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Abstract—Boosting the task accuracy of tiny neural networks (TNNs) has become a

fundamental challenge for enabling the deployments of TNNs on edge devices

which are constrained by strict limitations in terms of memory, computation,

bandwidth, and power supply. To this end, we propose a framework called

NetDistiller to boost the achievable accuracy of TNNs by treating them as

sub-networks of a weight-sharing teacher constructed by expanding the number of

channels of the TNN. Specifically, the target TNN model is jointly trained with the

weight-sharing teacher model via (1) gradient surgery to tackle the gradient conflicts

between them and (2) uncertainty-aware distillation to mitigate the overfitting of the

teacher model. Extensive experiments across diverse tasks validate NetDistiller’s

effectiveness in boosting TNNs’ achievable accuracy over state-of-the-art methods.

The record-breaking performance recently
achieved by neural networks (NNs) has
motivated their increasing application in almost

every discipline of science and engineering. In
parallel, Internet of Things (IoT) connected devices
are projected to number 30.9 billion units by 2025
worldwide [1]. It is thus paramount to deploy NN-
powered intelligence on numerous IoT devices to
harness the data collected at the edge for enabling
various on-device intelligent functionalities that can
revolutionize human life. This tremendously growing
demand has given rise to the field of tiny neural
networks (TNNs) which have attracted substantially
increasing attention. This is because TNNs enable
small and inexpensive edge devices to work directly
on local data at a lower power and computing cost,
leading to both reduced latency and enhanced privacy
as it alleviates or even eliminates the necessity of
internet connectivity for sharing and centralizing the
data on a cloud server. Nevertheless, the achievable
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task performance of TNNs is still unsatisfactory due
to their limited model capacity that cannot meet the
strict resource constraints of edge devices. Hence,
improving the task performance of TNNs has become
a fundamental challenge for enabling their wide-
scale adoption, which is highly desired in numerous
real-world edge applications.

To tackle the aforementioned challenge and thus
unleash the promise of TNNs at the edge, there has
been an increasing research effort towards boosting
their achievable task performance. In particular, it
has been shown that training TNNs is fundamentally
different from training large NNs. For example, the
authors of [2] identify that TNNs suffer from under-fitting
due to their limited model capacity in contrast to large
NNs which exhibit over-fitting. They further note that
although adopting data augmentation and regularization
techniques improves the ImageNet accuracy achieved
by over-parameterized large NNs, e.g., ResNet50, it
actually hurts the accuracy of TNNs, e.g., MobileNetV2-
Tiny [3], which is 174⇥ smaller than ResNet50.

Drawing inspiration from prior arts, we hypothesize
that augmenting the model capacity (e.g., channels) dur-
ing training enables TNNs to acquire extra knowledge
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FIGURE 1. An overview of NetDistiller. The target TNN is a student model serving as a sub-network within a weight-sharing
teacher model, constructed by expanding the number of channels of the target TNN. The teacher and student models are trained
simultaneously while the teacher model is trained with the ground truth labels and the objective for training the student model is
input-adaptively decided between an in-situ distillation mechanism and the ground truth labels based on its output uncertainty. To
alleviate the gradient conflict issue observed during the training process, the teacher’s gradients are modified via a gradient
surgery to remove the conflicting components based on the student’s gradients.

and thus achieve improved task accuracy. In vanilla
knowledge distillation [4], the knowledge encoded by a
large model is transferred to a smaller one by training
the small model with the outputs and/or activations of
the large model, and thus the small model is able to
achieve a higher accuracy by mimicking the behaviors
of the large model. In this work, we advocate a new
in-situ knowledge distillation scheme that is orthogonal
to the vanilla one for further boosting the achievable
task performance of TNNs, and make the following
contributions:

• We are the first to demonstrate that integrating a
weight-sharing supernet with in-situ distillation
can serve as an effective training recipe for
boosting the achievable task performance of
TNNs. Specifically, we propose a framework
called NetDistiller, which incorporates the target
TNN as a student model in a weight-sharing
supernet that acts as a teacher model to boost
the task performance of the trained TNNs without
incurring any inference overhead.

• We identify that vanilla in-situ distillation can
cause serious gradient conflicts between the
supernet teacher and sub-network student (i.e.,
the target TNN). Specifically, we find that up
to 50% of the student model’s weight gradients
have negative cosine similarities with those of
the teacher model, resulting in poor convergence
when accumulated on their shared weights. Fur-
thermore, vanilla in-situ distillation tends to result
in overfitting in the teacher model, thus diminish-
ing the effectiveness of our in-situ distillation.

• To alleviate both the two issues identified above,

NetDistiller proposes to (i) remove the conflicting
gradients by projecting the teacher’s conflicting
gradients onto the normal plane of the student’s
gradients, and (ii) integrate an uncertainty-aware
distillation to dynamically choose the student loss
function between the Kullback–Leibler divergence
and the cross-entropy loss based on the certainty
of the student model output. In this way, NetDis-

tiller can unleash the promising effectiveness of
in-situ distillation in more favorably training TNNs.

• We perform extensive experimental evaluations
and ablation studies to validate the effective-
ness of our proposed NetDistiller framework for
boosting the achievable accuracy of TNNs as
compared to the state-of-the-art method, e.g.,
a 2.3% higher accuracy over NetAug [2] when
training the MobileNet-V3-w0.35 model on the Im-
ageNet dataset. We understand that NetDistiller

has opened up a new perspective for boosting
the achievable task performance of TNNs and
enriched the field of knowledge distillation.

RELATED WORK
Efficient / Tiny Neural Networks. A substantial
progress has been made in designing efficient and
mobile-friendly neural networks. For example, Mo-
bileNets [5] utilize Depthwise Separable Convolutions,
showing that a vanilla convolution layer can be replaced
with the combination of a depthwise convolution and
a pointwise convolution; ShuffleNet utilizes two new
operations, i.e., pointwise group convolution and chan-
nel shuffle, to greatly reduce NNs’ computation cost
while maintaining their task accuracy; Compressing off-
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the-shelf deep NNs with pruning and/or quantization
removes model redundancy and reduces the overall
complexity, thereby, increasing NNs’ inference efficiency.
In parallel to the above manually designed efficient
networks and compression schemes, automated ma-
chine learning has been successfully used via neural
architecture search (NAS), such as Efficientnet, FBNet,
ProxylessNAS. In contrast to the above techniques,
the proposed framework aims to improve the inference
accuracy of TNNs via in-situ distillation where the target
TNN architecture is used as a sub-network student of
a weight-sharing supernet teacher model.

Knowledge Distillation. Knowledge Distillation
(KD) [6] refers to the idea of transferring “knowledge"
acquired by a pre-trained and over-parameterized
(teacher) model to a small (student) model that is
more suitable for edge deployment. Specifically, the
small model usually has insufficient capacity to learn a
concise knowledge representation, and KD empowers
the student model to learn the exact behaviour of the
teacher model by mimicking the teacher’s outputs at
each level, i.e., ‘soft labels’ (not just the final loss). In this
work, we advocate a new in-situ KD scheme, namely,
NetDistiller for improving the task performance of TNNs.
In contrast to vanilla KD where the teacher model is
a large NN pretrained on a different dataset and the
student model is a separate smaller model, NetDistiller

is an orthogonal approach which incorporates the
TNN as a student sub-network within a weight-sharing
supernet which acts as the teacher model for in-situ
distillation on the same training set.

Network Augmentation. The authors in [2] pro-
pose network augmentation, namely, NetAug, to boost
the accuracy of tiny deep learning by alleviating the
under-fitting issue. Specifically, NetAug augments the
network (reverse dropout) during training by putting the
tiny model as a sub-model into the larger model for
auxiliary supervision beyond functioning independently.
In contrast, NetDistiller provides an alternative scheme
to boosting the performance of TNNs via in-situ knowl-
edge distillation. Unlike NetAug which samples one
augmented network to provide auxiliary supervision
that is added to the base supervision at each training
step, the TNN in NetDistiller is used as a sub-network
(student) in a ‘static’ weight-sharing supernet (teacher)
constructed by expanding the channels of the target
TNN. In the Experimental Results section, we provide
comparative study of the proposed NetDistiller with the
state-of-the-art scheme NetAug and find that NetDis-

tiller outperforms NetAug, e.g., achieves 2.3% higher
accuracy when training the MobileNet-V3-w0.35 model
on the ImageNet dataset.

NetDistiller FRAMEWORK
NetDistiller is a training recipe for boosting the accuracy
of tiny deep learning by incorporating the target TNNs
as a student model (sub-network) in a weight-sharing
supernet that acts as a teacher model. NetDistiller per-
forms in-situ distillation of ‘knowledge’ from a supernet
teacher model to the sub-network student model which
is our target TNN. In this section, we first describe
the construction of the weight-sharing supernet from
the TNN followed by practical implementation of in-situ
distillation. Then, we describe techniques to resolve
the gradient conflicts between the teacher and student
models and mitigate the over-fitting issue in the teacher
model during the final training stage via uncertainty-
aware distillation. Finally, we discuss the training and
the inference overheads incurred by NetDistiller.

Enabler 0: Constructing the Weight-Sharing
Teacher Model
NetDistiller expands the target TNN along the channels
to construct a weight-sharing supernet as the teacher
model. Thus, the target TNN acts as a sub-network
model. The student and teacher models share all the
convolution layers weights while maintaining their re-
spective Batch-Normalization layers to take into account
the different running statistics (means and variances) in
their activation values. As a novel training recipe for the
capacity augmentation of a target TNN to alleviate its
under-fitting issue and to boost its accuracy, NetDistiller

constructs a teacher model with 3⇥ times the number
of channels as the target TNN (student model). Figure 1
depicts the above-described construction of the weight-
sharing teacher model from the TNN.

Enabler 1: In-Situ Distillation
In-situ knowledge distillation stabilizes the training of
the supernet, and improves the performance of sub-
networks. TNNs are more likely to get stuck in local
minimums due to insufficient capacity, which limits
their training and test performance compared to over-
parameterized large NNs [2]. NetDistiller integrates
the target TNN as a sub-network student model in a
weight-sharing supernet teacher model constructed by
expanding the channels of the target NN. To the best of
our knowledge, NetDistiller is the first to demonstrate
that applying in-situ distillation to a weight-sharing
supernet [7] can serve as an effective training recipe
for boosting the achievable task performance of TNNs
(Figure 1).

In-situ distillation leverages the ‘soft labels’ predicted
by the supernet as the training label to supervise
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the sub-network student model during each training
iteration while using ground truth labels for the teacher
model. Formally, at training iteration n, the supernet
parameter W is updated by

W
n  W

n�1 + ⌘g(W n�1),

where ⌘ is the step size, and

g(W n�1) = rW

⇣
LD(W )+

Lstu

�
[W , Wstu ]; W

n�1�⌘���
W=W n�1

(1)

Here, LD(W ) is the cross-entropy (CE) loss of
the supernet teacher on a training dataset D, and
Lstu

�
[W , Wstu ]; W

n
�

is the student loss determined by
uncertainty-aware distillation (introduced in the Enabler
3 part). Additionally, the distillation process in NetDis-

tiller is single-shot, i.e., it is implemented in-situ during
training without additional computation and memory
cost, unlike two-step vanilla KD where a large model
has to be first pre-trained.

Enabler 2: Resolving Gradient conflicts
The gradients from both the student and the teacher
models are accumulated on the shared weights. We
identify that vanilla in-situ distillation may cause serious
gradient conflicts between the supernet teacher and
sub-network student (target TNN). Specifically, we find
that up to 50% of the student model gradients have
a negative cosine-similarity with those of the teacher
model. Inspired by the PCGrad [8] which performs gradi-
ent surgery for multi-task learning, NetDistiller projects
the conflicting teacher gradients to the normal plane of
student gradients, removing the conflicting components
in the teacher gradients and improving the performance
of TNNs. Let rlstu and rltea denote the gradients of the
student and the teacher models respectively. We define
� as the angle between the above two gradients, and g

as the final gradient for updating the weights. In order
to guarantee the student model training, we project
the conflicting teacher’s gradient, proj(rltea), when the
Cosine-Similarity, cos(�) = rlstu .rltea

krlstukkrlteak
is negative.

g = rlstu + proj(rltea), where

proj(rltea) =

8
<

:
rltea �

rlT
tea

rlstu

krlstuk2 rlstu , if cos(�) < 0

rltea, otherwise

(2)

Enabler 3: Uncertainty-aware Distillation
Unlike the vanilla KD and other uncertainty-aware distil-
lation method (i.e. [9]) using pretrained teacher models,
NetDistiller simultaneously trains the student and the

weight-sharing teacher models via in-situ distillation.
We observe that the supernet teacher model suffers
from over-fitting at the final training stage. Additionally,
[10] advocates that large models have the largest
improvement on samples where the small model is
most uncertain. As for certain examples, even those
where the small model is not particularly accurate, large
models are often unable to improve. Thus the teacher
model is not always a good teacher during the whole
training. We propose uncertainty-aware distillation (UD)
to dynamically select the student loss functions between
the Kullback–Leibler (KL) divergence and cross entropy
(CE) losses based on the certainty of the student model
output (see Figure 1). We measure the uncertainty
via the entropy of the student outputs. When the
entropy of the student output is high (i.e., uncertain), the
student is distilled by the weight-sharing teacher (via
KL divergence loss), otherwise, the student is trained
by the ground truth label (via cross entropy loss).

Let T denote the uncertainty threshold; Lstu denote
the student model loss; KL() and CE() denote the KL
loss and the Cross-Entropy loss, respectively; W and
Wstu denote the teacher and student models; x and y

denote the input data and the ground truth labels. We
use a variable uncertainty to denote the entropy of the
student model outputs Wstu(x).

Lstu =

(
KL(Wstu(x), W (x)), uncertainty � T
CE(Wstu(x), y), otherwise

(3)

Analysis of Training and Inference Overhead
In contrast to the two-step distillation process in vanilla
KD, NetDistiller performs one-shot in-situ distillation
of knowledge from the supernet teacher to the sub-
network student model without any additional com-
putation and memory cost. Similar to that of NetAug,
NetDistiller has zero inference overhead because only
the sub-network student model (target TNNs) is used,
enabling the deployment of TNNs feasible on resource-
constrained edge devices. Despite expanding the target
TNN model by 3⇥, we observe a mere 20% increase in
the training time of NetDistiller to that of vanilla TNNs.
We also evaluated NetDistiller on ResNet-50, and
found that NetDistiller works better with TNNs, because
with the increasing of the model size, expanding the
model channel significantly increases the requirement
of computation resources for training, distilling, and
gradient surgery, resulting in an unacceptable training
speed decrease.

4 Publication Title Month 2023



tinyML

TABLE 1. Benchmark of NetDistiller and SOTA method for training TNNs. r160: The input image resolution is 160 ⇥ 160. w0.35:
The model has 0.35⇥ number of channels than the vanilla one.

Model MobileNet-V2-Tiny MCUNet MobileNet-V3, r160 ProxylessNAS, r160 MobileNet-V2, r160
r144 r176 w0.35 w0.35 w1.0 w0.35 w1.0

Params 0.75M 0.74M 2.2M 1.8M 4.1M 1.7M 3.5M
MACs 23.5M 81.8M 19.6M 35.7M 164.1M 30.9M 154.1M

Baseline 51.7% 61.5% 58.1% 59.1% 71.2% 56.3% 69.7%
NetAug [2] 53.3% 62.7% 60.3% 60.8% 71.9% 57.8% 70.6%

In-situ 54.1% 62.7% 62.1% 60.7% 71.2% 58.5% 71.2%
In-situ + PCGrad [8] 54.5% 63.4% 62.3% 61.3% 72.5% 59.0% 72.0%
NetDistiller (ours) 54.8% 64.2% 62.6% 61.5% 72.8% 59.3% 72.6%

TABLE 2. Ablation study of channel expansion rates on
MobileNet-V2-w0.35 (MBV2-w0.35) and MobileNet-V3-w0.35
(MBV3-w0.35). Different teacher sizes in the first row indicate
the channel expansion rates. Considering the limited improve-
ment (0.2%) between ⇥4 and ⇥3 teachers on MobileNet-V2-
w0.35 model and the training efficiency, teacher with ⇥3 size
is selected in NetDistiller.

Teacher Size Baseline ⇥2 ⇥3 ⇥4 ⇥5

MobileNet-V2-0.35 56.3% 58.0% 58.5% 58.7% 58.3%
MobileNet-V3-0.35 58.1% 61.3% 62.1% 61.8% 61.8%

EXPERIMENTAL RESULTS

Experiment Setup
Models. We benchmark NetDistiller with SOTA TNNs
training methods, e.g., NetAug [2], and knowledge
distillation (KD) [4], on five commonly adopted TNNs,
including MobileNet-V2-Tiny, MobileNet-V2 (w0.35 and
w1.0), MobileNet-V3, MCUNet (256kb-1mb), and Proxy-
lessNAS (w0.35, w1.0). The w0.35 indicates the models
have 0.35 times of channels over the vanilla one (w1.0).
Following the model definitions in [2], the channels of
w0.35 models are round to products of 8.

Datasets. Following [2], we consider the ImageNet
dataset with an input resolution of r144, r160, and r176
for different target TNNs. In the external knowledge dis-
tillation experiments, the input resolution for the external
teacher is r224 to match its pretraining setting. The
object detection experiments are trained on PASCAL
VOC 2007+2012 datasets and evaluated on PASCAL
VOC 2007 eval set with an input resolution of r416.

Evaluation Metrics. NetDistiller and baseline meth-
ods are evaluated in terms of the top-1 accuracy on
ImageNet and the average precision at IoU=0.5 (AP50)
for the object detection on PASCAL VOC.

Training Setting. We train TNNs for 180 epochs
using an SGD optimizer with a momentum of 0.9 and an
initial learning rate of 0.4 decayed by a cosine learning
rate scheduler. We adopt a learning rate warm-up for 5
epochs and the gradients are clipped to 1.0. The label
smoothing technique with a factor of 0.1 is adopted
when using the ground truth label. For the NetDistiller

TABLE 3. Ablation study of gradient surgery on MobileNet-
V2-w0.35 and MobileNet-V3-w0.35 models for 360 epochs.
We disable gradient surgery and calculate the cosine-similarity
between the two gradients (teacher’s and student’s) of each
convolutional layer. The percentage values shown under
different epochs reflect the average ratio of the number of
layers with negative cosine-similarity (gradient conflicts) w.r.t.
the total number of layers in the model.

Epoch 1 90 180 270 360

MobileNet-V2-w0.35 51.5% 40.1% 37.4% 39.4% 38.2%
MobileNet-V3-w0.35 50.1% 45.2% 34.7% 38.5% 37.4%

TABLE 4. Ablation study of different uncertainty-aware dis-
tillation thresholds on MobileNet-V2-w0.35 and MobileNet-
V2-w1.0. The first column is the thresholds. The uncertainty-
aware distillation distills the student model if its output entropy
(uncertainty) is higher than the threshold and trains the student
model with ground truth labels otherwise.

Model Uncertainty Threshold
2.5 3.75 5.0

MobileNet-V2-w0.35 59.1% 59.3% 58.9%
MobileNet-V2-w1.0 71.9% 72.6% 71.2%

with uncertainty-aware distillation, we use the same
training recipe but increase the training epochs to 360.
The uncertainty threshold T is set to 3.75 based on
the empirical observation of our ablation study. All
the ImageNet experiments are run on 8 GPUs with
a batch size of 1024. As a recent paper [2] discovered
that data augmentation and regularization could be
harmful to TNN training, we only utilize standard data
augmentations (e.g. random flip, random crop) and
disable regularization methods like dropout and drop
path. For transfer learning on the object detection task,
MobileNet-V2-w0.35 and MobileNet-V3-w0.35 models
are connected with a YOLO-v4 head. All the object
detection experiments are trained via an SGD optimizer
with a momentum of 0.9 and an initial learning rate of
1e-4 decayed by a cosine learning rate scheduler for
100 epochs with a batch size of 8.
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TABLE 5. Combination of NetDistiller and External knowledge distillation. KD: Distill the target TNN with an external teacher
(ImageNet pretrained ResNet-50). NetDistiller w/o UD: Uncertainty-aware distillation is turned off in the external KD experiments.
NetDistiller+KD: The external teacher distills both NetDistiller teacher and student models.

Model Baseline KD NetDistiller w/o UD NetDistiller+KD

MobileNet-V2-Tiny, r144 51.7% 53.7% (+2.0%) 55.5% (+3.8%) 56.1% (+4.4%)
MobileNet-V2-w0.35, r160 56.3% 58.4% (+2.1%) 59.0% (+2.7%) 59.5% (+3.2%)
MobileNet-V3-w0.35, r160 58.1% 61.6% (+3.5%) 62.3% (+4.2%) 62.5% (+4.4%)
ProxylessNAS-w0.35, r160 59.1% 60.8% (+1.7%) 61.3% (+2.2%) 61.9% (+2.8%)

Benchmark with SOTA Methods for Training
TNNs
As shown in Table 1, TNNs trained via in-situ distillation
only can achieve similar or outperform the SOTA TNNs
training method, NetAug [2]. Though suffering form the
gradient conflicts problem, in-situ distillation improves
up to 4.0% of accuracy compared with the baselines
on MobileNet-V3-w0.35, and up to 1.8% higher than
the SOTA method. After the PCGrad [8] is applied
to alleviate the gradient conflicts problem, the TNNs
accuracy improve about 0.5%, which also confirms
gradient conflict is an inherent problem when training
TNNs via in-situ distillation. To further improve TNNs
performance, we combine the in-situ distillation with
PCGrad and the uncertainty-aware distillation in the
proposed NetDistiller.

Ablation Studies of NetDistiller

Channel expansion rates of the teacher model.
Since NetDistiller expands the channels of TNNs to
create a weight-sharing supernet as the teacher model,
the channel expansion rate of the teacher model
could impact the effectiveness of the in-situ distillation
mechanism, considering that a thin teacher will have
limited capacity and the information of an extremely
wide teacher cannot be effectively inherited. In order to
identify a proper channel expansion rate, we evaluate
NetDistiller with⇥2,⇥3,⇥4, and⇥5 channel expansion
rates on top of two TNNs, MobileNet-V2-w0.35 and
MobileNet-V3-w0.35. As shown in Table 2, we can
observe that (1) all four teacher models can boost
TNNs’ accuracy, indicating the general effectiveness
of NetDistiller, and (2) MobileNet-V2-w0.35/MobileNet-
V3-w0.35 achieve the best accuracy under a channel
expansion rate of ⇥4/⇥3, respectively. To save the
training overhead introduced by the expanded teacher,
we adopt a channel expansion rate of ⇥3 by default in
NetDistiller.

Visualizing the gradient conflicts. Due to the
weight-sharing mechanism, jointly training the student
and the teacher will accumulate gradients to the same
weights, inevitably resulting in gradient conflicts. To
validate whether gradient conflicts happen in different

training stages, we measure the ratio of the numbers of
the layers with negative cosine-similarity averaged over
the validation set w.r.t. the total number of the layers
in the model along the training process. The results in
Table 3 indicate that the teacher model and the student
model indeed suffer from gradient conflicts with up to
51.5% layers having conflict gradients. To tackle this,
adopting the gradient surgery results in an accuracy
improvement of 0.5% and 0.2% on MobileNet-V2-w0.35
and MobileNet-V3-w0.35, respectively, according to
Table 1.

Deciding the uncertainty threshold of
uncertainty-aware distillation. Our proposed
uncertainty-aware distillation mechanism adaptively
decides the objective for the student model between
in-situ distillation and the cross entropy over ground-
truth labels based on the uncertainty of student model
outputs. To decide the uncertainty threshold, we
validate MobileNet-V2-w0.35 and MobileNet-V2-w1.0
models with uncertainty thresholds of 5.0, 3.75, and
2.5, considering the entropy of ImageNet models
is in the range of [1.5, 10] when adopting a label
smoothing factor of 0.1. As shown in Table 4, both
two MobileNet-V2 models achieve their best accuracy
under an uncertainty threshold of 3.75 with an
accuracy improvement of 0.3% and 0.6%, respectively,
compared to NetDistiller w/o uncertainty-aware
distillation. Without bells and whistles, we adopt 3.75
by default when enabling uncertainty-aware distillation.

Benchmark and integrate with knowledge distil-
lation. One natural baseline for NetDistiller is standard
knowledge distillation. Based on recent observations
that large gaps between the teacher and student
models may cause inferior knowledge distillation per-
formances [11], we hypothesize that (a) our proposed
in-situ distillation is a better mechanism to enable TNN
training as compared to knowledge distillation, and
(b) knowledge distillation is orthogonal to our method
and can be applied in parallel. To validate this, we
distill the knowledge of an ImageNet pretrained ResNet-
50 for both NetDistiller ’s teacher and student models,
which is dubbed an external distillation mechanism to
distinguish from our in-situ distillation, and benchmark
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FIGURE 2. Visualizing the training process of NetDistiller and baselines for MobileNet-V2-w0.35 and MobileNet-V3-w0.35
models. NetDistiller boosts both training and evaluation accuracy for the TNNs, showing the huge potential that NetDistiller are
able to empower TNNs and help TNNs alleviate the under-fitting issue.

with (1) vanilla NetDistiller and (2) standard knowledge
distillation. As shown in Table 5, we can observe
that (1) vanilla NetDistiller can outperform standard
knowledge distillation, e.g., an accuracy improvement
of 3.8% and 4.% on MobileNet-V2-Tiny and MobileNet-
V3-w0.35, respectively, validating our hypothesis (a),
and (2) knowledge distillation is orthogonal to Net-

Distiller and applying knowledge distillation on top of
NetDistiller can lead to an accuracy improvement of
4.4% on MobileNet-V2-Tiny and MobileNet-V3-w0.35,
respectively, validating our hypothesis (b).

Visualization of Training Trajectories
We visualize the training curves of MobileNet-V2-w0.35
and MobileNet-V3-w0.35 trained by NetDistiller for
180 epochs, as well as the corresponding standard
training baseline, in Figure 2. We can observe that
both NetDistiller ’s training and evaluation accuracy are
consistently higher than the corresponding baselines
under the same training epoch during the whole training
process, e.g., NetDistiller achieves a 2.7% and 4.2%
accuracy improvement over the baselines for MobileNet-
V2-w0.35 and MobileNet-V3-w0.35, respectively. In
addition, to achieve a comparable accuracy, NetDistiller

requires less training epochs, e.g., a 44% training
epochs saving as annotated in Figure 2.

Transfer Learning Study on Object Detection
In order to validate the generality of the representa-
tions learned by NetDistiller, we transfer NetDistiller ’s
trained MobileNet-V2-w0.35 and MobileNet-V3-w0.35
to a downstream object detection task and benchmark
with those standardly pretrained models (w/ and w/o
KD) on ImageNet. In particular, the final pooling and
linear layers in MobileNet-V2-w0.35 and MobileNet-V3-
w0.35 are replaced with the YOLO-v4 object detection
head. As shown in Table 6, NetDistiller consistently
wins a better transferability with a 1.9% / 1.8% higher
AP on MobileNet-V2-w0.35 / MobileNet-V3-w0.35 as
compared to standard training baselines. Note that

TABLE 6. Transfer learning to object detection on PASCAL
VOC 2007+2012 datasets of MobileNet-V2-w0.35 (MBV2)
and MobileNet-V3-w0.35 (MBV3) models with NetDistiller

pretrained weights on ImageNet. Both of the two models are
connected with YOLO-v4 detection head. The experiments are
measured by Average Percision at IoU=0.5 (AP50).

Model Baseline AP50 KD AP50 NetDistiller AP50

MobileNet-v2-w0.35 60.4% 61.1% 62.3%
MobileNet-v3-w0.35 63.6% 62.8% 65.2%

although pretrained features on classification tasks
may not be necessarily useful for downstream tasks
[12], [2], which is also echoed with our results of KD
pretrained MobileNet-V3-w0.35 in Table 6, NetDistiller

is still able to improve the achievable AP by up to 1.9%
on both models, which also indicates that our method is
generally applicable across different tasks and datasets.

CONCLUSION
It is highly desired to deploy TNNs on resource-
constrained platforms due to their superior model
efficiency, whereas their achievable accuracy is often
bottlenecked by the limited model capacity. To bridge
this gap, we propose NetDistiller that incorporates a
weight-sharing supernet teacher model constructed by
expanding the channel capacity of tiny model. Extensive
experiments and ablation studies demonstrate that Net-

Distiller boosts the achievable accuracy of tiny neural
networks compared to NetAug and vanilla knowledge
distillation method, thereby, empowering tiny neural
networks to overcome under-fitting issues resulting from
insufficient capacity.
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