points and 320 points of hop length. We obtained 10
MEFCC features from an audio frame with a length of 40ms
and a sliding window of 20ms, yielding the input dimension
of 1x10x51. After preprocessing, we obtained 92,502 total
event training samples (90%) and 10,278 test samples (10%).

ECG5000 Dataset. The ECG5000 dataset [34] is a 20-hour
long one-channel ECG dataset that contains 92,584 heartbeats,
including five different types of heart events: Normal (NM)
(58.4%), R-on-T Premature Ventricular Contraction (RTPVC)
(35.3%), Premature Ventricular Contraction (PVC) (3.9%),
Supra-ventricular Premature or Ectopic Beat (SPEB) (2%),
and Unclassified Beat (UB) (0.5%). For preprocessing, we
resample the input duration of 0.56s with 140 samples into 560
samples. Then we reshape the input into 10 channels, yielding
the input dimension of 1x10x56. After the preprocessing, we
obtained 4,500 total event training samples (90%) and 500
(10%) test samples. Note that UB has only one test sample.

B. Uncertainty Metrics

We compare UR2M using three important uncertainty
metrics: Brier score, Negative Log-Likelihood (NLL), and

Expected Calibration Error (ECE), to examine the uncertainty
estimation performance.

C. Uncertainty Quantification Baselines

We evaluate the proposed method by comparing it to three
baseline uncertainty solutions: the traditional softmax-based
models, deep ensembles and data augmentation. It is important
to note that MCDP [10] is not available for the MCUs library
TFLM because it stores models as binary files that cannot be
modified. Moreover, its computational costs are similar to or
greater than deep ensembles, while its uncertainty performance
is lower than that of deep ensembles [9].

Vanilla EDL. Vanilla EDL [22] is the state-of-the-art
(SOTA) model to efficiently quantify uncertainty and can be
implemented on MCUs.

Deep Ensembles. Deep ensembles approach (denoted as
D(Softmax)+Ense) [7] is the SOTA model to accurately
quantify uncertainty estimation, which typically ensembles
N deterministic Softmax models with random weight initial-
izations. We use N = 5 which is widely adopted in recent
efficient studies [36].

Data Augmentation. Test time data augmentation (denoted
as D(Softmax)+InAug) [37] is a memory-efficient uncertainty
quantification method generating multiple test samples by
applying data augmentation techniques through a single model.
We utilize five augmented samples, incorporating Jittering, with
a mean ¢ of 0 and a standard deviation o of 0.03, which are
added to the test data.

VIII. RESULTS

This section will discuss the results and answer the following
questions: (1) How efficient is UR2M for typical MCUs? (2)
How robust is UR2M compared with traditional point prediction
models?

A. Performance of Event Detection

Utilizing the Adam optimizer with a learning rate of le—3,
a 32 batch size, and an early stopping of 5 epochs, we train
our networks, showcased in Figure 4a and Figures 4b- 4d.
While system accuracy generally increases with OPS across
all datasets, significant increases in overhead do not invariably
equate to notable accuracy improvements, as observed in the
KWS and ECG5000 datasets. For instance, a shallow Oesense
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Fig. 5: Comparing Vanilla EDL, data augmentation, deep
ensembles (SOTA), and UR2M using uncertainty, error rate,
and memory usage metrics across three datasets. eF1 and SR1
refer to the eFlash and SRAM usage of H747XI, while eF2
and SR2 refer to those of F464ZE, respectively. For all metrics,
lower values are preferred.

model (accuracy: 0.83, parameters: 0.38 MB) contrasts with
the medium and deep models, which respectively present
0.87/0.58 MB and 0.91/0.76 MB in accuracy/parameters. The
2% accuracy enhancement when transitioning from medium
to deep models incurs a 31% overhead spike. Similarly, for
ECG5000, a 1% accuracy improvement requires doubling
the model sizes. Shallow models across all datasets exhibit
proficient performance (e.g., >80%) with minimized model
size, hinting that UR2M could deliver effective performance
with modest overheads.

Regarding the channel sizes, our searched model yields the
output shape for each OPS as [5,11] for Oesense, [5, 26] for
KWS, and [5, 29] for ECG5000, respectively. Figure 4 further
illustrates the UR2M performance for single event detection
using shallow, medium and deep network structures.

Based on Figure 5, we can observe that UR2M’s uncertainty
metrics are better than Data Augmentation (D(Softmax)+InAug)
baseline across all three datasets, with up to 22% lower
NLL scores (0.65 to 0.53). This improvement indicates that
the proposed method produces better-calibrated models that
are less prone to overconfidence errors. Compared to the
D(Softmax)+Ense model, UR2M achieves similar performance

in terms of both uncertainty estimation and prediction accuracy.

For instance, UR2M outperforms D(Softmax)+Ense by 8.0%
in terms of Brier score for KWS, and achieves 1.7% and 2.4%
relative improvements in NLL for Oesense and ECG5000,
respectively.

Notably, UR2M achieves these results while using up to only
half of the memory, much less energy, and latency required
by SOTA method deep ensembles (cf. Figure 5 and §VIII-C),
demonstrating the computational efficiency of UR2M without
compromising uncertainty estimation.

B. Impact of different Uncertainty Thresholds

Users can decide on the uncertainty threshold according
to their specific applications. For example, in healthcare
applications (e.g., heart attack detection), we prefer a low
uncertainty (e.g., u=0.05) for detected heart attacks to avoid

disastrous consequences. This tradeoff is depicted in Figure 6.

In other scenarios (e.g., running detection), a higher uncertainty
threshold can be tolerated to save battery life by exiting through

MP34DTOS
Microphone

—&—ECGS000

7700 0.2 0.4 0.6 0.8 1.0
Uncertainty threshold

Fig. 6: Uncertainty impact. Fig. 7: End-to-end deployment.

shallow layers. Similarly, it is observed that increasing the
threshold gradually reduces latency across all three datasets
when evaluated on the F446ZE and H747XI MCUs. With a
higher uncertainty threshold, more samples are filtered out
by the shallow and medium sub-networks, and fewer samples
pass through deep models, leading to reduced latency. This
indicates that selecting different uncertainty thresholds allows
users to obtain a personalized model, increasing the usability
of UR2M.

In sum, our model design, which allows users to define
the threshold, can help determine the optimized threshold to
balance the tradeoff, thereby achieving personalized models.

C. End-to-end System Efficiency

Following the optimization of all baselines and UR2M
using techniques including multi-tenancy deployment, model
quantization, and MCU library optimization, we evaluate their
runtime efficiency during deployment on MCUs (Figure 7).
Our evaluation encompasses the entire system, including signal
acquisition, feature extraction, and memory usage in terms of
SRAM and eFlash required for model execution. We conducted
experiments with various datasets and two typical resource-
constrained MCUs, the F446ZE and H747XI. Although the
focus is primarily on the ECG5000 dataset due to page limits,
note that consistent outcomes were observed across all three
datasets.

Model Inference Memory Footprint. Based on our im-
plementation, UR2M consumes only 49 KB and 51 KB of
SRAM (38.5% and 9.9% of the total SRAM of F446ZE and
H747XI, respectively) as shown in Figure 5. Additionally, as
shown in Figure 5, UR2M requires 142 KB and 145 KB of
eFlash (27.7% and 14.1% of the total eFlash of F446ZE and
H747XI, respectively). These results demonstrate that UR2M
consumes only a small portion of the limited resources of
MCUs, leaving enough resources for other applications to be
supported simultaneously. Furthermore, UR2M requires only
66-67% of SRAM (49 KB vs. 75 KB for F446ZE and 51
KB vs. 75 KB for H747XI) and 51% of eFlash (142 KB vs.
280 KB for F446ZE and 145 KB vs. 283 KB for H747X1)
compared to the deep ensembles baseline.

Signal Acquisition Overheads. To evaluate signal acquisition
overheads for the F446ZE MCU, we employ an INMP441
MEMS microphone. For the H747XI, we use the MP34DTO05-
A built-in microphone on the H747I-DISCO evaluation board
(Figure 7). We assess energy consumption and memory usage as
key factors. Energy consumption (J) is computed as the product
of time/latency (t) and power (W). Power is determined from
input voltage (V) and current measurements (A), conducted
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Fig. 8: Comparison of latency and energy consumption of
uncertainty-aware methods on two MCUs.

with a Fluke 87V digital multimeter. For the F446ZE, we record
a power consumption of 24.6 mA at 3.3V, resulting in 81.18
mW for one second of audio signal acquisition. Memory-wise,
it uses 4KB of SRAM and 32KB of eflash. In contrast, the
H747XI consumes 31.6 mA at 3.3V, totaling 104.28 mW in
power. It utilizes 29KB of SRAM and 66KB of eflash. Overall,
signal acquisition overheads for these two MCUs are minimal.

Feature Extraction Overheads. The feature extraction step
for both UR2M and the baselines is the same, using MFCC
features as inputs. The extraction process is fast, taking only
4.505 ms and 10.913 ms per extraction for the H747XI across
two datasets, indicating minimal overhead.

Model Inference Latency. Using the MBed Timer API
to measure latency on MCUs, Figure 8 illustrates UR2M’s
and baseline inference results across three datasets and two
MCUs. With uncertainty thresholds (u) ranging from 1 to 0,
UR2Mpresents latencies from lowest to highest, respectively.
While baseline approaches, like deep ensemble, yield reliable
uncertainty estimations, they exhibit high inference latencies
of 717.2-717.4 ms on F446ZE and 171.1-179.3 ms on H747XI
per sample. Conversely, UR2Mensures both reliable uncertainty
and minimized latency, cutting inference latencies up to 864%
(83.0 ms vs. 717.2 ms) on F446ZE and 835% (20.2 ms vs.
171.1 ms) on H747XI. Moreover, UR2Menhances latency by
approximately 456% against other baselines, even without
uncertainty filtering.

Model Inference Energy Consumption. Similar to the la-
tency results, UR2M significantly reduces energy consumption
compared to the baselines, as shown in Figure 8. For example,
UR2M decreases energy consumption by up to 834% (116.0
mJ vs. 13.9 mJ) on F446ZE and 857% (39.4 mJ vs. 4.6 mJ])
on H747XI when compared to the best-performing benchmark
uncertainty-aware baselines. Also, we observe that UR2M
achieves around 450% energy improvement compared to the
baselines without uncertainty filtering.

D. Robustness Against Signal Uncertainties

We evaluate UR2M in the context of two types of signal
uncertainties: signal missing (replace as zero) and noise
(gaussian noise). Due to page limitations, we compare our
method with traditional softmax-based NNs having the same
model structure. As demonstrated in Figure 9, for a correct
event signal “Chew”, the absence of signal and the presence
of random noise can lead softmax-based NNs to predict
incorrectly. In contrast, UR2M can accurately predict most

Signal Signal missing Noise
Baseline: Baseline: Baseline: Baseline:
;é Run Walk Chew Walk
UR2M: Chew UR2M: Chew UR2M: Chew UR2M: Chew
p: 0.67 u: 0.53 /p: 0.61 u: 0.50 p:0.87 u: 0.10 p: 0.63 u: 0.43
Baseline: wiss: Baseline Baseline: Baseline:
Walk .‘ Run Chew Chew
‘H-\ Al
Bt o
: ) |
G#e | UR2M: Chew 3§ UR2M: Walk UR2M: Chew UR2M: Chew
Al P 0.57 u: 0.74 ; p:'0.51 u:1.0 p: 0.76 u: 0.30 p: 0.57 u: 0.63|
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Time (s) Time (s) Time (s) Time (s)

Fig. 9: Uncertainty estimation towards signal missing and noise.
Labels in red indicate wrong predictions.

corrupted signals. When predictions are incorrect, UR2M also
exhibits high uncertainty (e.g., u=1.0), which could be used for
alerting the system to potential misclassifications or triggering
additional validation steps.

IX. DISCUSSION

In this section, we discuss several possible future directions
for our work.

Generalizing UR2M to other sensors and higher-end
MCUs. Ideally, UR2M could be generalized to any wearable
sensors driven by MCUs. However, sensor signal complexity
and limited MCU memory size pose limitations. More complex
signals usually require larger model sizes, challenging the
deployment on the constrained memory of MCUs. Fortunately,
recent work [12] shows that by investigating compressive
sensing, key patterns of primitives in signals can be compressed
and extracted, which indicates it can reduce the model size
to save system overhead. Therefore, we will study how
compressive sensing combined with UR2M could further reduce
system overhead to generalize to ultra low-end MCUs. We
envision our method could also benefit higher-end MCUs, e.g.
STM32F4, which has 1MB flash and 192KB SRAM. Since
less memory is required, higher-end MCUs could experience
improvements in latency and energy efficiency.

Impact of UR2M on future WED systems. Our work
has illustrated that uncertainty is a key criterion to ensure
reliable prediction in WED systems. Therefore, an important
and urgent question is how to define uncertainty tolerance
thresholds for specific applications. Fortunately, for healthcare
applications, we can design this criterion through a doctor-in-
the-loop strategy to select the optimal threshold.

X. CONCLUSION

In this paper, we have proposed UR2M, a resource and
uncertainty-aware framework which can efficiently and reliably
enable wearable event detection and related uncertainty on
MCUs. By exploiting evidential uncertainty theory, cascade
learning, and system optimization, UR2M significantly im-
proves energy and memory efficiency for MCUs without
sacrificing accuracy, enabling real-time and reliable event
detection.
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