
UR2M: Uncertainty and Resource-Aware Event

Detection on Microcontrollers

Hong Jia∗, Young D. Kwon∗, Dong Ma†, Nhat Pham‡, Lorena Qendro§, Tam Vu¶ and Cecilia Mascolo∗

∗University of Cambridge, Cambridge, UK †Singapore Management University, Singapore
‡Cardiff University, Cardiff, UK §Nokia Bell Labs, Cambridge, UK ¶University of Colorado Boulder, Colorado, US

{hj359, ydk21}@cam.ac.uk, dongma@smu.edu.sg, phamn@cardiff.ac.uk,

lorena.qendro@nokia-bell-labs.com, tam.vu@colorado.edu, cm542@cam.ac.uk

Abstract—Traditional machine learning techniques are prone
to generating inaccurate predictions when confronted with shifts
in the distribution of data between the training and testing phases.
This vulnerability can lead to severe consequences, especially in
applications such as mobile healthcare. Uncertainty estimation
has the potential to mitigate this issue by assessing the reliability
of a model’s output. However, existing uncertainty estimation
techniques often require substantial computational resources
and memory, making them impractical for implementation on
microcontrollers (MCUs). This limitation hinders the feasibility
of many important on-device wearable event detection (WED)
applications, such as heart attack detection.

In this paper, we present UR2M, a novel Uncertainty and
Resource-aware event detection framework for MCUs. Specifically,
we (i) develop an uncertainty-aware WED based on evidential
theory for accurate event detection and reliable uncertainty
estimation; (ii) introduce a cascade ML framework to achieve
efficient model inference via early exits, by sharing shallower
model layers among different event models; (iii) optimize the
deployment of the model and MCU library for system efficiency.
We conducted extensive experiments and compared UR2M to
traditional uncertainty baselines using three wearable datasets.
Our results demonstrate that UR2M achieves up to 864%
faster inference speed, 857% energy-saving for uncertainty
estimation, 55% memory saving on two popular MCUs, and
a 22% improvement in uncertainty quantification performance.
UR2M can be deployed on a wide range of MCUs, significantly
expanding real-time and reliable WED applications.

Index Terms—Uncertainty, Event Detection, Efficiency, Micro-
controllers

I. INTRODUCTION

With advancements in pervasive, low-power, and embedded

sensors, a range of human physiological signals can be collected

and continuously analyzed. Empowered by machine learning

(ML), especially deep learning (DL), these sensors provide great

opportunities for a plethora of wearable event detection (WED)

applications, such as the detection of stress levels [1], blood

pressure [2], or respiratory illnesses [3]. Recently, deploying

ML models directly on microcontrollers (MCUs) has attracted

tremendous attention due to their potential to improve user

privacy and computational latency in WED, especially under

unstable network conditions [4]. However, as shown in Figure 1,

designing and deploying efficient WED models on MCUs is

challenging due to their limited memory space and battery life,

especially in comparison to mobile phones [4].

Furthermore, many existing WED models prioritize enhanc-

ing classification accuracy while overlooking the importance

Mobile ML TinyML

SRAM
eFlash
Power
Price

6GB
128GB
20W

~$1000

64KB
128KB
0.2W
$2

STM32F205VB
128KB
512KB
0.8W
$3

STM32F446ZE
1MB
2MB
1.2W
$9

STM32H743VIT6

Platform

Fig. 1: Memory and power comparison between a typical

mobile phone and microcontrollers.

of prediction reliability [5], which is crucial in fields like

health. Reliability is quantified as uncertainty, indicating the

trustworthiness of the classification results [6]. Factors such as

hardware differences, environmental variations, data collection

methods, and sensor degradation can lead to distribution shifts

between training and testing data (data uncertainty) or unseen

data (model uncertainty [7]), reducing the reliability of WED

models.

Several methods for quantifying uncertainty have been

investigated. Bayesian Neural Networks (BNNs), a prominent

approach for uncertainty estimation, quantify uncertainty by

estimating posteriors over model weights [8]. However, BNNs

entail substantial computational expenses [9]. Although approx-

imation techniques such as Monte Carlo dropout (MCDP) [10]

and deep ensembles [7] have been proposed, these methods

still require ensembling multiple models and various inference

steps, which introduce intensive computational and memory

demands, as well as increased latency. Recent research has also

introduced deterministic models that require only one forward

pass, making them more efficient but at the cost of lower

accuracy [11]. As a result, integrating reliable uncertainty could

pose additional complexities in the design and deployment of

trustworthy WED models on MCUs.

Lastly, existing works demonstrate inefficiency in supporting

multi-event detection on MCUs, as they typically employ

individual models for each event to ensure reusability across

different applications or use cases and to optimize efficiency

for each model [12]. However, wearable devices often require

the simultaneous detection of multiple events. For instance, a

single electroencephalography (EEG) input might be utilized

to concurrently detect the brain’s alpha wave (event 1) for a

guided-meditation application, and beta wave (event 2) for a

focus monitoring application. Additionally, executing multiple

inferences (encompassing both prediction and uncertainty esti-

mation) for varied events can be resource-intensive, potentially

rendering WED deployment on MCUs impracticable due to

memory constraints.

To address the aforementioned challenges, we propose an

efficient uncertainty estimation approach based on evidential

deep learning (EDL) and cascade learning. Specifically, (i) EDL

is designed to predict a distribution, parameterized by a vector,

instead of providing a point prediction through a single DL

model, which allows for the direct prediction of event detection

and its associated uncertainty via a single inference. (ii) For

each event (intra-event), we consider three models of varied

depths (i.e., shallow, medium, and deep); herein, deeper models

are stacked upon shallower ones, meaning the lower layers are

shared. A classifier layer (termed a “head”) is appended to each

model. This design adheres to the observation that some testing

samples, particularly those near the center of the training sample

distribution, do not require a full pass through the deep model

to ensure a reliable prediction [13]. Consequently, early exits

can be employed to enhance computational cost-effectiveness

and inference speed, with uncertainty chosen as the criterion

for an early exit to ensure the reliability of the prediction.

(iii) For multiple events (inter-event) using the same input, we

propose the sharing of all layers for feature extraction and

the training of individual classification layers (referred to as

“multi-heads”). As a result, our framework can be effortlessly

scaled to multiple events with minimal memory overhead, since

only the heads need to be added. Additionally, reusing shared

layers for different events reduces computation time and cost.

We further apply three techniques to improve the efficiency

of our approach during implementation. First, we implement

an architecture search to find the optimal model structure

automatically (e.g., number of model layers and size of

channels) for specific WED tasks based on recent success

models designed for MCUs [14]. Second, we conduct scalar

quantization of the model weights into 8-bit integers to decrease

the model size and further save memory. Third, to reduce the

memory consumption of the deep learning library, we remove

unnecessary components that are not utilized in our models.

Finally, we conduct comprehensive experiments with two MCU

platforms to demonstrate the effectiveness of the proposed

approach.

To summarize, we make the following contributions:

• We propose a cascade model architecture with intra-event

and inter-event layer sharing to enable efficient multi-event

detection. We also conduct efficient architecture search,

model compression, and library optimization to improve

system efficiency (§V-§VI).

• We propose a novel uncertainty-aware learning paradigm

based on evidential theory for efficient and reliable WED

uncertainty estimation on MCUs (§IV).

• We conduct extensive experiments on three popular

wearable datasets and implement our framework on

two off-the-shelf MCUs, including STM32F446ZE and

STM32H747F7, with limited SRAM memory (128KB

and 512KB, respectively). Our evaluation shows that the

proposed framework performs up to 864% better inference

speed and 857% energy saving compared to uncertainty

baselines. The approach also saves 55% of memory

compared with existing uncertainty estimation baselines

(§VII-§VIII), enabling the deployment of WED models on

MCUs with limited memory (e.g., STM32F205VB with

64KB SRAM).

II. RELATED WORKS

This section briefly discusses the literature on machine

learning on MCUs, event detection on resource-constrained

devices, and efficient methods for uncertainty estimation.

Tiny machine learning on MCUs. Tiny Machine Learn-

ing [14] (TinyML) aims to execute deep learning models

locally on extremely resource-constrained devices such as

MCUs. Recent studies have concentrated on optimizing network

architectures considering constraints such as limited memory,

energy, FLOPs [4], and processor speed [15]. However, these

approaches focus solely on classification accuracy, treating them

as single-point predictions without considering uncertainty es-

timation. In contrast, we further include uncertainty estimation

of the desired predictions to enable a more reliable WED.

Event detection on resource-constrained devices. Recent

years have seen a surge in research focused on event detection

using wearables, exploring various sensing modalities including

image [16], audio [17], electrocardiogram (ECG) [18], and

others. However, most existing WED approaches only utilize

wearables for data collection, offloading processing tasks like

pre-processing, feature extraction, and ML modelling to cloud-

based GPUs (through WiFi) [3], [19], desktop GPUs [20],

mobile devices [1] or IoT devices [21]. This category of

approaches can lead to high latency during signal transmission

or raise privacy concerns. To address these challenges, our

focus is on comprehensive WED for on-MCU computation,

developing efficient and lightweight ML models suitable for

limited-resource environments.

Efficient uncertainty estimation. Some effort has been

devoted to achieving efficient uncertainty estimation, such as

regulating the neural network weights to simulate BNNs [22].

Another stream of studies focuses on expensive and not

deployable operations on MCUs like flow [23], spectral

normalization [24], and stochastic Convolutional layers [9].

Despite their success in improving computation efficiency,

their accuracy still either performs four times worse than

the state-of-the-art (SOTA) method of deep ensembles [7]

or require customized operators and libraries that are currently

unavailable on MCUs. As an alternative to using ensembles,

knowledge distillation [25] has been proposed as a means

of training a single model. However, knowledge distillation

typically requires out-of-distribution (OOD) data, which is

often difficult to obtain for real-world applications. Compared

to existing work, our study is the first to propose an efficient

model for uncertainty quantification on MCUs.

event?

uncertainty
Wearable sensor
event steaming

Feature
extrator Evidential deep learning (¤IV)

one-vs-all training (¤IV)

Binary dataset NNs layers Deep NNs blocks

Deep

A
d

a p
o

o
l

> Uncertainty thresholdBinary output

Y
N>

Medium

Deep

A
d
a p

o
o
l

A
d
a p

o
o
l

Shallow

A
d

a p
o

o
l

>

Multi-event (¤V)Single-event (¤V)

A
rch

itectu
re search

Y
N

Model training (¤IV&¤V) Deployment (¤VI)

Multi-tenancy
deployment

Model
quantization

MCU library
optimizaton

Uncertainty
operators wrap-up

Early exit

Optimization

C
a
sca

d
e lea

rn
in

g

Fig. 2: System overview.

III. UR2M SYSTEM OVERVIEW

UR2M includes two stages: model training (§IV-§V)

and deployment (§VI) as shown in Figure 2. During the

training stage, there are three objectives: (1) EDL for efficient

uncertainty quantification, (2) Cascade ML learning which

includes single-event (intra-event) detection via early exits, and

multi-event (inter-event) detection via feature sharing and multi-

heads. During the deployment stage, we first carry out (1)

multi-tenancy deployment [26], allowing multiple ML models

(referred to as “tenants”) to efficiently and dynamically share

the same memory space among intra-event models. We then

further focus on (2) optimizing the model and the MCU library.

In detail, wearable sensors first capture event streaming

signals. Features are then extracted for different signals, such

as Mel-frequency cepstral coefficients (MFCC) for the audio

signals. Following this, evidential modeling via EDL and one-

vs-all training (§IV) are applied to obtain reliable WED predic-

tions and estimate uncertainty. Within the EDL framework, we

specifically designed a cascade learning architecture (§V) for

single-event detection, which divides the network layers into

shallow, medium, and deep levels to enable intra-event sharing

(sharing shallower layers and inferring with early exits within

an event model) and process samples at different levels of

recognition difficulty. Further, we propose inter-event sharing

(sharing entire layers for feature extraction) for multi-event

detection. In addition to the modeling, we further carry out

efficiency improvements (§VI) via model architecture search

(during model training), quantization, uncertainty operator wrap-

up, and MCU library optimizations.

IV. EFFICIENT UNCERTAINTY QUANTIFICATION

In this Section, we propose a highly efficient EDL model

tailored for event detection on MCUs. This model is optimized

to adhere to the constraints of MCUs, employing distributions

to achieve accurate uncertainty quantification in real-time

scenarios through a single forward pass.

A. Evidential Deep Learning

For a given input xi, EDL generates a Dirichlet distribution

Dir(αi), where α
i = [αi

1
,αi

2
,...,αi

C] denotes the concentration

parameters of the distribution (dense distribution means high

evidence and low uncertainty) [22]. Being a conjugate prior to

the categorical distribution, the Dirichlet distribution enables

EDL to determine the belief mass bi = [bi
1
,bi
2
,...,biC] correlating

directly with uncertainty. A higher belief mass indicates a

higher confidence in the prediction, whereas a lower belief

mass suggests the presence of uncertainty. Formally,

b
i = (αi − 1)/Si, (1)

where Si =
∑C

c=1
αi
c is the Dirichlet strength. From α

i and

b
i, we can further infer the categorical prediction ŷi and the

associated uncertainty ui as:

ŷi = argmax
c

[αi/Si], ui = 1−

C
∑

c=1

bic (2)

Before the training process, acknowledging our initial state

of complete uncertainty about the outputs (i.e., uncertainty ui

is set to 1), we initialize α
i with [1, 1, 1], corresponding to

b
i = [0, 0, 0] according to Eq. 1 and Eq. 2. To refine the model,

we employ a loss function defined as:

min
θ
L =

1

N

N
∑

i

CE(αi
c/S

i, yi)− λ ·H(Dir(αi)) (3)

where CE denotes the cross-entropy loss, and H represents

the entropy of a Dirichlet distribution parameterized by α
i. The

first term of the loss function aims to maximize classification

accuracy, while the second term controls the output distribution

to avoid overconfidence. The hyperparameter λ plays a crucial

role in balancing these two terms.

Finally, this procedure will lead to a predicted α
i for each

sample which is used to infer the categorical outcome and the

associated uncertainty (e.g., u = 1−
∑

bi).

B. Efficient Evidential Modeling for Event Detection on MCUs

Implementing the EDL discussed in §IV-A for WED requires

deploying multiple models and performing a series of inferences

to detect various events, which significantly challenges the

limited computational resources of MCUs. To mitigate this,

we propose an efficient EDL modeling for WED, along with

related training and optimization techniques designed to infer

multiple events concurrently.

Efficient EDL Modeling for WED. WED is designed to

identify an event signal coming from a wearable device. In

ML/DL, this objective is defined as a binary classification task

over a given duration/period of sensor data. For each binary

classifier that detects classes of the event c, the outputs of EDL

include the binomial belief mass, which can be used to infer

the uncertainty of the WED prediction, i.e., how confident

it is to be classified as positive (i.e., an event happening) or

negative (i.e., an event not happening).

Given the binary nature of our EDL framework (positive vs

negative), we adopt a Beta distribution (a special case of the

Dirichlet distribution) to model the event probability. Specifi-

cally, a Beta distribution is characterized by two parameters

αi
c and βi

c such that

P(pic | x
i; θc) = Beta(pic | α

i
c, β

i
c)

=
1

B(αi
c, β

i
c)
pα

i

c
−1(1− p)β

i

c
−1,

(4)

where P
(

pic | x
i; θc

)

denotes the probability distribution of

the event given the sensor sample xi, with both αi
c, and βi

c

being greater than zero. B(αi
c, β

i
c) = Γ(αi

c)Γ(β
i
c)/Γ(α

i
c + βi

c)
is the Beta function, Γ(·) is the gamma function, and pic ̸=
0. Applying the mapping rule in Eq. 2, the prediction and

uncertainty u for each sample i are derived via a NN:

bi
1
=

αi
c − 1

αi
c + βi

c

, bi
2
=

βi
c − 1

αi
c + βi

c

(5)

ui = 2/(αi
c + βi

c) (6)

where b1 represents the probability of a positive prediction

while b2 denotes that of a negative prediction.

One-versus-all classifiers. To obtain the parameters of αi
c

and βi
c in EDL across multiple events, we adopt the one-

versus-all (OVA) classifier, where each classifier distinguishes

a specific event from all others, leading to C binary classifiers

(i.e., heads). Specifically, in multi-event WED, we split the

entire training dataset into C independent datasets with binary

labels (i.e., event c vs. non-event c for c ∈ [1, C]). For each

event, we then develop a model to learn a set of mapping

functions hc(x
i; θc), where xi represents the input signal, and

θc are the model weights. The outputs of the mapping functions

yield the parameters αi
c and βi

c in the Beta distribution,

computed as:

αi
c, β

i
c = hc

(

xi; θc
)

(7)

From this, we can deduce binomial decisions, with bi
1

denoting a positive prediction (i.e., event happening), and bi
2

representing a negative prediction (i.e., event not happening).

Subsequently, these mapping functions are optimized jointly

through an OVA training [27]. With this joint training of a

shared EDL model, there is no need to deploy separate models

on MCUs, thereby significantly reducing memory costs.

In contrast to traditional softmax-based deep learning ap-

proaches, which force the Neural Networks (NNs) to predict a

point estimation, we can replace the softmax layer of the neural

network with a ReLU layer (or an exponential function but

softplus is not available in the MCU library). This adjustment

ensures that the outputs remain non-negative, aligning with the

positive αi and enabling the NNs to predict distributions for

each event task.

C. Uncertainty-aware training and optimization

Focusing on the training and optimization of the EDL

framework for the proposed multi-event WED, we draw

inspiration from Eq. 3 and propose using the binary cross

entropy and Beta loss for each binary classifier of event c as:

min
θ
L =

1

N

N
∑

i

BCE
(

ψi
c/S

i
c, y

i
c

)

− λ ·H
(

B
(

ψi
c

))

(8)

where ψi
c symbolizes the Beta distribution parameters

(αi
c, β

i
c), BCE is the binary cross-entropy loss, H represents

the entropy of a Beta distribution B parameterized by ψi
c and

λ serves as a balancing weight between the cross-entropy loss

and entropy of the Beta loss. For all C events, we collectively

optimize all binary classifiers [28], enabling the model to

perform inference with just a single forward pass.

V. CASCADE LEARNING

This section discusses designing efficient neural networks for

UR2M. We explore the benefits of the early-exit strategy and

architecture search method for single-event sharing on MCUs,

reducing computational and memory costs. We also examine

multiple-event sharing and detail the training pipeline using

cascade learning, with all search and training on the server.

A. Single-event Sharing

For many DL tasks, some input samples, referred to as

“easy” samples, can be effectively classified using shallower

layers of the representation. This indicates that these shallower

representations can identify “easy” samples, thus avoiding

extra computation, whereas more “difficult” samples require

processing through deeper layers [29]. However, unlike edge

GPUs, designing model sharing on MCUs is challenging given

the limited computing power, memory, and library support.

Using Early-exits to Share Shallower Layers. We propose

a nested architecture featuring three early exits (sub-networks),

which include shallow, medium, and deep models designed for

single-event (intra-event) sharing, as illustrated in Figure 2 for

MCUs. Each sub-network is designed using identical blocks

of neural network layers, inspired by efficient neural networks

for edge devices [30]. Existing early-exit methods usually rely

on accuracy as a criterion to prune model branches. However,

uncertainty can act as a crucial indicator for reliable prediction:

we propose using uncertainty as a metric to determine whether

to exit at each sub-network. As demonstrated in Figure 2,

uncertainty thresholds are applied at the output of both shallow

and medium models to facilitate early exits for data with low

uncertainty (i.e., reliable predictions), thereby saving on MCU

overheads.

Uncertainty-aware Architecture Search. To find efficient

neural networks that minimize MCU overhead, recent studies

have shown that the number of operations (OPS) and channel

sizes [14] are two crucial factors. Considering this, we propose

Algorithm 1: The Search and training of UR2M

Input: Channel L, OPS size O, DTRAIN , DTEST

Output: Event prediction y and uncertainty u
Data: Training data DTRAIN

/* search single-event model */

1 best_backbone, best_score = False, 0

2 for i in L do

3 for j in O do
// Train candidate NNs backbone (bij)

4 NN←bij(Wij , Li, Oj)
5 accuracy ← NN(DTRAIN)

6 tradeoff ← accuracy/OPS

7 if tradeoff < best_score then

8 best_NN, best_score = NN, tradeoff

9 return best_NN

/* train with cascade learning */

10 for l = 0, 1, 2 do
// take each output as next exit’s input

11 u, output ←(bl (Wl),D
TRAIN)

12 DTRAIN ← output

13 if converge then

14 return Wl

an effective yet straightforward architecture search method to

identify optimal neural networks for the early-exit models (i.e.,

shallow, medium, and deep models) in single-event sharing.

Specifically, we employ the Depthwise block as the OPS

to control model depth, as it serves as an ideal proxy for

managing model latency on MCUs [14]. The structure of

each block consists of 1×1 Convolutions, 3×3 Depthwise

Convolutions, and 1×1 Convolutions. We design each block

using a 2D convolutional layer to to effectively handle various

input types and extract the initial features. Subsequently, we

use a consistent padding strategy to control the depth of OPS,

ensuring that the output of each block matches its input. Lastly,

we incorporate a linear classifier in each block as the output

layer for single-event detection.

To define the model search space for efficient architectures

on edge devices, we configure channel sizes L (ranging

from 32 to 512) and OPS sizes O (3 to 7), drawing from

models like MobileNet [30], DSCNN [31] for mobile devices,

and MicroNets [14] for MCUs. This leads to 60 potential

configurations (N = L × O), each comprising three sub-

networks. Our objective is to identify the optimal configuration

N∗ that balances minimal OPS with maximal accuracy. As

outlined in Algorithm 1 (Lines 1-9), the search process involves

initially setting a best backbone and score (Line 1), iterating

through combinations of channel and OPS sizes (Lines 2-3), and

assessing candidate NNs based on accuracy and operational

space trade-offs (Lines 5-8), to ultimately select the most

efficient and accurate NN backbone (Line 9).

B. Multiple-event Sharing

For a C multi-event detection task, a common approach

is to develop individual models to ensure reusability across

different applications or use cases and to optimize efficiency

for each model [12]. These models can occupy C times the

MCU memory and computation cost compared to a single-

event model. However, some singular events may share similar

characteristics, which can be captured by an identical network

for feature extraction. For example, EEG signals are often

used to detect alpha waves (event 1) and beta waves (event 2)

using two independent models, despite the fact that both waves

describe brain activities and can share certain information.

Using Heads to Share Entire Backbone. We propose our

multi-event detection models, which share three sub-networks

(i.e., shallow, medium, and deep) and consist of C ∗ 3 adaptive

classifiers (cf. Figure 2). Compared to multi-class classification,

our multi-event sharing framework allows for more flexibility

in single-event detection, which is especially preferred on

low-power MCUs to ensure efficiency and reusability across

multiple applications. Specifically, as illustrated in Figure 2,

for each shared shallow, medium, and deep backbone NNs, we

design C independent classifiers to distinguish the C events.

Each classifier is composed of an adaptive pooling layer and

a linear layer. The adaptive pooling layer aims to adjust the

different output sizes from the searched shallow, medium, and

deep sub-networks to match the input size of the classifiers. We

optimize all the classifiers in a multi-task learning paradigm.

Uncertainty-aware Cascade Learning. To train the afore-

mentioned shallow, medium, and deep models for MCUs,

we propose an uncertainty-aware cascade model inspired by

deep cascade learning for training our early-exit models. As

illustrated in Algorithm 1 (Lines 10-14), we employ three

optimizers for the three exits, with each exit representing one-

third of the model layers. Initially, we train the first one-third

of the layers in the searched backbone model and then utilize

its output to train the second exit. Finally, we optimize the

third exit.

During each exit, we apply a single-layer linear layer

(referred to as a head) for each event, which takes input maps

of the output dimensions of the early-exits. Each early exit

produces two outputs: the prediction and the uncertainty. We

optimize all sub-networks concurrently on the server.

Our design is supported by the MCU libraries of Tensorflow

Lite Micro (TFLM) in terms of multi-tenancy (e.g., enabling

model deployment in a cascade manner) and memory planner

(e.g., reusing the same operator’s memory). This coherence can

significantly reduce the overheads compared to the conventional

multi-event detection models. Overall, our approach aims to

optimize the performance of the models while accounting for

uncertainty and providing early exits for faster inference.

VI. IMPLEMENTATION

A. System Implementation

Hardware. The training stage of our system is implemented

and tested on a Linux server equipped with an Intel Xeon

Gold 5218 CPU and NVIDIA Quadro RTX 8000 GPU. The

shared backbone and multiple heads are pre-trained during

this stage. Afterwards, in the deployment stage, we deploy the

shared backbone and heads on two MCUs. The first one is

Shared
Backbone

Output

Relu

FullConnect

ReduceSum Div

1⨉2

1⨉2 1⨉1

2⨉64

Uncertainty

Event
No Event

2⨉64

SigMoid

(a) Uncertainty classifier in TFLM format

122

Weights+Bias Graph & Quantization ParamsTF Micro

Memory
(KB)

0

Others

49% smaller

203
TF Micro Others

After RU2M Optimization

130 195

32 90 96 104

 Graph & Quantization Params Weights+Bias

(b) MCUs library optimization

Fig. 3: Deployment stage. (a) Uncertainty deployment on MCU based on multiple operators to calculate uncertainty and

classification results. (b) MCU library space before optimization (top) and after optimization (bottom).

the STM32F446ZE (or F446ZE), which has an ARM Cortex

M4 processor with 128 KB of SRAM and 512 KB of eFlash.

The other one is the STM32H747XI (or 747XI), featuring a

dual-core processor (ARM Cortex M4 and M7) with 1 MB of

SRAM and 2 MB of eFlash. Our evaluation only utilizes one

core (ARM Cortex M7) since MCUs are typically equipped

with only one CPU core. This setup limits the usage space of

SRAM and eFlash to 512 KB and 1 MB, respectively.

We developed and assessed our system’s training stage using

PyTorch 1.8, and tested various baselines on a Linux server.

The evidential uncertainty module is implemented with Python

and NumPy. We adopted TensorFlow Lite Micro (TFLM) [26]

for MCU deployment due to its portability, ease of use, and

support for numerous neural network layers and optimized

kernels. UR2M’s deployment stage and online optimization

scheme are developed in C++ on two MCUs (ARM Cortex M4

and M7). To deploy a PyTorch model on MCUs, we convert

it to TensorFlow Lite (TF Lite) using ONNX representation

and the TF Lite converter. The model is run on MCUs using

TFLM and Mbed OS. Additionally, the CMSIS-DSP software

library processes raw signals to generate model inputs (e.g.,

MFCC features), and the CMSIS-NN kernels in TFLM facilitate

efficient neural network operations on MCUs.

Multi-tenancy Deployment. To facilitate multi-event sharing

on MCUs with limited memory, we develop a multi-tenancy

deployment for early-exit models using TFLM. UR2M utilizes

multiple model interpreters to allocate memory from a unified

space, ensuring efficient model operation. During evaluation,

this deployment strategy is applied to all baselines and the

UR2M model. For example, Deep Ensembles have five models,

potentially using 5× eFlash space. However, with optimization,

it only consumes 2× more SRAM (cf. §VIII-C) due to multi-

tenancy deployment.

B. Uncertainty Operator Implementation

To capture the uncertainty at inference time on MCUs,

we only use TFLM-supported operations. First, we utilize

a ReLU operator to regulate the distribution of the output as

non-negatives. Then, based on these outputs, we follow Eq.6

to generate uncertainties. Specifically, calculating uncertainty

first requires the sum of reduced dimensions. Although the

reduced_sum operator is supported, it is not available for TFLM.

To solve this, we use a squeeze operator to reduce the output

dimensions, followed by a sum operator. Finally, we apply

a divide operator to generate the uncertainty. We wrap the

above-mentioned operators within the model and implement

them in the TFLM library to save the overhead of uncertainty

prediction. The overall uncertainty implementation is shown

in Figure 3a.

C. MCU Library Optimization

Unlike mobile devices’ memory architecture that employs

large off-chip main memory (e.g., DRAM), MCUs consist of

only small-sized on-chip memory (e.g., SRAM and eFlash) (cf.

Figure 1). To understand the memory requirements of our model

to fit in MCUs, we first compute the memory usage of UR2M.

For a searched shallow model with 8-bit int quantization, we

observe that TFLM requires 79 KB of SRAM and 203 KB of

eFlash, which falls within the tight memory budgets of many

MCUs, for example, 64 KB of SRAM and 128 KB of eFlash

of STM32F205VB as described in Figure 1. In particular,

on SRAM, the memory usage includes intermediate tensors

(30 KB), persistent buffers (3 KB), runtime overhead of the

TFLM interpreter (6 KB), and MBed OS and other libraries

(10 KB). Additionally, Figure 3b top shows the on-chip eFlash

architecture of an F446ZE MCU and how TFLM allocates

memory space to run a shallow model on an MCU.

Note that since we only conduct 8-bit post-quantization, we

only observe a maximum of 1% performance drop between the

pre-and post-quantization stages among all methods.

Given the limited memory space for searching the optimal

model parameters, we propose optimizing the TFLM library.

First, we removed all operation-related files that did not impact

our backbone. Then, we reordered the operations files based on

our backbone structure. As shown at the bottom of Figure 3b,

our MCU library significantly optimized the TFLM interpreter’s

runtime overhead, reducing it from 122 KB to 32 KB (3.8×
smaller). Moreover, the graph definition was reduced by 2

KB, from 8 KB to 6 KB, in the eFlash memory. After the

optimization, a total of 104 KB of memory is used, which

can now fit into the STM32F205VB and many other MCUs.

Overall, UR2M optimizes 49% of eFlash memory compared

to the baseline TFLM library.

Note that during the evaluation, we applied the same MCU

library optimization strategy to all baselines as well as the

UR2M model.

VII. EVALUATION SETTINGS

A. Evaluated Datasets

Our target application scenarios are focused on WED

applications. Specifically, we evaluate three wearable datasets,

including in-ear activity recognition [32], audio event keyword

spotting [33], and heart disorder event detection [34]. We

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Number of Operations (MB)

0.80

0.83

0.86

0.89

0.92

0.95
Te

st
 a

cc
ur

ac
y

Oesense
KWS
ECG5000

(a) Model sizes vs. accuracy

Dr
ink

Ch
ew Ru

n
Sti
ll

Wa
lk

0.78
0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96

A
cc
ur
ac
y

Shallow Medium Deep

(b) Performance on Oesense

Ye
s No Up

Do
wn Le

ft
Ri
gh
t

On Of
f

Sto
p Go

Un
kn
ow
n

Sil
en
ce

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

A
cc
ur
ac
y

Shallow Medium Deep

(c) Performance on KWS

NM
RT
PV
C

PV
C

SP
EB UB

0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

A
cc
ur
ac
y

Shallow
Medium

Deep

(d) Performance on ECG5000

Fig. 4: Model sizes vs. Accuracy and early exit result for single events. Note that the ECG5000 UB event has only one test

sample.

experiment with these three datasets, each featuring different

data modalities that suit UR2M settings. For imbalanced

datasets, we use SMOTE [35] to upsample the training data.

In-ear Dataset. Oesense [32] contains an in-ear audio

dataset for activity recognition (including five events: “walk”,

“run”, “still”, “drink”, and “chew”) among 31 subjects. For

preprocessing, we first segment the original audio into one-

second segments and set the sampling rate at 4 kHz. Then, we

extract the 2-D MFCC features for each segment. 10 MFCC

features are then obtained from an audio frame with a length

of 80 ms and a stride of 40 ms, yielding an input dimension of

1×10×21. After preprocessing each event, we obtained 40,064

training samples (90%) and 4,452 test samples (10%) for all

five activities.

KWS Dataset. The Keywords Spotting (KWS) V2 [33]

dataset contains 105,829 utterances from 2,618 speakers. There

are 35 words split into 12 classes, including ten keyword

spotting classes and an ’unknown’ class (remaining 24 words).

For preprocessing, we first constrained all event samples to one

second by segmentation or zero-padding and set the sampling

rate at 16 kHz. Then we extracted MFCC features using 640

FFT points and 320 points of hop length. We obtained 10

MFCC features from an audio frame with a length of 40ms

and a sliding window of 20ms, yielding the input dimension

of 1×10×51. After preprocessing, we obtained 92,502 total

event training samples (90%) and 10,278 test samples (10%).

ECG5000 Dataset. The ECG5000 dataset [34] is a 20-hour

long one-channel ECG dataset that contains 92,584 heartbeats,

including five different types of heart events: Normal (NM)

(58.4%), R-on-T Premature Ventricular Contraction (RTPVC)

(35.3%), Premature Ventricular Contraction (PVC) (3.9%),

Supra-ventricular Premature or Ectopic Beat (SPEB) (2%),

and Unclassified Beat (UB) (0.5%). For preprocessing, we

resample the input duration of 0.56s with 140 samples into 560

samples. Then we reshape the input into 10 channels, yielding

the input dimension of 1×10×56. After the preprocessing, we

obtained 4,500 total event training samples (90%) and 500

(10%) test samples. Note that UB has only one test sample.

B. Uncertainty Metrics

We compare UR2M using three important uncertainty

metrics: Brier score, Negative Log-Likelihood (NLL), and

Expected Calibration Error (ECE), to examine the uncertainty

estimation performance.

C. Uncertainty Quantification Baselines

We evaluate the proposed method by comparing it to three

baseline uncertainty solutions: the traditional softmax-based

models, deep ensembles and data augmentation. It is important

to note that MCDP [10] is not available for the MCUs library

TFLM because it stores models as binary files that cannot be

modified. Moreover, its computational costs are similar to or

greater than deep ensembles, while its uncertainty performance

is lower than that of deep ensembles [9].

Vanilla EDL. Vanilla EDL [22] is the state-of-the-art

(SOTA) model to efficiently quantify uncertainty and can be

implemented on MCUs.

Deep Ensembles. Deep ensembles approach (denoted as

D(Softmax)+Ense) [7] is the SOTA model to accurately

quantify uncertainty estimation, which typically ensembles

N deterministic Softmax models with random weight initial-

izations. We use N = 5 which is widely adopted in recent

efficient studies [36].

Data Augmentation. Test time data augmentation (denoted

as D(Softmax)+InAug) [37] is a memory-efficient uncertainty

quantification method generating multiple test samples by

applying data augmentation techniques through a single model.

We utilize five augmented samples, incorporating Jittering, with

a mean ε of 0 and a standard deviation σ of 0.03, which are

added to the test data.

VIII. RESULTS

This section will discuss the results and answer the following

questions: (1) How efficient is UR2M for typical MCUs? (2)

How robust is UR2M compared with traditional point prediction

models?

A. Performance of Event Detection

Utilizing the Adam optimizer with a learning rate of 1e−3,

a 32 batch size, and an early stopping of 5 epochs, we train

our networks, showcased in Figure 4a and Figures 4b- 4d.

While system accuracy generally increases with OPS across

all datasets, significant increases in overhead do not invariably

equate to notable accuracy improvements, as observed in the

KWS and ECG5000 datasets. For instance, a shallow Oesense

Error

NLL

Brier

ECE

SR1

eF1

SR2

eF2

Oesense

Error

NLL

Brier

ECE

SR1

eF1

SR2

eF2

KWS

Error

NLL

Brier

ECE

SR1

eF1

SR2

eF2

ECG5000

D(Softmax)+Ense Vanilla EDL D(Softmax)+InAug UR2M(Ours)

285

285

75

75

0.11

0.65

0.65

0.05

Fig. 5: Comparing Vanilla EDL, data augmentation, deep

ensembles (SOTA), and UR2M using uncertainty, error rate,

and memory usage metrics across three datasets. eF1 and SR1

refer to the eFlash and SRAM usage of H747XI, while eF2

and SR2 refer to those of F464ZE, respectively. For all metrics,

lower values are preferred.

model (accuracy: 0.83, parameters: 0.38 MB) contrasts with

the medium and deep models, which respectively present

0.87/0.58 MB and 0.91/0.76 MB in accuracy/parameters. The

2% accuracy enhancement when transitioning from medium

to deep models incurs a 31% overhead spike. Similarly, for

ECG5000, a 1% accuracy improvement requires doubling

the model sizes. Shallow models across all datasets exhibit

proficient performance (e.g., >80%) with minimized model

size, hinting that UR2M could deliver effective performance

with modest overheads.

Regarding the channel sizes, our searched model yields the

output shape for each OPS as [5,11] for Oesense, [5, 26] for

KWS, and [5, 29] for ECG5000, respectively. Figure 4 further

illustrates the UR2M performance for single event detection

using shallow, medium and deep network structures.

Based on Figure 5, we can observe that UR2M’s uncertainty

metrics are better than Data Augmentation (D(Softmax)+InAug)

baseline across all three datasets, with up to 22% lower

NLL scores (0.65 to 0.53). This improvement indicates that

the proposed method produces better-calibrated models that

are less prone to overconfidence errors. Compared to the

D(Softmax)+Ense model, UR2M achieves similar performance

in terms of both uncertainty estimation and prediction accuracy.

For instance, UR2M outperforms D(Softmax)+Ense by 8.0%

in terms of Brier score for KWS, and achieves 1.7% and 2.4%

relative improvements in NLL for Oesense and ECG5000,

respectively.

Notably, UR2M achieves these results while using up to only

half of the memory, much less energy, and latency required

by SOTA method deep ensembles (cf. Figure 5 and §VIII-C),

demonstrating the computational efficiency of UR2M without

compromising uncertainty estimation.

B. Impact of different Uncertainty Thresholds

Users can decide on the uncertainty threshold according

to their specific applications. For example, in healthcare

applications (e.g., heart attack detection), we prefer a low

uncertainty (e.g., u=0.05) for detected heart attacks to avoid

disastrous consequences. This tradeoff is depicted in Figure 6.

In other scenarios (e.g., running detection), a higher uncertainty

threshold can be tolerated to save battery life by exiting through

0.0 0.2 0.4 0.6 0.8 1.0
Uncertainty threshold

0.82

0.85

0.88

0.91

0.94

0.97

1.00

A
cc

ur
ac

y

Oesense
KWS
ECG5000

Fig. 6: Uncertainty impact.

Power
Bank

F446ZE
MCU

Power
Profiler

I MP441
Microphone

ucleo-144
Development Kit

H747XI
MCU

MP34DT05
Microphone

STM32H747I-
DISCO

Fig. 7: End-to-end deployment.

shallow layers. Similarly, it is observed that increasing the

threshold gradually reduces latency across all three datasets

when evaluated on the F446ZE and H747XI MCUs. With a

higher uncertainty threshold, more samples are filtered out

by the shallow and medium sub-networks, and fewer samples

pass through deep models, leading to reduced latency. This

indicates that selecting different uncertainty thresholds allows

users to obtain a personalized model, increasing the usability

of UR2M.

In sum, our model design, which allows users to define

the threshold, can help determine the optimized threshold to

balance the tradeoff, thereby achieving personalized models.

C. End-to-end System Efficiency

Following the optimization of all baselines and UR2M

using techniques including multi-tenancy deployment, model

quantization, and MCU library optimization, we evaluate their

runtime efficiency during deployment on MCUs (Figure 7).

Our evaluation encompasses the entire system, including signal

acquisition, feature extraction, and memory usage in terms of

SRAM and eFlash required for model execution. We conducted

experiments with various datasets and two typical resource-

constrained MCUs, the F446ZE and H747XI. Although the

focus is primarily on the ECG5000 dataset due to page limits,

note that consistent outcomes were observed across all three

datasets.

Model Inference Memory Footprint. Based on our im-

plementation, UR2M consumes only 49 KB and 51 KB of

SRAM (38.5% and 9.9% of the total SRAM of F446ZE and

H747XI, respectively) as shown in Figure 5. Additionally, as

shown in Figure 5, UR2M requires 142 KB and 145 KB of

eFlash (27.7% and 14.1% of the total eFlash of F446ZE and

H747XI, respectively). These results demonstrate that UR2M

consumes only a small portion of the limited resources of

MCUs, leaving enough resources for other applications to be

supported simultaneously. Furthermore, UR2M requires only

66-67% of SRAM (49 KB vs. 75 KB for F446ZE and 51

KB vs. 75 KB for H747XI) and 51% of eFlash (142 KB vs.

280 KB for F446ZE and 145 KB vs. 283 KB for H747XI)

compared to the deep ensembles baseline.

Signal Acquisition Overheads. To evaluate signal acquisition

overheads for the F446ZE MCU, we employ an INMP441

MEMS microphone. For the H747XI, we use the MP34DT05-

A built-in microphone on the H747I-DISCO evaluation board

(Figure 7). We assess energy consumption and memory usage as

key factors. Energy consumption (J) is computed as the product

of time/latency (t) and power (W). Power is determined from

input voltage (V) and current measurements (A), conducted

Oesense KWS ECG5000
0

100

200

300

400

500

600

700

F
4
4
6
Z

E
 L

at
en

cy
 (

m
s)

Oesense KWS ECG5000
0

25

50

75

100

125

150

175

H
7
4
7
X

I
L

at
en

cy
 (

m
s)

Oesense KWS ECG5000
0

20

40

60

80

100

120

F
4
4
6
Z

E
 E

n
er

g
y
 (

m
J)

Oesense KWS ECG5000
0

10

20

30

40

H
7
4
7
X

I
E

n
er

g
y
 (

m
J)

D(Softmax)+Ense D(Softmax)+InAug UR2M

Fig. 8: Comparison of latency and energy consumption of

uncertainty-aware methods on two MCUs.

with a Fluke 87V digital multimeter. For the F446ZE, we record

a power consumption of 24.6 mA at 3.3V, resulting in 81.18

mW for one second of audio signal acquisition. Memory-wise,

it uses 4KB of SRAM and 32KB of eflash. In contrast, the

H747XI consumes 31.6 mA at 3.3V, totaling 104.28 mW in

power. It utilizes 29KB of SRAM and 66KB of eflash. Overall,

signal acquisition overheads for these two MCUs are minimal.

Feature Extraction Overheads. The feature extraction step

for both UR2M and the baselines is the same, using MFCC

features as inputs. The extraction process is fast, taking only

4.505 ms and 10.913 ms per extraction for the H747XI across

two datasets, indicating minimal overhead.

Model Inference Latency. Using the MBed Timer API

to measure latency on MCUs, Figure 8 illustrates UR2M’s

and baseline inference results across three datasets and two

MCUs. With uncertainty thresholds (u) ranging from 1 to 0,

UR2Mpresents latencies from lowest to highest, respectively.

While baseline approaches, like deep ensemble, yield reliable

uncertainty estimations, they exhibit high inference latencies

of 717.2-717.4 ms on F446ZE and 171.1-179.3 ms on H747XI

per sample. Conversely, UR2Mensures both reliable uncertainty

and minimized latency, cutting inference latencies up to 864%

(83.0 ms vs. 717.2 ms) on F446ZE and 835% (20.2 ms vs.

171.1 ms) on H747XI. Moreover, UR2Menhances latency by

approximately 456% against other baselines, even without

uncertainty filtering.

Model Inference Energy Consumption. Similar to the la-

tency results, UR2M significantly reduces energy consumption

compared to the baselines, as shown in Figure 8. For example,

UR2M decreases energy consumption by up to 834% (116.0

mJ vs. 13.9 mJ) on F446ZE and 857% (39.4 mJ vs. 4.6 mJ)

on H747XI when compared to the best-performing benchmark

uncertainty-aware baselines. Also, we observe that UR2M

achieves around 450% energy improvement compared to the

baselines without uncertainty filtering.

D. Robustness Against Signal Uncertainties

We evaluate UR2M in the context of two types of signal

uncertainties: signal missing (replace as zero) and noise

(gaussian noise). Due to page limitations, we compare our

method with traditional softmax-based NNs having the same

model structure. As demonstrated in Figure 9, for a correct

event signal “Chew”, the absence of signal and the presence

of random noise can lead softmax-based NNs to predict

incorrectly. In contrast, UR2M can accurately predict most

UR2M: Chew
p: 0.87 u: 0.10

UR2M: Chew
p: 0.63 u: 0.43

UR2M: Chew
p: 0.61 u: 0.50

UR2M: Chew
p: 0.67 u: 0.53

Baseline:
Run

Baseline:
Walk

Baseline:
Chew

Baseline:
Walk

UR2M: Chew
p: 0.57 u: 0.63

UR2M: Chew
p: 0.76 u: 0.30

UR2M: Walk
p: 0.51 u: 1.0

UR2M: Chew
p: 0.57 u: 0.74

Baseline:
Walk

Baseline:
Run

Baseline:
Chew

Baseline:
Chew

Fig. 9: Uncertainty estimation towards signal missing and noise.

Labels in red indicate wrong predictions.

corrupted signals. When predictions are incorrect, UR2M also

exhibits high uncertainty (e.g., u=1.0), which could be used for

alerting the system to potential misclassifications or triggering

additional validation steps.

IX. DISCUSSION

In this section, we discuss several possible future directions

for our work.

Generalizing UR2M to other sensors and higher-end

MCUs. Ideally, UR2M could be generalized to any wearable

sensors driven by MCUs. However, sensor signal complexity

and limited MCU memory size pose limitations. More complex

signals usually require larger model sizes, challenging the

deployment on the constrained memory of MCUs. Fortunately,

recent work [12] shows that by investigating compressive

sensing, key patterns of primitives in signals can be compressed

and extracted, which indicates it can reduce the model size

to save system overhead. Therefore, we will study how

compressive sensing combined with UR2M could further reduce

system overhead to generalize to ultra low-end MCUs. We

envision our method could also benefit higher-end MCUs, e.g.

STM32F4, which has 1MB flash and 192KB SRAM. Since

less memory is required, higher-end MCUs could experience

improvements in latency and energy efficiency.

Impact of UR2M on future WED systems. Our work

has illustrated that uncertainty is a key criterion to ensure

reliable prediction in WED systems. Therefore, an important

and urgent question is how to define uncertainty tolerance

thresholds for specific applications. Fortunately, for healthcare

applications, we can design this criterion through a doctor-in-

the-loop strategy to select the optimal threshold.

X. CONCLUSION

In this paper, we have proposed UR2M, a resource and

uncertainty-aware framework which can efficiently and reliably

enable wearable event detection and related uncertainty on

MCUs. By exploiting evidential uncertainty theory, cascade

learning, and system optimization, UR2M significantly im-

proves energy and memory efficiency for MCUs without

sacrificing accuracy, enabling real-time and reliable event

detection.

XI. ACKNOWLEDGMENT

This work is supported by ERC through Project 833296

(EAR), and Nokia Bell Labs through a donation.

REFERENCES

[1] Arash Alavi, Gireesh K Bogu, Meng Wang, Ekanath Srihari Rangan,
Andrew W Brooks, Qiwen Wang, Emily Higgs, Alessandra Celli,
Tejaswini Mishra, Ahmed A Metwally, et al. Real-time alerting system
for covid-19 and other stress events using wearable data. Nature medicine,
28(1):175–184, 2022.

[2] Christian Holz and Edward J. Wang. Glabella: Continuously sensing
blood pressure behavior using an unobtrusive wearable device. Proc.

ACM Interact. Mob. Wearable Ubiquitous Technol., 1(3), sep 2017.

[3] Yuezhou Zhang, Zhicheng Yang, Zhengbo Zhang, Peiyao Li, Desen Cao,
Xiaoli Liu, Jiewen Zheng, Qian Yuan, and Jianli Pan. Breathing disorder
detection using wearable electrocardiogram and oxygen saturation. In
Proceedings of the 16th ACM Conference on Embedded Networked

Sensor Systems, pages 313–314, 2018.

[4] Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and
Song Han. Mcunet: Tiny deep learning on iot devices. arXiv preprint

arXiv:2007.10319, 2020.

[5] Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley,
Sebastian Nowozin, Joshua Dillon, Balaji Lakshminarayanan, and Jasper
Snoek. Can you trust your model’s uncertainty? evaluating predictive
uncertainty under dataset shift. Advances in neural information processing

systems, 32, 2019.

[6] Gustavo Carneiro, Leonardo Zorron Cheng Tao Pu, Rajvinder Singh,
and Alastair Burt. Deep learning uncertainty and confidence calibration
for the five-class polyp classification from colonoscopy. Medical Image

Analysis, 62:101653, 2020.

[7] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Sim-
ple and scalable predictive uncertainty estimation using deep ensembles.
Advances in neural information processing systems, 30, 2017.

[8] Yucheng Wang, Mengmeng Gu, Mingyuan Zhou, and Xiaoning Qian.
Attention-based deep bayesian counting for ai-augmented agriculture.
In Proceedings of the 20th ACM Conference on Embedded Networked

Sensor Systems, pages 1109–1115, 2022.

[9] Lorena Qendro, Jagmohan Chauhan, Alberto Gil CP Ramos, and Cecilia
Mascolo. The benefit of the doubt: Uncertainty aware sensing for edge
computing platforms. In 2021 IEEE/ACM Symposium on Edge Computing

(SEC), pages 214–227. IEEE, 2021.

[10] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. In international

conference on machine learning, pages 1050–1059. PMLR, 2016.

[11] Jeremiah Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax Weiss,
and Balaji Lakshminarayanan. Simple and principled uncertainty
estimation with deterministic deep learning via distance awareness.
Advances in Neural Information Processing Systems, 33:7498–7512,
2020.

[12] Nhat Pham, Hong Jia, Minh Tran, Tuan Dinh, Nam Bui, Young Kwon,
Dong Ma, Phuc Nguyen, Cecilia Mascolo, and Tam Vu. Pros: an efficient
pattern-driven compressive sensing framework for low-power biopotential-
based wearables with on-chip intelligence. In Proceedings of the 28th

Annual International Conference on Mobile Computing And Networking,
pages 661–675, 2022.

[13] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung.
Branchynet: Fast inference via early exiting from deep neural networks.
In 2016 23rd International Conference on Pattern Recognition (ICPR),
pages 2464–2469. IEEE, 2016.

[14] Colby Banbury, Chuteng Zhou, Igor Fedorov, Ramon Matas, Urmish
Thakker, Dibakar Gope, Vijay Janapa Reddi, Matthew Mattina, and Paul
Whatmough. Micronets: Neural network architectures for deploying
tinyml applications on commodity microcontrollers. Proceedings of

Machine Learning and Systems, 3:517–532, 2021.

[15] Edgar Liberis, Łukasz Dudziak, and Nicholas D. Lane. unas: Constrained
neural architecture search for microcontrollers. In Proceedings of the

1st Workshop on Machine Learning and Systems, EuroMLSys ’21,
page 70–79, New York, NY, USA, 2021. Association for Computing
Machinery.

[16] Amir Ghodrati, Babak Ehteshami Bejnordi, and Amirhossein Habibian.
Frameexit: Conditional early exiting for efficient video recognition. In
Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 15608–15618, 2021.

[17] Erika Bondareva, Elín Rós Hauksdóttir, and Cecilia Mascolo. Earables for
detection of bruxism: a feasibility study. In Adjunct Proceedings of the

2021 ACM International Joint Conference on Pervasive and Ubiquitous

Computing and Proceedings of the 2021 ACM International Symposium

on Wearable Computers, pages 146–151, 2021.
[18] Dariusz Wójcik, Tomasz Rymarczyk, Michał Oleszek, Łukasz Maciura,

and Piotr Bednarczuk. Diagnosing cardiovascular diseases with machine
learning on body surface potential mapping data. In Proceedings of

the 19th ACM Conference on Embedded Networked Sensor Systems,
SenSys ’21, page 379–381, New York, NY, USA, 2021. Association for
Computing Machinery.

[19] Taegyeong Lee, Zhiqi Lin, Saumay Pushp, Caihua Li, Yunxin Liu,
Youngki Lee, Fengyuan Xu, Chenren Xu, Lintao Zhang, and Junehwa
Song. Occlumency: Privacy-preserving remote deep-learning inference
using sgx. In The 25th Annual International Conference on Mobile

Computing and Networking, pages 1–17, 2019.
[20] Tuochao Chen, Yaxuan Li, Songyun Tao, Hyunchul Lim, Mose Sakashita,

Ruidong Zhang, Francois Guimbretiere, and Cheng Zhang. Neckface:
Continuously tracking full facial expressions on neck-mounted wearables.
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 5(2), jun 2021.

[21] Jin Huang, Colin Samplawski, Deepak Ganesan, Benjamin Marlin, and
Heesung Kwon. Clio: Enabling automatic compilation of deep learning
pipelines across iot and cloud. In Proceedings of the 26th Annual

International Conference on Mobile Computing and Networking, pages
1–12, 2020.

[22] Murat Sensoy, Lance Kaplan, and Melih Kandemir. Evidential
deep learning to quantify classification uncertainty. arXiv preprint

arXiv:1806.01768, 2018.
[23] Andrey Malinin and Mark Gales. Predictive uncertainty estimation via

prior networks. Advances in neural information processing systems, 31,
2018.

[24] Jishnu Mukhoti, Andreas Kirsch, Joost van Amersfoort, Philip HS Torr,
and Yarin Gal. Deep deterministic uncertainty: A simple baseline. arXiv

e-prints, pages arXiv–2102, 2021.
[25] Andrey Malinin, Bruno Mlodozeniec, and Mark Gales. Ensemble

distribution distillation. arXiv preprint arXiv:1905.00076, 2019.
[26] Robert David, Jared Duke, Advait Jain, Vijay Janapa Reddi, Nat Jeffries,

Jian Li, Nick Kreeger, Ian Nappier, Meghna Natraj, Tiezhen Wang, et al.
Tensorflow lite micro: Embedded machine learning for tinyml systems.
Proceedings of Machine Learning and Systems, 3:800–811, 2021.

[27] Shreyas Padhy, Zachary Nado, Jie Ren, Jeremiah Liu, Jasper Snoek, and
Balaji Lakshminarayanan. Revisiting one-vs-all classifiers for predictive
uncertainty and out-of-distribution detection in neural networks. arXiv

preprint arXiv:2007.05134, 2020.
[28] Gianni Franchi, Andrei Bursuc, Emanuel Aldea, Séverine Dubuisson,

and Isabelle Bloch. One versus all for deep neural network incertitude
(ovnni) quantification. arXiv preprint arXiv:2006.00954, 2020.

[29] Xin Dai, Xiangnan Kong, and Tian Guo. Epnet: Learning to exit
with flexible multi-branch network. In Proceedings of the 29th ACM

International Conference on Information & Knowledge Management,
pages 235–244, 2020.

[30] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks.
In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 4510–4520, 2018.
[31] Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas Chandra.

Hello edge: Keyword spotting on microcontrollers. arXiv preprint

arXiv:1711.07128, 2017.
[32] Dong Ma, Andrea Ferlini, and Cecilia Mascolo. Oesense: employing

occlusion effect for in-ear human sensing. In Proceedings of the 19th

Annual International Conference on Mobile Systems, Applications, and

Services, pages 175–187, 2021.
[33] Pete Warden. Speech commands: A dataset for limited-vocabulary speech

recognition. arXiv preprint arXiv:1804.03209, 2018.
[34] Yanping Chen, Yuan Hao, Thanawin Rakthanmanon, Jesin Zakaria,

Bing Hu, and Eamonn Keogh. A general framework for never-ending
learning from time series streams. Data mining and knowledge discovery,
29(6):1622–1664, 2015.

[35] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip
Kegelmeyer. Smote: synthetic minority over-sampling technique. Journal

of artificial intelligence research, 16:321–357, 2002.
[36] Lorena Qendro, Alexander Campbell, Pietro Lio, and Cecilia Mascolo.

Early exit ensembles for uncertainty quantification. In Machine Learning

for Health, pages 181–195. PMLR, 2021.
[37] Qingsong Wen, Liang Sun, Fan Yang, Xiaomin Song, Jingkun Gao, Xue

Wang, and Huan Xu. Time series data augmentation for deep learning:
A survey. arXiv preprint arXiv:2002.12478, 2020.

